Pulsejet technology, one of the simplest forms of propulsion known, has been around since the early 1900s. It got its first practical application in the 1930s on the German V-1 flying bomb, or “Buzz-Bomb.” Interest in pulsejet applications then subsided due to the continuing development and improvement of the turbojet engine. Recently though, there has been renewed interest in pulsejets as an alternative to chemical rocket propulsion. Advances in computational simulation and modeling now allow better modeling of the operation process. In this research, COMSOL Multiphysics is utilized to develop a computational model to simulate a pulsejet engine and the phenomena of its operation. Conservation of momentum, mass, and energy equations are solved for one-dimensional, unsteady, compressible flow. The simulation shows how compression and expansion (rarefaction) waves propagate through the engine during the operation cycle. This information can then be used to optimize the thrust with more realistic conditions.