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ABSTRACT 

 

This thesis explores the need for individualized feedback in medical simulation training 

for procedures such as endotracheal intubations. Current pass-fail assessments lack the 

specificity required for skill refinement, leading to potential complications in critical procedures. 

This thesis investigates the application of visual hand tracking technology, specifically Google's 

MediaPipe, to offer quantitative feedback. Using a wooden hand model on a linear motor with a 

depth camera, this experiment explores tracking hand movements in real time. Google's 

MediaPipe software tracks 3D hand motions, generating data points for analysis. Results 

demonstrated consistent patterns in hand movements corresponding to linear motor actions. Total 

distance traveled by each point of interest and error analysis provided insights into the accuracy 

of visually measured hand movements. Visual hand tracking, such as MediaPipe, may prove to 

be a promising tool for refining operator techniques in critical medical procedures. The 

experiments explore the technology's accuracy and underscores its potential application in 

medical training, addressing a gap in current practices and emphasizing the importance of 

tailored feedback for improved patient outcomes. 
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Chapter 1 – Introduction and Background 

Introduction and Background 

An endotracheal intubation is a common, and sometimes lifesaving, procedure that opens 

a patient’s airway to help prevent suffocation. Endotracheal intubations are routine for many 

hospitals and surgical procedures; however, they may also be performed in emergency settings. 

While this procedure may be common, positioning a laryngoscope (the device used in an 

endotracheal intubation) is difficult. Figure 1 shows the pathway for a laryngoscope and 

endotracheal tube that are used during the procedure. The operator must align the laryngeal, 

pharyngeal, and oral axes using a laryngoscope. Human variability can be an additional factor 

affecting health care providers’ ability to successfully place an endotracheal tube. Risks 

associated with failed intubations include, but are not limited to, damage to the teeth or throat, 

bleeding, injury to the lungs, and hypoxia which can lead to brain injury or death [1].  
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Figure 1. Correct Placement of an Endotracheal Tube 

 

Complications and misplaced intubation tubes are more common when performed in 

emergency situations. A study conducted by the emergency department of the University of 

Pittsburgh’s hospital characterized an endotracheal intubation error to be one of the following: a 

misplacement of the breathing tube, four or more placement attempts, or a failure to place a tube 

at all. Of the 1,953 patients that received an endotracheal intubation, 22% of them had one or 

more of these errors [2], [3]. A later study by the same group found that of the failure cases with 

negative outcomes, 73% of the patients died [3]. Additionally, Katz and Falk conducted a study 

in which 108 patients arrived in the emergency department after a paramedic performed an 

intubation. Of these 108 patients, 25% of them had been given an improperly placed 

endotracheal tube [4]. It can be concluded from these studies that errors occur more often in 

emergency situations or with operators that perform less endotracheal intubations per year.  
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It has also been shown that an improvement in technology does not directly correlate to 

an improvement in skill and patient outcomes. A video-laryngoscopy is an indirect form of 

laryngoscopy that uses a fiber optic camera to gain visualization of the airway [5]. While the 

technology is steadily improving, direct laryngoscopy is still preferred over indirect. A study 

published in The Laryngoscope shows that the increased use of video-laryngoscopes has 

correlated to an increase in oropharyngeal injuries [6]. When comparing the rate of 

oropharyngeal injuries from direct laryngoscopy and video-laryngoscopy, the difference between 

the two of them was found to be statistically significant (p < 0.005). Therefore, it can be 

concluded that the improved technology being used in hospitals does not always translate into 

better outcomes for patients.  

Currently, no universal standard exists for endotracheal intubation training. The 

proficiency of training and maintenance of skill must be evaluated by individual healthcare 

practices [1]. Many hospitals have simulation training facilities with mannequins for residents to 

learn procedures and other professionals to practice their skills. Before graduation, residents are 

expected to complete several sessions of training within their simulation center [7]. While these 

training opportunities can help operators learn and practice the techniques of endotracheal 

intubations, the operators are graded on a binary pass-fail basis. For this reason, little opportunity 

exists for individual feedback or quantitative data for how to improve the operator’s skills.  

It is important to include training with quantitative feedback for operators. For instance, 

having the ability to analyze hand movements in real time would provide valuable information 

on the flaws in an operator’s technique. This feedback could give healthcare providers a better 

skillset to improve their patients’ outcomes. 
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Neonatal Endotracheal Intubation 

One area of medicine in which endotracheal intubations are particularly difficult is 

neonatal medicine. Specifically with endotracheal intubations, infants are particularly difficult 

because of their unique and less developed airway anatomy [8]. In addition, endotracheal 

intubations require the patient's neck to be positioned in a certain way. Neonatal patients have 

abnormal neck mobility and may have head abnormalities [9]. Thus, conducting an endotracheal 

intubation on a neonatal patient requires more training and specialized skill maintenance 

compared to more common airway anatomies.  

A study published in the Journal of Perinatology analyzed the relationship between the 

number of intubation attempts and number of negative outcomes from intubations conducted in 

the delivery room and neonatal intensive care unit (NICU). Data were collected from 17 different 

training hospitals over a three-year period. 22% of the 7,708 patients requiring intubation 

required three or more attempts to properly intubate [8]. Even in cases with adult patients, an 

increased number of intubation attempts can have detrimental outcomes. These may include 

severe oxygen loss, trauma or injury to the teeth or lips, or even life-threatening soft tissue 

damage [1]. For neonatal patients, additional intubation attempts can have long lasting negative 

effects on the patient’s immature, developing brain. The study concluded that increasing number 

of attempts to intubate directly correlated to increased risk of adverse tracheal intubation 

associated events (TIAEs) and severe oxygen desaturation [8]. The results of this study and the 

trends drawn from it are included in Figure 2. 
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Figure 2. Any TIAE, severe TIAE and severe oxygen desaturations by number of TI 
attempts 

As shown in Figure 2, as the number of intubation attempts increases, so does the 

potential of a (TIAE) and/or severe oxygen desaturation. Therefore, it is of particular importance 

to improve the training of health care providers that will be performing neonatal endotracheal 

intubations. Furthermore, neonatal training simulations are more difficult to have access to, so it 

is important to make the simulation training as efficient and helpful to the trainees as possible. 

Intubation Training and Skill Maintenance 

 Health care providers trained to perform endotracheal intubations include 

anesthesiologists, paramedics, respiratory therapists, medical students, and others. However, all 

these professionals have different training standards and perform this procedure at different 

frequencies. While an anesthesiologist may perform several intubations a week, a medical 

student may only conduct a handful of intubations before graduation and therefore, not be 
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qualified to conduct this procedure [7], [10], [11]. Proficiency with this procedure is not acquired 

until the health care professional has had sufficient experience and exposure [12].  

 When surveying respiratory therapists about their training and skill maintenance, it was 

found that there was “significant variance in the training methods, skill maintenance, and 

recertification requirements” among all the study participants [13]. Furthermore, 24% of the 

respiratory therapists that responded disagreed with the statement “I am satisfied with my 

institution’s current program for providing endotracheal intubation training.” This dissatisfaction 

is not isolated to respiratory therapists. A study conducted on medical student interns analyzed 

the competence tests that medical students must pass to provide patient care. On several of the 

procedures, 37% of residents (even upon graduation) could not achieve the minimum passing 

score without making more than one attempt [11]. Many tests that students undergo are just 

pass/fail and do not offer quality feedback on how a student could improve their score. There is 

not a sufficient framework for medical students to demonstrate competency with certain 

procedures before residency.  

 On the other hand, studies have been conducted analyzing the effect of simulation 

training on medical students’ skills and confidence. Simulation training, especially with high 

fidelity simulations, has been found to improve a student’s skillset and confidence level with the 

procedure [14]. Medical students were surveyed before and after taking a simulation class about 

managing septic shock. Not only were their mean post-test examinations statistically higher than 

the pre-test examinations (p<0.001), but their mean confidence level in managing septic shock 

increased compared to before the class (p<0.001) [14]. Improving skillsets and confidence of 

medical professionals is vital to decreasing error rates with endotracheal intubation procedures. 
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Previous work with MediaPipe hand tracking  

To track the hands in a 3D space, software from Google’s MediaPipe was used. This 

technology is open-source and has been used in several projects to track hands and place 

coordinates on hands in a camera frame [15], [16]. Data can be retrieved about each point that is 

placed on the hand. These data can then be reconstructed into a computational model of the hand. 

An example of the data points and hand reconstruction is in Figure 3. Each point on each finger 

is given a number and label. Individual motion data is recorded for each point when using 

MediaPipe. Thus, 3D position data can be extracted and analyzed about one point on the hand, 

an entire finger, or the entire hand. 

 

Figure 3. Data point labels for MediaPipe hand reconstruction 

 

One study using MediaPipe specifically looked at the movements of the hands “through 

simple tasks commonly used in clinical practice” [16]. This study validated the initial use of 

MediaPipe in a clinical setting and further explained the uses of it for research. Moreover, a very 

recent study used MediaPipe’s hand tracking technology to analyze Parkinson patients before 

and after medication. In addition to using the video hand tracking features of MediaPipe, the 
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experiment used accelerometers on the study participants' hands. The accelerometers were of a 

known accuracy, so the data recorded from the accelerometers could be compared to the data 

recorded by MediaPipe’s hand tracking capabilities. The data from the video hand tracking 

“correlated well” with the measurements from the accelerometers [17]. Although still a new and 

developing technology, using MediaPipe to track the movements of hands during a procedure or 

training has been proven to be valid and accurate.  

Conclusion 

The error rates for endotracheal intubations point to a flaw in the way that intubations are 

taught and tested. Training and testing on a pass-fail basis are no longer the most effective way 

for an anesthesiologist to practice their skill. There is a gap between the knowledge and the 

technology being used to reduce endotracheal intubation related injuries. However, as this thesis 

suggests, improving training for operators may reduce the frequency of oropharyngeal injuries. 

Additionally, the uniqueness of intubation of neonatal patients’ anatomy adds an additional 

complication for healthcare providers. Therefore, it is of importance to develop high level 

training simulations to give quantitative and individualized feedback for healthcare providers 

about their intubation techniques. Having the ability to assess hand movements in real time 

would provide valuable information on the flaws in an operator’s technique. This feedback 

would give healthcare professionals the skillset to deliver better outcomes to their patients. 

Finally, MediaPipe has not yet been sufficiently explored for applications to the medical field. 

This thesis presents an opportunity to examine the accuracy of MediaPipe and potential future 

applications for training of other medical procedures.  
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Chapter 2  - Methods and Materials 

Materials 

The experiment was conducted, and all materials were sourced from, the Precision 

Medical Device Laboratory at the Pennsylvania State University. The model for this experiment 

is a wooden hand that has moving joints. This type of hand model is typically used by artists 

because of its ability to be repositioned – and stay in place – into many different hand positions. 

This model was chosen not only because of how closely it resembled a hand, but also to allow us 

to reposition the hand if necessary. The hand model was placed on top of a linear motor from 

Dunkermotoren linear systems. An Intel® RealSense™ Depth Camera D435 was used to capture 

the movement during the experiment. A camera tripod was used to position the depth camera at 

an appropriate height and distance from the lab bench in order to be level with the hand. Several 

computer programs including MATLAB, Python, and LabView were used in this experiment.  

Experimental Design and Setup 

To track the hands in a 3D space, software from Google’s MediaPipe was used. This 

technology is open-source and is used to track the hand and place coordinates on it in a camera 

frame [5], [6]. MediaPipe was accessed by using Python. As stated earlier, by using MediaPipe, 

individual motion data can be recorded for each of the 21 points on the hand. Using Python, 

MediaPipe was installed and activated. Within the Python script, several points of interest were 

identified. In order to reduce the processing time, 5 points of interest were chosen from the 21 
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options seen in Figure 3. The points of interest that were chosen were points 4, 8, 12, 16, and 20. 

These points were chosen because they are the tips of the fingers on the hand. It was assumed 

that these points would give us the best idea of the accuracy of the data because they are at the 

tip of the digits. The Python script is located in Appendix A.  

The depth camera was positioned on the tripod at an appropriate height and distance 

away from the test bench. The linear motor program, LabView, was started and the linear motor 

turned on to ready. LabView is an application that helps build test systems [18]. It also controls 

the linear motor that is being used for the experiment. The test system that was used is basic, but 

effective. Once the program begins, the user can input the distance in millimeters from the 

homing point that he or she wants the linear motor to travel. The homing point, in relation to the 

depth camera’s point of view, is the right-most side of the linear motor. Once told which position 

to travel to, the linear motor moves at a constant speed to the desired location. The hand, placed 

in an open-palm position, was placed on top of the linear motor as seen in Figure 4. 

 

 

Figure 4. Manikin Hand Model on Linear Motor 
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Once the hand was positioned and the linear motor program ready, the following 

sequence was performed. The recording began, followed by a 10-second pause, and then the 

linear motor and hand system was moved 100 millimeters in the negative x direction of the depth 

camera. That is, the linear motor’s starting position was at the home point, on the right side of 

the depth camera’s frame. This process was repeated until a total distance of 500 millimeters was 

covered. The recording was stopped, and the acquired data was locally saved in an Excel file. 

Figure 5 graphically represents how the sequence of events was performed.  

 

Figure 5. Workflow of Experiment 

 

This experimental process was repeated five times in the XY plane (relative to the depth 

camera frame) and five times in the YZ plane (relative to the depth camera frame). Figure 6 

below shows the orientation of the depth camera, manikin hand, and linear motor for the trials in 

the YZ plane. 
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Figure 6. Manikin hand on linear motor for YZ trials 

 

After all trials were completed, the recorded data underwent processing in MATLAB. 

The MATLAB code can be found in Appendix B. First, any zero values that may have been 

present due to noise in the data acquisition were filtered out. These “zero” values indicate times 

in the experiment where the depth camera may have picked up on something else or 

misidentified it as the point of interest we were targeting. Then, an animated line representation 

was generated in a 3D space to visualize the movement of the knuckles of interest throughout the 

experiment. This line represents what all the data points during the experiment look like in a 3D 

space.  

Additionally, a plot was created illustrating the x-position of each point of interest over 

the duration of the experiment. The total distance traveled by the points of interest was calculated 

and recorded. The results of all ten trials can be found in the results section.  

  

y 

x 

z 
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Chapter 3 – Results  

The first five trials recorded the manikin hand moving in the XY plane relative to the 

depth camera. Results of the first trial as a subplot consisting of six position vs. time graphs are 

shown in Figure 7. There is one subplot for each point of interest, and the sixth plot overlays all 

five points of interest over each other. As stated before, points 4, 8, 12, 16, and 20 were chosen 

as points of interest because they are the tips of each digit on the hand manikin model.  

 

Figure 7. X-Position vs. Time for Points of Interest 4, 8, 12, 26, and 20 for Trial 1 

 

Additional subplots with position vs. time data for the subsequent 4 trials can be found in 

Appendix C. In each of the subplot graphs, the five movements of the linear motor and corresponding 

pause can be distinctly seen. This pattern is consistent with all five points of interest and across all trials 

in the XY plane. Data underwent processing using MATLAB and Excel. First, the total distance traveled 

for each point of interest was recorded and a bias factor was calculated. The total distance that each point 
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traveled in Trial 1 is as follows: 509 mm, 489 mm, 491 mm, 499 mm, and 512 mm for points 4, 8, 12, 16, 

and 20, respectively when bias factor, eliminating the steady state error, was added. This steady state error 

factor was necessary as a calibration factor for the camera system. Additionally, the average distance at 

each pause was recorded and used to calculate the distance between pauses. Table 1 below shows the total 

distance traveled by each POI during the duration of the experiment after the elimination of steady state 

error. While total distance traveled may vary by point for each trial, across all trials, the distance for an 

individual point remains relatively precise. For example, the data from trial one, had a range from 489 to 

512 mm, or a range of about 23 mm. However, focusing on just POI 4, across all five trials, the range is 

from 508 to 514, or a range of 6 mm. This pattern is reflected across all five POIs. From this data, it can 

be concluded that across several trials, the distance a point travels remains precise. Therefore, for future 

trials, the bias factor should be calculated for each point individually rather than for each trial. 

 

Table 1. Total Distance Traveled by Points 4, 8, 12, 16 and 20 during XY Trial 1 

Point of Interest  Trial Number Total Distance Traveled (mm) 

4 1 509 

2 511 

3 508 

4 513 

5 514 

8 1 489 

2 485 

3 488 

4 486 
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5 485 

12 1 491 

2 488 

3 490 

4 484 

5 486 

16 1 499 

2 495 

3 513 

4 488 

5 488 

20 1 512 

2 520 

3 563 

4 528 

5 514 

 

Figure 8 shows the error with eliminated steady state error in the distance between each pause for 

each of the five points of interest for Trial 1. The error ranged from an absolute value of 0.358 mm to 14.1 

mm with an average value of 3.89 mm. Over a 500 mm span, this inaccuracy ranges from 0.0716% to 

2.83% with an average value of 0.778%. This is an acceptable range of inaccuracy for developing a 

nominal model for hand tracking. 
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Figure 8. Error in mm at each pause for each POI 

 

For the YZ plane trials, only two points of interest, 8 and 12, were analyzed. When 

capturing initial data, the depth camera was struggling to capture clean data on more than two 

points at a time. This could be because of the machine learning algorithms being slightly 

different for capturing data in this direction compared to the XY plane. Therefore, it may be 

more challenging to collect distance data compared to two-dimensional movement. For the 

purposes of this thesis – that is, to analyze the accuracy of MediaPipe’s output – data was 

examined from only the two points of interest that were consistently being identified. Results of 

the first trial as a subplot consisting of three z-position vs. time graphs are shown in Figure 9. 

There is one subplot for each point of interest, and the third plot overlays both points of interest 

over each other. As with the XY trials, the five movements of the linear motor and corresponding 

pause can be distinctly seen. This pattern is consistent with both points of interest and across all 
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five trials in the YZ plane. Additional subplots with Z-position vs. time data for the subsequent 4 

trials can be found in Appendix C. 

 

Figure 9. Z-Position vs. Time for Points of Interest 8 and 12 for Trial 1 

 

Data for this trial underwent the same processing as for the XY trials. The total distance 

that each point traveled in Trial 1 for the YX plane was 499 mm and 522 mm for points 8 and 12, 

respectively. Notably, for all five trials in the YZ plane, the distance traveled by point 8 was 

extremely accurate, whereas the distance traveled by point 12 was consistently off by about 25 

mm. Similar to the XY results, this could mean that the bias factor should be applied to each 

point individually as opposed to across an entire trial. The total distance traveled by each point in 

the YZ trials can be seen in Table 2.  

 

 



18 
 

   
 

Table 2. Total Distance Traveled by Points 8 and 12 during YZ Trial 1 

Point of Interest  Trial Number Total Distance Traveled (mm) 

8 1 499 

2 499 

3 500 

4 501 

5 500 

12 1 522 

2 528 

3 529 

4 527 

5 523 

 

Additionally, the average distance at each pause was recorded and used to calculate the 

distance between pauses. Figure 10 shows the error with eliminated steady state error in the 

distance between each pause for each of the five points of interest. For all of the trials combined, 

the error ranged from an absolute value of 0.162 mm to 13.67 mm with an average value of 4.19 

mm. Over a 500 mm span, this inaccuracy ranges from 0.0324% to 2.734% with an average 

value of 0.838%.  
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Figure 10. Error in mm at each pause for each POI 
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Chapter 4 – Discussion and Future Work 

For the XY plane trials, the highest error out of all the points of interest was POI 20. 

Some possible reasons for that may be that POI 20 resides on the smallest digit of the hand, and 

it resides closer to other points of interest. Additionally, there may be limitations to the accuracy 

of some points of interest depending on the training data that was used to develop the MediaPipe 

model. However, this high-level accuracy supports the idea that highly accurate automated 

assessments of medical training could be conducted.  

For the YZ plane trials, POI 8 had a consistently high accuracy and did not need to 

accommodate for steady state error. This interesting finding helps to support the idea of using 

MediaPipe for highly accurate medical simulation training procedures. Additionally, while the 

distance readings for POI 12 were not as accurate, they were consistent with a total range of only 

7 mm from each other. Therefore, with the correct bias factor calibration, we could see an 

accurate and consistent distance reading for both POIs 8 and 12 over the entire range of motion.  

From this data, it can be concluded that MediaPipe can be used to give highly accurate 

results regarding changes in position over time. Thus, it can be used to give quantitative 

feedback to medical professionals about their approach to endotracheal intubation or 

colonoscopy. The use of MediaPipe in a simulation training environment would address existing 

gaps in current practices and has the potential to enhance patient outcomes. Additionally, 

because the materials needed to use MediaPipe in training are not hardware intensive, it can be 

integrated into already existing training programs. This can set a precedence for high level 

assessments of performance in medical training without the need for extra hardware intensive 

equipment.  
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Challenges and Limitations 

An initial challenge that I had with this project was learning how to properly use 

MediaPipe for my intents. This was partly because I am unfamiliar with Python as a 

programming language and there was a significant learning curve to understand its differences 

from MATLAB, a language with which I am thoroughly comfortable. This challenge was also 

due in part to MediaPipe having a range of functions to choose from. After a while, I learned 

how to use Python and the MediaPipe features to my advantage, and I wrote a script that was 

able to capture and record the data I needed to capture using the depth camera.  

A second challenge I encountered when trying to collect data, was the depth camera 

sometimes “missing” the points on the hand. I quickly realized this was due to the number of 

things in the background of the camera frame that were in the lab. Having too many things in the 

background was hindering the camera’s, and MediaPipe’s, ability to locate the points on the 

hand. To resolve this, I placed a white poster board behind the linear slide. This blocked out the 

other things in the background of the camera frame, and in addition, it added an aspect of 

contrast to the frame. Both helped the camera and MediaPipe to pick up on the points on the 

hand better. After this remedy, the data was much easier to collect and clearer after processing.  

One limitation to this experiment is the processing speed and bandwidth of the device 

being used to store the data. If the speed is too slow, the sampling frequency may be inadequate 

to capture the correct data. This problem becomes apparent whenever trying to capture data 

about all 21 points on the hand at once. This is why the decision to only capture data about five 

points was made. This ensured we captured data about all five digits on the hand, and it also 

allowed us to use an adequate processing speed and sampling frequency. However, once data is 
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captured, there is no way to go back and add points that you may want to extract data about. In 

other words, I programmed Python to use MediaPipe to collect position data on points 4, 8, 12, 

16, and 20. After running the trials, it is impossible for me to open a data file and analyze 

position data for point 13 for that specific trial. In order to get data for point 13, the Python code 

would need to be edited, and a new trial would need to be run. This is a limitation because if we 

are trying to visualize the hand pathway during a procedure in future work, it would be 

impossible to find certain data unless it was captured in the initial collection.  

Finally, some limitations of MediaPipe that we found include the need for calibration and 

a bias factor. This is easy enough to complete during the data analysis process of the experiment, 

but it is an additional limitation of the technology. Additionally, the depth aspect of MediaPipe’s 

hand tracking capabilities does not seem to be as fleshed out as the other capabilities. This may 

be a limitation of the software, and hopefully future versions of it will have this more fleshed 

out. However, the depth data acquisition may be improved depending on the kind of camera that 

is in use.  

Applications to Existing Medical Simulations 

Adding MediaPipe to existing medical simulations could be done quite seamlessly. A 

depth camera on a tripod can be set up off to the side of the simulation in the clinical training 

facility. There is very little hardware setup that would need to be added to the existing simulation 

space. Therefore, adding MediaPipe to a training simulation space could be done across many 

different training hospitals and with a variety of simulated procedures. The camera can capture 

the movement of the points of interest on the hand and can model the pathway of them. 
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Additionally, after a practice attempt is complete, an animated line can be shown to the trainee to 

show the movement over time of their hand during the procedure.  

Recommendations for Future Work 

As the first student on this project, there is still much more to be discovered about 

MediaPipe and its applications to medical simulation training. Firstly, more work needs to be 

done to explore the high error and noise that is seen in the YZ plane data. The distance (Z-

direction) readings that were captured from the depth camera were not as accurate as the X and 

Y data, and they were noisier than the X and Y data as well. The Z (“distance”) data is a different 

variable output for the depth camera, so more work into how that affects the results should be 

explored. Additionally, this project examined the accuracy of MediaPipe over a larger range of 

motion. Most endotracheal intubation procedures will not likely require a range of motion of 500 

mm. After reporting the accuracy of MediaPipe over this larger range of motion, accuracy of 

MediaPipe over a small range of motion should be explored. This can give insight into whether 

MediaPipe may or may not be equipped to capture motion data over a range of motion that more 

closely resembles that of an endotracheal intubation procedure.  

Then, the testing should move from using an open palm manikin hand to a hand that is 

gripping a laryngoscope or similar instrument. This testing will be able to provide insight into 

how the accuracy of MediaPipe may change if part of the hand is obstructed from an instrument, 

much like it may be during an endotracheal intubation procedure simulation.  

Finally, research should be conducted filming a clinician’s hands moving with a device, 

such as a laryngoscope, in hand. This could further track how MediaPipe collects position data 
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with an obstructed view. In addition, this future work could help plot the proper pathway of the 

hand through the procedure. This data can then be used as a potential baseline for comparing 

training attempts to. Overall, this project is still in the early stages of its development, so there 

are plenty of avenues for future work to follow.  
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Appendix A: Python Code 

Python Code for Retrieving Position Data using MediaPipe 

import cv2 
import mediapipe as mp 
import pyrealsense2 
from realsense_depth import * 
import pandas as pd 
import time 
 
# Initialize MediaPipe hand components 
mp_drawing = mp.solutions.drawing_utils 
mp_hands = mp.solutions.hands 
 
# Initialize Camera Intel Realsense 
dc = DepthCamera() 
 
# Initialize MediaPipe Hands 
with mp_hands.Hands( 
    min_detection_confidence=0.5, 
    min_tracking_confidence=0.5) as hands: 
    data = [] 
    frame_number = 0 
 
    while True: 
        ret, depth_frame, color_frame = dc.get_frame() 
 
        if not ret: 
            print("Failed to grab frame.") 
            break 
 
        # Convert the BGR image to RGB before processing 
        color_frame_rgb = cv2.cvtColor(color_frame, cv2.COLOR_BGR2RGB) 
 
        # Process the frame and get hand landmarks 
        results = hands.process(color_frame_rgb) 
 
        # Draw the hand landmarks on the color frame 
        if results.multi_hand_landmarks: 
            for idx, hand_landmarks in enumerate(results.multi_hand_landmarks): 



26 
 

   
 

                mp_drawing.draw_landmarks( 
                    color_frame, hand_landmarks, mp_hands.HAND_CONNECTIONS) 
 
                # Get hand type (Left/Right) 
                hand_type = results.multi_handedness[idx].classification[0].label 
                print(f"Detected {hand_type} hand.") 
 
                # Get distance for knuckles 4, 8, 12, 16, 20 
                knuckles = [4, 8,12, 16, 20] # you can change which knuckle you 
want here 
                for knuckle in knuckles: 
                    x, y = int(hand_landmarks.landmark[knuckle].x * 
color_frame.shape[1]), int( 
                        hand_landmarks.landmark[knuckle].y * 
color_frame.shape[0]) 
                    cv2.circle(color_frame, (x, y), 10, (0, 255, 0), -1) 
 
                    # Get depth at the knuckle point 
                    distance = depth_frame[y, x] 
                    now = time.localtime() 
                    current_time = time.strftime("%H:%M:%S",now) 
                    print(f"{hand_type} hand - Knuckle {knuckle} Coordinate: 
({x}, {y}), Distance: {distance} mm") 
                    data.append({ 
                        "Time": current_time, 
                        "Frame": frame_number, 
                        "HandType": hand_type, 
                        "KnuckleID": knuckle, 
                        "CoordinateX": x, 
                        "CoordinateY": y, 
                        "Distance": distance 
                    }) 
                     
        # Display the resulting frame with hand landmarks and depth information 
        cv2.imshow('Hand Landmarks with Depth', color_frame) 
        frame_number = frame_number + 1 
        if cv2.waitKey(33) == ord('q'): # press the 'q' key to end the trial 
            break 
 
# Release the capture and destroy OpenCV windows 
cv2.destroyAllWindows() 
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# Create a DataFrame and save it to Excel 
df = pd.DataFrame(data) 
excel_file_path = r'C:\Users\cindy\OneDrive\Documents\Spring 24\ME 
494H\thesis\realsense\realsense\hand_tracking_data.xlsx' 
df.to_excel("hand_tracking_data.xlsx", index=False) 
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Appendix B: MATLAB Code 

MATLAB Code for XY Trials 

clear 
clc 
close all 
%  code for analyzing hand tracking data 
 
% pull the excel file that you are reading data from 
data = readtable('hand_tracking_data_f_15.xlsx'); 
 
% create variables for each column of data from excel file 
time = table2array(data(:,"Time")); 
knuckleID = table2array(data(:,"KnuckleID")); 
hand_type = table2array(data(:,"HandType")); 
CoordinateX = table2array(data(:,"CoordinateX")); 
CoordinateY = table2array(data(:,"CoordinateY")); 
depth = table2array(data(:,"Distance")); 
 
% reconstruct movement of knuckles - initialize animated lines 
an_4 = animatedline('Marker', '.', 'Color','c'); 
an_8 = animatedline('Marker','.','Color','r'); 
an_12 = animatedline('Marker','.','Color','b'); 
an_16 = animatedline('Marker','.','Color','m'); 
an_20 = animatedline('Marker','.','Color','g'); 
 
figure(1) % this figure will show the data markers in 3D during the movement 
xlabel('x') 
ylabel('y') 
zlabel('z') 
title('Movement of Points of Interest 4, 8, 12, 16, and 20  vs time') 
legend('POI 4','POI 8','POI 12', 'POI 16', 'POI 20') 
grid on 
 
% plotting the different knuckle movements over time 
for iii = 1:length(time) 
    iii; 
    if knuckleID(iii) == 4 
        x_4(iii) = CoordinateX(iii); 
        y_4(iii) = CoordinateY(iii); 
        z_4(iii) = depth(iii); 
        addpoints(an_4,x_4(iii),y_4(iii),z_4(iii)); 
       % drawnow 
       pause(0.01) 
    elseif knuckleID(iii) == 8 
        x_8(iii) = CoordinateX(iii); 
        y_8(iii) = CoordinateY(iii); 
        z_8(iii) = depth(iii); 
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        addpoints(an_8,x_8(iii),y_8(iii),z_8(iii)); 
       % drawnow 
        pause(0.01) 
    elseif knuckleID(iii) == 12 
        x_12(iii) = CoordinateX(iii); 
        y_12(iii) = CoordinateY(iii); 
        z_12(iii) = depth(iii); 
        addpoints(an_12,x_12(iii),y_12(iii),z_12(iii)); 
       % drawnow 
        pause(0.01) 
    elseif knuckleID(iii) == 16 
        x_16(iii) = CoordinateX(iii); 
        y_16(iii) = CoordinateY(iii); 
        z_16(iii) = depth(iii); 
        addpoints(an_16,x_16(iii),y_16(iii),z_16(iii)); 
       % drawnow 
        pause(0.01) 
        iii+1; 
    else 
        x_20(iii) = CoordinateX(iii); 
        y_20(iii) = CoordinateY(iii); 
        z_20(iii) = depth(iii); 
        addpoints(an_20,x_20(iii),y_20(iii),z_20(iii)); 
       % drawnow 
       pause(0.01) 
        iii+1; 
    end  
   iii; 
end 
 
%% 
 
% filter the position data to only have non-zero results 
nonZeroIndices_4= x_4 ~=0; 
x_4 = x_4(nonZeroIndices_4); 
nonZeroIndices_8= x_8 ~=0; 
x_8 = x_8(nonZeroIndices_8); 
nonZeroIndices_12= x_12 ~=0; 
x_12 = x_12(nonZeroIndices_12); 
nonZeroIndices_16= x_16 ~=0; 
x_16 = x_16(nonZeroIndices_16); 
nonZeroIndices_20= x_20 ~=0; 
x_20 = x_20(nonZeroIndices_20); 
 
%% the res of this code is for finding the time and averages 
elapsedTime = 42; % time of experiment in seconds 
time_4 = linspace(0,elapsedTime,length(x_4)); 
time_8 = linspace(0,elapsedTime,length(x_8)); 
time_12 = linspace(0,elapsedTime,length(x_12)); 
time_16 = linspace(0,elapsedTime,length(x_16)); 
time_20 = linspace(0,elapsedTime,length(x_20)); 
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%% create subplot of all 5 points of interest and one overlaying 
figure(2) 
subplot(3,2,1) 
hold on 
xlabel('time (s)') 
ylabel('x position (mm)') 
title('POI 4') 
grid on 
plot(time_4,x_4)   
 
subplot(3,2,2) 
hold on 
xlabel('time (s)') 
ylabel('x position (mm)') 
title('POI 8') 
grid on 
plot(time_8,x_8)   
hold off 
 
subplot(3,2,3) 
hold on 
xlabel('time (s)') 
ylabel('x position (mm)') 
title('POI 12') 
grid on 
plot(time_12,x_12)    
hold off 
 
subplot(3,2,4) 
hold on 
xlabel('time (s)') 
ylabel('x position (mm)') 
title('POI 16') 
grid on 
plot(time_16,x_16)  
hold off 
 
subplot(3,2,5) 
hold on 
xlabel('time (s)') 
ylabel('x position (mm)') 
title('POI 20') 
grid on 
plot(time_20,x_20)   
hold off 
 
subplot(3,2,6) 
grid on 
plot(time_4,x_4)   
hold on 
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plot(time_8,x_8)   
hold on 
plot(time_12,x_12)    
hold on 
plot(time_16,x_16)  
hold on 
plot(time_20,x_20)   
hold off 
grid on 
xlabel('time (s)') 
ylabel('x position (mm)') 
title('All POIs overlayed') 
legend('4', '8','12','16','20') 
 
% overlaying all plots onto one 
figure(3) 
 
grid on 
plot(time_4,x_4)   
hold on 
plot(time_8,x_8)   
hold on 
plot(time_12,x_12)    
hold on 
plot(time_16,x_16)  
hold on 
plot(time_20,x_20)   
hold off 
xlabel('time (s)') 
ylabel('x position (mm)') 
title('All POIs overlayed') 
legend('4', '8','12','16','20') 
 
% finding average values 
 
% Example: Assuming start_time and end_time are the start and end times of your 
desired range 
start_time = 36.5; 
end_time = 41.3; 
start_index = find(time_4 >= start_time, 1); 
end_index = find(time_4 <= end_time, 1, 'last'); 
 
% Extract the data within the specified time range - change to x_? for each 
data_range_4 = x_4(1,start_index:end_index); 
data_range_8 = x_8(1,start_index:end_index); 
data_range_12 = x_12(1,start_index:end_index); 
data_range_16 = x_16(1,start_index:end_index); 
data_range_20 = x_20(1,start_index:end_index); 
 
 
% Calculate the average value 
average_value_4 = mean(data_range_4) 
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average_value_8 = mean(data_range_8) 
average_value_12 = mean(data_range_12) 
average_value_16 = mean(data_range_16) 
average_value_20 = mean(data_range_20) 
%  
% finding distance traveled - used this to quantify and analyze 
%  
 x_distance_4 = max(x_4) - min(x_4); % in mm 
% y_distance_4 = y_4(1,iii-1) - y_4(1,1) % in mm 
% z_distance_4 = z_4(1,iii-1) - z_4(1,1) % in mm 
%  
 x_distance_8 = max(x_8) - min(x_8); % in mm 
% y_distance_8 = y_12(1,iii-1) - y_8(1,1) % in mm 
% z_distance_8 = z_12(1,iii-1) - z_8(1,1) % in mm 
%  
 x_distance_12 = max(x_12) - min(x_12); % in mm 
% y_distance_12 = y_12(1,iii-1) - y_12(1,1) % in mm 
% z_distance_12 = z_12(1,iii-1) - z_12(1,1) % in mm 
%  
 x_distance_16 = max(x_16) - min(x_16); % in mm 
% y_distance_16 = y_12(1,iii-1) - y_16(1,1) % in mm 
% z_distance_16 = z_12(1,iii-1) - z_16(1,1) % in mm 
%  
 x_distance_20 = max(x_20) - min(x_20); % in mm 
% y_distance_20 = y_12(1,iii-1) - y_20(1,1) % in mm 
% z_distance_20 = z_12(1,iii-1) - z_20(1,1) % in mm 
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MATLAB Code for YZ Trials 

clear 
clc 
close all 
% starter code for analyzing hand tracking data 
 
% pull up and read desired excel book 
data = readtable('htd_s_13.xlsx'); 
 
time = table2array(data(:,"Time")); 
knuckleID = table2array(data(:,"KnuckleID")); 
hand_type = table2array(data(:,"HandType")); 
CoordinateX = table2array(data(:,"CoordinateX")); 
CoordinateY = table2array(data(:,"CoordinateY")); 
depth = table2array(data(:,"Distance")); 
 
% reconstruct movement of knuckles 
an_4 = animatedline('Marker', '.', 'Color','c'); 
an_8 = animatedline('Marker','.','Color','r'); 
an_12 = animatedline('Marker','.','Color','b'); 
an_16 = animatedline('Marker','.','Color','m'); 
an_20 = animatedline('Marker','.','Color','g'); 
 
figure(1) 
xlabel('x') 
ylabel('y') 
zlabel('z') 
title('Movement of POIs 4, 8, 12, 16, and 20  vs time') 
legend('POI 4','POI 8','POI 12', 'POI 16', 'POI 20') 
grid on 
 
% plotting the different knuckle movements over time 
% comment out the addpoints commands to skip this step 
for iii = 1:length(time) 
    iii; 
    if knuckleID(iii) == 4 
        x_4(iii) = CoordinateX(iii); 
        y_4(iii) = CoordinateY(iii); 
        z_4(iii) = depth(iii); 
        %addpoints(an_4,x_4(iii),y_4(iii),z_4(iii)); 
        drawnow 
        %pause(0.001) 
    elseif knuckleID(iii) == 8 
        x_8(iii) = CoordinateX(iii); 
        y_8(iii) = CoordinateY(iii); 
        z_8(iii) = depth(iii); 
        %addpoints(an_8,x_8(iii),y_8(iii),z_8(iii)); 
       % drawnow 
        %pause(0.001) 
    elseif knuckleID(iii) == 12 
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        x_12(iii) = CoordinateX(iii); 
        y_12(iii) = CoordinateY(iii); 
        z_12(iii) = depth(iii); 
        %addpoints(an_12,x_12(iii),y_12(iii),z_12(iii)); 
       % drawnow 
       % pause(0.001) 
    elseif knuckleID(iii) == 16 
        x_16(iii) = CoordinateX(iii); 
        y_16(iii) = CoordinateY(iii); 
        z_16(iii) = depth(iii); 
        %addpoints(an_16,x_16(iii),y_16(iii),z_16(iii)); 
       % drawnow 
       % pause(0.001) 
        iii+1; 
    else 
        x_20(iii) = CoordinateX(iii); 
        y_20(iii) = CoordinateY(iii); 
        z_20(iii) = depth(iii); 
        %addpoints(an_20,x_20(iii),y_20(iii),z_20(iii)); 
       % drawnow 
        %pause(0.001) 
        iii+1; 
    end  
   iii; 
end 
 
%% 
% need to filter the position data so that we only have non-zero results 
nonZeroIndices_4= z_4 ~=0; 
z_4 = z_4(nonZeroIndices_4); 
nonZeroIndices_8= z_8 ~=0; 
z_8 = z_8(nonZeroIndices_8); 
nonZeroIndices_12= z_12 ~=0; 
z_12 = z_12(nonZeroIndices_12); 
nonZeroIndices_16= z_16 ~=0; 
z_16 = z_16(nonZeroIndices_16); 
nonZeroIndices_20= z_20 ~=0; 
z_20 = z_20(nonZeroIndices_20); 
 
 
elapsedTime = 60; % time of experiment in seconds 
time_4 = linspace(0,elapsedTime,length(z_4)); 
time_8 = linspace(0,elapsedTime,length(z_8)); 
time_12 = linspace(0,elapsedTime,length(z_12)); 
time_16 = linspace(0,elapsedTime,length(z_16)); 
time_20 = linspace(0,elapsedTime,length(z_20)); 
 
%% 
figure(2) 
 
subplot(1,3,1) 
hold on 
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xlabel('time (s)') 
ylabel('z position (mm)') 
title('POI 8') 
grid on 
plot(time_8,z_8)   
hold off 
 
subplot(1,3,2) 
hold on 
xlabel('time (s)') 
ylabel('z position (mm)') 
title('POI 12') 
grid on 
plot(time_12,z_12)    
hold off 
 
subplot(1,3,3) 
grid on 
plot(time_8,z_8)   
hold on 
plot(time_12,z_12)    
 
hold off 
grid on 
xlabel('time (s)') 
ylabel('x position (mm)') 
title('Both POIs overlayed') 
legend('8','12') 
 
% finding distance traveled 
 z_distance_4 = max(z_4) - min(z_4); % in mm 
% y_distance_4 = y_4(1,iii-1) - y_4(1,1) % in mm 
% z_distance_4 = z_4(1,iii-1) - z_4(1,1) % in mm 
%  
 z_distance_8 = max(z_8) - min(z_8); % in mm 
% y_distance_8 = y_12(1,iii-1) - y_8(1,1) % in mm 
% z_distance_8 = z_12(1,iii-1) - z_8(1,1) % in mm 
%  
 z_distance_12 = max(z_12) - min(z_12); % in mm 
% y_distance_12 = y_12(1,iii-1) - y_12(1,1) % in mm 
% z_distance_12 = z_12(1,iii-1) - z_12(1,1) % in mm 
%  
 z_distance_16 = max(z_16) - min(z_16); % in mm 
% y_distance_16 = y_12(1,iii-1) - y_16(1,1) % in mm 
% z_distance_16 = z_12(1,iii-1) - z_16(1,1) % in mm 
%  
 z_distance_20 = max(z_20) - min(z_20); % in mm 
% y_distance_20 = y_12(1,iii-1) - y_20(1,1) % in mm 
% z_distance_20 = z_12(1,iii-1) - z_20(1,1) % in mm 
 
%% overlaying all of them 
figure(3) 
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grid on 
plot(time_4,z_4)   
hold on 
plot(time_8,z_8)   
hold on 
plot(time_12,z_12)    
hold on 
plot(time_16,z_16)  
hold on 
plot(time_20,z_20)   
hold off 
xlabel('time (s)') 
ylabel('z position (mm)') 
title('All POIs overlayed') 
legend('4', '8','12','16','20') 
 
%% finding average values 
 
% Example: Assuming start_time and end_time are the start and end times of your 
desired range 
start_time = 52.9; 
end_time = 58; 
start_index = find(time_8 >= start_time, 1); 
end_index = find(time_8 <= end_time, 1, 'last'); 
 
% Extract the data within the specified time range - change to x_? for each 
 
data_range_8 = z_8(1,start_index:end_index); 
data_range_12 = z_12(1,start_index:end_index); 
 
% Calculate the average value 
average_value_8 = mean(data_range_8) 
average_value_12 = mean(data_range_12) 
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Appendix C: Additional Subplots for Trials 

 

Figure 11. X-Position vs. Time for Points of Interest 4, 8, 12, 16, and 20 for Trial 2 

 

Figure 12. X-Position vs. Time for Points of Interest 4, 8, 12, 16, and 20 for Trial 3 
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Figure 13. X-Position vs. Time for Points of Interest 4, 8, 12, 16, and 20 for Trial 4 

 

Figure 14. X-Position vs. Time for Points of Interest 4, 8, 12, 16, and 20 for Trial 5 
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Figure 15. Z-Position vs. Time for Points of Interest 8 and 12 for Trial 2 

 

 

Figure 16. Z-Position vs. Time for Points of Interest 8 and 12 for Trial 3 
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Figure 17. Z-Position vs. Time for Points of Interest 8 and 12 for Trial 4 

 

Figure 18. Z-Position vs. Time for Points of Interest 8 and 12 for Trial 5 
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