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Abstract 

 
Context:  Grover’s algorithm is a powerful tool in the realm of quantum computing 

because it offers exponential speedup over classical linear searching for unstructured search 

problems.  However, it is challenging to construct efficient and scalable circuits for Grover’s 

algorithm, particularly with increasing numbers of qubit inputs.  Problem:  Traditional circuit 

construction methods often require manual composition and result in lengthy and complex circuits.  

This hinders practical implementation, and the difficulty increases as the search space grows 

exponentially with additional qubits.  Method:  The proposed research provides the approach of 

recursively generating oracle circuits using Toffoli gates as the fundamental units to enhance 

scalability and reusability while maintaining effectiveness.  The methodology leverages Qiskit and 

IBM Quantum Lab simulation for computation due to limited access to quantum hardware.  

Result:  Through experiments and comparisons between recursively and non-recursively 

generated circuits, the findings suggest that the recursive approach offers comparable accuracy 

and computational complexity to the non-recursive approach.  However, it tends to require a larger 

number of basic quantum gates.  Conclusion:  This research highlights the possibility of utilizing 

recursively generated circuits as an alternative when implementing Grover’s algorithm.  It presents 

potential scalability benefits and creates an avenue for further research into the time complexity of 

using actual quantum hardware to validate these results. 



 

 

ii 

 

Table of Contents 

List of Figures .............................................................................................................. iii  

List of Tables ............................................................................................................... iv 

Acknowledgements ...................................................................................................... v 

Chapter 1 Introduction ................................................................................................. 1 

1.1 Background ................................................................................................................ 1 
1.2 Objective .................................................................................................................... 2 
1.3 Significance ................................................................................................................ 2 
1.4 Outline ........................................................................................................................ 2 

Chapter 2 Related Works ............................................................................................. 4 

2.1 Qubits and Data .......................................................................................................... 4 
2.2 Quantum Gates ........................................................................................................... 5 
2.3 Quantum Algorithms .................................................................................................. 8 

Chapter 3 Problem Statement ...................................................................................... 10 

3.1 Unstructured Search Problem .................................................................................... 10 
3.2 Circuit Construction ................................................................................................... 12 

Chapter 4 Methodology ............................................................................................... 16 

4.1 Qiskit and IBM Quantum Simulation ........................................................................ 16 
4.2 Custom Creation......................................................................................................... 17 
4.3 Recursive Creation ..................................................................................................... 18 
4.4 Proposed Recursive Algorithm .................................................................................. 21 

Chapter 5 Experiments and Observations .................................................................... 23 

5.1 Expected Results ........................................................................................................ 23 
5.2 Observation ................................................................................................................ 23 
5.3 Comparison ................................................................................................................ 26 
5.3 Limitations ................................................................................................................. 30 

Chapter 6 Conclusions ................................................................................................. 31 

6.1 Conclusion ................................................................................................................. 31 
6.2 Challenges, Implications, and Future Work ............................................................... 31 

Bibliography ................................................................................................................ 33 

Appendix A .................................................................................................................. 35 



 

 

iii 

 

 

List of Figures 

Figure 1.  CX Gate with Qubit Labels ..................................................................................... 6 

Figure 2.  Toffoli Gate ............................................................................................................. 7 

Figure 3.  Diagram of Grover's Algorithm ............................................................................... 10 

Figure 4.  Quantum 3-control X gate ....................................................................................... 13 

Figure 5.  Decomposition of Quantum 3-control X gate ......................................................... 13 

Figure 6.  Quantum 4-control X gate ....................................................................................... 14 

Figure 7.  Decomposition of Quantum 4-control X gate ......................................................... 14 

Figure 8.  Methodology Workflow .......................................................................................... 16 

Figure 9.  Quantum Circuit Logically Equivalent to Classical AND Gate .............................. 17 

Figure 10.  3-control X Gate .................................................................................................... 19 

Figure 11.  3-control X Gate Equivalent Using 4 Toffoli Gates .............................................. 19 

Figure 12.  4-control X Gate .................................................................................................... 20 

Figure 13.  4-control X Gate Equivalent Using 3-control X Gate Structure ............................ 20 

Figure 14.  Python Functions that Recursively Generate Bit-Flip Oracle ............................... 21 

Figure 15.  Recursive Oracle Probability with k = 1 and 𝑘 ≈  𝜋/4 ∗ √𝑁............................... 24 

Figure 16.  Non-Recursive Oracle Probability with k = 1 and 𝑘 ≈  𝜋/4 ∗ √𝑁 ...................... 24 

Figure 17.  Comparison of Number of 1-qubit Gates: Recursive and Non-Recursive ............ 28 

Figure 18.  Comparison of Number of 2-qubit Gates: Recursive and Non-Recursive ............ 28 

 



 

 

iv 

 

List of Tables 

Table 1.  Number of 1-qubit and 2-qubit Gates for Recursively Generated Circuit ................ 25 

Table 2.  Number of 1-qubit and 2-qubit Gates for Non-Recursively Generated Circuit ........ 26 

Table 3.  Comparison of Accuracy: Recursive and Non-Recursive ........................................ 27 

Table 4.  Comparison of Optimal Number of Iterations: Recursive and Non-Recursive ........ 29 

 



 

 

v 

 

Acknowledgements 

 

I would like to acknowledge and thank my advisor, Dr. Wen-Li Wang, for his guidance 

and direction throughout this research project.  His advice and expertise were critical throughout 

this process of learning and overcoming challenges.  I also want to acknowledge and thank my 

co-advisor, Dr. Shahid Hussain, for his time and input in reviewing this paper and his ability and 

willingness to act as an additional advisor.



 

 

 

Chapter 1 Introduction 

1.1 Background 

In the field of computing, database search problems have been studied to minimize the 

amount of time required to find a specific record within a database.  Many classical solutions have 

been proposed over the years, eventually culminating in the binary search.  Binary searching serves 

as the optimal way to search a sorted database, while linear searching is the most suitable method 

for searching unsorted data.  However, quantum computing provides a solution in Grover’s 

algorithm [11] which takes advantage of quantum speedup to search unsorted databases faster.   

Quantum computing deviates greatly from classical computing because it relies upon the 

principles of quantum physics to perform operations.  Classical bits represent a binary state of 

either 0 or 1, but quantum bits (qubits) utilize quantum properties such as superposition and 

entanglement to exist in several states simultaneously.  Because of these phenomena, quantum 

computers possess the unique ability to explore a large solution space at incredible speed, thus 

enabling greater processing power for specific information processing tasks.  At a hardware 

architecture level, quantum circuits are composed of quantum gates.  These gates can be 

understood as functions that alter qubits’ states and respective probabilities.  A quantum gate takes 

in an initial set of qubits and then outputs a distinctly transformed set of qubits with modified state 

and probability.  Quantum algorithms refer to algorithms that take advantage of the inherent 

principles of quantum mechanics to achieve higher efficiency when compared to classical 

algorithms [1].  These algorithms perform certain functions by utilizing a combinational 

arrangement of quantum gates as components, which must be completely reversible. 
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1.2 Objective 

This proposed research aims to produce a practical application of recursively generated 

quantum circuits.  It will be tasked in solving unstructured database search problems using 

Grover’s algorithm with varying numbers of qubits.  These circuits should consist of Toffoli gates 

as the primary building block and will be based on the work of Barenco et al. [6].  Comparisons 

will be made across the metrics defined in Chapter 5 to determine the viability of using Grover’s 

algorithm with recursively and non-recursively generated oracle circuits. 

1.3 Significance 

The significance of this proposed research relates to hardware development and to solving 

the unsorted database search problem with an n-qubit implementation of Grover’s algorithm.  For 

every additional input qubit, the possible search space increases exponentially.  If this recursive 

approach to constructing quantum circuits could be realized and optimized, then it could vastly 

increase the effectiveness of using quantum computing for database search operations and other 

problem domains. 

1.4 Outline 

Chapter 2 presents a literature review of the related research conducted by other 

professionals in the realm of quantum computing.  This includes studies related to quantum gates, 

algorithms, and qubits. 
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Chapter 3 describes in detail the problem of circuit construction and the difficulty of 

achieving gates with many qubit inputs.   

Chapter 4 discusses the technologies and methods used to collect data and proposes 

solutions to the given problem. 

Chapter 5 showcases and analyzes the results of the experiments and then makes 

comparisons across metrics such as the number of fundamental gates used in circuit construction. 

Chapter 6 draws conclusions from the data regarding performance and optimization, 

describes the challenges faced, and provides recommendations for future research. 
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Chapter 2 Related Works 

2.1 Qubits and Data 

Like a classical bit, a quantum bit (qubit) serves as the base unit of quantum information.  

The advantage of using qubits stems from quantum phenomena such as superposition, 

entanglement, and parallelism [2].  For example, the property which allows qubits to represent a 

probabilistic combination of states is called superposition.  Rather than representing exclusively 0 

or 1 as classical bits do, qubits can simultaneously exist in several states [1] because they maintain 

a probability of being either 0 or 1 at any given time of measurement.  The sum of these 

probabilities is always equal to 1.  Quantum entanglement, however, is when the state of one qubit 

becomes related (entangled) with the state of another qubit.  Because this is independent of 

physical distance, it allows for so-called ‘quantum teleportation’ of data.  For example: one qubit 

can transmit data instantaneously to another entangled qubit, regardless of physical separation [5].  

Parallelism refers to quantum systems performing computations on multiple qubits simultaneously 

thus contributing greatly to quantum speedup.  Another comparison between quantum bits and 

classical bits is that of data representation. 

The number of qubits utilized within a given circuit directly corresponds to how much data 

can be represented by the circuit.  For example, both a classical circuit of three bits and a quantum 

circuit of three qubits can each represent 23 = 8 number of states.  At first glance, this may appear 

like they are equal.  However, the quantum system proves more powerful due to its utilization of 

unique properties that allow it to perform computations more efficiently and explore solution 

spaces in parallel.  Increasing from three qubits to four qubits results in a non-linear increase in 
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the data representation such that every additional qubit increases the state space by twofold.  This 

exponential increase naturally gains importance and relevance when faced with problems 

involving large solution spaces such as the unstructured search problem. 

2.2 Quantum Gates 

In general, two primary quantum computing paradigms exist: the annealing-based 

paradigm and the gate-model paradigm.  Annealing-based quantum computers perform a process 

called quantum annealing, which returns the minimum energy state of a quantum energy function 

known as a Hamiltonian.  In the case of optimization problems, the quantum Hamiltonian is 

defined according to the fitness function of the given problem such that the solution is represented 

by the lower energy state [3].  Quantum-gate devices, on the other hand, utilize operations called 

quantum gates, which are comparable to the classical logic gates of traditional circuitry.  Quantum 

gates are sequentially applied to qubit states, transforming the states until a solution is reached [3].   

Basic gates include 1-qubit and 2-qubit quantum gates.  These titles refer to the number of 

qubits that are utilized or acted upon by the gate’s operation, which may increase up to any number 

of qubits.  Fundamental quantum gates exist such as the Hadamard gate, phase shift gate, X gate, 

CX gate, and Toffoli gate [4].  The Hadamard gate is a single-qubit gate which employs the matrix 

𝐻 =
1

√2
[
1    1
1 −1

].  It functions to map the qubit-basis states { |0⟩, |1⟩ } (also called computational 

basis states) into superposition states {
|0⟩ + |1⟩

√2
,

|0⟩ − |1⟩

√2
} (also called polar basis states) respectively 

[2].  Another fundamental gate is a phase-shift gate, also known as the Z gate, which rotates π 

radians about the Bloch sphere’s z axis [4].  The Z gate is a single-qubit gate that functions to map 

the basis state |0⟩ into |0⟩ and the basis state |1⟩ into 𝑒𝑖𝜋|1⟩.  This can be represented by the matrix 



 

6 

 

𝑍 =  [
1    0
0 −1

].  This phase-flip operation simply alters the geometrical orientation of the qubit 

without impacting the probability of measuring |0⟩ or |1⟩.  The X gate, CX gate, and Toffoli gate 

share similarity with one another.  The quantum X gate is a single-qubit gate that functions like 

the classical NOT gate, applying a bit-flip operation to the input.  Therefore, it maps the basis state 

|0⟩ into |1⟩ and |1⟩ into |0⟩.  Its matrix representation is 𝑋 = [
0 1
1 0

].  The CX gate is a two-qubit 

gate which uses the first qubit (q_1) as a control and the second qubit (q_0) as the result qubit as 

shown below in Figure 1:   

 

Figure 1.  CX Gate with Qubit Labels 

 

Figure 1 demonstrates an example of the CX gate with qubit labels.  These qubits are 

referenced using the notation, |𝑞1𝑞0⟩, which represents the composite result of |𝑞1⟩|𝑞0⟩.  Like the 

X gate, the CX gate also performs a bit-flip on the result qubit.  However, the control qubit is 

responsible for controlling the activation of the gate’s function such that the bit-flip operation 

occurs if and only if the control qubit 𝑞1 has state |1⟩, and the initial state of result qubit 𝑞0 

maintains no control [4].  The CX gate maps input state |00⟩ into |00⟩, state |01⟩ into |01⟩, state 

|10⟩ into |11⟩, and state |11⟩ into |10⟩.  Its matrix representation is given as 𝐶𝑋 =  [

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

].   
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Toffoli is the proper name given to the 2-control X gate.  It functions like the CX gate, but 

it contains an extra control qubit that can be called 𝑞2.  It works in the same way such that a bit-

flip of the result qubit 𝑞0 occurs if and only if both control qubits 𝑞1 and 𝑞2 have state |1⟩.  The 

Toffoli gate is a 3-qubit quantum gate with matrix representation given below in Equation 1:  

 

Equation 1.  Matrix Representation of Toffoli Gate 

 

This results in the mapping of input states |000⟩ into |000⟩, |001⟩ into |001⟩, |010⟩ into 

|010⟩, |011⟩ into |011⟩, |100⟩ into |100⟩, |101⟩ into |101⟩, |110⟩ into |111⟩, and |111⟩ into |110⟩ 

[9].  Its visual representation is given below in Figure 2: 

 

 

Figure 2.  Toffoli Gate 
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The Toffoli gate, as depicted in Figure 2, was used as the fundamental building block for 

recursive circuit construction as described in Chapters 4 and 5.  These fundamental gates hold 

critical importance for building circuits that quantum algorithms use to solve complex problems. 

2.3 Quantum Algorithms 

Quantum algorithms operate in a very similar fashion to classical algorithms in that both 

require input, perform computation, and produce output.  However, each differs in terms of its 

specific hardware capabilities.  Classical computers utilize binary bits and logic operations to 

perform computation, while quantum computers leverage qubits and properties of superposition, 

entanglement, and parallelism [5].  For this reason, classical results are considered deterministic 

and quantum results are considered probabilistic, and quantum machines must complete many 

iterations of a given algorithm to generate a statistically reliable result.  Notable quantum 

algorithms are the Deutsch-Jozsa algorithm [10], Grover’s Algorithm [11], and Shor’s algorithm 

[12].   

The Deutsch-Jozsa algorithm maintains importance because it demonstrated an early 

example of quantum speedup, that is, an exponential increase in the speed at which a solution is 

found.  In this algorithm, the speedup is showcased using an oracle and a Boolean function.  The 

Deutsch-Jozsa algorithm solves a black box problem wherein the oracle determines whether the 

output of the Boolean function is constant (either all 1 or all 0) or balanced (half 1 and half 0) [11].  

For n inputs, the classical algorithm requires 2𝑛−1 + 1 iterations to determine the solution [5], but 

the quantum algorithm requires only 1 iteration to determine the solution.  This demonstrates an 

exponential speedup because the time complexity is reduced by 2𝑛.   
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Grover’s algorithm is a well-known quantum algorithm leveraged for solving unstructured 

search problems [11].  It completes the task of locating a known element ω from an unordered 

database of size N.  This element ω is the only input that can achieve output of 1 (true) from a 

Boolean function, while all other inputs result in 0 (false), thus making ω the solution.  In classical 

computing, identifying ω from a list of N unsorted records requires O(N) time complexity in the 

worst case and O(N/2) on average.  However, Grover’s algorithm performs better when compared 

to the classical method by completing the task in O(√N) time complexity [1].  Grover’s algorithm 

uses quantum parallelism to increase the search speed and will be described in greater detail in 

Chapter 3. 

Shor’s algorithm is a quantum algorithm primarily suited for cryptography applications.  It 

reduces the time complexity of factoring large prime numbers from exponential to polynomial 

time because of speedup during the quantum Fourier transform (QTF) step [12].  The algorithm 

follows a three-step sequence: period finding, then quantum Fourier transform, and then integer 

factorization [5].  Shor’s algorithm is held back by the fact that each QFT requires a custom 

quantum circuit, but it could become more powerful with the implementation of automatic circuit 

generation for the Fourier transform step.  The common link between these quantum algorithms is 

that their effectiveness comes from leveraging the properties of quantum physics manifested in the 

form of qubits. 
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Chapter 3 Problem Statement 

3.1 Unstructured Search Problem 

The problem which Grover’s algorithm was made to solve is the unstructured search 

problem [11].  Recall that classically, the process of locating an element ω in an unsorted database 

of size N requires O(N) time complexity in the worst case and O(N/2) on average, but Grover’s 

algorithm provides a quantum speedup resulting in O(√N) time complexity [1].  This element ω is 

the only input to a Boolean function f which outputs 1, and all other elements output 0.  That is, 

𝑓(ω) = 1 and 𝑓(x) = 0 for all x ≠ ω.  The algorithm uses an oracle circuit to perform the search 

computations while separate amplification circuit boosts the solution accuracy.  The algorithm 

sequence is described below in Figure 3:  

 

Figure 3.  Diagram of Grover's Algorithm 
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The sequence of steps in Grover’s algorithm described in Figure 3 are as follows:  1.) 

Initialize all qubits to the |0⟩ state.  2.) Apply a Hadamard gate to each qubit to achieve uniform 

superposition.  3.) Apply both the oracle and amplification circuits 𝑘 ≈  
𝜋

4
√𝑁 number of times 

where N is the database size in number of records.  4.) Measure output [1] with respect to the 

standard basis: { |0⟩, |1⟩ }.  Because this algorithm uses O(√N) number of computations instead of 

O(N) number of computations, it reduces the time complexity from linear to quadratic respectively.   

Grover’s algorithm begins with initializing each of m qubits with the starting state |0⟩, and 

then a Hadamard operation is applied to each qubit.  This achieves a uniform superposition of 2𝑚 

basis states [1], denoted as ψ (psi), where m is the number of qubits.  This occurs according to 

Equation 2 as given below: 

 

Equation 2.  Uniform State Initialization 

 

The oracle and amplification circuits are then applied for 𝑘 ≈  
𝜋

4
√𝑁 number of iterations 

[1].  The oracle is responsible for performing a phase-flip on the amplitude of entry ω.  Recall the 

Boolean function f which is satisfied by input ω such that 𝑓(ω) = 1.  The oracle O operates on 

the quantum state |ψ⟩ according to Equation 3 as given below with αx representing amplitude: 

 

Equation 3.  Grover's Oracle Operation 

 

Amplitude amplification [1] then occurs according to Equation 4 as given below:   
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Equation 4.  Grover's Amplitude Amplification 

 

These steps are subsequently repeated, resulting in a probability of accurately locating ω 

after k iterations [1] given by Equation 5 below where 𝑘 ≈  
𝜋

4
√𝑁 and θ = sin−1(

1

√𝑁
): 

 

Equation 5.  Grover's Result Probability 

 

These mathematical processes make up the computations that occur during runtime of 

Grover’s algorithm and are responsible for producing the quantum speedup.   

3.2 Circuit Construction 

One challenge with using Grover’s algorithm is that the necessary oracle circuit can be 

difficult to construct in the case of many qubit inputs.  In an unstructured search for database size 

of 8 records (three qubits), there is not much benefit to using a quantum algorithm because the size 

of the database is so small.  The benefits of Grover's algorithm can be utilized more effectively in 

the case of searching within a larger database.  To construct an oracle with the ability to search 

twice as many records (16 rather than 8), it would require one additional qubit.  This can 

theoretically be scaled up to facilitate database searching of 1,000 or even 1,000,000 records, but 

the difficulty comes in constructing circuits with such a high number of qubits.  These circuits 
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become extremely long and are complex to design.  For example, Figure 4 shows a 3-control X 

gate and Figure 5 shows that gate’s decomposition.   

 

Figure 4.  Quantum 3-control X gate 

 

 

 

Figure 5.  Decomposition of Quantum 3-control X gate 

 

Circuit decomposition is an important metric as it describes the complexity of a circuit by 

showcasing the circuit’s full set of internal gates.  The circuit decomposition shown in Figure 5 

demonstrates how many 1-qubit and 2-qubit gates are required to construct the gate shown in 

Figure 4.  The 3-control X gate is related to the Toffoli gate because it enhances the functionality 

of the Toffoli gate, due to containing one additional control qubit.  However, the addition of control 

qubits causes the number of internal gates to grow, as showcased by Figure 6 and Figure 7 below: 

 



 

14 

 

 

Figure 6.  Quantum 4-control X gate 

 

 

Figure 7.  Decomposition of Quantum 4-control X gate 
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Figure 6 shows the quantum 4-control X gate, which does not appear to be very different 

from the 3-control X gate from Figure 4.  However, Figure 7 shows that a far greater number of 

gates are required to support this functionality.  Note that IBM Quantum Lab [7] and Qiskit [8] 

were used to generate these graphics. 
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Chapter 4 Methodology 

4.1 Qiskit and IBM Quantum Simulation 

The purpose of the conducted research and experiments was to assess the possibility of 

using recursive circuit generation in combination with Grover’s algorithm [11] to solve 

unstructured database search problems according to the workflow described below in Figure 8:   

 

 

Figure 8.  Methodology Workflow 

 

Because of limited access to quantum hardware, the experiments were conducted in a 

classical computing environment with simulation capabilities.  IBM Quantum Lab [7] was used to 

simulate all of the quantum circuits and processing.  The utilized software stack comprises Python 

as the chosen programming language and Qiskit [8] as the selected framework for quantum 

computing.  First, manual computation was conducted to ensure the validity and accuracy of using 

Qiskit and the IBM Quantum Lab.  A quantum circuit representation of the classical AND gate 

was selected as the unit for completing this validity test because it provided the opportunity to 

practice stepping through the quantum gate operations by hand.  The proposed circuit is shown 

below in Figure 9:   
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Figure 9.  Quantum Circuit Logically Equivalent to Classical AND Gate 

 

This test verified Qiskit’s accuracy because the results matched exactly the expected values 

given by the truth table for a classical AND gate.  The correct states were measured with 100% 

probability, thus ensuring the validity of using Qiskit as a framework for further work.  A second 

proof of validity was conducted by way of the Deutsch-Jozsa algorithm [10].  Qiskit-community-

tutorials was referenced for assistance with the algorithm implementation, with specific credit to 

online community member Paniash.  Like the previous test, it performed with 100% accuracy.  

After Qiskit was validated as a tool which can be used with certainty, focus shifted back toward 

the unstructured search problem. 

4.2 Custom Creation 

One way in which circuits for the Grover's algorithm can be created is on a case-by-case 

basis.  This involves designing an entire oracle circuit according to the necessary quantum gates 

to achieve that functionality and then sequencing those gates manually in code.  Although this 

allows for increased optimization capacity because the circuit can be fit directly to the use case, in 

this method, there is minimal to no generalization and little opportunity for reuse.  The custom 

creation method is standard practice for using Grover’s algorithm, generally causing circuits to 
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expand as seen in Figures 6 and 7 compared to Figures 4 and 5.  This rigid method of oracle 

expansion may require a fewer number of total gates than a recursive oracle generation practice, 

but the circuits created in this fashion have limited reusability.  An oracle created for a specific use 

case possesses a low level of flexibility because it is not be suitable for solving problem outside 

its original domain and scope.   

4.3 Recursive Creation 

An alternative to the custom creation approach is to utilize recursion for generating the 

quantum circuits necessary for implementing Grover’s algorithm.  In this proposed recursive 

method, it may be possible to gain reusability while maintaining the effectiveness of the custom 

creation method.  It may be possible to develop a combination of quantum algorithms and classical 

algorithms which centers around the property of recursion to solve unstructured search problems.  

While this might sacrifice some level of customization, it has potential reusability.  Recursively 

generated circuits inherently possess flexibility due to the scalable nature of recursion; a circuit 

can be reused over and over as the problem size increases.  This principle is evidenced by the 

ability of 3-control X gate structure to be used in the construction of a 4-control X gate and the 

ability of a 4-control X gate structure to be used in the construction of a 5-control X gate, thus 

demonstrating reusability.  The Toffoli gate was chosen as the fundamental unit for circuit 

generation because of its reliability.  Being widely researched and utilized for quantum 

development, the 3-qubit Toffoli gate proves suitable for this use case.  The function used for 

recursively generating Grover’s oracle is based on the fact that the functionality of an n-control X 
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gate can be created by using Toffoli gates [6].  For example, a 3-control X gate can be created by 

using four Toffoli gates as seen below in Figures 10 and 11:   

 

 

Figure 10.  3-control X Gate 

 

Figure 11.  3-control X Gate Equivalent Using 4 Toffoli Gates 
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A 4-control X gate can then be created by using the 3-control X gate structure with 

additional Toffoli gates added as described below in Figures 12 and 13: 

 

Figure 12.  4-control X Gate 

 

 

Figure 13.  4-control X Gate Equivalent Using 3-control X Gate Structure 
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4.4 Proposed Recursive Algorithm 

Because this circuit creation is proven to be scalable [6], an n-control X gate can be 

constructed recursively using Toffoli gates as the base unit.  Figure 14 details the set of functions 

used for recursive bit-flip oracle generation using Toffoli gates. 

 

 

Figure 14.  Python Functions that Recursively Generate Bit-Flip Oracle 

 

The Qiskit code described in Figure 14 consists of three functions that are responsible for 

recursively constructing a bit-flip (Boolean) oracle circuit.  The boolean_oracle function is called 



 

22 

 

first, initializing a new quantum circuit object based on the length of the input variable: marked 

state.  It then calls the build function which creates a circuit segment capable of performing the 

bit-flip operation as well as a separate circuit segment which ensures the oracle’s reversibility by 

calling the recursive function buildComponent.  The buildComponent function applies Toffoli 

gates based on specified qubit indices provided by the inputs: m and n.  It calls itself recursively 

until the base case m = 2 is reached, meaning that the problem was reduced down to a scope which 

can be solved by a single Toffoli gate.  After that gate is applied, the solution is perpetuated back 

through each recursive call, returning the main component of the oracle.  This component is 

sandwiched between Toffoli gates to construct the bit-flip segment and then reused as the 

reversibility segment.  Composing these segments onto one circuit produces the recursively 

generated bit-flip oracle. 

Once a bit-flip oracle is constructed, it must be converted into a phase-flip oracle before 

Grover’s algorithm can be applied, since the phase-flip operation is a pivotal step in the algorithm.  

A multi-control Z gate is appended to facilitate the conversion from bit-flip oracle to phase-flip 

oracle.  This Z gate must be created with the marked state (solution) in mind because the element 

ω must receive a phase-flip when encountered by the search algorithm.  The full set of Python 

code used to conduct experiments and gather data is given below in Appendix A.  While this method 

could introduce more quantum gates to the circuit than the custom creation approach, it could 

prove to be more scalable and provide reusability.



 

 

 

Chapter 5 Experiments and Observations 

5.1 Expected Results 

The expected results of these experiments are that Grover’s algorithm will accurately locate 

the element ω using the recursively generated oracle in place of a non-recursively generated oracle.  

This accuracy is expected to span multiple database sizes.  It is expected that the circuit 

implementing a recursively generated oracle will consist of more basic quantum gates than the 

circuit implementing a non-recursively generated oracle.   Lastly, the computational complexity is 

expected to be similar between the recursively and non-recursively generated circuits. 

5.2 Observation 

Throughout these experiments, observations were recorded regarding the algorithm 

accuracy, number of database records, number of basic quantum gates used per circuit, and number 

of optimal iterations.  Figures 15 and 16 detail the accuracy of Grover’s algorithm when utilizing 

a recursively generated oracle and a non-recursively generated oracle respectively. 



 

24 

 

 

Figure 15.  Recursive Oracle Probability with k = 1 and 𝒌 ≈  
𝝅

𝟒
√𝑵  

 

 

Figure 16.  Non-Recursive Oracle Probability with k = 1 and 𝒌 ≈  
𝝅

𝟒
√𝑵 
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Figure 15 depicts the probability, or certainty, to which element ω was located within the 

database by Grover’s algorithm with recursive implementation.  The orange line represents the 

probability result after the optimal number of iterations k, as calculated by the formula 𝑘 ≈  
𝜋

4
√𝑁 

where N is the database size in number of records.  The blue line represents the probability result 

after only one iteration.  The metric of probability corresponds to the accuracy of the circuit.  One 

notable observation is the first orange data point—database size of 32 records—where the 

probability of accurately locating ω was only about 5% after 4 iterations.  Although it chose the 

correct element ω, the probability remained extremely low.  Figure 16 describes the accuracy of 

the non-recursive oracle implementation, which behaved according to expectation.  One notable 

observation is that it located element ω with 99% accuracy for every database size. 

Observations were then conducted relating to the number of database records searched by 

the algorithm and the number of 1-qubit and 2-qubit quantum gates that comprise the recursively 

and non-recursively generated circuits.  Tables 1 and 2 provide data regarding those two circuit 

categories respectively. 

 

Table 1.  Number of 1-qubit and 2-qubit Gates for Recursively Generated Circuit 

Number of 

Database Records 
Recursive 1-qubit Gates Recursive 2-qubit Gates 

32 139 90 

128 451 384 

512 1415 1320 

2048 4971 4848 
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Table 2.  Number of 1-qubit and 2-qubit Gates for Non-Recursively Generated Circuit 

Number of 

Database Records 
Non-Recursive 1-qubit Gates Non-Recursive 2-qubit Gates 

32 145 80 

128 379 336 

512 1307 1248 

2048 4827 4752 

 

As for the recursively generated circuit data in Table 1, the number of database records 

searched ranged from 32 records to 2048 records and the number of 1-qubit gates remained greater 

than the number of 2-qubit gates across every database size.  Both 1-qubit and 2-qubit gates 

increased alongside the number of database records in a linear fashion.  This circuit, however, 

always contained two additional gates that were of larger size: log2(N).  The observations made 

surrounding the non-recursive circuit data collected in Table 2 were similar.  It maintained the 

same number of database records and a larger number of 1-qubit gates than 2-qubit gates, 

showcasing a similar linear progression. 

5.3 Comparison 

The comparisons made between the recursively and non-recursively generated circuits 

provide coverage over the list of expected results.  Comparisons were made regarding algorithm 

accuracy, number of basic quantum gates per circuit, number of optimal iterations (computations), 

and number of database records.  Table 3 describes the accuracy of the two circuit types. 
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Table 3.  Comparison of Accuracy: Recursive and Non-Recursive 

Number of Database Records Recursive P(𝑘 ≈  
𝜋

4
√𝑁) Non-Recursive P(𝑘 ≈  

𝜋

4
√𝑁) 

32 0.049613269 0.999182316 

128 0.995619866 0.995619866 

512 0.999448026 0.999448026 

2048 0.999996848 0.999996848 

 

The accuracy of the recursively generated circuit falls short of the accuracy provided by 

the non-recursively generated circuit for database size of 32 records.  This data was collected using 

solution case ω = 00111.  In this specific case, the algorithm struggled to identify the correct result, 

proposing x = 10111 as the next-best solution with 10% less probability than it proposed ω.  

However, in subsequent testing with solution case ω = 10011, the algorithm determined the result 

accurately with 0.999 probability.  This disparity may be related to the bit-flip operation being 

applied to 𝑞5 by the recursively generated oracle circuit, indicating a potential flaw.  The 

algorithm’s accuracy may be impacted conditionally based upon the state of the bit-flip’s result 

qubit for the recursive algorithm implementation.  Perhaps utilizing an ancillary qubit for storing 

the bit-flip result could solve this, but this avenue could not be explored due to time constraints.  

Even so, both the recursive and non-recursive circuits have identical probability for databases of 

size 123, 512, and 2048.  They also share identical probability across every data point where the 

probability was measured after only one iteration (see Figures 15 and 16).  According to these 

data, the recursive circuit provides an inferior accuracy compared to the non-recursive circuit for 

a small number of database records yet provides equal accuracy for larger databases. 
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Figure 17 compares the number of 1-qubit gates present in the recursive and non-recursive 

circuits, and Figure 18 likewise compares the number of 2-qubit gates between them. 

 

 

Figure 17.  Comparison of Number of 1-qubit Gates: Recursive and Non-Recursive 

 

 

Figure 18.  Comparison of Number of 2-qubit Gates: Recursive and Non-Recursive 
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At database size of 32 records, as seen in Figure 17, the number of 1-qubit gates for the 

recursive oracle is lesser than the number of 1-qubit gates for non-recursive oracle by a small 

margin of six gates.  However, at each of the other database sizes, the opposite is true: the number 

of 1-qubit gates for the recursive circuit becomes greater than the number of 1-qubit gates for the 

non-recursive circuit.  As seen in Figure 18, the recursively generated circuit utilizes a greater 

number of 2-qubit gates than the non-recursive circuit across every database size.  Again, the 

number of both 1-qubit and 2-qubit gates increases linearly along with the number of database 

records. 

 

Table 4.  Comparison of Optimal Number of Iterations: Recursive and Non-Recursive 

Number of 

Database Records 

Optimal Recursive Iterations Optimal Non-Recursive Iterations 

32 4 4 

128 8 8 

512 17 17 

2048 35 35 

 

 The comparison in Table 4 shows that the optimal number of recursive iterations is equal 

between the recursively and non-recursively generated circuits.  This is because both apply the 

same equation to calculate this optimal number of iterations, that is, 𝑘 ≈  
𝜋

4
√𝑁 where N is the 

number of database records.  This represents the computational complexity of Grover’s algorithm 

because it determines how many search iterations will be conducted; therefore, both the recursive 
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and non-recursive circuits have equal complexity.  And because the number of database records 

also is identical between both circuit types, no significant comparison can be made for this metric. 

5.3 Limitations 

The present research does include certain limitations because the experiments were 

conducted within a simulated environment.  The usage of IBM Quantum Lab [7] simulation in 

place of actual quantum hardware means that the study and findings may not realistically reflect 

the phenomena of qubits and quantum operations.  Additionally, time complexity could not be 

included as an observation metric in this research because the simulation does not track execution 

time data within the quantum lab environment.  Another limitation was that a simple database 

representation was used in place of a complex database.
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Chapter 6 Conclusions 

6.1 Conclusion 

In conclusion, this research explored the practical implementation of applying recursively 

generating oracle circuits to Grover’s algorithm for solving the unstructured database search 

problem.  Observations and comparisons were made according to the metrics of accuracy, number 

of basic quantum gates, number of optimal iterations, and number of database records.  These 

findings suggest that recursively generated circuits are a comparable alternative to non-recursively 

generated circuits for implementing Grover’s algorithm. 

6.2 Challenges, Implications, and Future Work 

The primary challenge during this study was the complete overhaul of the Qiskit [8] library 

and API that coincided with its migration to version 1.0 in early 2024.  This greatly disrupted the 

process because a significant portion of the research and learning necessary to begin 

implementation using Qiskit was voided by this massive update.  Certain functions and libraries 

became deprecated, the inheritance structure of objects was reworked, and the push occurred 

without fully updated documentation. 

Implications to the greater research community are significant.  By demonstrating the 

feasibility of this approach, this research may assist with efficient and scalable quantum circuit 

design.  Future researchers could enhance the current understanding of quantum algorithms, and 

pioneer the development of more powerful quantum computing systems.  An additional area to 
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investigate in future work would be the time complexity of using actual quantum hardware.  This 

would likely shed light on how significant the difference in number of 1-qubit and 2-qubit quantum 

gates between recursive and non-recursive circuits is regarding time complexity of computation.  
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Appendix A 

Qiskit Code for AND gate Implementation: 

 

 

  



 

36 

 

Qiskit Code for Deutsch-Jozsa Implementation: 
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Qiskit Code for Recursive Grover Implementation: 
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Qiskit Code for Non-Recursive Grover Implementation: 

 

 


