
THE PENNSYLVANIA STATE UNIVERSITY

SCHREYER HONORS COLLEGE

SCHOOL OF ENGINEERING

APPLYING RECURSIVE QUANTUM CIRCUIT GENERATION TO SOLVE DATABASE

SEARCH PROBLEMS USING GROVER’S ALGORITHM

NATHANIEL V. RONDINELLI

SPRING 2024

A thesis

submitted in partial fulfillment

of the requirements

for a baccalaureate degree

in Software Engineering

with honors in Software Engineering

Reviewed and approved* by the following:

Dr. Wen-Li Wang

Professor of Software Engineering

Thesis Supervisor and Honors Advisor

Dr. Shahid Hussain

Professor of Software Engineering

Thesis Reader

* Electronic approvals are on file.

i

Abstract

Context: Grover’s algorithm is a powerful tool in the realm of quantum computing

because it offers exponential speedup over classical linear searching for unstructured search

problems. However, it is challenging to construct efficient and scalable circuits for Grover’s

algorithm, particularly with increasing numbers of qubit inputs. Problem: Traditional circuit

construction methods often require manual composition and result in lengthy and complex circuits.

This hinders practical implementation, and the difficulty increases as the search space grows

exponentially with additional qubits. Method: The proposed research provides the approach of

recursively generating oracle circuits using Toffoli gates as the fundamental units to enhance

scalability and reusability while maintaining effectiveness. The methodology leverages Qiskit and

IBM Quantum Lab simulation for computation due to limited access to quantum hardware.

Result: Through experiments and comparisons between recursively and non-recursively

generated circuits, the findings suggest that the recursive approach offers comparable accuracy

and computational complexity to the non-recursive approach. However, it tends to require a larger

number of basic quantum gates. Conclusion: This research highlights the possibility of utilizing

recursively generated circuits as an alternative when implementing Grover’s algorithm. It presents

potential scalability benefits and creates an avenue for further research into the time complexity of

using actual quantum hardware to validate these results.

ii

Table of Contents

List of Figures .. iii

List of Tables ... iv

Acknowledgements .. v

Chapter 1 Introduction ... 1

1.1 Background .. 1
1.2 Objective .. 2
1.3 Significance .. 2
1.4 Outline .. 2

Chapter 2 Related Works ... 4

2.1 Qubits and Data .. 4
2.2 Quantum Gates ... 5
2.3 Quantum Algorithms .. 8

Chapter 3 Problem Statement .. 10

3.1 Unstructured Search Problem .. 10
3.2 Circuit Construction ... 12

Chapter 4 Methodology ... 16

4.1 Qiskit and IBM Quantum Simulation .. 16
4.2 Custom Creation... 17
4.3 Recursive Creation ... 18
4.4 Proposed Recursive Algorithm .. 21

Chapter 5 Experiments and Observations .. 23

5.1 Expected Results .. 23
5.2 Observation .. 23
5.3 Comparison .. 26
5.3 Limitations ... 30

Chapter 6 Conclusions ... 31

6.1 Conclusion ... 31
6.2 Challenges, Implications, and Future Work ... 31

Bibliography .. 33

Appendix A .. 35

iii

List of Figures

Figure 1. CX Gate with Qubit Labels ... 6

Figure 2. Toffoli Gate ... 7

Figure 3. Diagram of Grover's Algorithm ... 10

Figure 4. Quantum 3-control X gate ... 13

Figure 5. Decomposition of Quantum 3-control X gate ... 13

Figure 6. Quantum 4-control X gate ... 14

Figure 7. Decomposition of Quantum 4-control X gate ... 14

Figure 8. Methodology Workflow .. 16

Figure 9. Quantum Circuit Logically Equivalent to Classical AND Gate 17

Figure 10. 3-control X Gate .. 19

Figure 11. 3-control X Gate Equivalent Using 4 Toffoli Gates .. 19

Figure 12. 4-control X Gate .. 20

Figure 13. 4-control X Gate Equivalent Using 3-control X Gate Structure 20

Figure 14. Python Functions that Recursively Generate Bit-Flip Oracle 21

Figure 15. Recursive Oracle Probability with k = 1 and 𝑘 ≈ 𝜋/4 ∗ √𝑁............................... 24

Figure 16. Non-Recursive Oracle Probability with k = 1 and 𝑘 ≈ 𝜋/4 ∗ √𝑁 24

Figure 17. Comparison of Number of 1-qubit Gates: Recursive and Non-Recursive 28

Figure 18. Comparison of Number of 2-qubit Gates: Recursive and Non-Recursive 28

iv

List of Tables

Table 1. Number of 1-qubit and 2-qubit Gates for Recursively Generated Circuit 25

Table 2. Number of 1-qubit and 2-qubit Gates for Non-Recursively Generated Circuit 26

Table 3. Comparison of Accuracy: Recursive and Non-Recursive .. 27

Table 4. Comparison of Optimal Number of Iterations: Recursive and Non-Recursive 29

v

Acknowledgements

I would like to acknowledge and thank my advisor, Dr. Wen-Li Wang, for his guidance

and direction throughout this research project. His advice and expertise were critical throughout

this process of learning and overcoming challenges. I also want to acknowledge and thank my

co-advisor, Dr. Shahid Hussain, for his time and input in reviewing this paper and his ability and

willingness to act as an additional advisor.

Chapter 1 Introduction

1.1 Background

In the field of computing, database search problems have been studied to minimize the

amount of time required to find a specific record within a database. Many classical solutions have

been proposed over the years, eventually culminating in the binary search. Binary searching serves

as the optimal way to search a sorted database, while linear searching is the most suitable method

for searching unsorted data. However, quantum computing provides a solution in Grover’s

algorithm [11] which takes advantage of quantum speedup to search unsorted databases faster.

Quantum computing deviates greatly from classical computing because it relies upon the

principles of quantum physics to perform operations. Classical bits represent a binary state of

either 0 or 1, but quantum bits (qubits) utilize quantum properties such as superposition and

entanglement to exist in several states simultaneously. Because of these phenomena, quantum

computers possess the unique ability to explore a large solution space at incredible speed, thus

enabling greater processing power for specific information processing tasks. At a hardware

architecture level, quantum circuits are composed of quantum gates. These gates can be

understood as functions that alter qubits’ states and respective probabilities. A quantum gate takes

in an initial set of qubits and then outputs a distinctly transformed set of qubits with modified state

and probability. Quantum algorithms refer to algorithms that take advantage of the inherent

principles of quantum mechanics to achieve higher efficiency when compared to classical

algorithms [1]. These algorithms perform certain functions by utilizing a combinational

arrangement of quantum gates as components, which must be completely reversible.

2

1.2 Objective

This proposed research aims to produce a practical application of recursively generated

quantum circuits. It will be tasked in solving unstructured database search problems using

Grover’s algorithm with varying numbers of qubits. These circuits should consist of Toffoli gates

as the primary building block and will be based on the work of Barenco et al. [6]. Comparisons

will be made across the metrics defined in Chapter 5 to determine the viability of using Grover’s

algorithm with recursively and non-recursively generated oracle circuits.

1.3 Significance

The significance of this proposed research relates to hardware development and to solving

the unsorted database search problem with an n-qubit implementation of Grover’s algorithm. For

every additional input qubit, the possible search space increases exponentially. If this recursive

approach to constructing quantum circuits could be realized and optimized, then it could vastly

increase the effectiveness of using quantum computing for database search operations and other

problem domains.

1.4 Outline

Chapter 2 presents a literature review of the related research conducted by other

professionals in the realm of quantum computing. This includes studies related to quantum gates,

algorithms, and qubits.

3

Chapter 3 describes in detail the problem of circuit construction and the difficulty of

achieving gates with many qubit inputs.

Chapter 4 discusses the technologies and methods used to collect data and proposes

solutions to the given problem.

Chapter 5 showcases and analyzes the results of the experiments and then makes

comparisons across metrics such as the number of fundamental gates used in circuit construction.

Chapter 6 draws conclusions from the data regarding performance and optimization,

describes the challenges faced, and provides recommendations for future research.

4

Chapter 2 Related Works

2.1 Qubits and Data

Like a classical bit, a quantum bit (qubit) serves as the base unit of quantum information.

The advantage of using qubits stems from quantum phenomena such as superposition,

entanglement, and parallelism [2]. For example, the property which allows qubits to represent a

probabilistic combination of states is called superposition. Rather than representing exclusively 0

or 1 as classical bits do, qubits can simultaneously exist in several states [1] because they maintain

a probability of being either 0 or 1 at any given time of measurement. The sum of these

probabilities is always equal to 1. Quantum entanglement, however, is when the state of one qubit

becomes related (entangled) with the state of another qubit. Because this is independent of

physical distance, it allows for so-called ‘quantum teleportation’ of data. For example: one qubit

can transmit data instantaneously to another entangled qubit, regardless of physical separation [5].

Parallelism refers to quantum systems performing computations on multiple qubits simultaneously

thus contributing greatly to quantum speedup. Another comparison between quantum bits and

classical bits is that of data representation.

The number of qubits utilized within a given circuit directly corresponds to how much data

can be represented by the circuit. For example, both a classical circuit of three bits and a quantum

circuit of three qubits can each represent 23 = 8 number of states. At first glance, this may appear

like they are equal. However, the quantum system proves more powerful due to its utilization of

unique properties that allow it to perform computations more efficiently and explore solution

spaces in parallel. Increasing from three qubits to four qubits results in a non-linear increase in

5

the data representation such that every additional qubit increases the state space by twofold. This

exponential increase naturally gains importance and relevance when faced with problems

involving large solution spaces such as the unstructured search problem.

2.2 Quantum Gates

In general, two primary quantum computing paradigms exist: the annealing-based

paradigm and the gate-model paradigm. Annealing-based quantum computers perform a process

called quantum annealing, which returns the minimum energy state of a quantum energy function

known as a Hamiltonian. In the case of optimization problems, the quantum Hamiltonian is

defined according to the fitness function of the given problem such that the solution is represented

by the lower energy state [3]. Quantum-gate devices, on the other hand, utilize operations called

quantum gates, which are comparable to the classical logic gates of traditional circuitry. Quantum

gates are sequentially applied to qubit states, transforming the states until a solution is reached [3].

Basic gates include 1-qubit and 2-qubit quantum gates. These titles refer to the number of

qubits that are utilized or acted upon by the gate’s operation, which may increase up to any number

of qubits. Fundamental quantum gates exist such as the Hadamard gate, phase shift gate, X gate,

CX gate, and Toffoli gate [4]. The Hadamard gate is a single-qubit gate which employs the matrix

𝐻 =
1

√2
[
1 1
1 −1

]. It functions to map the qubit-basis states { |0⟩, |1⟩ } (also called computational

basis states) into superposition states {
|0⟩ + |1⟩

√2
,

|0⟩ − |1⟩

√2
} (also called polar basis states) respectively

[2]. Another fundamental gate is a phase-shift gate, also known as the Z gate, which rotates π

radians about the Bloch sphere’s z axis [4]. The Z gate is a single-qubit gate that functions to map

the basis state |0⟩ into |0⟩ and the basis state |1⟩ into 𝑒𝑖𝜋|1⟩. This can be represented by the matrix

6

𝑍 = [
1 0
0 −1

]. This phase-flip operation simply alters the geometrical orientation of the qubit

without impacting the probability of measuring |0⟩ or |1⟩. The X gate, CX gate, and Toffoli gate

share similarity with one another. The quantum X gate is a single-qubit gate that functions like

the classical NOT gate, applying a bit-flip operation to the input. Therefore, it maps the basis state

|0⟩ into |1⟩ and |1⟩ into |0⟩. Its matrix representation is 𝑋 = [
0 1
1 0

]. The CX gate is a two-qubit

gate which uses the first qubit (q_1) as a control and the second qubit (q_0) as the result qubit as

shown below in Figure 1:

Figure 1. CX Gate with Qubit Labels

Figure 1 demonstrates an example of the CX gate with qubit labels. These qubits are

referenced using the notation, |𝑞1𝑞0⟩, which represents the composite result of |𝑞1⟩|𝑞0⟩. Like the

X gate, the CX gate also performs a bit-flip on the result qubit. However, the control qubit is

responsible for controlling the activation of the gate’s function such that the bit-flip operation

occurs if and only if the control qubit 𝑞1 has state |1⟩, and the initial state of result qubit 𝑞0

maintains no control [4]. The CX gate maps input state |00⟩ into |00⟩, state |01⟩ into |01⟩, state

|10⟩ into |11⟩, and state |11⟩ into |10⟩. Its matrix representation is given as 𝐶𝑋 = [

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

].

7

Toffoli is the proper name given to the 2-control X gate. It functions like the CX gate, but

it contains an extra control qubit that can be called 𝑞2. It works in the same way such that a bit-

flip of the result qubit 𝑞0 occurs if and only if both control qubits 𝑞1 and 𝑞2 have state |1⟩. The

Toffoli gate is a 3-qubit quantum gate with matrix representation given below in Equation 1:

Equation 1. Matrix Representation of Toffoli Gate

This results in the mapping of input states |000⟩ into |000⟩, |001⟩ into |001⟩, |010⟩ into

|010⟩, |011⟩ into |011⟩, |100⟩ into |100⟩, |101⟩ into |101⟩, |110⟩ into |111⟩, and |111⟩ into |110⟩

[9]. Its visual representation is given below in Figure 2:

Figure 2. Toffoli Gate

8

The Toffoli gate, as depicted in Figure 2, was used as the fundamental building block for

recursive circuit construction as described in Chapters 4 and 5. These fundamental gates hold

critical importance for building circuits that quantum algorithms use to solve complex problems.

2.3 Quantum Algorithms

Quantum algorithms operate in a very similar fashion to classical algorithms in that both

require input, perform computation, and produce output. However, each differs in terms of its

specific hardware capabilities. Classical computers utilize binary bits and logic operations to

perform computation, while quantum computers leverage qubits and properties of superposition,

entanglement, and parallelism [5]. For this reason, classical results are considered deterministic

and quantum results are considered probabilistic, and quantum machines must complete many

iterations of a given algorithm to generate a statistically reliable result. Notable quantum

algorithms are the Deutsch-Jozsa algorithm [10], Grover’s Algorithm [11], and Shor’s algorithm

[12].

The Deutsch-Jozsa algorithm maintains importance because it demonstrated an early

example of quantum speedup, that is, an exponential increase in the speed at which a solution is

found. In this algorithm, the speedup is showcased using an oracle and a Boolean function. The

Deutsch-Jozsa algorithm solves a black box problem wherein the oracle determines whether the

output of the Boolean function is constant (either all 1 or all 0) or balanced (half 1 and half 0) [11].

For n inputs, the classical algorithm requires 2𝑛−1 + 1 iterations to determine the solution [5], but

the quantum algorithm requires only 1 iteration to determine the solution. This demonstrates an

exponential speedup because the time complexity is reduced by 2𝑛.

9

Grover’s algorithm is a well-known quantum algorithm leveraged for solving unstructured

search problems [11]. It completes the task of locating a known element ω from an unordered

database of size N. This element ω is the only input that can achieve output of 1 (true) from a

Boolean function, while all other inputs result in 0 (false), thus making ω the solution. In classical

computing, identifying ω from a list of N unsorted records requires O(N) time complexity in the

worst case and O(N/2) on average. However, Grover’s algorithm performs better when compared

to the classical method by completing the task in O(√N) time complexity [1]. Grover’s algorithm

uses quantum parallelism to increase the search speed and will be described in greater detail in

Chapter 3.

Shor’s algorithm is a quantum algorithm primarily suited for cryptography applications. It

reduces the time complexity of factoring large prime numbers from exponential to polynomial

time because of speedup during the quantum Fourier transform (QTF) step [12]. The algorithm

follows a three-step sequence: period finding, then quantum Fourier transform, and then integer

factorization [5]. Shor’s algorithm is held back by the fact that each QFT requires a custom

quantum circuit, but it could become more powerful with the implementation of automatic circuit

generation for the Fourier transform step. The common link between these quantum algorithms is

that their effectiveness comes from leveraging the properties of quantum physics manifested in the

form of qubits.

10

Chapter 3 Problem Statement

3.1 Unstructured Search Problem

The problem which Grover’s algorithm was made to solve is the unstructured search

problem [11]. Recall that classically, the process of locating an element ω in an unsorted database

of size N requires O(N) time complexity in the worst case and O(N/2) on average, but Grover’s

algorithm provides a quantum speedup resulting in O(√N) time complexity [1]. This element ω is

the only input to a Boolean function f which outputs 1, and all other elements output 0. That is,

𝑓(ω) = 1 and 𝑓(x) = 0 for all x ≠ ω. The algorithm uses an oracle circuit to perform the search

computations while separate amplification circuit boosts the solution accuracy. The algorithm

sequence is described below in Figure 3:

Figure 3. Diagram of Grover's Algorithm

11

The sequence of steps in Grover’s algorithm described in Figure 3 are as follows: 1.)

Initialize all qubits to the |0⟩ state. 2.) Apply a Hadamard gate to each qubit to achieve uniform

superposition. 3.) Apply both the oracle and amplification circuits 𝑘 ≈
𝜋

4
√𝑁 number of times

where N is the database size in number of records. 4.) Measure output [1] with respect to the

standard basis: { |0⟩, |1⟩ }. Because this algorithm uses O(√N) number of computations instead of

O(N) number of computations, it reduces the time complexity from linear to quadratic respectively.

Grover’s algorithm begins with initializing each of m qubits with the starting state |0⟩, and

then a Hadamard operation is applied to each qubit. This achieves a uniform superposition of 2𝑚

basis states [1], denoted as ψ (psi), where m is the number of qubits. This occurs according to

Equation 2 as given below:

Equation 2. Uniform State Initialization

The oracle and amplification circuits are then applied for 𝑘 ≈
𝜋

4
√𝑁 number of iterations

[1]. The oracle is responsible for performing a phase-flip on the amplitude of entry ω. Recall the

Boolean function f which is satisfied by input ω such that 𝑓(ω) = 1. The oracle O operates on

the quantum state |ψ⟩ according to Equation 3 as given below with αx representing amplitude:

Equation 3. Grover's Oracle Operation

Amplitude amplification [1] then occurs according to Equation 4 as given below:

12

Equation 4. Grover's Amplitude Amplification

These steps are subsequently repeated, resulting in a probability of accurately locating ω

after k iterations [1] given by Equation 5 below where 𝑘 ≈
𝜋

4
√𝑁 and θ = sin−1(

1

√𝑁
):

Equation 5. Grover's Result Probability

These mathematical processes make up the computations that occur during runtime of

Grover’s algorithm and are responsible for producing the quantum speedup.

3.2 Circuit Construction

One challenge with using Grover’s algorithm is that the necessary oracle circuit can be

difficult to construct in the case of many qubit inputs. In an unstructured search for database size

of 8 records (three qubits), there is not much benefit to using a quantum algorithm because the size

of the database is so small. The benefits of Grover's algorithm can be utilized more effectively in

the case of searching within a larger database. To construct an oracle with the ability to search

twice as many records (16 rather than 8), it would require one additional qubit. This can

theoretically be scaled up to facilitate database searching of 1,000 or even 1,000,000 records, but

the difficulty comes in constructing circuits with such a high number of qubits. These circuits

13

become extremely long and are complex to design. For example, Figure 4 shows a 3-control X

gate and Figure 5 shows that gate’s decomposition.

Figure 4. Quantum 3-control X gate

Figure 5. Decomposition of Quantum 3-control X gate

Circuit decomposition is an important metric as it describes the complexity of a circuit by

showcasing the circuit’s full set of internal gates. The circuit decomposition shown in Figure 5

demonstrates how many 1-qubit and 2-qubit gates are required to construct the gate shown in

Figure 4. The 3-control X gate is related to the Toffoli gate because it enhances the functionality

of the Toffoli gate, due to containing one additional control qubit. However, the addition of control

qubits causes the number of internal gates to grow, as showcased by Figure 6 and Figure 7 below:

14

Figure 6. Quantum 4-control X gate

Figure 7. Decomposition of Quantum 4-control X gate

15

Figure 6 shows the quantum 4-control X gate, which does not appear to be very different

from the 3-control X gate from Figure 4. However, Figure 7 shows that a far greater number of

gates are required to support this functionality. Note that IBM Quantum Lab [7] and Qiskit [8]

were used to generate these graphics.

16

Chapter 4 Methodology

4.1 Qiskit and IBM Quantum Simulation

The purpose of the conducted research and experiments was to assess the possibility of

using recursive circuit generation in combination with Grover’s algorithm [11] to solve

unstructured database search problems according to the workflow described below in Figure 8:

Figure 8. Methodology Workflow

Because of limited access to quantum hardware, the experiments were conducted in a

classical computing environment with simulation capabilities. IBM Quantum Lab [7] was used to

simulate all of the quantum circuits and processing. The utilized software stack comprises Python

as the chosen programming language and Qiskit [8] as the selected framework for quantum

computing. First, manual computation was conducted to ensure the validity and accuracy of using

Qiskit and the IBM Quantum Lab. A quantum circuit representation of the classical AND gate

was selected as the unit for completing this validity test because it provided the opportunity to

practice stepping through the quantum gate operations by hand. The proposed circuit is shown

below in Figure 9:

17

Figure 9. Quantum Circuit Logically Equivalent to Classical AND Gate

This test verified Qiskit’s accuracy because the results matched exactly the expected values

given by the truth table for a classical AND gate. The correct states were measured with 100%

probability, thus ensuring the validity of using Qiskit as a framework for further work. A second

proof of validity was conducted by way of the Deutsch-Jozsa algorithm [10]. Qiskit-community-

tutorials was referenced for assistance with the algorithm implementation, with specific credit to

online community member Paniash. Like the previous test, it performed with 100% accuracy.

After Qiskit was validated as a tool which can be used with certainty, focus shifted back toward

the unstructured search problem.

4.2 Custom Creation

One way in which circuits for the Grover's algorithm can be created is on a case-by-case

basis. This involves designing an entire oracle circuit according to the necessary quantum gates

to achieve that functionality and then sequencing those gates manually in code. Although this

allows for increased optimization capacity because the circuit can be fit directly to the use case, in

this method, there is minimal to no generalization and little opportunity for reuse. The custom

creation method is standard practice for using Grover’s algorithm, generally causing circuits to

18

expand as seen in Figures 6 and 7 compared to Figures 4 and 5. This rigid method of oracle

expansion may require a fewer number of total gates than a recursive oracle generation practice,

but the circuits created in this fashion have limited reusability. An oracle created for a specific use

case possesses a low level of flexibility because it is not be suitable for solving problem outside

its original domain and scope.

4.3 Recursive Creation

An alternative to the custom creation approach is to utilize recursion for generating the

quantum circuits necessary for implementing Grover’s algorithm. In this proposed recursive

method, it may be possible to gain reusability while maintaining the effectiveness of the custom

creation method. It may be possible to develop a combination of quantum algorithms and classical

algorithms which centers around the property of recursion to solve unstructured search problems.

While this might sacrifice some level of customization, it has potential reusability. Recursively

generated circuits inherently possess flexibility due to the scalable nature of recursion; a circuit

can be reused over and over as the problem size increases. This principle is evidenced by the

ability of 3-control X gate structure to be used in the construction of a 4-control X gate and the

ability of a 4-control X gate structure to be used in the construction of a 5-control X gate, thus

demonstrating reusability. The Toffoli gate was chosen as the fundamental unit for circuit

generation because of its reliability. Being widely researched and utilized for quantum

development, the 3-qubit Toffoli gate proves suitable for this use case. The function used for

recursively generating Grover’s oracle is based on the fact that the functionality of an n-control X

19

gate can be created by using Toffoli gates [6]. For example, a 3-control X gate can be created by

using four Toffoli gates as seen below in Figures 10 and 11:

Figure 10. 3-control X Gate

Figure 11. 3-control X Gate Equivalent Using 4 Toffoli Gates

20

A 4-control X gate can then be created by using the 3-control X gate structure with

additional Toffoli gates added as described below in Figures 12 and 13:

Figure 12. 4-control X Gate

Figure 13. 4-control X Gate Equivalent Using 3-control X Gate Structure

21

4.4 Proposed Recursive Algorithm

Because this circuit creation is proven to be scalable [6], an n-control X gate can be

constructed recursively using Toffoli gates as the base unit. Figure 14 details the set of functions

used for recursive bit-flip oracle generation using Toffoli gates.

Figure 14. Python Functions that Recursively Generate Bit-Flip Oracle

The Qiskit code described in Figure 14 consists of three functions that are responsible for

recursively constructing a bit-flip (Boolean) oracle circuit. The boolean_oracle function is called

22

first, initializing a new quantum circuit object based on the length of the input variable: marked

state. It then calls the build function which creates a circuit segment capable of performing the

bit-flip operation as well as a separate circuit segment which ensures the oracle’s reversibility by

calling the recursive function buildComponent. The buildComponent function applies Toffoli

gates based on specified qubit indices provided by the inputs: m and n. It calls itself recursively

until the base case m = 2 is reached, meaning that the problem was reduced down to a scope which

can be solved by a single Toffoli gate. After that gate is applied, the solution is perpetuated back

through each recursive call, returning the main component of the oracle. This component is

sandwiched between Toffoli gates to construct the bit-flip segment and then reused as the

reversibility segment. Composing these segments onto one circuit produces the recursively

generated bit-flip oracle.

Once a bit-flip oracle is constructed, it must be converted into a phase-flip oracle before

Grover’s algorithm can be applied, since the phase-flip operation is a pivotal step in the algorithm.

A multi-control Z gate is appended to facilitate the conversion from bit-flip oracle to phase-flip

oracle. This Z gate must be created with the marked state (solution) in mind because the element

ω must receive a phase-flip when encountered by the search algorithm. The full set of Python

code used to conduct experiments and gather data is given below in Appendix A. While this method

could introduce more quantum gates to the circuit than the custom creation approach, it could

prove to be more scalable and provide reusability.

Chapter 5 Experiments and Observations

5.1 Expected Results

The expected results of these experiments are that Grover’s algorithm will accurately locate

the element ω using the recursively generated oracle in place of a non-recursively generated oracle.

This accuracy is expected to span multiple database sizes. It is expected that the circuit

implementing a recursively generated oracle will consist of more basic quantum gates than the

circuit implementing a non-recursively generated oracle. Lastly, the computational complexity is

expected to be similar between the recursively and non-recursively generated circuits.

5.2 Observation

Throughout these experiments, observations were recorded regarding the algorithm

accuracy, number of database records, number of basic quantum gates used per circuit, and number

of optimal iterations. Figures 15 and 16 detail the accuracy of Grover’s algorithm when utilizing

a recursively generated oracle and a non-recursively generated oracle respectively.

24

Figure 15. Recursive Oracle Probability with k = 1 and 𝒌 ≈
𝝅

𝟒
√𝑵

Figure 16. Non-Recursive Oracle Probability with k = 1 and 𝒌 ≈
𝝅

𝟒
√𝑵

25

Figure 15 depicts the probability, or certainty, to which element ω was located within the

database by Grover’s algorithm with recursive implementation. The orange line represents the

probability result after the optimal number of iterations k, as calculated by the formula 𝑘 ≈
𝜋

4
√𝑁

where N is the database size in number of records. The blue line represents the probability result

after only one iteration. The metric of probability corresponds to the accuracy of the circuit. One

notable observation is the first orange data point—database size of 32 records—where the

probability of accurately locating ω was only about 5% after 4 iterations. Although it chose the

correct element ω, the probability remained extremely low. Figure 16 describes the accuracy of

the non-recursive oracle implementation, which behaved according to expectation. One notable

observation is that it located element ω with 99% accuracy for every database size.

Observations were then conducted relating to the number of database records searched by

the algorithm and the number of 1-qubit and 2-qubit quantum gates that comprise the recursively

and non-recursively generated circuits. Tables 1 and 2 provide data regarding those two circuit

categories respectively.

Table 1. Number of 1-qubit and 2-qubit Gates for Recursively Generated Circuit

Number of

Database Records
Recursive 1-qubit Gates Recursive 2-qubit Gates

32 139 90

128 451 384

512 1415 1320

2048 4971 4848

26

Table 2. Number of 1-qubit and 2-qubit Gates for Non-Recursively Generated Circuit

Number of

Database Records
Non-Recursive 1-qubit Gates Non-Recursive 2-qubit Gates

32 145 80

128 379 336

512 1307 1248

2048 4827 4752

As for the recursively generated circuit data in Table 1, the number of database records

searched ranged from 32 records to 2048 records and the number of 1-qubit gates remained greater

than the number of 2-qubit gates across every database size. Both 1-qubit and 2-qubit gates

increased alongside the number of database records in a linear fashion. This circuit, however,

always contained two additional gates that were of larger size: log2(N). The observations made

surrounding the non-recursive circuit data collected in Table 2 were similar. It maintained the

same number of database records and a larger number of 1-qubit gates than 2-qubit gates,

showcasing a similar linear progression.

5.3 Comparison

The comparisons made between the recursively and non-recursively generated circuits

provide coverage over the list of expected results. Comparisons were made regarding algorithm

accuracy, number of basic quantum gates per circuit, number of optimal iterations (computations),

and number of database records. Table 3 describes the accuracy of the two circuit types.

27

Table 3. Comparison of Accuracy: Recursive and Non-Recursive

Number of Database Records Recursive P(𝑘 ≈
𝜋

4
√𝑁) Non-Recursive P(𝑘 ≈

𝜋

4
√𝑁)

32 0.049613269 0.999182316

128 0.995619866 0.995619866

512 0.999448026 0.999448026

2048 0.999996848 0.999996848

The accuracy of the recursively generated circuit falls short of the accuracy provided by

the non-recursively generated circuit for database size of 32 records. This data was collected using

solution case ω = 00111. In this specific case, the algorithm struggled to identify the correct result,

proposing x = 10111 as the next-best solution with 10% less probability than it proposed ω.

However, in subsequent testing with solution case ω = 10011, the algorithm determined the result

accurately with 0.999 probability. This disparity may be related to the bit-flip operation being

applied to 𝑞5 by the recursively generated oracle circuit, indicating a potential flaw. The

algorithm’s accuracy may be impacted conditionally based upon the state of the bit-flip’s result

qubit for the recursive algorithm implementation. Perhaps utilizing an ancillary qubit for storing

the bit-flip result could solve this, but this avenue could not be explored due to time constraints.

Even so, both the recursive and non-recursive circuits have identical probability for databases of

size 123, 512, and 2048. They also share identical probability across every data point where the

probability was measured after only one iteration (see Figures 15 and 16). According to these

data, the recursive circuit provides an inferior accuracy compared to the non-recursive circuit for

a small number of database records yet provides equal accuracy for larger databases.

28

Figure 17 compares the number of 1-qubit gates present in the recursive and non-recursive

circuits, and Figure 18 likewise compares the number of 2-qubit gates between them.

Figure 17. Comparison of Number of 1-qubit Gates: Recursive and Non-Recursive

Figure 18. Comparison of Number of 2-qubit Gates: Recursive and Non-Recursive

29

At database size of 32 records, as seen in Figure 17, the number of 1-qubit gates for the

recursive oracle is lesser than the number of 1-qubit gates for non-recursive oracle by a small

margin of six gates. However, at each of the other database sizes, the opposite is true: the number

of 1-qubit gates for the recursive circuit becomes greater than the number of 1-qubit gates for the

non-recursive circuit. As seen in Figure 18, the recursively generated circuit utilizes a greater

number of 2-qubit gates than the non-recursive circuit across every database size. Again, the

number of both 1-qubit and 2-qubit gates increases linearly along with the number of database

records.

Table 4. Comparison of Optimal Number of Iterations: Recursive and Non-Recursive

Number of

Database Records

Optimal Recursive Iterations Optimal Non-Recursive Iterations

32 4 4

128 8 8

512 17 17

2048 35 35

 The comparison in Table 4 shows that the optimal number of recursive iterations is equal

between the recursively and non-recursively generated circuits. This is because both apply the

same equation to calculate this optimal number of iterations, that is, 𝑘 ≈
𝜋

4
√𝑁 where N is the

number of database records. This represents the computational complexity of Grover’s algorithm

because it determines how many search iterations will be conducted; therefore, both the recursive

30

and non-recursive circuits have equal complexity. And because the number of database records

also is identical between both circuit types, no significant comparison can be made for this metric.

5.3 Limitations

The present research does include certain limitations because the experiments were

conducted within a simulated environment. The usage of IBM Quantum Lab [7] simulation in

place of actual quantum hardware means that the study and findings may not realistically reflect

the phenomena of qubits and quantum operations. Additionally, time complexity could not be

included as an observation metric in this research because the simulation does not track execution

time data within the quantum lab environment. Another limitation was that a simple database

representation was used in place of a complex database.

31

Chapter 6 Conclusions

6.1 Conclusion

In conclusion, this research explored the practical implementation of applying recursively

generating oracle circuits to Grover’s algorithm for solving the unstructured database search

problem. Observations and comparisons were made according to the metrics of accuracy, number

of basic quantum gates, number of optimal iterations, and number of database records. These

findings suggest that recursively generated circuits are a comparable alternative to non-recursively

generated circuits for implementing Grover’s algorithm.

6.2 Challenges, Implications, and Future Work

The primary challenge during this study was the complete overhaul of the Qiskit [8] library

and API that coincided with its migration to version 1.0 in early 2024. This greatly disrupted the

process because a significant portion of the research and learning necessary to begin

implementation using Qiskit was voided by this massive update. Certain functions and libraries

became deprecated, the inheritance structure of objects was reworked, and the push occurred

without fully updated documentation.

Implications to the greater research community are significant. By demonstrating the

feasibility of this approach, this research may assist with efficient and scalable quantum circuit

design. Future researchers could enhance the current understanding of quantum algorithms, and

pioneer the development of more powerful quantum computing systems. An additional area to

32

investigate in future work would be the time complexity of using actual quantum hardware. This

would likely shed light on how significant the difference in number of 1-qubit and 2-qubit quantum

gates between recursive and non-recursive circuits is regarding time complexity of computation.

33

Bibliography

[1] S. Khurana and M. J. Nene, “Implementation of Database Search with Quantum Computing:

Grover's Algorithm vs Linear Search,” 2023 International Conference on Ambient Intelligence,

Knowledge Informatics and Industrial Electronics (AIKIIE), Ballari, India, 2023, pp. 1-6, doi:

10.1109/AIKIIE60097.2023.10389962.

[2] E. h. Shaik and N. Rangaswamy, “Implementation of Quantum Gates based Logic Circuits

using IBM Qiskit,” 2020 5th International Conference on Computing, Communication and

Security (ICCCS), Patna, India, 2020, pp. 1-6, doi: 10.1109/ICCCS49678.2020.9277010.

[3] E. Osaba, E. Villar-Rodriguez and I. Oregi, “A Systematic Literature Review of Quantum

Computing for Routing Problems,” in IEEE Access, vol. 10, pp. 55805-55817, 2022, doi:

10.1109/ACCESS.2022.3177790.

[4] David McMahon, “Quantum Gates and Circuits,” in Quantum Computing Explained, IEEE,

2008, pp.173-196, doi: 10.1002/9780470181386.ch8.

[5] S. P. Wang and E. Sakk, “Quantum Algorithms: Overviews, Foundations, and Speedups,” 2021

IEEE 5th International Conference on Cryptography, Security and Privacy (CSP), Zhuhai, China,

2021, pp. 17-21, doi: 10.1109/CSP51677.2021.9357505.

[6] Barenco, Adriano, et al. “Elementary Gates for quantum computation,” Physical Review A,

vol. 52, no. 5, 1 Nov. 1995, pp. 3457–3467, https://doi.org/10.1103/physreva.52.3457.

[7] Quantum Experience. IBM, 2016.

[8] Qiskit. IBM, 2017.

[9] Toffoli, Tommaso. “Reversible computing,” Automata, Languages and Programming. ICALP

1980. Lecture Notes in Computer Science, vol 85. https://doi.org/10.1007/3-540-10003-2_104

34

[10] David Deutsch and Richard Jozsa. “Rapid solutions of problems by quantum computation.”

Proceedings of the Royal Society of London A. 439 (1907): pp. 553–558.

doi:10.1098/rspa.1992.0167.

[11] Grover, Lov K. “A fast quantum mechanical algorithm for database search,” Proceedings of

the twenty-eighth annual ACM symposium on Theory of computing - STOC '96. Philadelphia,

Pennsylvania, USA: Association for Computing Machinery. pp. 212–219.

doi:10.1145/237814.237866

[12] Shor, Peter W. “Polynomial-Time Algorithms for Prime Factorization and Discrete

Logarithms on a Quantum Computer,” SIAM Review, 1999, 41:2, pp. 303-332.

35

Appendix A

Qiskit Code for AND gate Implementation:

36

Qiskit Code for Deutsch-Jozsa Implementation:

37

Qiskit Code for Recursive Grover Implementation:

38

39

Qiskit Code for Non-Recursive Grover Implementation:

