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Abstract

Compliant origami swimming robots have many applications, from search-and-rescue to under-
water discovery. Using manufacturing techniques such as laser cutting and additive manufacturing,
compliant origami swimming robots can be manufactured quickly and with smaller expense than
typical rigid robots. However, they often experience issues with efficiency and swimming speed.
This thesis presents a compliant origami swimming robot which improves its efficiency through the
addition of a fin joint. It was determined that the positioning of the fin joint affected the achievable
velocity, thrust, and efficiency.
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Chapter 1

Literature Review
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1.1 Overview

Origami, the art of folding paper, has been increasingly applied in engineering. Using origami

in engineering allows for unique geometries to be created using novel manufacturing methods

which can introduce compliance into designs. Applications of origami in engineering include

manufacturing compliant swimming robots. By applying origami engineering to manufacture

swimming robots, swimming robots can be created more efficiently and with unique geometry and

properties. This thesis examines the designing, prototyping, and testing of a compliant, origami

swimming robot created through a laser cutting lamination manufacturing procedure.

1.2 Origami in Engineering

Origami is an ancient art that involves folding paper to create creases which can act as joints

for movement [1]. When origami is used for movement, it is considered to be action origami.

However, origami can be applied to engineering in addition to art. Origami engineering allows for

low cost manufacturing processes and unique geometries. Once folded into configurations, some

origami mechanisms are dynamic and can exhibit motion that moves them from their final folded

states. [2–4]. These origami mechanisms act as compliant mechanisms which allow motion along

the creases of the pattern [5, 6]. Kirigami, a derivative of origami, similarly allows for motion along

the creases of the pattern. However, in kirigami, the material can be cut. While the work of this

research thesis technically covers kirigami due to cutting being used, the term origami is generally

used when discussing origami or kirigami engineering work. Therefore, the broader definition of

origami as encompassing kirigami will be used in this thesis.

1.3 Manufacturing Origami Engineering Prototypes

Methods of manufacturing origami engineering prototypes include laser cutting [2, 4], casting

[7], and 3D printing [3]. Laser cutting is often an effective manufacturing choice for creating
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origami engineering prototypes and products because it allows for low cost manufacturing and

rapid prototyping. Laser cutting is a process which uses a high-powered laser to burn through

material. It is a two-dimensional process that operates within an x-y axis system following lines

sent from a drawing program. Different settings on the laser can be used to adjust speed, power,

and frequency depending on the material that is being cut [8]. Within the manufacturing method of

laser cutting, origami joints are created by removing material. This material removal can consist

of cutting away material from a single sheet as done in [4], or it can involve lamination techniques

in which rigid layers of material are adhered to a flexible layer of material which acts as a joint as

in [2, 9].

Origami in engineering often requires thickness accommodation for folding. Because the ma-

terial used in origami engineering is not infinitely thin as it is assumed to be when modeling

traditional origami with paper, the material stacks on itself at vertices. When multiple panels meet

at a vertex, this thickness interference is heightened. The stacking, or thickness interference, that

occurs at vertices prevents the mechanisms from folding completely flat, limiting the motion of the

mechanism. Multiple techniques can be applied for thickness accommodation. These techniques

can include shifting the joint axis to accommodate angled folds or applying a membrane technique

which uses a thinner material at joints [9, 10]. Membrane thickness accommodation is useful be-

cause the thinner material used at the joint can often be regarded as negligibly thick compared to

the thicker material used for the panels. Therefore, a thicker rigid material can be used on panels,

making the origami device more robust, while a thinner flexible material can be used within the

joints, allowing the origami device to fold. Depending on the material used as the thin membrane,

this thin membrane can add elasticity to the joints, allowing for bistability and spring-like behavior

at the joints.
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1.4 Swimming Robots

1.4.1 Types of Swimming Robots

Origami engineering has been applied to many different areas of engineering, including swim-

ming robots [11–17]. Origami is well suited for swimming robots because the flexible materials

that it is created with are often able to withstand high pressures, such as those at the bottom of the

ocean, without showing permanent deformation. Rigid robots, which are made of multiple parts

brought together through the use of fasteners, experience high stress-concentration areas at the lo-

cation of these fasteners. These materials are likely to bend or fracture, causing permanent damage

to the robot. Soft materials, such as those that are used when manufacturing origami robots, avoid

some of these stress concentrations and permanent deformations.

There are different forms of swimming locomotion that origami robots could be used in. These

swimming methods include body/caudal actuation, in which a swimmer uses its body and caudal

fins for thrust, and median/paired actuation, in which a swimmer uses its median or paired fins

for thrust. These methods are further split into undulatory motion, in which the swimmer uses

a wave-like motion, or oscillatory motion, in which the swimmer oscillates its body back and

forth. Swimming can be controlled both passively, based on the structure of the object, or actively,

based on how appendages or the body are used [18–20]. An additional mode of swimming is

jet propulsion. In jet propulsion, a swimmer uses its fins to scoop water and channel that water

into a jet which propels the swimmer in the opposite direction of the jet stream’s movement. [21,

22]. Choosing the type of swimming motion used for a particular robot involves analyzing the

available materials and manufacturing methods as well as the intended application of the robot.

Jet propulsion can be especially useful for origami swimming robots because less compliance

is needed to create thrust from a jet stream as opposed to creating thrust from undulatory and

oscillatory motions.
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1.5 Applications of Compliant Swimming Robots

Swimming robots can have many applications, from underwater discovery to search-and-rescue

applications. Specifically, compliant swimming robots can be particularly useful because they

can be lightweight yet able to withstand high forces, making them particularly useful for high-

pressure environments that are found in deep water [7]. While free-swimming, a robot created

by researchers at the Zhejiang University in Hangzhou, China was able to withstand the water

pressure at a depth of 3,224 m and a depth of 10,500 m when tethered and brought to the seabed

[7]. This ability to withstand high pressures was due to the compliant design of the robot, which

used adaptive fluid chambers and a dispersed matrix of electronics to decrease the pressure that the

electronics experienced [7].

Within areas of application such as search-and-rescue and underwater discovery, it is important

to have an efficient robot. These areas of application may require that the robot be untethered and

able to carry its own power source so that it can navigate through difficult terrain [7]. Carrying a

self-contained power system on a swimming robot can pose many challenges, bringing up issues

such as waterproofing and weight. Therefore, creating a robot that is efficient can help to mitigate

these issues by reducing the amount of energy that needs to be stored for a given application.

Improving the efficiency of swimming robots would greatly increase their ability to be applied in

environments external to a lab, which is important for creating robots for actual applications.

1.5.1 Methods of Actuation

There are many different actuation methods for origami swimming robots [11]. These methods

include electric motors [12–14], pneumatic actuators [15, 16], and shape memory alloys [17].

Choosing an actuator is often based on the application of the robot, the materials available, and the

function that the robot has to perform. For example, having a self-contained electric motor can be

easier for transporting than having a pneumatic setup for a robot. These considerations should be

considered when designing the actuation system.
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1.5.2 Quantification of Swimming

To quantify the quality of different swimming robots, swimming speed and efficiency can be

measured and determined. There are various methods that can be used to analyze swimming

speed. Methods include image tracking with cameras, laser-based flow velocimetry, and on-board

accelerometers. Efficiency is more difficult to measure because it involves analyzing the energy

loss of the system. Because it is difficult to measure energy directly, energy loss must often be cal-

culated from measuring other parameters. One method of measuring and quantifying efficiency is

comparing the forward progression of a swimming robot as compared to the backward progression

of a swimming robot [3] as provided in equation 1.1:

⌘ =
Df �Db

Df
(1.1)

where ⌘ represents efficiency, Df represents the forward displacement of the robot during the

forward stroke, and Db represents the backwards displacement that occurs when the robot resets for

the next forward stroke. Measuring the forward and backward displacements can be done through

image processing after using a high speed camera. This definition of efficiency does not take

into account any possible lateral motion from the robot or motion that otherwise directs the robot

away from its intended path. Further, it does not include any energy loss that occurs through the

action of causing the motion. Therefore, while this definition of efficiency allows for a comparison

between the effectiveness of the stroke in moving the robot forward and the negative effect of the

robot resetting its position to prepare for the next forward stroke, it does not take into account how

much energy is input into achieving the stroke as compared to the amount of work that is achieved

through that stroke. Nevertheless, measuring efficiency in this way by comparing the distance

achieved on the forward stroke and the backward stroke is a way to compare the effectiveness of

the swimming stroke and the reset to begin a new stroke, a comparison which can greatly inform

the design of different swimming robots’ geometry.

In order to be more efficient, origami engineering swimming robots can use bio-inspiration in
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their designs. While the list of different bio-inspired designs is extensive for swimming robots,

some examples are provided here for reference. For instance, origami robots can be based on fish

[7, 23], squids or octopi [2, 24], or other swimming creatures. However, they can also be based on

flying creatures such as birds or butterflies because flying, like swimming, involves moving through

a fluid and therefore invokes fluid dynamics [25]. Using biology to inspire the design of the robot

can provide motivation for the design of geometry, actuation system, and other components of the

robot, helping the systems to be more efficient and providing rationale for the design of different

systems.

1.6 Prior research

This thesis builds on the work performed by researchers at Carnegie Mellon University in the

Zoom Lab [9]. Through that research, a laminated, origami jet propulsion swimming robot, named

YoDiFIN, was developed. This robot is shown in Figure 1.1. YoDiFIN is the combination of

two different mechanisms, YoFIN, shown in Figure 1.2, and DiamondFIN, shown in Figure 1.3.

YoDiFIN swims at a rate of 2.1 cm/s [9]. However, an issue with this robot is its efficiency. Due

to the geometry and elasticity of the compliant joints, it was observed that the motion of the robot

resetting its stroke causes reverse propulsion, decreasing the efficiency of the robot. My research

goal is to improve the efficiency of this robot by adding a compliant joint into the fins of the robot

that allows the fins to bend during the reset stroke. A further modification was made to this robot

to adjust the closed position of the fins. This adjustment reverses the position of the fins, allowing

the robot to provide a larger jet stream when closing and be more efficient when opening.
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Figure 1.1: YoDiFIN robot.

Figure 1.2: YoFIN mechanism.
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Figure 1.3: DiamondFIN mechanism.

1.7 Identified Research Gaps

This literature review has identified a need for improvements or additions to improve the func-

tionality of swimming robots. Mainly, swimming robots need improvement in efficiency in order

to be applied more broadly. Improved efficiency also reduces the power required, which is im-

portant for autonomous robots. As reported in the literature, it can be effective to create these

swimming robots using soft robotics that incorporate compliant mechanisms and origami in order

to benefit from the quick, low-cost manufacturing methods and robustness within high pressure

environments. Therefore, this thesis focusses on assessing the impact of a compliant joint design

on the efficiency of a laminated origami swimming robot.
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Chapter 2

Metholology
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2.1 Mechanism Design

This section discusses the software and techniques used to create two-dimensional cutting pat-

terns for the origami swimming robot. First, thickness accommodation is discussed followed by

computer aided design (CAD) strategies.

Because the panels of the origami robot are created out of thicker materials than paper when

prototyped, thickness accommodation should be considered. Thickness accommodation creates

joints in the material which allow the robot to fold along the joints without the material interfering

with the motion of the robot. In this thesis, thickness accommodation is achieved by separating the

design into the layers depicted in Figure 2.1. These layers consist of rigid layers, a flexible layer,

and adhesive layers.

Figure 2.1: Different layers that compose a laminated structure.

The rigid layer provides the robot with structure and actuation surfaces, while the flexible layer

provides the robot with compliant joints that allow for folding without bending the rigid panels.

Holding these layers together is the adhesive layer, which can be a thin layer of glue or a layer

of double-sided tape. Gaps in the rigid layer allow for the rigid layers to fold onto the other rigid

layers. Using twice the thickness of the rigid layer as the spacing, the robot is manufactured so that

the rigid panels have the ability to fold 180°. Because the flexible layer and adhesive layers are very

thin compared to the rigid layers, these layers can be approximated as infinitely thin and therefore
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do not require thickness accommodation. There are no gaps in the flexible layer across the surface

of the robot, so the flexible layer holds the rigid layers together. To control the direction of each

fold, different sized gaps are used in the rigid panels. A small slit is used to introduce flexibility

in the rigid material on the outside of the fold, and a larger gap is used to allow the rigid panels to

fold towards that larger gap on the inside of the fold.

Converting the crease pattern, shown in Figure 2.2, to cutting patterns is done by putting the

larger gaps at valley folds and the smaller gaps at mountain folds. To implement these different

gap sizes for folding patterns, CAD is used to sketch the lines and create cutting files. Different

sketches within the same CAD file allow each cutting layer of the robot to update as changes are

made. There are three different cutting passes on the rigid material that are represented by four

sketches: a reference sketch, an inside sketch, an outside sketch, and a final sketch. Three different

designs were considered: no fin joint, close fin joint, and far fin joint. The reference sketch, shown

in Figures 2.3, 2.4, and 2.5, contains all the lines across the different layers, allowing the other

sketches to refer to a common sketch. Therefore, when the design is updated, only the reference

sketch is changed to update the rest of the sketches appropriately. Using a reference sketch im-

proves design efficiency and layer consistency because the reference sketch can be adjusted and all

layer sketches automatically update to that adjustment. Across all of the cutting line figures, the

colors used in these sketches are not significant for determining the types of lines.

Figure 2.2: Origami pattern for one of the robots created.
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Figure 2.3: Reference sketch for robot with no fin joint.

Figure 2.4: Reference sketch for robot with close fin joint.

Figure 2.5: Reference sketch for robot with far fin joint.
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Next, the inside sketch and outside sketch, shown in Figure 2.6, 2.7, and 2.8, contain the cutting

lines for the inner and outer rigid layers respectively before the robot is assembled. These three

sketches, reference, inner, and outer, all contain excess offset material outside the joints to hold the

rigid panels together and allow for assembly. After assembly, the robot requires an additional final

cut to release the joints from this extra material, with these final cutting lines provided in the final

sketch as shown in Figure 2.9, 2.10, and 2.11.

Figure 2.6: Inside and outside sketch for robot with no fin joint.
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Figure 2.7: Inside and outside sketch for robot with close fin joint.
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Figure 2.8: Inside and outside sketch for robot with far fin joint.

Figure 2.9: Final sketch for robot with no fin joint.
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Figure 2.10: Final sketch for robot with close fin joint.

Figure 2.11: Final sketch for robot with far fin joint.

Due to manufacturing constraints, these cutting patterns are two-dimensional and can often be

difficult to visualize within the CAD program. Because it can be difficult to determine the location

and size of each joint when sketching in CAD, it is useful to fold and unfold the design in paper to

observe and measure the location of the folds.

2.2 Mechanism Fabrication

This section details the fabrication process used to create prototypes, which includes laser

cutting and assembly.
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Crease patterns sketched in CAD are converted to an applicable file format of .ai and sent to

laser cutters for manufacturing. To cut the folding patterns, an 80 Watt Epilog Fusion Pro Laser

Cutter was used. All layers are cut separately and assembled before taking a final pass on the laser

cutter, shown in Figure 2.12. This final pass cuts away the extra material that is holding the joints

together, allowing the joints to be flexible.

Figure 2.12: Laser cutter with robot.

When aligning the layers, care must be taken to achieve alignment of joints. Imperfections

in alignment can cause asymmetries in the mechanism behavior, leading to difficulty in control.

Further, misaligned joints can create material interference which counteracts the thickness accom-

modation discussed earlier in Section 1.3 and Section 2.1. One option for more easily aligning

these panels is to use an alignment board. By cutting holes into excess offset material on each

layer and using dowel rods to position the layers on the board, layers can be more easily aligned

correctly. However, this process requires cutting alignment holes for the dowel rods into the flex-

ible and adhesive layers as well, increasing manufacturing time and material waste. Therefore,
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while the alignment board was used for some initial prototypes, the final prototypes were manu-

factured by visually aligning the joints and then pressing them together freely by hand.

Once the layers are assembled and the final pass is made with the laser cutter to release the

joints, the mechanism is folded into its three-dimensional configuration. Once in this configuration,

the motor and flotation devices can be attached to the robot. These flotation devices are made out

of polyethylene foam, which can be easily cut to affect the buoyancy of the robot. Approximately

1.4 g of polyethylene foam was attached to the robot, shown in Figure 2.13, to allow the robot to

float at the surface of the water.

Figure 2.13: Robot set up to run in tank.

2.3 Prototypes

This section discusses the different prototypes that were created for comparison. Three dif-

ferent prototypes were manufactured. One prototype contains no extra joint in the fin, one proto-

type contains an extra joint in the fin close to the main body of the robot, and the last prototype

contains an extra joint in the fin close to the ends of the fins. These robots are shown in Fig-

ures 2.14, 2.15, 2.16. When the fin joints were added, a circular hole was included in the center of
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the joint to relieve tension in that joint. Fin joint placement was done so that the new joint was as

close to the main body of the robot and far from the main body of the robot as possible in order to

test both extremes. How close to an edge the joint could be placed was determined by manufactur-

ing constraints because there needed to be enough rigid material to hold the robot together at that

joint during manufacturing.

Figure 2.14: Robot with no fin joint in relaxed state.

Figure 2.15: Robot with close fin joint in relaxed state.
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Figure 2.16: Robot with far fin joint in relaxed state.

2.4 Experimental Setup

This section discusses the experimental setup used to conduct experiments and collect data on

the robots. Figure 2.17 provides a visual of the experimental setup. A water tank, of dimensions

300 cm by 53 cm with a water depth of 25 cm, is used for the robot to swim in. This tank size

is large enough to allow room for the robot to swim without contacting the sides of the tank. IR

lights are shown on the water to reflect off of the robot. For capturing data, a Basler acA2000-

165umNIR IR camera, operated at 50 Hz, is used to record the robot swimming. This IR camera

produces black and white images based on whether or not the object in view reflects light back to

the lens. Because the robot has brightly colored foam on it, the robot reflects light back to the lens

and can be tracked as it moves across the tank. To capture position data of the robot, an algorithm

is run in MATLAB to track the robot as it progresses across the frames of the video. To process

the data, a MATLAB script was created to take derivatives of the position data. MATLAB scripts

for each dataset are provided in the appendix.
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Figure 2.17: Experimental setup showing tank, IR camera, and IR lights.
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Chapter 3

Results and Discussion
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3.1 Speed

This section provides and discusses the results obtained during speed testing.

Position, velocity, and acceleration plots were created for each different robot based off of the

averages of three trials. These plots also show plus and minus one standard deviation. Shown in

Figures 3.1, 3.2, and 3.3 are the resultant graphs for the robot with no fin joint. Figures 3.4, 3.5, and 3.6

show the resultant graphs for the robot with a close fin joint. Lastly, Figures 3.7, 3.8, and 3.9 show

the resultant graphs for the robot with a far fin joint. For the far fin joint, a large amount of standard

deviation is seen due to experimental error in which the robot was not tracked in certain frames.

These frames were excluded from the data, decreasing the size of the dataset. The average and

maximum speed for each robot as well as the maximum acceleration are shown in Table 3.1. A

consideration for these maximum values is that spikes in data are included as relevant. However,

it is not known whether these spikes are due to noise or whether these spikes are significant. As

shown by the provided data, the robot with the close fin joint is fastest, followed by the robot with

no fin joint and then the robot with the far fin joint.
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Figure 3.1: Position graph for robot with no fin joint.

Figure 3.2: Velocity graph for robot with no fin joint.
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Figure 3.3: Acceleration graph for robot with no fin joint.

Figure 3.4: Position graph for robot with close fin joint.
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Figure 3.5: Velocity graph for robot with close fin joint.

Figure 3.6: Acceleration graph for robot with close fin joint.
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Figure 3.7: Position graph for robot with far fin joint.

Figure 3.8: Velocity graph for robot with far fin joint.
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Figure 3.9: Acceleration graph for robot with far fin joint.

Robot Max velocity (mm/s) Average velocity (mm/s) Max acceleration (mm/s2)

No fin joint 101 52 697
Close fin joint 161 71 1790
Far fin joint 86 26 1280

Table 3.1: Table of velocity and acceleration for all robots tested.

As shown in the position graphs and velocity graphs, some amount of negative displacement

and negative velocity occurs. Average acceleration centers around zero for all trials. The com-

parison between all these results is reasonable because the robot with the close fin joint has less

negative displacement than the other robots during its return stroke because the fin bends due to

the added joint. Additionally, because the robot with the far fin joint does not fold as much, it has

less negative displacement when the robot resets its stroke. However, because water is able to flow

through the far joint due to the hole without the joint being able to fold as much, the robot with the

far joint has less forward displacement during the forward stroke. This less forward displacement
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makes the robot with the far joint slower than the robot without a fin joint.

3.2 Thrust

This section provides and discusses the results of thrust for all three YoDiFIN versions.

Using the calculated acceleration data from the measured position, the resultant force is de-

termined via Newton’s Second Law. These maximum resultant forces are provided in Table 3.2.

Resultant forces are a combination of two main forces acting on the robot: thrust produced by the

robot and drag acting on the robot as it swims. A mass of 144 g is measured and used for calcu-

lating this resultant force. As shown in Table 3.2, the robot with a close fin joint has the highest

resultant force, followed by the robot with a far fin joint and then the robot with no fin joint. These

results make sense because it would be expected that the robots with holes would have less drag.

Additionally, the robots that swim faster would be expected to have a higher thrust force.

Robot Resultant force (mN)

No fin joint 100
Close fin joint 258
Far fin joint 184

Table 3.2: Table of resultant force for all robots tested.

3.3 Efficiency

This section discusses the efficiency improvement from the robot discussed in [9]. Because

speed is greatly increased while using the same input from the same motor, the efficiency of the

robot therefore increases with increasing speed. Consequently, the geometry changes to the robot

in this thesis greatly improve the efficiency of the robot discussed in [9]. Efficiency is calculated

based on the equation provided in Section 3.3, which compares forward displacement with back-

ward displacement. These results are provided in Table 3.3. As can be seen in that table, the robot

with the close fin joint is the most efficient, followed by the robot with no fin joint and then the



31

robot with the far fin joint.

Robot Efficiency (%)

No fin joint 99.6
Close fin joint 99.7
Far fin joint 96.4

Table 3.3: Table of efficiency for all robots tested.
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Chapter 4

Conclusion
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In conclusion, this thesis has presented the design, manufacture, and testing of a compliant

origami swimming robot. As discussed in this thesis, adding a fin joint close to the body of the

robot allows the robot to move faster with more thrust. However, using a fin joint in a non-ideal

position, such as far from the fins, can cause more inefficiencies with swimming. Therefore, further

research should be performed to optimize this joint placement. By addressing inefficiencies in

compliant origami swimming robots, these robots become closer to being used in application areas

such as search-and-rescue and underwater discovery.
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Appendix
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4.1 MATLAB Code

This section provides the MATLAB code used for data processing, with the joint with no fin

joints processed first, followed by the robot with close fins joints and then the robot with far fin

joints.

%% Setup

clc, clear, clf, close all;

%% Position Data filtered with smoothdata command on velocity

load 20240228_131501.mat % load dataset 1

% position

t_pos = 0:10/(length(p_world_t)-1):10; % set time stamp

pos1 = (abs(p_world_t(:,1) - max(p_world_t(:,1)))); % normalize

position data

% velocity

tb2 = t_pos(3) - t_pos(1); % calculate the time between two

datapoints for linear interpolation

vel1 = (pos1(3:length(pos1)) - pos1(1:(length(pos1)-2)))/tb2; %

linear interpolation for determining velocity

vel1_fit = smoothdata(vel1, 'SmoothingFactor',0.1);

vel1 = vel1'; % change from row vector to column vector

vel1_fit = vel1_fit';

t_vel = 0:10/(length(vel1)-1):10; % calculate time vector for

velocity

t_vel_fit = 0:10/(length(vel1_fit)-1):10; % calculate time vector

for velocity
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% acceleration

acc1 = (vel1(3:length(vel1)) - vel1(1:(length(vel1)-2)))/tb2; %

linear interpolation for determining acceleration

acc1_fit = (vel1_fit(3:length(vel1_fit)) - vel1_fit(1:(length(

vel1_fit)-2)))/tb2; % linear interpolation for determining

acceleration

t_acc = 0:10/(length(acc1)-1):10; % calculate time vector for

acceleration

t_acc_fit = 0:10/(length(acc1_fit)-1):10; % calculate time vector

for acceleration

% plot data

figure(1)

subplot (3,1,1)

plot(t_pos, pos1)

legend('unfiltered')

title('X-position versus time')

xlabel('time [s]')

ylabel('position [mm]')

subplot (3,1,2)

plot(t_vel,vel1, t_vel_fit, vel1_fit)

legend('unfiltered', 'smoothed')

title('X-velocity versus time')

xlabel('time [s]')

ylabel('velocity [mm/s]')
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subplot(3,1,3)

plot(t_acc,acc1, t_acc_fit, acc1_fit)

legend('unfiltered', 'smoothed')

title('X-acceleration versus time')

xlabel('time [s]')

ylabel('acceleration [mm/sˆ2]')

%% Position Data filtered with smoothdata command on velocity

load 20240228_131832.mat % load dataset 2

% position

t_pos = 0:10/(length(p_world_t)-1):10; % set time stamp

pos2 = (abs(p_world_t(:,1) - max(p_world_t(:,1)))); % normalize

position data

% velocity

tb2 = t_pos(3) - t_pos(1); % calculate the time between two

datapoints for linear interpolation

vel2 = (pos2(3:length(pos2)) - pos2(1:(length(pos2)-2)))/tb2; %

linear interpolation for determining velocity

vel2_fit = smoothdata(vel2, 'SmoothingFactor',0.1);

vel2 = vel2'; % change from row vector to column vector

vel2_fit = vel2_fit';

t_vel = 0:10/(length(vel2)-1):10; % calculate time vector for

velocity
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t_vel_fit = 0:10/(length(vel2_fit)-1):10; % calculate time vector

for velocity

% acceleration

acc2 = (vel2(3:length(vel2)) - vel2(1:(length(vel2)-2)))/tb2; %

linear interpolation for determining acceleration

acc2_fit = (vel2_fit(3:length(vel2_fit)) - vel2_fit(1:(length(

vel2_fit)-2)))/tb2; % linear interpolation for determining

acceleration

t_acc = 0:10/(length(acc2)-1):10; % calculate time vector for

acceleration

t_acc_fit = 0:10/(length(acc2_fit)-1):10; % calculate time vector

for acceleration

% plot data

figure(2)

subplot (3,1,1)

plot(t_pos, pos2)

legend('unfiltered')

title('X-position versus time')

xlabel('time [s]')

ylabel('position [mm]')

subplot (3,1,2)

plot(t_vel,vel2, t_vel_fit, vel2_fit)

legend('unfiltered', 'smoothed')

title('X-velocity versus time')
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xlabel('time [s]')

ylabel('velocity [mm/s]')

subplot(3,1,3)

plot(t_acc,acc2, t_acc_fit, acc2_fit)

legend('unfiltered', 'smoothed')

title('X-acceleration versus time')

xlabel('time [s]')

ylabel('acceleration [mm/sˆ2]')

%% Position Data filtered with smoothdata command on velocity

load 20240228_132014.mat % load dataset 3

% position

t_pos = 0:10/(length(p_world_t)-1):10; % set time stamp

p_world_t(33) = (p_world_t(32) + p_world_t(34))/2; %% line for

jumped data on dataset 3

pos3 = (abs(p_world_t(:,1) - max(p_world_t(:,1)))); % normalize

position data

% velocity

tb2 = t_pos(3) - t_pos(1); % calculate the time between two

datapoints for linear interpolation

vel3 = (pos3(3:length(pos3)) - pos3(1:(length(pos3)-2)))/tb2; %

linear interpolation for determining velocity

vel3_fit = smoothdata(vel3, 'SmoothingFactor',0.1);

vel3 = vel3'; % change from row vector to column vector

vel3_fit = vel3_fit';
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t_vel = 0:10/(length(vel3)-1):10; % calculate time vector for

velocity

t_vel_fit = 0:10/(length(vel3_fit)-1):10; % calculate time vector

for velocity

% acceleration

acc3 = (vel3(3:length(vel3)) - vel3(1:(length(vel3)-2)))/tb2; %

linear interpolation for determining acceleration

acc3_fit = (vel3_fit(3:length(vel3_fit)) - vel3_fit(1:(length(

vel3_fit)-2)))/tb2; % linear interpolation for determining

acceleration

t_acc = 0:10/(length(acc3)-1):10; % calculate time vector for

acceleration

t_acc_fit = 0:10/(length(acc3_fit)-1):10; % calculate time vector

for acceleration

% plot data

figure(3)

subplot (3,1,1)

plot(t_pos, pos3)

legend('unfiltered')

title('X-position versus time')

xlabel('time [s]')

ylabel('position [mm]')

subplot (3,1,2)

plot(t_vel,vel3, t_vel_fit, vel3_fit)
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legend('unfiltered', 'smoothed')

title('X-velocity versus time')

xlabel('time [s]')

ylabel('velocity [mm/s]')

subplot(3,1,3)

plot(t_acc,acc3, t_acc_fit, acc3_fit)

legend('unfiltered', 'smoothed')

title('X-acceleration versus time')

xlabel('time [s]')

ylabel('acceleration [mm/sˆ2]')

%% Plot averages

% plot data

figure(4)

subplot (3,1,1)

plot(t_pos, (pos1 + pos2 + pos3)/3)

legend('unfiltered')

title('X-position versus time')

xlabel('time [s]')

ylabel('position [mm]')

subplot (3,1,2)

plot(t_vel, (vel1 + vel2 + vel3)/3, t_vel_fit, (vel1_fit +

vel2_fit + vel3_fit)/3)

legend('unfiltered', 'smoothed')

title('X-velocity versus time')
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xlabel('time [s]')

ylabel('velocity [mm/s]')

subplot(3,1,3)

plot(t_acc, (acc1 + acc2 + acc3)/3, t_acc_fit, (acc1_fit +

acc2_fit + acc3_fit)/3)

legend('unfiltered', 'smoothed')

title('X-acceleration versus time')

xlabel('time [s]')

ylabel('acceleration [mm/sˆ2]')

posmax = max((pos1 + pos2 + pos3)/3)

velmax = max((vel1 + vel2 + vel3)/3)

velavg = mean((vel1 + vel2 + vel3)/3)

accmax = max((acc1 + acc2 + acc3)/3)

%%

% position

posvals = [pos1 pos2 pos3];

for i = 1:length(pos1)

stdpos(i) = std(posvals(i, :));

end

stdpos = stdpos';

posavg = (pos1 + pos2 + pos3)/3;

stdhpos = posavg + stdpos;

stdlpos = posavg - stdpos;
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figure(5)

plot(t_pos, posavg, t_pos, stdhpos, t_pos, stdlpos)

patch([t_pos fliplr(t_pos)], [stdlpos' fliplr(stdhpos')], 'b')

title('Position for robot without fin joints')

xlabel('time [s]')

ylabel('position [mm]')

% velocity

velvals = [vel1' vel2' vel3'];

for i = 1:length(vel1)

stdvel(i) = std(velvals(i, :));

end

stdvel = stdvel';

velavg = ((vel1 + vel2 + vel3)/3)';

stdhvel = velavg + stdvel;

stdlvel = velavg - stdvel;

figure(6)

plot(t_vel, velavg, t_vel, stdhvel, t_vel, stdlvel)

patch([t_vel fliplr(t_vel)], [stdlvel' fliplr(stdhvel')], 'b')

title('Velocity for robot without fin joints')

xlabel('time [s]')

ylabel('velocity [mm/s]')

% acceleration

accvals = [acc1' acc2' acc3'];

for i = 1:length(acc1)

stdacc(i) = std(accvals(i, :));
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end

stdacc = stdacc';

accavg = ((acc1 + acc2 + acc3)/3)';

stdhacc = accavg + stdacc;

stdlacc = accavg - stdacc;

figure(7)

plot(t_acc, accavg, t_acc, stdhacc, t_acc, stdlacc)

patch([t_acc fliplr(t_acc)], [stdlacc' fliplr(stdhacc')], 'b')

title('Acceleration for robot without fin joints')

xlabel('time [s]')

ylabel('acceleration [mm/sˆ2]')

%% Setup

clc, clear, clf, close all;

%% Position Data filtered with smoothdata command on velocity

load 20240228_145240.mat % load dataset 1

% position

t_pos = 0:10/(length(p_world_t)-1):10; % set time stamp

p_world_t(469) = (p_world_t(468) + p_world_t(470))/2; %% line for

jumped data

p_world_t(479) = (p_world_t(478) + p_world_t(480))/2; %% line for

jumped data

p_world_t(481) = (p_world_t(480) + p_world_t(482))/2; %% line for

jumped data

pos1 = p_world_t(:,1) - min(p_world_t(:,1)); % normalize position

data
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% velocity

tb2 = t_pos(3) - t_pos(1); % calculate the time between two

datapoints for linear interpolation

vel1 = (pos1(3:length(pos1)) - pos1(1:(length(pos1)-2)))/tb2; %

linear interpolation for determining velocity

vel1_fit = smoothdata(vel1, 'SmoothingFactor',0.1);

vel1 = vel1'; % change from row vector to column vector

vel1_fit = vel1_fit';

t_vel = 0:10/(length(vel1)-1):10; % calculate time vector for

velocity

t_vel_fit = 0:10/(length(vel1_fit)-1):10; % calculate time vector

for velocity

% acceleration

acc1 = (vel1(3:length(vel1)) - vel1(1:(length(vel1)-2)))/tb2; %

linear interpolation for determining acceleration

acc1_fit = (vel1_fit(3:length(vel1_fit)) - vel1_fit(1:(length(

vel1_fit)-2)))/tb2; % linear interpolation for determining

acceleration

t_acc = 0:10/(length(acc1)-1):10; % calculate time vector for

acceleration

t_acc_fit = 0:10/(length(acc1_fit)-1):10; % calculate time vector

for acceleration

% plot data

figure(1)
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subplot (3,1,1)

plot(t_pos, pos1)

legend('unfiltered')

title('X-position versus time')

xlabel('time [s]')

ylabel('position [mm]')

subplot (3,1,2)

plot(t_vel,vel1, t_vel_fit, vel1_fit)

legend('unfiltered', 'smoothed')

title('X-velocity versus time')

xlabel('time [s]')

ylabel('velocity [mm/s]')

subplot(3,1,3)

plot(t_acc,acc1, t_acc_fit, acc1_fit)

legend('unfiltered', 'smoothed')

title('X-acceleration versus time')

xlabel('time [s]')

ylabel('acceleration [mm/sˆ2]')

%% Position Data filtered with smoothdata command on velocity

load 20240228_145408.mat % load dataset 2

% position

t_pos = 0:10/(length(p_world_t)-1):10; % set time stamp
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p_world_t(489) = (p_world_t(487) + p_world_t(490))/2; %% line for

jumped data on dataset 3

pos2 = p_world_t(:,1) - min(p_world_t(:,1)); % normalize position

data

% velocity

tb2 = t_pos(3) - t_pos(1); % calculate the time between two

datapoints for linear interpolation

vel2 = (pos2(3:length(pos2)) - pos2(1:(length(pos2)-2)))/tb2; %

linear interpolation for determining velocity

vel2_fit = smoothdata(vel2, 'SmoothingFactor',0.1);

vel2 = vel2'; % change from row vector to column vector

vel2_fit = vel2_fit';

t_vel = 0:10/(length(vel2)-1):10; % calculate time vector for

velocity

t_vel_fit = 0:10/(length(vel2_fit)-1):10; % calculate time vector

for velocity

% acceleration

acc2 = (vel2(3:length(vel2)) - vel2(1:(length(vel2)-2)))/tb2; %

linear interpolation for determining acceleration

acc2_fit = (vel2_fit(3:length(vel2_fit)) - vel2_fit(1:(length(

vel2_fit)-2)))/tb2; % linear interpolation for determining

acceleration

t_acc = 0:10/(length(acc2)-1):10; % calculate time vector for

acceleration
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t_acc_fit = 0:10/(length(acc2_fit)-1):10; % calculate time vector

for acceleration

% plot data

figure(2)

subplot (3,1,1)

plot(t_pos, pos2)

legend('unfiltered')

title('X-position versus time')

xlabel('time [s]')

ylabel('position [mm]')

subplot (3,1,2)

plot(t_vel,vel2, t_vel_fit, vel2_fit)

legend('unfiltered', 'smoothed')

title('X-velocity versus time')

xlabel('time [s]')

ylabel('velocity [mm/s]')

subplot(3,1,3)

plot(t_acc,acc2, t_acc_fit, acc2_fit)

legend('unfiltered', 'smoothed')

title('X-acceleration versus time')

xlabel('time [s]')

ylabel('acceleration [mm/sˆ2]')

%% Position Data filtered with smoothdata command on velocity
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load 20240228_145557.mat % load dataset 3

% position

t_pos = 0:10/(length(p_world_t)-1):10; % set time stamp

pos3 = p_world_t(:,1) - min(p_world_t(:,1)); % normalize position

data

% velocity

tb2 = t_pos(3) - t_pos(1); % calculate the time between two

datapoints for linear interpolation

vel3 = (pos3(3:length(pos3)) - pos3(1:(length(pos3)-2)))/tb2; %

linear interpolation for determining velocity

vel3_fit = smoothdata(vel3, 'SmoothingFactor',0.1);

vel3 = vel3'; % change from row vector to column vector

vel3_fit = vel3_fit';

t_vel = 0:10/(length(vel3)-1):10; % calculate time vector for

velocity

t_vel_fit = 0:10/(length(vel3_fit)-1):10; % calculate time vector

for velocity

% acceleration

acc3 = (vel3(3:length(vel3)) - vel3(1:(length(vel3)-2)))/tb2; %

linear interpolation for determining acceleration

acc3_fit = (vel3_fit(3:length(vel3_fit)) - vel3_fit(1:(length(

vel3_fit)-2)))/tb2; % linear interpolation for determining

acceleration

t_acc = 0:10/(length(acc3)-1):10; % calculate time vector for

acceleration
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t_acc_fit = 0:10/(length(acc3_fit)-1):10; % calculate time vector

for acceleration

% plot data

figure(3)

subplot (3,1,1)

plot(t_pos, pos3)

legend('unfiltered')

title('X-position versus time')

xlabel('time [s]')

ylabel('position [mm]')

subplot (3,1,2)

plot(t_vel,vel3, t_vel_fit, vel3_fit)

legend('unfiltered', 'smoothed')

title('X-velocity versus time')

xlabel('time [s]')

ylabel('velocity [mm/s]')

subplot(3,1,3)

plot(t_acc,acc3, t_acc_fit, acc3_fit)

legend('unfiltered', 'smoothed')

title('X-acceleration versus time')

xlabel('time [s]')

ylabel('acceleration [mm/sˆ2]')

%% Plot averages
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% plot data

n1 = 66;

s1 = n1-1;

for k1 = 1:s1

vel1(k1) = [];

end

n2 = 18;

s2 = n2-1;

for k2 = 1:s2

vel2(k2) = [];

end

n3 = 56;

s3 = n3-1;

for k3 = 1:s3

vel3(k3) = [];

end

lengthvec = [length(vel1) length(vel2) length(vel3)];

lastval = min(lengthvec);

if length(vel1) >= lastval

vel1(lastval:end) = [];

acc1(lastval:end) = [];

end

if length(vel2) > lastval
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vel2(lastval:end) = [];

acc2(lastval:end) = [];

end

if length(vel3) > lastval

vel3(lastval:end) = [];

acc3(lastval:end) = [];

end

t_vel(lastval:end) = [];

t_acc(lastval:end) = [];

figure(4)

subplot (3,1,1)

plot(t_pos, (pos1 + pos2 + pos3)/3)

legend('unfiltered')

title('X-position versus time')

xlabel('time [s]')

ylabel('position [mm]')

subplot (3,1,2)

plot(t_vel, (vel1 + vel2 + vel3)/3)

legend('unfiltered')

title('X-velocity versus time')

xlabel('time [s]')

ylabel('velocity [mm/s]')

subplot(3,1,3)
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plot(t_acc, (acc1 + acc2 + acc3)/3)

legend('unfiltered')

title('X-acceleration versus time')

xlabel('time [s]')

ylabel('acceleration [mm/sˆ2]')

posmax = max((pos1 + pos2 + pos3)/3)

velmax = max((vel1 + vel2 + vel3)/3)

velavg = mean((vel1 + vel2 + vel3)/3)

accmax = max((acc1 + acc2 + acc3)/3)

%%

% position

posvals = [pos1 pos2 pos3];

for i = 1:length(pos1)

stdpos(i) = std(posvals(i, :));

end

stdpos = stdpos';

posavg = (pos1 + pos2 + pos3)/3;

stdhpos = posavg + stdpos;

stdlpos = posavg - stdpos;

figure(8)

plot(t_pos, posavg, t_pos, stdhpos, t_pos, stdlpos)

patch([t_pos fliplr(t_pos)], [stdlpos' fliplr(stdhpos')], 'g')

title('Position for robot with close fin joints')

xlabel('time [s]')
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ylabel('position [mm]')

% velocity

velvals = [vel1' vel2' vel3'];

for i = 1:length(vel1)

stdvel(i) = std(velvals(i, :));

end

stdvel = stdvel';

velavg = ((vel1 + vel2 + vel3)/3)';

stdhvel = velavg + stdvel;

stdlvel = velavg - stdvel;

figure(9)

plot(t_vel, velavg, t_vel, stdhvel, t_vel, stdlvel)

patch([t_vel fliplr(t_vel)], [stdlvel' fliplr(stdhvel')], 'g')

title('Velocity for robot with close fin joints')

xlabel('time [s]')

ylabel('velocity [mm/s]')

% acceleration

accvals = [acc1' acc2' acc3'];

for i = 1:length(acc1)

stdacc(i) = std(accvals(i, :));

end

stdacc = stdacc';

accavg = ((acc1 + acc2 + acc3)/3)';

stdhacc = accavg + stdacc;

stdlacc = accavg - stdacc;
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figure(10)

plot(t_acc, accavg, t_acc, stdhacc, t_acc, stdlacc)

patch([t_acc fliplr(t_acc)], [stdlacc' fliplr(stdhacc')], 'g')

title('Acceleration for robot with close fin joints')

xlabel('time [s]')

ylabel('acceleration [mm/sˆ2]')

%% Setup

clc, clear, clf, close all;

%% Position Data filtered with smoothdata command on velocity

load 20240228_150457.mat % load dataset 1

% position

t_pos = 0:10/(length(p_world_t)-1):10; % set time stamp

p_world_t(67) = (p_world_t(68) + p_world_t(66))/2; %% line for

jumped data

p_world_t(151:157) = (p_world_t(150) + p_world_t(158))/2; %% line

for jumped data

p_world_t(261) = (p_world_t(260) + p_world_t(262))/2; %% line for

jumped data

p_world_t(400:402) = (p_world_t(399) + p_world_t(403))/2; %% line

for jumped data

p_world_t(405:406) = (p_world_t(404) + p_world_t(407))/2; %% line

for jumped data

p_world_t(201:202) = (p_world_t(200) + p_world_t(203))/2; %% line

for jumped data
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p_world_t(269) = (p_world_t(268) + p_world_t(270))/2; %% line for

jumped data

p_world_t(409:410) = (p_world_t(408) + p_world_t(411))/2; %% line

for jumped data

pos1 = abs(p_world_t(:,1) - min(p_world_t(:,1))); % normalize

position data

% velocity

tb2 = t_pos(3) - t_pos(1); % calculate the time between two

datapoints for linear interpolation

vel1 = (pos1(3:length(pos1)) - pos1(1:(length(pos1)-2)))/tb2; %

linear interpolation for determining velocity

vel1_fit = smoothdata(vel1, 'SmoothingFactor',0.1);

vel1 = vel1'; % change from row vector to column vector

vel1_fit = vel1_fit';

t_vel = 0:10/(length(vel1)-1):10; % calculate time vector for

velocity

t_vel_fit = 0:10/(length(vel1_fit)-1):10; % calculate time vector

for velocity

% acceleration

acc1 = (vel1(3:length(vel1)) - vel1(1:(length(vel1)-2)))/tb2; %

linear interpolation for determining acceleration

acc1_fit = (vel1_fit(3:length(vel1_fit)) - vel1_fit(1:(length(

vel1_fit)-2)))/tb2; % linear interpolation for determining

acceleration
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t_acc = 0:10/(length(acc1)-1):10; % calculate time vector for

acceleration

t_acc_fit = 0:10/(length(acc1_fit)-1):10; % calculate time vector

for acceleration

% plot data

figure(1)

subplot (3,1,1)

plot(t_pos, pos1)

legend('unfiltered')

title('X-position versus time')

xlabel('time [s]')

ylabel('position [mm]')

subplot (3,1,2)

plot(t_vel,vel1, t_vel_fit, vel1_fit)

legend('unfiltered', 'smoothed')

title('X-velocity versus time')

xlabel('time [s]')

ylabel('velocity [mm/s]')

subplot(3,1,3)

plot(t_acc,acc1, t_acc_fit, acc1_fit)

legend('unfiltered', 'smoothed')

title('X-acceleration versus time')

xlabel('time [s]')

ylabel('acceleration [mm/sˆ2]')
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%% Position Data filtered with smoothdata command on velocity

load 20240228_143744.mat % load dataset 2

% position

t_pos = 0:10/(length(p_world_t)-1):10; % set time stamp

%p_world_t(489) = (p_world_t(487) + p_world_t(490))/2; %% line

for jumped data on dataset 3

pos2 = p_world_t(:,1) - min(p_world_t(:,1)); % normalize position

data

% velocity

tb2 = t_pos(3) - t_pos(1); % calculate the time between two

datapoints for linear interpolation

vel2 = (pos2(3:length(pos2)) - pos2(1:(length(pos2)-2)))/tb2; %

linear interpolation for determining velocity

vel2_fit = smoothdata(vel2, 'SmoothingFactor',0.1);

vel2 = vel2'; % change from row vector to column vector

vel2_fit = vel2_fit';

t_vel = 0:10/(length(vel2)-1):10; % calculate time vector for

velocity

t_vel_fit = 0:10/(length(vel2_fit)-1):10; % calculate time vector

for velocity

% % smooth velocity %

% vel2 = vel2(find(vel2 < 100));

% tnvel2 = 0:10/(length(vel2)-1):10;



59

% % %

% acceleration

acc2 = (vel2(3:length(vel2)) - vel2(1:(length(vel2)-2)))/tb2; %

linear interpolation for determining acceleration

acc2_fit = (vel2_fit(3:length(vel2_fit)) - vel2_fit(1:(length(

vel2_fit)-2)))/tb2; % linear interpolation for determining

acceleration

t_acc = 0:10/(length(acc2)-1):10; % calculate time vector for

acceleration

t_acc_fit = 0:10/(length(acc2_fit)-1):10; % calculate time vector

for acceleration

% plot data

figure(2)

subplot (3,1,1)

plot(t_pos, pos2)

legend('unfiltered')

title('X-position versus time')

xlabel('time [s]')

ylabel('position [mm]')

subplot (3,1,2)

%plot(tnvel2,vel2)

plot(t_vel_fit, vel2_fit)

%plot(t_vel,vel2, t_vel_fit, vel2_fit)

legend('unfiltered', 'smoothed')
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title('X-velocity versus time')

xlabel('time [s]')

ylabel('velocity [mm/s]')

subplot(3,1,3)

plot(t_acc_fit, acc2_fit)

%plot(t_acc,acc2, t_acc_fit, acc2_fit)

legend('unfiltered', 'smoothed')

title('X-acceleration versus time')

xlabel('time [s]')

ylabel('acceleration [mm/sˆ2]')

%% Position Data filtered with smoothdata command on velocity

load 20240228_143904.mat % load dataset 3

% position

t_pos = 0:10/(length(p_world_t)-1):10; % set time stamp

t_pos((500 - 148 - 40):end) = [];

pos3 = p_world_t(:,1) - min(p_world_t(:,1)); % normalize position

data

pos3(1:148+41) = [];

for l = 2:length(pos3)

if pos3(l) == NaN;

pos3(l) = (pos3(l+1) + pos3(l-1))/2;

end

end

% velocity
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tb2 = t_pos(3) - t_pos(1); % calculate the time between two

datapoints for linear interpolation

vel3 = (pos3(3:length(pos3)) - pos3(1:(length(pos3)-2)))/tb2; %

linear interpolation for determining velocity

vel3_fit = smoothdata(vel3, 'SmoothingFactor',0.1);

vel3 = vel3'; % change from row vector to column vector

vel3_fit = vel3_fit';

t_vel = 0:10/(length(vel3)-1):10; % calculate time vector for

velocity

t_vel_fit = 0:10/(length(vel3_fit)-1):10; % calculate time vector

for velocity

% acceleration

acc3 = (vel3(3:length(vel3)) - vel3(1:(length(vel3)-2)))/tb2; %

linear interpolation for determining acceleration

acc3_fit = (vel3_fit(3:length(vel3_fit)) - vel3_fit(1:(length(

vel3_fit)-2)))/tb2; % linear interpolation for determining

acceleration

t_acc = 0:10/(length(acc3)-1):10; % calculate time vector for

acceleration

t_acc_fit = 0:10/(length(acc3_fit)-1):10; % calculate time vector

for acceleration

% plot data

figure(3)

subplot (3,1,1)

plot(t_pos, pos3)
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legend('unfiltered')

title('X-position versus time')

xlabel('time [s]')

ylabel('position [mm]')

subplot (3,1,2)

plot(t_vel,vel3) %, t_vel_fit, vel3_fit)

legend('unfiltered', 'smoothed')

title('X-velocity versus time')

xlabel('time [s]')

ylabel('velocity [mm/s]')

subplot(3,1,3)

plot(t_acc,acc3, t_acc_fit, acc3_fit)

legend('unfiltered', 'smoothed')

title('X-acceleration versus time')

xlabel('time [s]')

ylabel('acceleration [mm/sˆ2]')

%% Plot averages

% plot data

n1 = 51;

s1 = n1-1;

for k1 = 1:s1

vel1(k1) = [];

end
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n2 = 15;

s2 = n2-1;

for k2 = 1:s2

vel2_fit(k2) = [];

end

n3 = 88;

s3 = n3-1;

for k3 = 1:s3

vel3(k3) = [];

end

lengthvec = [length(vel1) length(vel2_fit) length(vel3)];

lastval = min(lengthvec);

if length(vel1) >= lastval

vel1(lastval:end) = [];

acc1(lastval:end) = [];

end

if length(vel2_fit) > lastval

vel2_fit(lastval:end) = [];

acc2(lastval:end) = [];

end

%valu = lastval-1;

if length(vel3) >= lastval

vel3(lastval:end) = [];

acc3(lastval:end) = [];
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end

t_vel(lastval:end) = [];

t_acc(lastval:end) = [];

pos1(length(pos3)+1:end) = [];

pos2(length(pos3)+1:end) = [];

% t_posn = 0:10/(length(pos3)-1):10;

figure(4)

subplot (3,1,1)

plot(t_pos, (pos1 + pos2 + pos3)/3)

legend('unfiltered')

title('X-position versus time')

xlabel('time [s]')

ylabel('position [mm]')

subplot (3,1,2)

plot(t_vel, (vel1 + vel2_fit + vel3)/3)

legend('unfiltered')

title('X-velocity versus time')

xlabel('time [s]')

ylabel('velocity [mm/s]')

subplot(3,1,3)

plot(t_acc, (acc1 + acc2 + acc3)/3)

legend('unfiltered')

title('X-acceleration versus time')

xlabel('time [s]')
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ylabel('acceleration [mm/sˆ2]')

posmax = max((pos1 + pos2 + pos3)/3)

velmax = max((vel1 + vel2_fit + vel3)/3)

velavg = mean((vel1 + vel2_fit + vel3)/3)

accmax = max((acc1 + acc2 + acc3)/3)

%%

% position

posvals = [pos1 pos2 pos3];

for i = 1:length(pos1)

stdpos(i) = std(posvals(i, :));

end

stdpos = stdpos';

posavg = (pos1 + pos2 + pos3)/3;

stdhpos = posavg + stdpos;

stdlpos = posavg - stdpos;

figure(5)

plot(t_pos, posavg, t_pos, stdhpos, t_pos, stdlpos)

patch([t_pos fliplr(t_pos)], [stdlpos' fliplr(stdhpos')], 'r')

title('Position for robot with close fin joints')

xlabel('time [s]')

ylabel('position [mm]')

% velocity

velvals = [vel1' vel2_fit' vel3'];
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for i = 1:length(vel1)

stdvel(i) = std(velvals(i, :));

end

stdvel = stdvel';

velavg = ((vel1 + vel2_fit + vel3)/3)';

stdhvel = velavg + stdvel;

stdlvel = velavg - stdvel;

figure(6)

plot(t_vel, velavg, t_vel, stdhvel, t_vel, stdlvel)

patch([t_vel fliplr(t_vel)], [stdlvel' fliplr(stdhvel')], 'r')

title('Velocity for robot with far fin joints')

xlabel('time [s]')

ylabel('velocity [mm/s]')

% acceleration

accvals = [acc1' acc2' acc3'];

for i = 1:length(acc1)

stdacc(i) = std(accvals(i, :));

end

stdacc = stdacc';

accavg = ((acc1 + acc2 + acc3)/3)';

stdhacc = accavg + stdacc;

stdlacc = accavg - stdacc;

figure(7)

plot(t_acc, accavg, t_acc, stdhacc, t_acc, stdlacc)

patch([t_acc fliplr(t_acc)], [stdlacc' fliplr(stdhacc')], 'r')

title('Acceleration for robot with far fin joints')
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xlabel('time [s]')

ylabel('acceleration [mm/sˆ2]')
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