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Abstract

The primary focus of this thesis is to examine the impact of integrating a structural task graph
into a visual recognition network to accurately identify and segment errors in the assembly of
toy cars. We have introduced enhancements to two baseline networks that specifically encode the
structural and sequential intricacies of assembly processes. These enhancements have led to state-
of-the-art performance in visual-only mistake recognition task, marking a 3.7% increase in the F1-
score over existing benchmarks within the Assembly101 dataset [1]. Moreover, our work pioneers
in addressing the temporal mistake segmentation task which does not rely on ground truth action
segments during test time. The advancements presented have yielded substantial improvements
over baseline models, with a 5% increase in F1 @ 10, 3.8% at F1 @ 25, and 1.8% at F1 @ 50. Our
results indicate the significant role that graph construction and attention-based mechanisms play in
enhancing mistake recognition and temporal mistake segmentation tasks, setting a new precedent
for future research in mistake detection.
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Chapter 1

Introduction

In today’s modern world, it is commonplace to begin a complex task such as cooking a new
recipe, making a repair to a bike, or assembling furniture, by referring to a YouTube video for
guidance. Instructional videos have speedup the process of learning do-it-yourself (DIY) tasks
significantly. However, without a feedback system to aid the process, individuals can often stray
from the original procedure and make critical mistakes that cause a faulty end result.

Recently, research and industry has focused on creating the many different components that
would allow an AI assistant to aid users in correctly completing a complex procedure. A recent
example is the Alexa Prize TaskBot challenge hosted by Amazon Science which focused on aug-
menting the conversational AI, Alexa, to guide users through complex real-world tasks [2]. In
order for an AI assistant to be effectively introduced into real-world scenarios, it would need to
understand a user’s current progress within the procedure, relate it to the original procedure or final
intended result, and communicate the necessary interventions to correct any mistakes that occur.
While procedural understanding models have become adept at learning from instructional videos
and text, accurately identifying errors in these videos remains a significant challenge. This work
specifically focuses on creating models that improve upon the mistake detection tasks in the toy
car assembly environment.

Common procedural understanding research has focused on the action recognition, anticipa-
tion, and segmentation tasks in a various number of settings including zero-shot, self-supervised,
semi-supervised, and supervised. There are several SoTA techniques that generally perform well
on instructional video dataset benchmarks like YouCookII [3], CrossTask [4], TastyVideosV2 [5],
EPIC-Kitchens [6] and COIN [7]. A new study suggests that world knowledge stored within Large
Language Models (LLMs) can be used for tasks that involve understanding procedures [8]. This
has led to the exploration of techniques that combine large vision and language models. This tech-
nique takes advantage of natural language processing (NLP) approaches to use information from
unstructured documents such as recipes and WikiHow articles [9]. The knowledge graph is another
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source of external information that is commonly created in this setting. Compared to the LLM, a
knowledge graph provides a structured, easily understandable source of information [10]. On the
model architecture side, techniques that utilize attention and transformer networks have continued
to perform well [11, 12, 13, 14].

A similar setting to mistake recognition is the video anomaly detection task [15, 16]. This task
is particularly applicable to public surveillance settings, where the model processes untrimmed
video to identify anomalous events. Typically the anomaly detection setting is framed as a one-
class classification problem in which training is only conducted on non-anomalous samples. This
setting requires the model to learn the distribution of the training data and identify any anomalous
behavior during test time by comparing the difference between the predicted result and the label.
While some mistake recognition datasets are framed under the one-class classification setting [17,
18], others like Assembly101 [1] are not since the mistake recognition setting requires a precise
understanding of both the overall procedure and the fine-grained step implementations.

As mentioned in the results of [1], detecting mistakes in the assembly environment is a chal-
lenging task. One of the biggest challenges is that there are many different types of errors including
procedural, extraneous, and technique errors that require a model to have a detailed step-level spa-
tial and temporal understanding. To add to this difficulty, a correct procedure has many different
viable execution orders, which requires knowledge of the necessary preconditions between each
step. Another inherent property of mistake recognition datasets is the imbalance between the num-
ber of correct actions and mistake actions within a sequence. Inherently, it makes sense that, in a
single assembly sequence, it only requires one mistake in a series of several other correct actions
to skew the end result. Additionally, one nuanced difference, when compared to the cooking do-
main, is that the assembly domain more readily allows for the individual to make a correction of
a previous mistake. In Assembly101 [1], this means that the procedure state can have even more
variations.

Despite the rising prevalence of instruction video datasets with error steps, there are relatively
few models that address the mistake recognition task specifically. For the Assembly101 dataset [1],
the only follow-up model [19] is an algorithmic method that assumes ground truth text action
annotations. We find this to be an unreasonable assumption since the collection process is manual
and time consuming. Furthermore, even more realistic than the initial benchmark set by [1], we
propose a more realistic setting called temporal mistake segmentation that removes the assumption
of the ground truth action segmentations during test time. As shown in Figure 1.1, this involves
classifying mistakes on a frame-level. In instructional video datasets, this is called the temporal
action segmentation setting.

To address these two tasks we create a method that maps out the temporal interconnections
among different procedural stages via the formulation of a task graph. This task graph is not
merely a static representation; it is enhanced through the integration of each node into a graph
encoder network, thereby extracting structural information. The resultant node embeddings are
synthesized, providing a refined input that enriches traditional classification and segmentation net-
works, such as TempAgg [12] or LTContext [20]. The contributions of this thesis are as follows:

• We propose a more realistic setting of mistake recognition called temporal mistake segmen-
tation, which drops the assumption that ground truth action segmentations are known during
test time. This setting is more applicable as it can be applied to real-world data without the
need for expensive frame-wise annotations.
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Figure 1.1: Mistake detection in the Assembly101 [1] dataset. Time series (a) demonstrates the
classification of step segments into correct, mistake, or correction using ground-truth action seg-
mentation. Time series (b) showcases temporal mistake segmentation, evaluated on the frame-level
without ground-truth segmentation.

• We present an encoding network, made specifically to improve mistake recognition abilities
of downstream tasks. At the heart of our network’s innovation is the creation of a task graph
tailored to a particular toy, which is then seamlessly merged with a temporal visual network
through the use of attention. By doing so, it captures the assembly process’s structural and
sequential rules, thereby boosting the efficacy of the temporal model.

• Our methodology has set new benchmarks for the mistake recognition and temporal mistake
segmentation tasks, surpassing existing baselines. The demonstrated performance attests
the efficiency and effectiveness of our model in the precise identification of errors within
assembly processes.
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Chapter 2

Literature Review

Prior to selecting Assembly101 [1] as our dataset of choice, we conducted evaluations of var-
ious instructional video datasets containing error steps. Our approach, which emphasizes task
graphs, identified Assembly101 as offering the greatest potential for enhancement, given its wide
variety of specific tasks. Additionally, we explored techniques for building and conditioning our
graph to enhance mistake recognition and temporal mistake segmentation performance. Given that
mistake recognition is a relatively nascent area within action recognition, we further elaborate on
tasks related to action understanding.

2.1 Instructional Video Datasets with Error Steps
Recent research has introduced many datasets that are focused on the instructional videos with

error steps domain [17, 21, 18, 22, 1, 23, 24, 19]. Since this task is similar to the established video
anomaly detection task, the ATA [17] dataset and the BRIO-TA [18] dataset focus on a split of the
dataset that only contains anomalies during test time. However, these datasets contain simple errors
at the video level rather than being localized to a specific timestamp. The complexity of the mistake
recognition task is specifically more challenging and applicable when it includes errors such as
procedural errors, execution errors, and backtracking to correct previously introduced errors. This
is because recognizing these errors requires a much finer level of understanding of the current state
of the object.

In our research, we found that there are generally three main types of errors, as shown in Ta-
ble 2.1: procedural, extraneous, and technique. Procedural errors are those that occur due to an
incorrect temporal alignment of steps. The most common example would be an ordering mistake
in which a step is enacted before another step was completed. In mistake datasets that are synthet-
ically created from other datasets [25, 26, 27], this also can happen in a form a swap of two video
clips. The second type of error is an extraneous error where the action that occurs is inefficient or



5

Datasets Procedural Extraneous Technique Genuine Corrections
BrioTA [18] Swapping, Omission Timing ✗ ✗ ✗

ATA [17] Omission Timing, Extra part Balancing ✗ ✗

CaptianCook4D [22] Order, Omission Timing Preparation, Measurement Both ✗

IndustReal [21] Order, Omission ✓* Incorrect Part Type Both ✓*
HA-VID [23] ✓* ✓* ✓* ✓ ✓*
HoloAssist [24] ✓* ✓* ✓* ✓ ✓*
Assembly101 [1] Order, Accumulation Removal Orientation ✓ ✓

Table 2.1: Overview of relevant instructional video datasets with error steps. Examples of specific
error types are shown in the table. The genuine column describes whether each dataset contains
real unintentional errors made by the participants (✓) or whether the participants followed a script
to force the error to occur artificially(✗). *Note: The asterisk indicates that the errors exist; however, they are
not explicitly annotated

unnecessary. In practice, this is when a part is unnecessarily removed [19], an extra part is added
to the object [17], or an extraneous amount of time is wasted idle [17, 18, 22]. Out of all three error
types, the technique error often requires the most fine-grained understanding. For instance, in the
case of [22], this can be as subtle as incorrectly stirring some corn and having a few kernels fall out
of the bowl. In assembly datasets, a technique error is more commonly related to the orientation,
type, and balance of a part.

Another noteworthy characteristic of the aforementioned error datasets is whether they contain
realistic unintentional errors or if the participants were instructed to feign an error. We describe
these as genuine errors as shown in Table 2.1. The genuine setting is more useful in training a real-
world model since the model needs to recognize more subtle mistakes. There are a few datasets [25,
26, 27] which have synthetically created errors by modifying existing error-free datasets. We found
this to be orthogonal to our direction of research, because the end setting isn’t realistic. However,
following the pre-training paradigm and transferring the learned knowledge from synthetic datasets
to realistic benchmarks, as done in [21], could be a potential direction for future research.

As shown in Table 2.1, only half of the error datasets contain corrections to past errors. The
practice of incorporating corrections is largely relevant to assembly environments. In cooking sce-
narios, rectifying a mistake typically necessitates starting over, as it is often impractical to correct
the error without doing so. However, this setting requires more advanced state understanding since
the current state must be compared to past actions more closely.

Our research focuses on the more realistic task of visual-only mistake recognition initially pro-
posed in the Assembly101 dataset [1]. This dataset contains annotated correction steps, contains
only genuine mistakes, has the highest number of different objects, and has annotated fine grained
actions. IndustReal [21] operates in the object detection space by proposing a new task called
procedure step recognition and focusing on understanding the spatial constraints of a single object.
HoloAssist [24] focuses on the collaboration between an instructor which interactively guides the
participant through any mistakes and questions. CaptainCook4D [22] is the only error-focused
dataset to exist in the cooking domain which innately contains many complex fine errors. In the
end, the Assembly101 dataset is more applicable to our task graph-focused approach, as the diverse
number of objects has the highest potential to benefit from enhanced structural information.

Despite recent interest in mistake detection, most of these works only provide baselines like [12]
without more sophisticated techniques. The exception is [19] which proposes a rule-based algo-
rithm to construct a spatial and temporal graph from textual annotations of the ground truth state.
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However, this setting is unrealistic due to the assumptions of a ground truth text oracle during test
time. Additionally, the work is unable to adequately detect different technique errors such as part
misorientation since it doesn’t utilize the rich visual modality. Our work focuses on improving
baseline models like [12, 20] to perform well in the supervised visual-only setting.

2.2 Graph Construction Methods
There are several approaches to creating structured task graphs from instructional videos, in-

cluding [28, 29, 11]. The motivation is that by distilling instructional knowledge into a more
succinct structured format, a network has increased performance on step detection or next subtask
prediction.

One of the advantages of instructional videos, especially with the rise of LLMs, is that they
are often a narrated demonstration of the task. This narration can act as a self-supervised way to
create a link between the video and external text sources such as Wikihow [9] for better procedural
understanding as in [30, 11]. In [11], they create a procedural knowledge graph, but it is heavily
dependent on the linked external text sources. However, error datasets are more frequently user
executions, where users simply enact the procedure (with or without instructions). Since the user
is not demonstrating the procedure, there is no audio that can be used to find a link between actions
and an external procedural recipe. Recently, [31] has explored using visual instruction manuals and
aligning them with video demonstrations through the IKEA-in-the-Wild (IAW) dataset. However,
in the case of Assembly101 [1], there are no visual instruction manuals requiring all knowledge to
be derived solely from the video and action annotations.

Currently, graph generation works are divided among those that use weighted [32, 33] and
unweighted edge weights [19, 28, 34, 29, 35, 36] as a way to model the temporal relationship
between different action subtasks. Weighted edges often show the probability of one task having
a relation between another and a highest probability path can be computed to determine the most
likely candidate path as demonstrated in [32]. Distinctly, in an unweighted graph, the edge defines
a necessary precondition between two actions. Since detecting an ordering mistake in assembly
requires knowledge of whether an ordering constraint has been violated, the unweighted graph is
the most intuitive representation.

Some previous approaches [35, 36] focus on the supervised graph generation problem, in which
a manually curated graph is provided as annotation and a large language model (LLM) is utilized
for generation. The more ideal setting is the unsupervised case as this type of annotation is not
available for most instructional videos. As demonstrated in [28, 29], by using the temporal action
annotations present in most instructional videos as input, a task graph can be constructed through
an algorithm called Inductive Logical Programming (ILP). This algorithm is a specific type of
learning that specializes in using a limited amount of training data to output a set of logical rules
that generalize the training data [37]. In our case, the goal is to acquire a temporal ordering between
all the correct actions in each assembled toy. Given the temporal action annotations for each toy,
the ILP algorithm outputs a set of logical preconditions between steps that can be used to construct
the task graph.

In contrast to a simulated environment [34], which has complete information about which
actions are eligible to be completed next, in the real world scenario the temporal action annotations
are noisy and sparse. Therefore, to obtain the logical preconditions, [28] boils this algorithm down
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to greedy edge selection based on the typical ordering of actions. As these works operate on data
that does not contain errors, they can only assume the positive eligibility of a task. In mistake
recognition, with the inclusion of ordering mistakes, we modify the algorithm proposed by [28] to
more closely fit this domain difference as detailed in Sec 3.1.2.

2.3 Graph Conditioning Methods
The methods for conditioning a model on a graph can be divided into two categories: those

derived from machine learning techniques and those from programming logic. The machine learn-
ing based method focuses on finding a representation of the graph in the form of an embedding.
Works like [38, 39, 28] use a graph nueral network (GNN) as an encoder. In [38], they use the
graph for increased performance in the closed question and answering domain. They further up-
date the GNN output using cross-attention pooling between each candidate graph and the context
provided in the question. We follow a similar approach to attend the graph representation to the
frames of the current video.

Recently, in the neurosymbolic community, they have found that logical rules [40] can di-
rectly benefit data-driven models that focus on analyzing images and graph data. Recently, models
have extended this to the action understanding temporal domain [41, 42]. These works create a
context-free grammar by iterating through the training set text annotations and extracting relevant
rules. Then these rules are used to guide the output of the learning based model. Specifically,
DLT [41] employs a neurosymbolic evaluator to introduce a secondary loss into a temporal action
segmentation model, compelling the model’s output to adhere to the extracted rules.

Another example is [32] which replaces model output that has a low confidence score with
more confident output from the task graph. For instance, in the keystep recognition task, if the
model is unsure about the predictions for steps 3 and 4, they use Dijkstra’s algorithm to find the
most likely path from steps 2 and 5. In this way, they can condition on the structured task graph to
edit the predicted output.

In this paper, we focus on the learning based method, but future work could consider utilizing
programming logic as it explicitly represents the rules extracted from the textual annotations.

2.4 Action Understanding Tasks
The mistake recognition task is a specific subset of the action recognition or action classifi-

cation task. We propose a new setting where ground truth segment boundaries are not provided
which makes our work similar to the temporal action segmentation task or the procedure segmen-
tation task. Therefore, we explore some of the models in these tasks as the model space of the error
detection task is sparse.

Video action classification or action recognition that is an established task [43, 44, 45] with
several established pre-trained and end-to-end models [43, 46, 47, 48, 49]. The primary difference
between the action recognition task and mistake recognition is that there are usually more classes.
For example, the action recognition task in Assembly101 [1] has up to 1,380 different possible
classes. However, in mistake recognition, there are typically only two or three classes consisting
of mistake, correct, and correction (correction is not always explicitly included). In some datasets,



8

there is a fine mistake recognition task where the number of specific errors can range from 6 to
around 20. In most fine action recognition settings, the snippets consist of only a few seconds of
the video compared to the coarse action recognition settings which range from a few seconds to
several minutes. This is different from the aforementioned fine mistake recognition task as the clip
length in this setting is not shortened.

A similar setting to our temporal mistake segmentation task is the supervised temporal action
segmentation task [50]. In both of these tasks, the ground truth segment boundaries are not used
during test time. In this setting, there a few notable models based on representation networks [12,
51], temporal convolutional networks [52, 53, 20], refining proposals [54] and transformers [55,
56, 57]. There is also a similar task, where the procedural action boundaries are more important
than the action labels called the video procedure segmentation proposed in [58]. In our model, we
enhance a relevant fully supervised temporal action recognition model called LTContext [20] with
our graph embedding. This model offers an efficient way to apply attention over the entire video
through windowed attention and long-context attention strategies.
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Chapter 3

Model

Our method starts by creating a task graph that captures the temporal dependencies between
various steps in the execution process. We then gather structural information about each graph by
incorporating each node into a graph encoder network. Once we obtain updated node embeddings,
we aggregate the node embeddings of each graph and incorporate them into a baseline classifica-
tion network such as TempAgg [12] or LTContext [20]. We describe any changes made to these
networks to better utilize our graph embeddings in the mistake recognition and temporal mistake
segmentation task.

3.1 Task Graph Generation
Inspired by the use of the ILP algorithm to generate a task graph based on the temporal action

annotations of an instructional video [28, 34], we have similarly adapted this algorithm to fit our
domain. There are a few primary differences in the task sequences present in the assembly domain
compared to the ProceL dataset used in [28]. Specifically, the sequences are untrimmed, contain
mistakes, contain backtracking to fix mistakes(corrections), contain cycles due to in-progress tasks,
and has fewer global temporal ordering constraints. As a result, to utilize the advantages of ILP
we conduct some pre-processing and improvements to the algorithm.

3.1.1 Pre-processing
Our temporal knowledge graph focuses on representing the correct ordering constraints in a

directed acyclic graph (DAG). In the graph, every node represents an action label, which, within
the context of Assembly101, is defined as a triplet consisting of (verb, this, that). Additionally,
each directed edge (u, v) indicates that node u must precede node v as a necessary precondition.
Therefore, we first remove cycles and all corrections in the training transcripts by taking only the
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Figure 3.1: Task graph embedding process. Converts textual labels Ti of action steps into a final
graph embedding G. Each text label Ti is initialized to embeddings Ei, followed by node em-
bedding updates via graph encoder g(·) to Ni. Aggregation of Ni embeddings yields final graph
embedding G.

last occurrence of each action. This is a reasonable assumption, especially for cycles that occur
due to in-progress actions (i.e. adding wheels to a chassis), because the last occurrence symbolizes
the final completion of that state. Although our training examples incorporate mistake actions, we
deliberately omit these actions from potential node selection because our graph does not represent
incorrect temporal relationships.

3.1.2 ILP Algorithm Improvement
After pre-processing, we follow the similar two stage approach of [28] in which the candidate

steps are first sorted into layers to prevent cycles and then edge functions fn are iteratively selected
based on a greedy objective Jprec. Since our real-world observations are similarly sparse (only one
data point per action per video), we optimize precision using the following equation:

Jprec =
E(c,en)[en · fn(c)]

Ec[fn(c)]

In this equation, c represents the binary completion vector, where a value of 1 indicates the subtask
with that id was completed prior to the current step in the sequence. The eligibility vector en is a
one-hot encoded vector that represents the current state in the sequence. Since we have mistakes in
our training examples, we represent the eligibility value en for these mistake actions as a negative
weight of -1. Our modification just switches the sign to decrease the numerator of Jprec when
the edge function includes fn. We qualitatively find that procedural ordering errors are the most
relevant in temporal understanding, and so we only include these error types.

Finally, compared to the cooking domain, assembly tasks exhibit fewer global ordering con-
straints. In other words, there are multiple potential starting points when beginning to assemble
a toy. Despite the possibility for actions to be carried out in parallel, when ordering constraints
do arise, they tend to be more subtle and usually occur between parts that are closely connected.
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Figure 3.2: Improved mistake recognition model with task graph embedding G. Incorporates
two additional coupling blocks in each TAB, facilitating comparison of graph embedding G with
spanning and recent vectors, adapted from TempAgg [12]

Therefore, by using the part-to-part annotations provided by [19], we are able to construct a spatial
graph and remove the temporal ordering constraints that occur between parts not connected to each
other spatially.

3.2 Task Graph Embedding
As shown in Figure 3.1, once we have used ILP to obtain a graph for each toy, we need to extract

structural knowledge about each graph in the form of an embedding G. We start by initializing each
node’s embedding to a vector Ei based on the textual label of each node. Then we utilize a graph
encoder network g(·) to obtain updated node embeddings. Finally, we explore different methods
of aggregating the node embeddings Ni for each graph into one final graph embedding G.

We experiment with the well-known embedding networks BERT [59] and CLIP [60] to initial-
ize the node embeddings Ei for each node ni in the graph. Similar to [38], we utilize the GAT [61]
network, which relies on attention to further update connected node embeddings.

3.3 Mistake Recognition Model
We utilize TempAgg [12] which is an attention based aggregation network that relies on non-

local blocks [47]. We add two coupling blocks to the originally configured temporal aggregation
block (TAB) so that each graph embedding can be combined with the spanning and recent visual
features. This is similar to the cross-attention pooling approach of [38] since each coupling block
contains non-local blocks to compare the graph embedding to the visual features. We make abla-
tions described in Sec 4.3 to show that Figure 3.2 is the best method of incorporating the graph
embedding within the TempAgg model.
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(a) Original implementation from LTContext [20]

(b) Our modification to the connection between LTContext blocks

Figure 3.3: Dimensionality preservation in temporal mistake segmentation model. Unlike the
original (a), our modification (b) prevents dimension reduction to C between LTContext blocks.
For temporal mistake segmentation with D=26 and C=3, this ensures minimal information loss in
later stages.

3.4 Temporal Mistake Segmentation Model
We chose LTContext as our baseline model since it is the state-of-the-art model in the su-

pervised temporal action segmentation task for Assembly101. Additionally, this model is less
computationally expensive than transformer alternatives like [55], since it does not attend over ev-
ery frame. Instead it utilizes windowed and long-context attention. Since there is no baseline for
this task, the baseline is the original LTContext model where the number of classes C is set to 3
for each class in Assembly101: mistake, correct, and correction. LTContext was originally tested
on the temporal action segmentation tasks within the Assembly101 and Breakfast datasets, which
contain 202 and 48 distinct classes, respectively. During our experiments, we found that this dif-
ference between the number of classes created a bottleneck. Therefore, we modified the original
connection between the LTContext blocks to better fit the reduced number of classes as shown in
Figure 3.3. Empirically, we find this new dimension D performs highest when set to 26.

To incorporate our graph embedding, we follow a similar strategy to the graph neural prompting
method in [38]. However, since we are using a transformer, we cannot insert this as a special token.
Instead, as shown in Figure 3.4, we simply duplicate the single graph embedding to be the same
length as the input frame sequence and concatenate the two vectors together. This ensures that
each frame embedding has information about the graph.

We empirically find that cross-attention pooling is necessary in this task to better fuse the
graph embedding vector and the visual frame features. Therefore, we further update the node
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Figure 3.4: Improved temporal mistake segmentation model with task graph embedding G.
Adapted from LTContext [20], the graph embedding is duplicated for each frame and concate-
nated.

Figure 3.5: Integration of visual frame data into graph embedding G through cross-attention. En-
hances node embeddings, initially created by the graph encoder g(·). To manage the disparity
where T >> n, a 1D convolutional layer downsamples frames from T to (T/S).

embeddings outputted from the graph encoder as shown in Figure 3.5. The ablations performed in
Sec 4.4 shows that this is a necessary step in the model. Additionally, since the average number of
nodes in each graph is much smaller than the number of input frames, we use an one dimensional
convolution layer with stride S set to 250 to reduce the dimensionality of the input frames.
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Chapter 4

Experiments and Results

We report our experimental assumptions, our metrics, and our intermediary model results used
to reach our final model on the main tasks of mistake recognition and temporal mistake segmen-
tation. For mistake recognition, we see a 3.7% improvement in F1-score through our final model.
In temporal mistake segmentation, our enhancements considerably improve the baseline for each
F1-score threshold. Finally, we show some examples of our generated task graphs and present our
qualitative analysis of the intuition behind this construction.

4.1 Experimental Setup
In the graph construction process, we strictly utilize videos from the training set to assemble

the graphs, thereby maintaining the separation between the graph information and the testing split.
We leave the settings for the parameters in the greedy objective in the ILP algorithm similar to
those reported in [28]. For the graph encoder, GAT, we ablate the number of layers, number of
heads per layer, and number of features per layer. Given the highly imbalanced nature of our data,
for both settings we use Balanced Softmax (BS) [62] to predict more accurately across all classes.

In the ground truth setting, we follow the hyperparameters from [1] to recreate the baseline
TempAgg model on our data split. We cannot compare with the results shown in this paper [1]
since this split is not publicly released. However, the follow-up paper [19] releases fine error
annotations, part-to-part annotations, and uses an average of five random results as their split. To
ensure accurate generalization on the toy level, we follow the split [19] where one action sequence
from each toy is randomly sampled to be in the test set. Aside from our modifications to integrate
the graph embeddings into the TempAgg network, we maintain the same recent and spanning
dimensions and sampling parameters as used in [1]. One small architecture change that is not
depicted in Figure 3.2 is that a linear layer is used to match the length of the inputs to the coupling
blocks.
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Mistake Correction Correct
Accuracy F1-score

R P R P R P

TempAgg [12] 40.5 42.9 46.7 27.2 87.5 90.7 76.6 55.0

TempAgg w only BERT 38.4 35.9 42.7 31.4 88.1 88.0 75.2 56.3
TempAgg Couple w all SK 30.8 2.0 48.1 12.6 75.3 99.0* 74.1 36.5
TempAgg CA w first SK 39.4 37.6 46.6 33.0 87.0 91.2 76.4 55.4
TempAgg init w CLIP 41.0 25.3 44.2 35.2 86.5 93.3 75.4 55.8

TempAgg Couple w first SK 41.4 47.7 51.4 36.9 89.0 88.8 76.9 58.7

Table 4.1: Main results for mistake recognition task with ground truth action segments for coarse-
grained mistake recognition on Assembly101. TG denotes task-graph embeddings from the graph
encoder mentioned in Section 3.2. R stands for the recall metric and P stands for the precision
metric. *Note: This is due to naive solution of predicting correct most of the time.

In the segmentation setting, we again maintain similar hyperparameters to the model described
in [20]. For consistency, we use the same split from the mistake recognition setting.

4.2 Evaluation Metrics
For the mistake recognition task, we focus on the typical recall and precision metrics. Addi-

tionally we report the overall accuracy independent of the class. However, this metric does not
adequately describe performance when the data is imbalanced. Instead the macro F1-score is a
more important metric, because accuracy can be too focused on the dominant class correct.

On the segmentation task where ground truth segments are not used, we utilize the standard
metrics for temporal action segmentation [50]: edit score, mean over frames (MoF), and F1-score
thresholded over intersection levels of 10%, 25%, and 50%. These metrics focus on evaluating
the predictions on a frame-level. Since we are looking for increased model performance over
all three classes, we use the macro F1-score which uses an average of each classes individual
precision and recall scores to calculate the overall F1-score. Since the dataset is imbalanced,
prevents supporting a model that primarily predicts one class. Comparatively, as shown in Table 4.5
we see that the micro F1-score highlights a model whose F1-score is highest for the most dominant
class. Similarly to the mistake recognition task, MoF or accuracy is also heavily weighted towards
the dominant class. Therefore, even though we include MoF, we find that this metric rewards a
naive prediction where correct is predicted for all frames.

4.3 Mistake Recognition Results
As shown in Table 4.1, we report a 3.7% improvement in F1-score when we add our proposed

task graph model to the TempAgg model in the mistake recognition task. Importantly, we see that
over each class’s recall and precision, the task graph shows a noticeable improvement. The one
exception where our metric is below the TempAgg baseline is the precision metric for the correct
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Number of Mistake Correction Correct
Accuracy F1-score

layers R P R P R P

1 38.7 6.1 46.7 40.7 80.6 98.1 76.7 47.5
2 37.3 44.7 49.0 45.6 89.4 85.9 75.0 58.5
4 36.1 46.7 48.4 42.7 90.1 85.1 74.5 57.9
3 41.4 47.7 51.4 36.9 89.0 88.8 76.9 58.7

Table 4.2: Ablation results on the number of layers in the GAT GNN for the TempAgg Couple
w first SK model in the mistake recognition task. R stands for the recall metric and P stands for
the precision metric. We selected 3 layers since it is the most balanced model with the highest
F1-score.

class. However, we find this difference to be insignificant, since the F1-score for the baseline is
only 0.17% higher than our final model as shown in Figure 3.2.

In Table 4.1, we also show our intermediate models to validate our choices for our final model
(TempAgg Couple w first SK). TempAgg w only BERT demonstrates the results from removing
the graph encoder g(·). The worst result in the table, TempAgg Couple w all SK , demonstrates
how adding coupling blocks to attend to each spanning vector negatively impacts performance.
TempAgg CA w first SK shows how adding a cross-attention network like 3.5 into TempAgg is
unnecessary since our integration inherently includes attention between the visual frames and the
graph encoding. To test if the final model TempAgg Couple w first SK can be improved by changing
the BERT [59] initial embedding to CLIP [60], we include the model TempAgg init w CLIP. Our
final results show that TempAgg Couple w first SK demonstrate the highest results. This model
integrates the graph embedding G, initially set with BERT embeddings, with the first spanning
vector and every recent vector. It does not employ cross-attention (CA) for updating the graph
embedding, which is a step shown to be essential for the temporal mistake segmentation task.

In Table 4.2, we demonstrate validation for our choice of three layers using the mistake recog-
nition task. For each layer, we report the best results we found from ablating the models number
of heads and features per layer. We found similar results to be true for the temporal mistake seg-
mentation task.

4.4 Temporal Mistake Segmentation Results
In the temporal mistake recognition task, we report our overall average results in Table 4.3

and our per class results for micro F1-score in Table 4.4. Our proposed enhancements improve
from the baseline LTContext by 5% in F1 @ 10, by 3.8% in F1 @ 25, and 1.8% in F1 @ 50. We
provide our intermediate models to show how we constructed our final model. The LTContext w
BS is just the original baseline with the Balanced Softmax [62] applied for the loss function. By
itself, we can see it show improvement over the baseline in the per-class F1-scores. In LTContext w
only BERT, we remove encoder g(·) or GAT [61], to show the improvement we have over simply
max-pooling the initial BERT [59] embeddings to get G. Next, we add GAT back in, but don’t
include the cross attention modification shown in Figure 3.5. We see that for the LTContext model
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Edit score F1@10 F1@25 F1@50 MoF

LTContext [20] 56.9 28.3 27.4 21.9 90.6

LTContext w BS 55.8 30.2 27.4 21.3 87.7
LTContext w only BERT 57.1 30.4 28.3 22.3 88.4
LTContext w TG wo CA 50.2 28.6 26.4 21.7 86.1

LTContext w TG D=3 52.2 30.4 27.8 21.3 86.2
LTContext w TG 57.8 33.3 31.2 23.7 85.9

Table 4.3: Main results for the temporal mistake segmentation task. TG denotes task-graph embed-
dings from the graph encoder mentioned in Section 3.2. BS stands for Balanced Softmax [62]. CA
stands for cross-attention module. D is the intermediary dimension between blocks. MoF stands
for Mean over Frames.

Mistake F1 Correction F1 Correct F1
10 25 50 10 25 50 10 25 50

LTContext [20] 9.6 8.4 3.2 1.3 0.9 0.4 73.7 72.6 62.1

LTContext w BS 11.2 8.0 3.2 6.0 3.5 2.7 72.5 70.3 57.8
LTContext w only BERT 10.6 7.0 4.1 5.2 3.3 1.7 74.9 74.1 60.8
LTContext w TG wo CA 5.5 3.5 3.0 4.5 2.1 0.9 75.3 73.3 61.1

LTContext w TG D=3 6.8 5.0 3.0 8.5 3.6 0.2 74.6 73.9 60.7
LTContext w TG 14.5 12.1 6.8 7.7 5.4 1.4 76.6 75.4 62.7

Table 4.4: Per class F1-score results for the temporal mistake segmentation task. TG denotes task-
graph embeddings from the graph encoder mentioned in Section 3.2. CA stands for cross-attention
module. D is the intermediary dimension between blocks. MoF stands for Mean over Frames.

it is necessary to include this module. Finally, we add in cross attention, but leave D at 3 as was
originally designed in the baseline LTContext. We find that the final model LTContext w TG shows
the highest performance overall. The exceptions occur among MoF which doesn’t account for our
class imbalance and F1 Correction scores in which the low sample size causes higher variance.

4.5 Qualitative Analysis of Task Graph Generation
Figures 4.1 and 4.2 show examples of task graphs generated from the Assembly101 dataset.

In each of the displayed graphs, there are a few edges that are highlighted green. These show the
edges that the ILP algorithm correctly defines as necessary preconditions. We determined this by
manually evaluating all video executions for that toy and looking at the mistakes made. The spatial
graphs are constructed using part-to-part annotations by [19] and are only shown for illustration
purposes. Only the task graphs constructed using ILP are embedded in our network. By examining
the mistake annotations and spatial graph, one can understand different necessary preconditions.
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Mistake F1 Correction F1 Correct F1 Micro F1 Macro F1
10 25 50 10 25 50 10 25 50 10 25 50 10 25 50

[20] 9.6 8.4 3.2 1.3 0.9 0.4 73.7 72.6 62.1 57.5 56.4 48.9 30.2 27.4 21.3
Ours 14.5 12.1 6.8 7.7 5.4 1.4 76.6 75.4 62.7 57.1 55.1 46.1 33.3 31.2 23.7

Table 4.5: Empirical evidence for the choice of macro F1-score over micro F1-score. Micro F1-
score is highest for the baseline model despite the baseline performing worse on all per class
F1-scores. Macro F1-score is highest for the LTContext w TG model which performs highest on
all per class F1-scores.

For example, in Figure 4.1 the action “attach bumper to cabin” was annotated as a mistake when
completed before “attach interior to cabin”. From this mistake, we can determine that “attach
interior to cabin” must occur before “attach bumper to cabin”.

As previously discussed in Sec 3.1.2, the assembly process often allows for parallel actions to
occur. By observing Figure 4.2, we can see that there are three actions that can be started. This
property was our motivation to remove edges between nodes that were not spatially connected.
This helps prevent the ILP algorithm from unnecessarily creating edges between parts which are
not necessarily preconditions and instead are just commonly assembled in that order.
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(a) Task graph

(b) Spatial graph (c) Picture of the toy crane (b05b)

Figure 4.1: Task graph visualization for Assembly101 dataset generated by ILP algorithm (ob-
ject b05b). Green edges in the task graph highlight correctly identified preconditions that were
validated via counterexamples in mistake sequences. Spatial graphs, built from part-to-part anno-
tations by [19], serve for illustrative purposes only.
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(a) Task graph

(b) Spatial graph (c) Picture of the toy water tanker (c06d)

Figure 4.2: Task graph visualization for Assembly101 dataset generated by ILP algorithm (ob-
ject c06d). Green edges in the task graph highlight correctly identified preconditions that were
validated via counterexamples in mistake sequences. Spatial graphs, built from part-to-part anno-
tations by [19], serve for illustrative purposes only.
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Chapter 5

Conclusion

The main objective of this work was to determine how well a structural task graph contributes
to the mistake recognition task. Our proposed modifications to the TempAgg network effectively
encode the structural and sequential rules of the assembly process and achieve state-of-the-art per-
formance in the visual-only mistake recognition task with a 3.7% increase in F1-score. We modify
the existing baselines to fully integrate our generated graph into each baseline. Additionally, we
find our model is the first to predict on the more realistic and challenging temporal mistake seg-
mentation setting of Assembly101 where ground truth action segments are not provided during test
time. Our proposed enhancements improve from the baseline by 5% in F1 @ 10, by 3.8% in F1
@ 25, and 1.8% in F1 @ 50. These improvements on the mistake recognition and temporal mis-
take segmentation tasks demonstrate the effectiveness of our graph construction and embedding
methods.

Future research aimed at employing structural task graphs for mistake detection presents a wide
array of possibilities for ongoing exploration and advancements. The utilization of LLMs to inject
world knowledge into task graphs presents a promising avenue for expanding their generalization
capabilities. Similarly, the investigation of rule-based neurosymbolic evaluators as an alternative
form of graph conditioning opens new pathways for these tasks. The experimentation of more
advanced graph encoders techniques involving transformers [63] and more complex positional
encodings could offer further improvement. Furthermore, the exploration of diverse datasets such
as IndustReal [21], HoloAssist [24], and CaptainCook4D [22] offers different arenas in which to
apply the structural task graph. These research directions can possibly create richer, more adaptable
task graph methodologies that can further enhance mistake detection and generalization across
various domains.
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[61] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
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