Embedding Electromagnetic Components into CubeSat Structures Using Additive Manufacturing
Open Access
Author:
Arenson, Rebecca Ann
Area of Honors:
Electrical Engineering
Degree:
Bachelor of Science
Document Type:
Thesis
Thesis Supervisors:
Dr. Sven G Bilén, Thesis Supervisor Dr. Sven G Bilén, Thesis Honors Advisor Dr. Timothy Joseph Kane, Faculty Reader
Keywords:
Antennas Additive Manufacturing 3D Printing Electromagnetics CubeSat
Abstract:
Grant funding and National Aeronautics and Space Administration (NASA) launch initiatives for CubeSats make research using satellites research available to universities and projects with relatively low budgets. The small scale of CubeSats—only 10 cm × 10 cm × 10 cm per 1U (one unit) cube, requires efficient use of spacecraft volume. Many CubeSats employ measuring-tape dipole antennas that can only provide omni-directional patterns, or patch antennas that take away surface area needed for solar panels. Additive manufacturing has also become an important topic of research as 3-dimensional printing techniques improve. This work explores techniques for using additive manufacturing to save space on small satellites by embedding electromagnetic components, such as antennas, into the structure elements of a CubeSat. Two primary methods are analyzed, one using finite deposition modeling printing and one using stereolithography. These two types of printers were selected because they are easily accessible and affordable. The filaments for the Finite Deposition Modeling method proved insufficient at this time. However, the stereolithography method successfully produced conductive components embedded within structural elements, including an antenna embedded in a CubeSat cross-brace.