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Abstract

Differential equations are ubiquitous in science and engineering for describing the natural
world and often appear as nonlinear differential equations. Unfortunately, there is no general
method for solving all types of nonlinear differential equations. This work uses a machine learning
process called deep neural networks (DNNs) to create a solver for the Ginzburg-Landau equation
regardless of the boundary conditions or the right-hand side. This method overcomes challenges
to previous methods that require recomputing the solution again for every change in the boundary
conditions and right-hand side of the equation. The method develops a versatile solver capable of
finding a solution using only the form of the differential equation without a predefined right-hand
side or boundary conditions. Systematically varying the architecture of the network, the charac-
teristics of the input data, the loss function optimized over, and the network’s hyperparameters
reveal that the method can find a general solution across a diverse range of boundary conditions
and right-hand sides. The network can consistently find accurate approximations of slowly oscil-
lating data and highly oscillating data built from many terms of the Fourier series. The model can
generalize performance from training data to test data, indicating its success in creating a general
inverse differential operator that solves the equation. For data with many oscillations and small
magnitudes, the network suffers from the vanishing gradient problem. These challenges are ad-
dressed by implementing strategies such as batch normalization, varying initialization schemes,
changing activation functions, modifying the network architecture, and altering the loss function.
These changes help mitigate the problem, leading to more stable and robust solutions to the initial
hyperparameters of the model. However, the vanishing gradient problem persists despite these
changes. Developing a solver that works for nonlinear equations would be pivotal in developing a
theory for solving differential equations, saving computational time and resources, and facilitating
real-time applications of the network without retraining.
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Chapter 1
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1.1 Introduction
Machine learning has undergone unprecedented growth with advances in computational re-

sources and accessible data. It has been integrated into our daily lives, from filtering our social
media connections to providing curated product recommendations. This same class of machine
learning techniques called deep neural networks (DNNs) has been instrumental in solving chal-
lenging problems such as speech recognition [8], fraud detection [2], and image recognition [11].
These achievements occurred in ”big data” environments where the abundance of information al-
lows the use of readily available data for a flexible data-driven approach. Unfortunately, many
science and engineering domains do not have the luxury of access to extensive datasets available,
and acquiring these datasets is often prohibitively expensive.

Differential equations are the cornerstone of describing these physical problems in physics,
biology, and engineering. Traditional numerical methods like Finite Element Method (FEM) and
Finite Difference Method (FDM) conventionally were implemented to solve partial differential
equations in these low data regimes because machine learning techniques are prone to failing with
less available data [15]. FDM can achieve high accuracy and stability with a comparatively sim-
ple but flexible approach. FDM has the drawback that it needs help implementing the boundary
conditions and mesh in difficult situations. FEM also represents a highly accurate method that is
adaptable to unique features and domains at the cost of requiring significant memory and process-
ing power and is often challenging to implement without manufactured software.

The appendix includes a more comprehensive examination of these traditional methods and a
numerical comparison with neural network methods for solving a simple differential equation.

The field of scientific machine learning has emerged to bridge the gap in applying machine
learning to scientific problems in sparse data scenarios. By framing the situation as an optimiza-
tion problem, the network is able to alter weight and bias parameters to minimize a loss function
based on the form of the differential equation and boundary conditions. The convergence of the
solution amounts to finding an approximate solution to the differential equation. DNNs have al-
ready successfully solved intricate real-world differential equations, such as the incompressible
Navier–Stokes equations used to model weather phenomena [10]. The advantages of DNNs for
scientific machine learning are as follows.

1.2 Benefits of Neural Networks
Using DNN offers several key advantages for solving nonlinear differential equations:

1. Flexibility in Training: Neural networks offer users considerable control over the training
process through many tunable hyperparameters, including network architecture, batch size,
learning rate, and more. This flexibility allows the user to tailor their hyperparameters to
accommodate the specific demands of the differential equation, available computational re-
sources, and time constraints. Unlike traditional methods that cannot be stopped until the
solving scheme is completed, neural networks iterative training process allows the network
to end training once the technique has reached a desired accuracy level. This iterative train-
ing process also allows for further refinement if accuracy is still suboptimal, which is not
available to some traditional numerical methods.
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2. Scalability to higher dimensions: Introduced by American mathematician Richard E. Bell-
man in 1961, the term ”Curse of Dimensionality” signifies the exponential increase in com-
plexity as dimensions are added to Euclidean space. The implication is that traditional com-
putational methods require more data to achieve the same level of granularity as the density
of the data. Backpropagation allows for efficient computation that extends to higher di-
mensions. Neural networks can excel in high-dimensional spaces and robustly handle data
sparsity issues to solve high-dimensional partial differential equations [13]. This dramati-
cally expands the types and domains of problems we can solve and the choices we can make
when defining the problem. No triangulation is strictly necessary so that the method can be
extended to higher domains more easily, unlike FEM and FDM.

3. High Approximation Power: Neural networks can approximate differential equation solu-
tions even in higher dimensions. The generalizability of the network comes from the physical
laws directly incorporated into the loss function during training [9]. This allows for robust
solutions even in the presence of noisy data. Furthermore, the loss function can compensate
for noisy data by adding regularization terms.

4. Quick Solution Implementation: After training, applying the network approximation given
initial conditions and data only requires performing matrix multiplication and often simple
activation functions. Matrix multiplication has become incredibly fast with today’s com-
puting power and can be performed in seconds, even for large networks. On the contrary,
computing a solution for traditional numerical methods such as FEM and FDM could take a
long time, like days or longer.

5. Ease of Implementation: The wide adoption of neural networks has increased the amount
of educational resources and user-friendly coding libraries such as PyTorch and Tensor-
Flow. These resources allow for building neural networks relatively quickly with low coding
knowledge requirements, especially in comparison to FEM.

Neural network methods have significant drawbacks as well. The field of scientific machine
learning with neural networks is relatively new and needs further exploration. Empirically and
theoretically, the exact relationship between hyperparameters and model performance has yet to
be fully understood. Currently, there is no guarantee that the network will converge or converge
optimally for changing parameters like increasing network size. The large number of network
parameters can make it challenging to find the optimal solutions without this rigorous theory,
especially when hyperparameters are interrelated. Additionally, the inherent randomness from
initialization makes the network performance inconsistent between runs.

1.3 Preliminaries
We will focus primarily on a class of differential equations called boundary value problems

(BVPs). These problems dictate a unique solution based on the conditions they specify at the do-
main’s boundary. The boundary conditions are crucial for a well-posed problem and often ground
the problem to physical conditions.
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Au(x) = f(x) for x ∈ (0, 1),

u(0) = a,

u(1) = b.

(1.1)

Equation 1.1 is a canonical representation of a BVP in operator notation. The function u(x) is
the solution to the differential equation, and f(x) is the right-hand side (RHS) of 1.1, where u(x)
and f(x) belong to the appropriate functional space. The scalars a, b ∈ R define the boundary
conditions (BCs), which we take here as Dirichlet BC. The inputs to this system are f(x), a, and b
where we are trying to find u(x). In this context, A symbolizes a (potentially nonlinear) differential
operator, mapping functions to functions and encapsulating one or several operations applied to a
function. For example, A could represent the second-order derivative A = − d2

dx2 .
Additionally, we can define an inverse operator:

u = A−1f =

∫ x

0

f(t)dt = F (x)− F (0) = F (x) (1.2)

where in Equation 1.2 we take F (x) ∈ C∞ under the condition that F (x) = 0. Therefore, in this
case, the inverse operator A−1 now maps the function f(x) to the solution u(x). A−1 is commonly
known as the integral operator or inverse differential operator on the function f(x) in the context
of differential equations.

1.4 Goal

Our goal going forward is to find this inverse operator A−1 so that we can solve the differential
equation for a given input function. We are under the assumption that A−1 exists and can be found
in the future. Truthfully, the existence of A−1 is not guaranteed and depends on the domain and
functional class of f . To even define the operator and the inverse operator, we need to define the
domain. An example in which an inverse operator would not exist is if we had taken A(u) = d2u

dx2

for u ∈ C∞. Since there are constant functions in C∞ that will each get mapped to 0, then this
implies that A is not invective and therefore does not have an inverse operator.

For past classical and neural network methods, finding a numerical approximation of the in-
verse operator depends on the differential equation’s BCs and the RHS f . To find this approxima-
tion means performing the computationally expensive calculation for a specific BC and RHS. If
another situation with a different RHS or BC arose, then the inverse differential operator for that
problem would need to be recomputed, costing time and resources. Therefore, the goal is to create
a more general inverse operator approximation that can accurately solve the differential equation
for any RHS and BC. This is achieved by instead of training over a single differential equation
Au = f with BCs u(0) = a and u(1) = b where f , a, and b are fixed; instead we train over a large
number of differential equations by varying f , a, and b in the training set of an unsupervised DNN.
In practice, 10, 000 randomly generated right-hand sides and boundary conditions f , a, and b are
trained over simultaneously.

The proposed solver has four advantages over traditional numerical methods like FDM, neural
network methods like physics-informed neural networks (PINNs), and other conventional solution
methods.
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1. Versatility: The method would accommodate a wider range of differential equations that
can be written in the form Au = f in operator notation. The output of this method would
be an approximate inverse differential operator that could solve for any RHS and BC of the
same form without requiring retraining for each unique BC and RHS.

2. Adaptability: The ability to handle quickly changing conditions allows this method to po-
tentially be implemented in real-time simulations for dynamic systems like weather fore-
casting. This could be a major breakthrough as the state-of-the-art neural network methods,
PINNs, are not suited for real-time application [13].

3. Cost-efficiency: Since this method does not need to be retrained for varying conditions, it is
less computationally expensive and saves more on computational resource consumption than
methods that have to repeat the solving scheme for every condition change. Therefore, the
method saves time from training and would lead to faster development times for specialized
solvers.

4. Research potential: Developing a generalized solver that can create approximations for
previously intractable or somewhat tricky problems through a general approach would allow
for more research in understanding general problem-solving approaches and new physics
gained from solving hard-to-calculate problems.

In this study, we test building a solver for general differential equations by building a solver
specifically for the Ginzburg-Landau equation:

d2u(x)

dx2
+ u(x) + u3(x) = f(x) for x ∈ (0, 1),

u(0) = a,

u(1) = b.

(1.3)

subject to Dirichlet boundary conditions u(0) = a ∈ R and u(1) = b ∈ R on the interval
[0, 1]. Since A is a second-order differential operator, then the functional class of the solution
and the RHS are u(x) ∈ C2([0, 1]) and f(x) ∈ C0([0, 1]) The equation models the behavior of
type-I superconductors, where u(x) represents the magnetic vector potential of a superconductor
[1]. This equation is useful for liquid crystal theory and understanding the nonlinear evolution of
the superconductor amplitude near small perturbations. The original Ginzburg-Landau equation
is a partial differential equation where the solution is a complex tensor. However, we consider
the simpler 1D case where u(x) is a real scalar function, and the equation turns into an ordinary
differential equation.

Following this, chapter 2 will examine the mathematical foundation for neural networks and
neural network methods to solve differential equations. Chapter 3 contains the solution proce-
dure and numerical simulations for creating a solver for the Ginzburg-Landau equation to test the
technique. Chapter 4 will synthesize the research findings and propose future directions of study.
Lastly, the appendix will include a survey of a few different traditional numerical methods and
compare them to the trial solution method in a computational experiment.
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Chapter 2

Deep Neural Networks (DNNs)
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2.1 Mathematical Framework for Neural Networks
DNNs are built from the ground up using neurons. Inspired by the biological neurons in the

brain, the neurons are the building blocks of DNNs that are essential for each computation. The
neuron function is defined as:

Definition 2.1.1: A neuron function f : Rn → R is a mapping of the form

f(x) = λ(α · x+ β) (2.1)

where λ : Rn → R is a continuous nonlinear function called the activation function, and α ∈ Rn

is a vector of weights, and scalar β ∈ R is called the bias. Here, α · x is the inner product on Rn.
The neuron function is an affine function that can approximate nonlinear functions because of

the activation function. Combining multiple neurons together creates a layer function.

Definition 2.1.2: A layer function g: Rn → Rm is a mapping of the form

g(x) = (f1(x), f2(x), · · · , fm(x)) (2.2)

where each fi : Rn → R is a neuron function of the form (2.1) with its own vector of weights
parameter αi = (αi,1, · · · , αi,n) and biases βi = 1, · · · ,m.

We define an artificial neural network along the lines of [3]. Principally, a neural network is
simply a composition of these layer functions.

Definition 2.1.3: An artificial neural network (ANN) is a function h: Rn → Rm of the form

h(x) = hM ◦ hM−1 ◦ · · · ◦ h1(x),M ≥ 1 (2.3)

where each hi : Rni−1 → Rni is a layer function with its own weight matrix A defined as:

A =

α11 · · · α1n
... . . . ...

αm1 · · · αmn

 (2.4)

and its own vector of biases β defined as:

β =

β1
...
βm

 (2.5)

serving as the parameters of the network. Hence, (2.2) may be written as

g(x) = λ̄(Ax+ β), (2.6)

where λ̄ : Rm → Rm is the vectorial activation function defined as

λ̄(x1, . . . , xm) = (λ̄(x1), . . . , λ̄(xm)) (2.7)
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for a scalar activation function λ̄ as in Definition 2.1.1.
The neural network structure can be represented as a computational graph shown in Figure 2.1.

Each neuron function represents a connection from one node to another node, where along that
edge, the weights αi,j determine how much emphasis or weight is placed on each node. The figure
omits biases, but each bias raises or lowers the importance of the node. The layers are represented
graphically as the column of nodes. The connections between layers represent applying the affine
function to each node in that layer to get to the next layer (2.6) and the use of the vectorial activation
function (2.7).

x1

x2

x3

xn

...

h
(1)
1

h
(1)
2

h
(1)
m

...

y1

yk

...

α1
i,j

α2
i,j

Input
layer Hidden

layers Output
layer

Figure 2.1: The figure shows the graphical representation of a fully connected DNN with three
layers. The input layer is green, the hidden layer is blue, and the output layer is red. Each node
represents a neuron with a value of xi connected to another node by a weight αi,j with the super-
script denoting the which layer it connects and no biases. The output vector y = (y1, · · · , yk) are
the solution.

The input layer, h1, is determined by the dimension of the input data, where if we have n data
points, then the input layer will have correspondingly n nodes in the green layer for Figure 2.1.
Connected to the input layer is the series of layers called hidden layers, hi, shown in blue for Figure
2.1. Many hidden layers are not required, but often to achieve a complex output many hidden layers
are needed. There is no limit to the number of hidden layers, but it becomes computationally costly
to add more hidden layers. DNNs often have more layers with fewer neurons per layer as opposed
to wide neural networks with fewer layers but more neurons per layer. The network output is given
by the last layer, hM , for a network with M layers. The output layer shown in red for Figure 2.1
with the column of k nodes is what the network returns and is evaluated in subsequent steps.

Other network architectures, like recurrent networks, have graphical cycles between layers. In
this study, we will consider only feedforward networks which means that the graph has no cycles
or loops and so the information is only passed forward to the next neuron. There are other network
architectures like recurrent networks that have graphical cycles between layers. Additionally, we
also constrain the networks to be fully connected networks, which means that every node in one
layer is connected to every node in the previous layer.

The goal of neural networks here is to find the solution to the differential equation, meaning to
find an accurate approximation of the inverse differential operator A−1f . Here the actual expres-
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sion for the inverse operator is unknown, and the solution to the differential equation is unknown.
However, we want to minimize the difference between the unknown actual solution uactual and the
approximate solution by the neural network û(x, α) so that the difference uactual − û(x, α) goes
to 0. A network achieves this formally by performing an optimization problem where the goal is
to minimize a function representing this error known as the loss function L(x, α). The output of
the neural network û(x, α) depends on the tunable parameters α in each layer. By modifying these
parameters, the network can minimize the error between the network approximation and the actual
value. Training is the process of reducing this error by adjusting the parameters iteratively. For ex-
ample, optimization techniques like gradient descent update the weights towards the direction that
minimizes an objective function for the network known as the loss function, which is the negative
of the gradient according to αnew = αold − τ∇αL(α). Here, τ is the learning rate, and ∇αL(θ) is
the gradient of the loss with respect to the parameters. The learning rate τ controls how large the
step is in each direction. Frequently, the step size is adaptively changed to enhance convergence.

Since the loss function often represents a proxy for the error that we are trying to minimize
then a common example for the loss function is to perform a similar optimization to a least squares
minimization or find the L2 error:

L(x, α) = min
α

N∑
i=1

||uactual − û(x, α)||2 (2.8)

It would be ideal if the actual solution uactual were known a priori. Neural networks are gen-
erally subdivided into three classes, supervised, semi-supervised, or unsupervised learning, based
on whether the corresponding answer to that data point is known in the data set. The data set used
by the neural network is known as the training set T .

2.1.1 Supervised Learning
In the supervised case, the objects in the training set T have known solutions and are labeled

before training. In certain scenarios, one may already have access to an efficient solver for the
differential equation in consideration. For the case of solving differential equations, this would
correspond to T containing the RHS of the differential equation f and the solver computing solu-
tions u for that RHS f . The network tries to create approximations for u and solve the differential
equation where the exact error is computing the difference between the approximated and the label
solutions. The network here tries to solve the differential equation for a large number of RHS, say
10000, at the same time giving the training set T the form:

T = {(f1, u1), (f2, u2), · · · (f10000, u10000)} (2.9)

The idea is that giving the network training data with computed solutions that it can compare
to the network will generalize the solution it learns from training to a broader number of problems
and offer accurate outputs û(x, α) for previously unseen inputs f . This method is more direct to
set up and easily trainable. However, this method has the downside that a solver must already exist
to have labeled training data and is often expensive to utilize.
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2.1.2 Unsupervised Learning
Unsupervised learning provides a mechanism for reducing the computational overhead com-

monly associated with traditional methods for constructing training sets. By forgoing the need for
another solver, computational costs are directly reduced. The training set is now just composed of
only the RHS that the network trains over.

T = {f1, f2, · · · f10000} (2.10)

Unsupervised learning presents the benefit that the methodology’s design is agnostic to the
actual solution of the differential equation, which removes any dependencies on prior knowledge
or direct supervision.

2.2 Defining the Loss Function
The defining question of neural networks is how to choose the loss function. The loss functions

form and exact implementation are dependent on the resources available and whether training data
can be labeled. Another question arises: how do we find an appropriate loss function that is able
to solve differential equations? The field of scientific machine learning and DNN methods for
solving differential equations apply the same basic principles for choosing a loss function as laid
out in Lagaris et al. [12].

2.2.1 Mathematical Framework Solving Differential Equations
The answer comes from I. E. Lagaris, A. Likas, and D. I. Fotiadis in their paper ”Artificial

Neural Networks for Solving Ordinary and Partial Differential Equations” [12]. This paper laid
out a general framework and a specific technique for solving differential equations with neural
networks. Beforehand, the attempts to solve differential equations with DNNs were limited to
trying linear systems of algebraic equations, and neural networks were mainly used for regression
and classification problems only. However, in the paper [12], they suggest a framework for solving
differential equations that is generally applicable, and most modern DNN differential equation
solvers are built off this framework, at least implicitly.

If we consider the bounded domain Ω ⊂ Rn with x ∈ Ω, then the differential equation with
boundary conditions can be moved to one side, so G is an operator that contains both the right-
hand side and left-hand side of the differential equation and g(x) is still the term for the boundary
conditions.

G(x, u(x),∆u(x),∆2u(x)) = 0 for x ∈ Ω

u(x) = g(x) for x ∈ ∂Ω
(2.11)

Here:

• u : Ω → R represents the solution.

• G : Rn × R × Rn × Rn×n → R characterizes the differential operator and its associated
boundary conditions.
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• g : B → R sets the BC which are taken to be Dirichlet or Neumann in the paper.

Evaluating this functional G gives the solution’s deviation from the differential equation. If the
function found is the solution, then the operator G will return 0, and any deviation leads to an error.

For example, given a differential equation of the form (1.1) Au = f , we can define an operator
G as G(u) = Au− f . Therefore, plugging in the exact solution u∗ to the differential equation into
G gives G(u∗) = 0; however, any other that is not the solution would lead to an error.

The idea is now to parameterize the solution u using a neural network, denoted as u = uα,
with α representing the neural network parameters. Now after creating a functional representation
of an operator then we are now able to find the inverse mapping to solve the differential equation.
Virtually every future version of solving a differential equation with a neural network tries to find
G in the loss function with an additional term for g to account for the boundary loss.

To specifically solve the problem for DNNs, we break the domain Ω into a series of points
x̄ = (x1, x2, · · · , xµ) from some form of discretization. We separate the points of the discretization
into the interior points (formally collocation) and boundary points. We now solve a series of
equations for the operator G for each point xi for i = 2, ·µ− 1 on the interior:

G(xi, u(xi),∆u(xi),∆
2u(xi)) = 0 for x ∈ Ω

u(xi) = g(xi) for x ∈ ∂Ω
(2.12)

Transitioning from a continuous domain into a discrete one is necessary for computational im-
plementation but introduces an error. The error in the computation is not as clearly defined as
for more traditional methods. Solving the differential equation amounts to finding the parameters
of the network that find the minimum of the loss function G = 0. Relaxing the conditions of
the loss function to minimize the difference between every point along the continuum to select
discrete points relaxes the conditions necessary to find a perfect solution to the differential equa-
tion. Depending on the neural network method, the discretization of the domain can be uniform
or nonuniform, allowing for various choices for the number of points and their location. For ex-
ample, the method allows for taking the number of points µ in x̄ = (x1, x2, · · · , xµ) to be as high
as we want within the limits of computational processing power. There is also a reduced risk of
overfitting and higher accuracy with more input data, which makes ”big data” regimes especially
sought after. To recover the continuous loss function from Equation 2.11 to the discrete loss func-
tion actually used in Equation 2.12, would be the equivalent of taking infinitely taking points on
the domain limµ→∞ x̄ . This is realized by taking many points, with some papers taking as many
as 500 million data points.

More advanced methods of solving neural networks do not require the points xi to be taken
from a uniform mesh. For methods like the deep Galerkin Method [17], the points are chosen
stochastically on the interior. Without requiring the choice of points in time and space directly
to be the same as the grid, then we do not ever have to form a mesh. Therefore, unlike many
traditional solvers, this method can be meshless. Making the system meshless greatly allows us to
expand the problems we can solve and allows for both unsupervised and supervised methods. This
also makes the gradient descent steps we calculate now over the stochastically chosen points xj .
We have the problem that using gradient descent for G requires calculating the derivatives of G
and then one derivative higher in the gradient descent algorithm to take a step. For example, if the
differential equation had a second derivative term, then the computational complexity to calculate
the operation for the arithmetic and memory costs would be O(µ2N) where N is the batch size.



12

Then, the stochastic gradient descent algorithm

α(n) = α(n−1) − τ∇G(α(n−1))

requires taking now the third-order derivative, which is a massive computational increase as the
size of µ increases. This is why, in practice, the higher-order derivatives are approximated using
Monte-Carlo methods. Introducing Monte-Carlo integration has its own challenges, such as intro-
ducing bias and a higher amount of variance to the stochastic gradient descent, which already has
inherent variance but no bias. This noise introduced by Monte-Carlo methods should average out
over many iterations, but it is still an intrinsic problem when approximating the derivatives.

In general, for solving differential equations, we define the loss function as to reduce the error
between the solution and the differential equation as a residual error:

L(α) =

∫
Ω

G(x, û(x, α),∆û(x, α),∆2û(x, α))2 dx (2.13)

Therefore, if we find parameters α such that û(x, α) in some space H , the neural network solution
so that L(α) = 0, then we have a solution to the differential equation. This can also be seen as
equivalent to defining the loss function using a variational approach. In this approach, we turn the
problem into an optimization problem where we try to minimize the network parameters on the
interior to form the closest approximate solution:

min
ũ∈H

∫
Ω

G(x, u(x),∆u(x),∆2u(x))2 dx (2.14)

This framework works incredibly well in solving the differential equation on the interior. How-
ever, the BC for the solution û(x, α) is important as it uniquely defines the problem and has physi-
cal significance. This can be seen as finding a solution to the integral in equation 2.13, but without
specifying initial or boundary conditions, there is an extra constant +C term when solving denot-
ing existence but not uniqueness. Therefore, we need to be able to introduce into the loss a method
to ensure that û(x, α) satisfies the boundary conditions to create a unique solution.

Borrowing the naming system from [4], two general methods exist for modifying the loss
function to satisfy the boundary conditions.

1. Employing a method inherently constructed to satisfy the boundary conditions is called a
hard assignment. An example of a hard assignment method is the trial solution method.
This method is further expanded upon in the appendix and compared to traditional numerical
methods.

2. Adding a penalty term to the loss function to penalize deviation from the initial or boundary
conditions is called soft assignment.

2.2.2 Soft Assignment: Physics-informed Neural Network (PINNs)
Physics-Informed Neural Networks (PINNs), introduced by Karniadakis et al. in 2018 [16],

represent the state-of-the-art method for solving differential equations with neural networks. In-
terest in the field grows significantly each year and now the method has been adapted thousands
of times to generate different kinds of PINNs for different circumstances. PINNs represent an an
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extension of the loss function in the same form as the approach from Lagaris et al. [12] while in-
corporating boundary conditions through soft assignment. The loss function consists of two main
terms L = Lphysics + Lboundary, where:

• Lphysics corresponds to the discrepancy between the network’s approximations and the dif-
ferential equation, embedding the system’s physical laws.

• Lboundary corresponds to the discrepancy from the precise boundary and initial conditions,
typically employing the mean square error (MSE) for its flexibility.

This approach is incredibly flexible, and any boundary or initial condition can be accounted for
relatively easily. Additionally, this formulation allows for the straightforward integration of further
constraints as just an additional term in the loss function to optimize over. The straightforward
integration of additional constraints into the network’s loss function allows it to be applied to
difficult problems like high-dimensional PDEs where traditional methods would suffer, and the
formulation facilitates both supervised and unsupervised learning approaches.

Further mathematically expanding on the PINN idea in [18], the general framework for solving
PINNs relies on the minimizing the two main terms of the loss function the differential equation
and boundary term. If we consider the bounded domain Ω ⊂ Rn with x ∈ Ω, then we can represent
any differential equation similar to (1.1) but now on the entire domain. We can define operators
representing these terms:

N(x, u) = f(x) for x ∈ Ω

B(x, u) = g(x) for x ∈ ∂Ω
(2.15)

then the differential equation with boundary conditions can be moved to one side so that we
have new operators representing the error on the interior due to the differential equation N and the
error due to the boundary conditions B. These operators are defined such that:

Lphysics := N (x, u) = N(x, u)− f(x) = 0 for x ∈ Ω

Lboundary := B(x, u) = B(x, u)− g(x) = 0 for x ∈ ∂Ω
(2.16)

Therefore, the loss function L = Lphysics + Lboundary = 0 when the network finds parameters
that are an exact solution to the differential equation and adhere to the boundary conditions. More
formally, for higher dimensions and general Lp spaces, the loss functional has the form:

L̂(u) = c1

∫
Ω

N (x, u)2dx+ c2

∫
∂Ω

B(x, u)2dx, (2.17)

for some fixed p and c1, c2 > 0. c1, c2 represent weights that balance the model’s focus on
solving points on the interior, satisfying the differential equation between the boundary accuracy.
The approximate solution û by the network of which the first k (potentially partial) derivatives
exist and have finite Lp norm. However, in most practical cases p = 2 and can be viewed as a
mean square error (MSE) for the interior and boundary terms.

The loss functional ideally is an integral with infinite points, but the data we use is finite since
this cannot be done by a computer unless we discretize the domain. We can do so by using Rie-
mann sums as an approximation of the continuous integral and evaluate the loss function on the
series of points in the domain, where we create a uniform mesh of the domain [0, 1] by taking a
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uniform partition (made out of n+2 points for example) 0 = x1 < x2 < ... < xn+2 = 1. Then, by
using the Riemann sum of the function in the integrand we obtain:

L(α) =
1

n

n∑
i=1

N (xi, u(x, α))
2 + λ

(
1

nB

nB∑
i=1

B(xB
i , u(x, α))

2

)
(2.18)

where:

• xi and xB
i denote interior and boundary points, respectively.

• λ is a tunable hyperparameter that arbitrates the balance between the model and boundary
conditions.

• After training, the neural network û(α, x) should approximate the solution of the differential
equation, denoted as u(x).

The points on the interior are chosen similarly to collocation methods for solving differential
equations. The robust framework of PINNs allows for exceptional flexibility in dealing with dif-
ferential equations problems and constraints. Since the loss function minimizes the deviance from
the differential equation, this leads to high generalizability and generalization power [13]. How-
ever, this method has the drawback that the BCs might not be adhered to rigorously. This could be
problematic as the BCs represent physical information to the problem.

From [18], there is a guarantee that if the neural network starts δ > 0 close, then the neural
network’s solution is ϵ close to the actual solution. Therefore for any ϵ > 0, there exists a δ > 0
such that the approximate solution û converges as:

L̂(u) < δ → ||û− u|| < ϵ (2.19)

This theorem suggests a consistent closeness between the computed and true solutions when the
loss is sufficiently small. Despite their universal nature, achieving a low loss does not always
guarantee the accuracy of differential equation approximations. Specifically, if L < δ, it implies
û(x) ≈ u(x, α). To be more specific, a sufficiently small loss L < δ suggests that the approxi-
mation û(x) is close to the true solution u(α, x). However, these two solutions might still diverge
substantially. Furthermore, reaching this particular loss threshold may not always be feasible due
to various factors, including the complexity of the differential equation and the limitations of com-
putational resources. Therefore the initialization of PINNs is important, but has not built enough
theory yet to find the optimal initialization methods.

The general problem of minimizing the loss function here is a multi-objective optimization
problem, where the network’s finite computational capacity results in trading accuracy from bound-
ary to interior. The boundary conditions often relate to physical constraints on the system that have
to be satisfied for the system to make sense, therefore it is essential that the boundary conditions are
satisfied. Since this method is a soft assignment method, the BCs are often not exactly satisfied.
Moreover, training the network is essentially trying to minimize over the interior and boundary
values of the problem simultaneously. The network might not be capable of doing both at the same
time. To solve this, we introduce certain weights λ to tune the importance of the boundary and
interior. However, the network only has a certain amount of nodes and capacity to tune this and all



15

that is strictly known is that λ > 0. There is not a known optimal method for choosing λ, but λ
is most likely a large value and is rarely equal to the same weight as the interior. One method of
finding the ideal λ value is brute force where we can iterate over the possible values; however, the
number of hyperparameters make testing a sufficient number of combinations very computational
expensive and slow.
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Chapter 3

Computational Method, Setup, and Results
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3.1 Unsupervised Machine Learning for Solving Ordinary Dif-
ferential Equations

Traditional and neural network techniques to solve differential equations can find solutions
for differential equations with fixed RHSs and BCs. Typically, changing either the RHS or BC
requires the network to be completely retrained using the methods above. Our goal is to create
a solver that is able to approximate solutions to any differential equation given any RHS or BCs
without needing to be retrained. Having a solver for any RHS or BC would streamline the solution
process for solving differential equations and potentially broaden the space of applications.

Grafton [7] was able to create a generalized solver for varying RHS and BC using supervised
learning. This work extends the same idea for unsupervised learning, which is inherently more
complex to perform. Unsupervised learning without explicit labeling of the data set, attempts
to uncover the solution from the inherent structure of the data without human intervention. The
benefit of this is we are able to circumvent the need for a separate solver and the computation
with the explicit labeling of training data. Overall implementing the method should reduce the
computational time and resources necessary, especially for difficult to solve differential equations.

Without any knowledge of the actual solution the network will use a loss function borrowing
the form from [12]. The objective is to create a solver that minimizes the error between the network
approximated solution and the actual solution for a differential operator A for the equation Au = f .
By finding the parameters that minimize the loss the network will approximate the inverse mapping
of the differential operator u = A−1(f), where A−1 maps f to its corresponding solution u for the
Ginzburg-Landau equation Au := u′′ + u− u3 = f .

3.1.1 Training Set Generation
To study the network, a training set T is generated as a series of hypothetical solutions in

C2 composed of the first ten modes of the real discrete Fourier series to synthesize the data. The
collection of functions are constructed with uniformly randomly assigned coefficients in a specified
range. Specifically, each ui has the form:

ui =
10∑
k=0

(
ak
k

sin(kx) +
bk
k
cos(kx)

)
, (3.1)

where ak, bk ∈ U(−10, 10). Note that the boundary conditions u(0) = a and u(1) = b are
not prescribed beforehand. Following this, we calculate the corresponding RHS fi = Aui for
each solution ui, for i = 1, . . . , 10, 000. Consequently, the training set T is comprised of these
calculated values:

T = {f1, f2, . . . , f10,000}.

Each object in the training set fi corresponds to a known solution ui that the network does not
know but is useful as a benchmark of comparison. The number of terms, the number of each ui,
and the uniformly random distribution for the coefficient are all modifiable parameters to the data.
The decay term and the 1/k term on the coefficients were introduced to ensure that the solution
converges and to dampen higher-order oscillation terms.
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In J. Grafton’s [7] approach, the collection of solutions were generated from fourth-degree
polynomials with integer coefficients between 0 and 5. This work extends the solution space from
fourth-degree polynomials to a broader space of functions described by the Fourier series solutions.
The set of functions that are representable by the Fourier series is a broader class than functions
that can be represented by polynomials. Therefore this expansion to a wider class of functions
allows for solving a more general class of solutions to be represented.

The data generation process starts by designating the number of functions to build the training
set T , in this case 10, 000. Then the 10, 000 discrete Fourier series functions ui are generated to
build a matrix U containing each ui. The input data f is prepared by solving Ginzburg-Landau
equation f = d2u

dx2 + u− u3, where each RHS fi is derived from fi = Aui. Following this to work
with finite-dimensional data the computer can handle, we dissect the interval [0, 1] into uniform
segments with N points equal to 64, 128, 256, 512, or 1024 and size of the interval h = 1

N−1

to evaluate u and f at these points. This procedure generates an input matrix F , containing the
evaluations of each fi, which serves as the neural network’s input. The model does not use the
data from the initial solution ui except the endpoints u(0) and u(1) which serve as the boundary
conditions in the loss function.

The dataset is partitioned for training by splitting 80% of the functions in the training set T for
training and 20% of the functions to evaluate the model in the test set. This 80/20 split between
training and testing set data is a standard practice in machine learning.

3.1.2 Training Procedure
Training begins by generating and setting the inputs: f representing the right-hand sides of the

differential equation, along with a and b which are the boundary conditions. The network initial-
izes weights and biases for each layer according to a predetermined distribution and initialization
strategy. After initialization, the network evaluates the initial loss function using the provided input
data F and modifies the weight and bias parameters α to step in the direction of minimizing the
loss function or the negative gradient. The method is called gradient descent, which modifies the
parameters after each time step called an epoch as:

αn = αn−1 − τ∇L(αn) (3.2)

The learning rate τ controls how large the step is in each direction. Instead of directly applying
gradient descent to the entire data set, the parameters are update from the average of continuously
choosing a smaller collection of randomly chosen objects from the training set T , called a batch
Tn. The network passes through enough batches to equal the size of the training set and updates
α afterwards. The length of time to perform this computation is known as an epoch in a process
called stochastic gradient descent (SGD). SGD is used in computation because it has a lower com-
putational complexity and is able to better avoid local minima then gradient descent. The learning
rate is decreased after a specified number of epochs to more finely resolve the ideal parameters as
it gets closer to the global minima.

The loss function is designed to minimize the discrepancy between the computed solution and
the actual solution of the differential equation. It is designed to reach a minimal value when the
parameters find an exact solution to the differential equation satisfy the condition Au = f where
exactly at a solution where L = 0. The form of the loss function aligns with the design of the
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simplified PINNs loss function from [18]:

L̂(u) =

∫
Ω

N (u, x)2dx+ λ

∫
∂Ω

B(u, x)2dx (3.3)

for general differential equations. Specifically, for the Ginzburg-Landau equation d2u
dx2+u−u3 =

f with Dirichlet boundary conditions the loss function here is:

L̂(u) =
1

N

N−1
N∑

i= 1
N

(Aû(x, α)− f(x, α))2 + λ((û− a)2 + (û− b)2), (3.4)

where is û is the network approximated solution, f̂ = Aû is the network approximated RHS, α
are the network parameters, and λ is a weighting factor emphasizing satisfying the boundary con-
ditions. This loss function structure aims to minimize both the interior L2 error of the solution’s
deviation from the differential equation, and the L2 error of the boundary terms. The boundary con-
ditions represent physical conditions and meaning to the differential equation. Therefore greater
emphasis is placed on the network finding a physical solution that satisfies the boundary conditions
emphasized by modifying the loss by a relative constant λ where λ > 1. Note that the loss function
is agnostic to the actual solution, eliminating the need for prior knowledge or supervision.

The loss function’s differential equation operator contains derivatives, and with only discrete
data, an approximation of the derivative needs to be performed. There are multiple ways to perform
this approximation. One is using automatic differentiation which leverages computational graphs
and implicit differentiation. The approach here uses finite difference method derivatives to produce
second derivative approximation of a point built using the neighboring values of the points around
it (5.2). The overall RHS of the loss function after each training step becomes:

Aû = f̂(x) =
û(x+ h)− 2û(x) + û(x− h)

h2
+ û− û3

where h is a constant representing the uniform distance between points determined by the uniform
discretization. The finite difference derivative does not requiring additional memory costs for
finding derivatives like the computational graph approach. In some sense, the accuracy of the
derivative in the network is capped to a resolution of h, which is predetermined by the data. The
value of h in a uniform discretization here does scale with the number of points, providing further
resolution for large discretization sizes of the interval [0, 1]. However, future methods could use
adaptive stepping or stochastically taking points with other forms of the derivative to overcome
this limitation.

3.1.3 Architecture
The neural network architecture is determined by the number of layers known as the networks

depth and the number of neurons in each layer which is the layer’s width. The first layer is the
input layer its size is determined by the dimensions of the input data and boundary conditions.
Similarly, the output layer is tailored to match the dimensions of the desired output, which here
is the same size as the input layer’s size. The number of neurons in the input was determined by
the number of points N in the interval [0, 1] from 64 to 1024. Then the input would have N + 2



20

nodes accounting for boundary conditions as well. The flexibility in the architecture lies within the
hidden layers, where both depth and widths varied throughout the project. Optimal results were
often achieved using a pyramid-like configuration, where the neuron count initially increases and
then halfway through decreases across the layers.

An example of the pyramid-like network architecture would be a network with nodes in each
layer as:

N + 2(input) → 1.5N → 2.25N → 3.375N → 2.25N → 1.5N → N + 2(output) (3.5)

Another architectural variant employed a uniform layer width throughout the network. Al-
though this configuration yielded marginally worse results compared to the pyramid structure, it
offered the advantage of faster computation and function as a baseline of comparison.

The overarching goal of our neural network design was to balance computational efficiency
with the ability to capture the complexities inherent in the input data. The structure of the layers
determines the computational capacity of the network. By adjusting the neuron count to first
increase then decrease, the network aims to refine and concentrate information critical for accurate
output modeling within 4 to 8 layers which can be performed relatively quickly.

In addition to structural considerations, we enhanced the network’s design with the integra-
tion of batch normalization and nonlinear activation functions at each layer. Initially, the Rectified
Linear Unit (ReLU) served as our primary activation function due to its computational simplicity
and effectiveness in providing a nonlinear transformation at minimal computational cost [14]. The
ReLU function acting in 1D is a piecewise linear function that outputs zero for numbers less than
0 and x for positive numbers. The ReLU function is defined to be a vectorial activation function
that applies to the entire vector component-wise. However, to address some of the limitations as-
sociated with ReLU, particularly in the context of negative input values, we transitioned to using
the Leaky ReLU activation function. Leaky ReLU maintains the computational benefits of its pre-
decessor while introducing a small, positive gradient for negative input values, thereby mitigating
the dying ReLU issue without compromising the network’s efficiency or its capacity for nonlinear
function approximation.

The choice of activation function depends on a variety of factors like the type of problem, the
gradient stability, the computational speed, and more, with the activation function effecting the
number of computations the stability of the convergence, and the stability of the gradient. The
initial choice of the activation function was the ReLU activation function. This was later updated
to use leaky ReLU instead, which is the same as ReLU except for values below 0 result in −cx
where c is a positive constant resulting in a piecewise linear function with a negative slope on the
left. Shown in the figure below is the leaky ReLU function. The choice of Leaky ReLU is that it
is similarly computationally inexpensive nonlinear activation function, that also helped correct for
some of the issues of the ReLU activation function at the cost of some of the nice properties.
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Figure 3.1: Left: The ReLU activation function. One of the simplest and most widely used acti-
vation functions [14], which outputs zero for negative inputs and the outputs the input for positive
values. Right: The Leaky ReLU activation function. A variant of ReLU that has a small negative
value that grows linearly for negative input values. The change to the negative values address the
dying ReLU problem by preventing neurons from becoming inactive.

3.2 Results

3.2.1 Initial Results: Varying the Data
The experiments focus on training the DNN to solve the Ginzburg-Landau equation modeling

the behavior of type-I superconductors in the simpler 1D case where we consider u as a real scalar
instead of a complex tensor as in the original equations [1]. Using the loss function initially defined
above in form (3.3) and implemented directly as (3.4) then the goal is to create a solver that given
any RHS f and Dirichlet boundary condition is able to map those conditions to an approximate
solution for the differential equation.

The efficacy of the model depends on several factors: the magnitude of the input data, the
amount of data input, the structure of the network (width and depth of layers), the initialization
procedure of the weights and biases α, and the magnitude of the boundary condition scaling pa-
rameter λ. We have found that the accuracy of the results is highly dependent on the magnitude
of the data input, the number of neurons used, the initialization used, and the magnitude of the
scaling parameter λ used to control the scaling of the boundary conditions to the interior. The ex-
periment follows the training procedure above to generate matrices U and F composed of 10, 000
rows where the row entries represent the different points across the uniform discretization from 0
to 1 for the solutions and RHS respectively.

To define the ability for the network to approximate the solution the primary metric of per-
formance was the coefficient of determination (R2). This metric describes how well the neural
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network model captures and predicts the variance in the target data [6]. Given a set of predictions
û by the model and the actual solution u then R2 is defined as:

R2 = 1−
∑N

i=1(ui − ûi)
2∑N

i=1(ui − ū)2
, (3.6)

where ū is the mean of the actual solutions and N is the number of data points. The numerator,∑N
i=1(ui−ûi)

2, represents the sum of squares of the residuals and measures the difference between
the predicted and actual solutions. The denominator,

∑N
i=1(ui − ū)2, is the total sum of squares

which measures the variance in the actual solutions.
Multiplied by 100 R2 represented a percentage of capturing the variance and has three main

regions. R2 = 1 implies a perfect match between the model predictions and the actual data. An
(R2 = 0) implies that the prediction does not account for any of the variance in the solution. In this
case, the model prediction is not any better than simply guessing the exact mean of the solution
which is a straight line and does not represent any patterns in the data. A negative R2 value occurs
when the model’s predictions are worse than the guessing just the mean. This often implies the
model is overly complex or improperly trained.

The Relative Root Mean Square Error (RRMSE) was employed to assess solution accuracy,
defined as:

Relative Root Mean Square Error (RRMSE) =

√
1
T

∑
∈T (û− u)2

||u||2
, (3.7)

serving as a normalized measure of mean square error between the approximated and actual solu-
tions. This metric allowed us to track improvements in model performance post-training. Notably,
increasing the number of discretization points consistently enhanced network performance, indi-
cating the benefit of providing more detailed data and a finer computational mesh. R2 is the pri-
mary metric used here but it is complex and outliers in the data can disproportionately influenced
its value. A high R2 values are generally desirable, but a slightly lower R2 might still meaning-
fully approximate the underlying dynamics of the solution. To get a more complete picture of the
model’s accuracy the Mean Square Error (MSE) and Relative Root Mean Square Error (RRMSE)
are also used, where the RRMSE is defined as:

Relative Root Mean Square Error (RRMSE) =

√
1
T

∑
∈T (û− u)2√

1
T

∑
∈T u2

,

This serves as a normalized measure for the solution error where the numerator gives the resid-
ual in L2 and the denominator normalizes with the norm of the solution in L2.

Characterizing the solution create by the real Discrete Fourier series, we find that the solution
is smooth meaning that is continuously differentiable and has higher order oscillations created
from the later terms of the Discrete Fourier series. The higher order oscillations induced by the
later terms add complexity to the solution and add oscillations to the data. An initial test built the
data form functions u = c ∗ sin(x) where c varied uniformly between functions from [−100, 100]
and had 128 discretization points between [0, 1]. For consistency, network outputs were generated
using an architecture of fully connected layers and a small size of neurons per layer and hidden
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layers were selected for its balance of computational efficiency and performance. Furthermore,
the initialization procedure here is a Xavier initialization. Computations were conducted on a
Python 3 Google Compute Engine backend via Google Collaboratory, utilizing an A4 GPU. All
the results were performed using the Adam optimizer multiple times and averaged over five trials
of rebuilding the network. Furthermore, all graphs in the future were plotted so that they return
the prediction and network approximation closest to the average RRMSE of the 10, 000 functions
in the network. With the singular sine term, the network is quickly and consistently able to find a
network approximation in around 50 epochs. The network approximation found is quite accurate
to the actual solution and was found relatively quickly in only 6 layers with 1024 neurons in each
hidden layer. The average RRMSE error was 9.21 × 10−6 for both the training and test set with
an initial MSE 82380 decrease to 7.31 × 10−9 on the test set after training. This implies that the
network is easily able to find solutions to simple and smooth functions with this method, showing
a increase MSE by 13 orders of magnitude. From now on, the solutions will be built with the first
10 modes of the Fourier series. Introducing more terms of the Fourier series add oscillations to
the data and mirrors testing the network’s performance against data having errors or noise. Overall
this change makes the training on the network more difficult.

Figure 3.2: Left: The left figure shows the network approximation to finding the sine function in
blue and the actual solution in orange. The network approximation is not visible the model virtu-
ally exactly matches the actual solution. The figure on the right shows the difference between the
solutions plotted against their position on the interval. The network composed of only 6 layers and
1024 neurons per layer was able to converge to a solution accuracy of 9.21× 10−4 % measured by
RRMSE quickly within 50 epochs. This shows that the network is easily able to approximate func-
tions with low oscillations and high magnitude. The network approximation appears to smoothly
map to the sine function and is able to generalize well to the test set.

3.2.2 Changing Amount of Functions in the Data
So far, 10, 000 functions simulated for U and F has been the standard for computation. For

future practical applications the RHS to a differential equation often corresponds to measurable
phenomenon like forces and energy. To simulate the robustness of the method when there is not
as much data, the network ran on different matrices of U and F with 5, 000 to 10, 000 rows rep-
resenting functions. The tests were performed on coefficient ranges of [−100, 100] with 256 dis-
cretization points between [0, 1] for the pyramid-like network with 6 hidden layers with ReLU
activation functions. The amount of data present does effect the accuracy of the solution as it was
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found the larger the amount of data and functions available to the network, the higher the accuracy
was. Based on the graphs for the R2 error for this test in Figure 3.3, there is large improvement in
the accuracy initially as the R2 value on the training and test increased by roughly 9.0% between
5, 000 and 6, 000 input functions. However, there were diminishing returns as the relative increase
in R2 from 9, 000 to 10, 000 functions was achieved roughly a 0.5% increase. Therefore, this test
indicates that increasing the data size past a certain point is not worthwhile. The higher accuracy
comes at the cost of the greater the number of functions, the longer it takes for the model to run,
whereas doubling the number of functions from 5, 000 to 10, 000 doubles the run time.

Data Size Initial MSE Final MSE Final R2 Error Time (s)
Training Test

5000 33 254.535 87.666 0.7358 0.7377 124.0548
6000 33 280.366 56.206 0.8254 0.8281 147.1863
7000 33 307.387 42.345 0.8736 0.8753 170.7534
8000 33 876.656 36.192 0.8815 0.8894 195.1211
9000 34 393.151 32.353 0.9029 0.9009 219.2694

10000 32 809.636 30.795 0.9083 0.9100 248.6532

Table 3.1: The figure shows the impact of changing the data size by varying the number of func-
tions in the training and test set on neural network performance. The major highlights are the
improvement in the R2 error and MSE comparatively as there were more functions in the data and
test set. The tests were performed on each data size on data that had 256 discretization points
within a [−100, 100] coefficient range for terms of the Fourier series. The network consisted of
a six-layer pyramid-like architecture with ReLU activation between each layer. The computa-
tional time roughly doubled after doubling the size of the data from 5, 000 to 10, 000 points. This
demonstrates the trade-off between data volume and accuracy, with diminishing returns on R2 im-
provements beyond certain data sizes.

3.2.3 Varying Discretization Size
In general, the trend is that the more discretized points, the better the network performs until

the network hits its computational capacity, which is determined by the width and depth. This
observation could be a symptom of the ”curse of dimensionality”. Here, it is realized that the
larger the dimensionality of the input data, the greater the number of effective neurons the network
needs to process the information. The specific relationship between these architectural changes and
performance is not entirely clear, but this empirically is found to be generally true while testing.
Experimentally this effect can be seen by evaluating different numbers of discretization points
between [0, 1] for the pyramid-like network with 6 hidden layers, 1026 neurons in each layer, with
Leaky ReLU activation functions ran for 250 epochs, coefficient sizes [−10, 10], a learning rate of
0.0005, batch normalization, λ = 1 and a batch size of 128. There is a consistent improvement with
each number of discretization points as the network can see a finer resolution of the interval [0, 1].
In the last case, once the dimension of the input data 1026 points reached larger than the number of
neurons in each layer, the network struggled to improve. It did not have the same relative decrease
in MSE on the test set of around two orders of magnitude that the smaller discretization sizes had.
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Figure 3.3: The graph shows the comparison between the R2 error between the test and training set
while varying the data size. The R2 error consistently improves with the data size showing that the
network performs better given more data. The R2 error between the test and training set is almost
exactly the same, implying that the network is able to generalize learned patterns on the training
set.

Furthermore, the largest source of error consistently in each of the tests was approximating the
boundary points of the solution. This can be seen in the Figures 3.5-3.9 below for each test at
different discretization sizes. The model mostly performs smoothly when approximating the RHS
and interior, but unexpectedly diverges to a sharp point on the boundary. The RRMSE and R2

variance metrics are particularly sensitive to large outliers and the metrics were heavily penalized
by the boundaries. It is clear that we are using soft assignment as the term in the loss function
penalizes the distance away from the boundary, but the network does not need to exactly satisfy the
boundary. This poses a challenge since the large distance form the boundary can make the solution
less physical. Additionally, the boundary values often pick out an exact solution for the problem,
so finding a network for the wrong boundary value problem could effectively be finding a different
solution entirely. This could be due to the effect of the finite difference method derivatives effect
of ”compressing” data at the endpoints, where the size of the second derivative shrinks to contain
two less points then the overall solution. Another possible reason why the results in the Table 3.2
suggest that the error decreases with the larger lattice sizes is that the differential equation could
feel the effects of the boundary less when it is further away. Closest to the boundary is the largest
source of error, but as the number of data points from the boundary increases the more the bulk
and differential equation play a further role and of the minimization of the approximated solution
with the actual solution. The more points on the interior and further away from the boundary then
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the lower the overall error. Note that this is just speculation. Similarly, an increase in discretization
points introduced greater oscillatory behavior in the solutions, likely due to the network’s fixed
capacity struggling with larger datasets. This could also be due to the dominance of large discrete
derivatives in the loss function. The goal of smoothing out the second derivative and the RHS
constructed by the network would most likely lead to a smoother solution; however, the networks
goal of decreasing the loss function does not always directly align with decreasing the error. This is
especially true in unsupervised learning where the exact solution is unknown. This is exemplified
with the right image of Figure 3.10 plotting in blue the value of fi for that specific function in the
test set and in orange the model recreates RHS f = Au = d2u

dx2 + u− u3 from the predicted model
solution. The matching of the RHS was particularly close and smooth; however, this did not always
translate to smoothly producing a solution like in the case of 128, 1024 point discretizations, and
the example below.

One positive note was that consistently throughout all the tests the error between the test and
training set were very low and in some cases higher on the test set show in Figure 3.4. This suggests
that the network is successfully generalizing finding a solution to the inverse differential operator
without overfitting.

Discretization Final R2 Error Final RRMSE
Points Training Test Training Test

64 0.871 25 0.867 89 0.358 00 0.361 85
128 0.925 55 0.926 70 0.273 45 0.271 02
256 0.945 65 0.945 11 0.233 15 0.234 46
512 0.953 71 0.954 44 0.219 00 0.215 35
1024 0.267 87 0.268 16 0.857 04 0.855 05

Table 3.2: This table evaluates the impact of data density on neural network accuracy. Testing was
conducted with a pyramid-like network architecture comprising six hidden layers and 1026 neu-
rons per layer, using Leaky ReLU activation functions over 250 epochs. The number of uniform
discretization points in the interval [0, 1] varied from 64 to 1024, with coefficients in the Fourier
series building the data ranging within [−10, 10]. The network had a learning rate of 0.0005, in-
cluded batch normalization between layers, had equal waiting between loss components λ = 1,
and a batch size of 128. Results indicate an overall improvement in model accuracy with in-
creased discretization until the network’s capacity is overwhelmed when input dimensions exceed
the networks computational capacity. This point occurs around when there are a similar number
of neurons in the hidden layers as discretization points. The network demonstrated strong general-
ization capabilities across both training and test sets suggesting the method effectively learned the
inverse differential operator without overfitting.

3.2.4 Coefficient Ranges
The greatest change to the characteristics of the network solution were the coefficient ranges

of the inputs in the Real Discrete Fourier series when building the data. Linear functions have the
nice property of homogeneity where for any coefficient c ∈ R then f(cx) = cf(x). However,
nonlinear functions do not necessarily have this property. Therefore changing the magnitude of the
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Figure 3.4: The graph shows the comparison between the R2 error between the test and training
set while varying the number of discretization points. The R2 error consistently improves with the
number of discretization points until it hits a computational limit and the performance significantly
drops. Once again, the R2 error between the test and training set is almost exactly the same,
implying that the network is able to generalize learned patterns on the training set.

Figure 3.5: The comparative approximation of the solution u and RHS f taking 64 data points
varying the number of discretization points.

initial input data changes the solution and solution characteristics for nonlinear equations like the
Ginzburg-Landau equation.

It was observed that there are two distinct cases impacting network performance. The first
case is for large sizes of the coefficient ranges the data, the network is able to handle the data well
using at least four to eight hidden layer sizes. The results increase with the number of layers and
other factors but the network is able to handle the data and produces a good approximation of the
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Figure 3.6: The comparative approximation of the solution u and RHS f taking 128 data points
varying the number of discretization points.

Figure 3.7: The comparative approximation of the solution u and RHS f taking 256 data points
varying the number of discretization points.

Figure 3.8: The comparative approximation of the solution u and RHS f taking 512 data points
varying the number of discretization points.

solution. This can be seen in the table below showing the network was able to perform the best
on the largest size coefficient range of [−100, 100]. The table was computed for 256 discretization
points between [0, 1] for the pyramid-like network with 8 hidden layers with ReLU activation
functions ran for 250 epochs. Generally the tests performed on coefficient ranges of [−100, 100]
throughout the project, which holds true here as well. The network had the highest R2 value in
the training and test set at the [−100, 100] coefficient range with a sharp decrease in the MSE.
The functions fit well; however, there was large error on the boundaries and therefore the RRMSE
appears quite large.

The second case is for lower magnitude data. Examining the other coefficient ranges than
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Figure 3.9: The comparative approximation of the solution u and RHS f taking 1024 data points
varying the number of discretization points.

Figure 3.10: An example of initial results. We notice that the network is able to approximate the
function well but has a large error on the boundary and nonsmooth structure. General improve-
ments in the loss of the function do not directly correspond to improvements in the error even
though the loss function represents the error in the differential equation.

[−100, 100] for the coefficients in the Fourier series, it seems that none of the other coefficient
ranges produced an adequate approximation to the actual solution. The MSE on the test set did
not reduce much from the initial value after initialization. Additionally, the value of R2 decreases
with each decrease in magnitude of the coefficient range and shows that in the smallest size of
the coefficient range from [−0.01, 0.01] the network was blatantly wrong. However, note that the
measures of the error scale also with the size data as well, where smaller error normalized on
smaller coefficient ranges appear worse. Overall, it appears that in all metrics the network fails to
approximate small coefficient sizes.

Specifically examining the instance in the coefficient range between [−0.1, 0.1] shown below
in Figure 3.11, it was observed that the network quickly converges to a suboptimal solution shown
by the final training RRMSE of 141.2%. This premature convergence happens typically within
50 epochs and exemplifies a problem known as the vanishing gradient problem. The plateau in
the loss function comes from the gradient no longer updating because it has suddenly become
small hence ”vanishing”. Specifically, it seems the issues is the dying ReLU problem which is a
kind of vanishing gradient problem where neurons effectively ’turn off’ due to non-positive inputs,
reducing the network’s computational capacity and flexibility.
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Coefficient MSE Final R2 Error Final RRMSE Time (s)
Range Initial Final Test Train Test Train Test
0.01 8.67× 10−6 5.09× 10−4 −150.600 −150.400 12.325 12.243 141.52
0.1 3.39× 10−4 6.60× 10−4 −0.984 −0.985 1.410 1.412 143.5
1 0.032 44 0.0331 −0.021 −0.022 1.010 1.010 142.64

10 3.3088 3.1483 0.0493 0.0483 0.9751 0.9754 142.36
100 3.36× 102 18.509 0.9456 0.9451 0.2332 0.2345 141.01

Table 3.3: Analysis of neural network performance for different coefficient ranges shows that
the network can accurately approximate solutions for large coefficient ranges but fails for smaller
coefficient sizes. The [−100, 100] coefficient range exhibited the network’s best performance with
an R2 score for training and testing of 0.945, reflecting high precision and successful learning.
However, the R2 value and other performance metrics consistently worsen with the smaller the
coefficient range. This occurs as the network approximates small magnitudes, and the gradient
vanishes, leading to a lack of learning and plateaus in training earlier and earlier.

3.2.5 Dying ReLU Problem
The dying ReLU problem is a phenomenon where the values for the weights become highly

negative for certain weights, this means that because of the structure of the ReLU activation func-
tion those neurons did not get used. Therefore there is less computational capacity of the network
and large changes in the weights for those neurons still lead to the same result of having no weight
on certain neurons. Effectively the number of neurons in the network are reduced and the network
gets stuck. As seen in [14], there are three general approaches to fixing the dying ReLU problem.

1. Adjust Network Architecture: Modifying the network’s structure like changing the width
and depth of layers, changing the activation function type, changing the learning rate and
modifying the batch size.

2. Add Training Steps: Incorporating steps in training like dropout and batch normalization
during training significantly impacted the network’s ability to maintain active neurons and
prevent gradient vanishing. Introduced in 2015, batch normalization adjusts each layer’s
inputs to have fixed means and variances, thereby reducing the dependency on batch size
and initialization while enhancing generalization. This approach allowed for higher learning
rates and mitigated the risk of exploding or vanishing gradients. [5] showed that initialization
is important for determining the convergence to solving differential equations.

3. Modify the Initialization Method: Changing the initialization strategy is used to modify
the weights and biases without changing the network architecture.

All three methods were implemented into this network to help fix this problem, but the effect
each one had were not equal. Implementing these changes throughout the tests, the most significant
difference was in changing the number of layers. At the cost of a large increase in computational
time with each increase in layer as the effective number of neurons increases, so does the accuracy
of the solution and the range of parameters that the network can effectively handle. Additionally,
the effects of batch normalization are quite dramatic. During batch normalization the for each layer
fixes the means and variances of each layers inputs. This implies that the normalization causes the
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layers to no longer be independent and identically distributed. This has its problems, but overall
batch normalization empirically allowed for higher learning rate without vanishing or exploding
gradients. There was a regularization effect for the batch normalization that improves the ability
for the network to generalize. After adding the batch normalization the network was more easily
able to handle coefficient ranges with smaller magnitudes such as [−10, 10], less dependent on the
learning rate, less dependent on the batch size, and less dependent on the activation function.

In these cases, in addition to changing the initialization and adding batch normalization, the
activation functions and network structure were changed to produce a much better result. This
implies that the ideal network parameters and architecture depend on the data itself, which is a
problem that needs to be taken in consideration by the user.

Modifying the activation function to deal with the dying ReLU problem did not seem to help
greatly for very small coefficient sizes. The results for Leaky ReLU which is a variant on the ReLU
function seemed to help the most out of Leaky ReLU, Tanh, and GeLU; however, the vanishing
gradient problem still persisted. For larger coefficients ranges like [−100, 100] that do not suffer
from the vanishing gradient then ReLU activation’s work well and outperform other activation
functions like Tanh while being less computationally expensive and only slightly slower. The
results for the test with coefficient ranges of [−100, 100], with learning rate 0.005, 128 batch size,
and six layers with 1026 neurons per layer with a flat architecture are composed in Table 3.4. The
activation function did not make a huge difference for larger coefficient ranges but did lead to
noticeable improvement and similar computational times. However, for small coefficient ranges
like [−0.1, 0.1] the model has a higher probability of failing even with adding dropout, adding
batch normalization, varying the architecture and changing the initialization strategy. The results
were not included for smaller coefficient sizes because the results were not consistent or robust.
These observations highlight that the optimal network parameters and architecture are contingent
on the input data, especially the size. Therefore selecting and tuning the parameters of the network
to match the data’s specific attributes requires careful consideration by the user. This shows that
designing effective unsupervised neural networks for nonlinear BVPs is tricky.

Activation Function Time Taken (s) Training Set RRMSE Test Set RRMSE
ReLU 142.79 0.0769 0.0762
GeLU 132.53 0.0913 0.092
Leaky ReLU 134.42 0.1188 0.1193
Tanh 135.60 0.1186 0.1196

Table 3.4: The best performing activation function was ReLU in the large coefficient sizes
[−100, 100] regime, consistent with the theory [14]. Surprisingly, ReLU is the simplest function,
but it took the longest to train. Leaky ReLU and Tanh activation functions performed the worst
but were slightly faster. GeLU emerged as a middle ground in accuracy between ReLU and Leaky
ReLU while performing the fastest but marginally.

3.2.6 Adding weights
Throughout the test there has been an issue that the largest source of error was on the boundary

leading to large penalties to the metrics for the MSE, R2, and RRMSE. To remedy this problem,
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Figure 3.11: The ReLU activation function does poorly at small coefficient ranges and exhibits the
dying ReLU problem where the network plateaus early to a poor result. The top left figure shows
the output of the neural network and the actual solution comparison; below are the separately
plotted outputs to show that the network output is at a different magnitude. The top right shows
the network recreated f = Au from the solution approximation vs. the actual RHS for error
comparison. The bottom left shows that the loss plateaus quickly and can no longer adequately
update after around 50 epochs.

extra weighting λ was placed on the boundary term in the loss function. Following the ideas of
[18], by placing weighting on the boundaries we can have the network prioritize the boundary more
heavily. Since the neural network has a fixed computational capacity determined by architecture
width and depth, then placing more emphasis on the boundaries takes away emphasis on solving
the differential equation interior. However, the interior does not need an equal weighting and there
is diminishing returns placing all the weighting on the interior so it is more efficient to place more
weight on the boundaries. Finding the hyperparameters for the weights is a difficult procedure and
the paper suggests that the it is known that the weights placed on the boundary should be higher,
but there is no defined way to find the ideal hyperparameter weighting. The methods to find the
weighting so far have been through systematic testing, intuition, and trial and error.

To effectively evaluate the effects of adding the weights to a network, a test was performed
with a network with 256 discretization points between [0, 1]. The network had a pyramid-like
architecture with 8 hidden layers, Leaky ReLU activation functions for each layer, data with co-
efficients generated from [−100, 100] uniformly, and Xavier initialization. The model was run for
250 epochs for each test, at a learning rate of 0.0005, and a batch size of 128. The results for
placing more weight had the effects of overall reducing the boundary error significantly, especially
for small discretization sizes where most of the error comes from the boundaries. The weighting
is different for every run and seems to scale with the size of the data but not in a clear manner.
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Additionally, the cost of placing more weight on the boundaries is shown by the transformed so-
lution and the network output having more oscillations. These oscillations are quite large and
seemingly non-periodic. Adding more weight on the boundary terms did marginally decrease the
error and increase the R2 value, as seen in Figure 3.12. The increasing R2 values indicate a better
network approximation, especially with the high values of the boundary error used. Additionally,
at least for larger magnitude data, the network is robust to the boundary weight. Employing a large
boundary weight or too small of a boundary weight has a relatively small effect on the overall
accuracy of the network approximation from the baseline of an equal weighting between the inte-
rior differential operator and the boundary operator. This is true until the terms of the interior and
boundary reached relatively equal magnitude in the loss function. After increasing λ so that the
boundary had greater weighting in the loss at this point results in the emphasis no longer placed on
solving the differential equation. The model performance decreased drastically, now prioritizing
the boundaries over everything. There is dramatic improvement in the error on the boundary by
roughly 33 times decrease from the initial value of an equal weighting λ = 1 and closer to the
optimal value λ = 1× 103. This same improvement corresponded with an increase in the R2 value
in both the test and training set showing that model was performing more accurately and able to
generalize to solving the differential equation well for large values of λ. The improvement in the
R2 value was less drastic in the larger coefficient regime in Table 3.5 but the fit was already pretty
strong so further improvements are more difficult, costly, and impressive. Notably, there were also
improvements in the interior error as well, as the boundary error improved the network was better
able to solve the differential equation leading to improvements on both until a point.

log10 λ Final R2 Error Test Set Error
Training Test Boundary Interior

0 0.942 195 0.942 084 28 380.0 1747.7
1 0.941 525 0.941 418 29 656.9 1760.2
2 0.944 257 0.943 729 29 302.8 1683.4
3 0.944 950 0.943 877 29 226.6 1681.6
4 0.943 291 0.942 851 28 884.8 1716.3
5 0.940 187 0.939 758 29 937.0 1813.3
6 0.945 543 0.945 629 17 920.4 1709.6
7 0.949 525 0.950 001 6069.5 1651.8
8 0.954 796 0.954 039 4668.7 1525.8
9 0.951 416 0.950 680 1799.7 1661.6

10 0.958 740 0.958 114 853.1 1416.8
11 0.446 947 0.452 427 932.0 18 586.5

Table 3.5: Varying the weighting λ in the loss function on the boundary term showed that the higher
the λ, the more significant the increase in performance measured by R2. This occurs until the
network hits a critical limit in computational capacity resulting in a significantly worse performing
network. The tests were done on a network with 256-point discretized points across a [−100, 100]
coefficient range. The network architecture had a pyramid-like architecture with eight hidden
layers, Leaky ReLU functions, and Xavier initialization. Measuring the interior and boundary
error on the test sets revealed that once the boundary error reached greater weighting in the loss
function than the interior, the network failed to solve the differential equation accurately.
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Figure 3.12: The graph on the left shows the R2 error from the tests varying the boundary weighting
in the large magnitude data regime. The graph on the right shows the boundary and the interior
errors compared against each other. When the boundary weighting increases past the point where
interior and boundary weighting are comparable, the R2 error decreases heavily and the interior
error increases heavily. The network performs much worse past the comparatively small gains
made from increasing the weighting before the critical point.

In contrast, testing the solution on the same hyperparameters above but now using data with
Fourier term coefficients of size [-1,1] the solution accuracy is much lower overall. The network
clearly suffers from the vanishing gradient as the R2 = 0 indicates that the model fit is similar
to guessing the mean and is stuck around 0. Now there are dramatic improvements when varying
the weighting on the boundary. There is an increase in the R2 value with each successful iteration
reaching a peak at λ = 1× 106 with a roughly 15.7% improvement in the R2 value on the test set.
The larger improvement on the test set then the training set implies that the model is generalizing
well to finding the solution to the inverse differential operator more exactly while not overfitting.
However, there is still a large difference between the test and training R2 value at some points
meaning this generalization is not always guaranteed in this regime, as seen in Figure 3.13. Fur-
thermore, with each increase in λ the error in the boundary and interior on the test set decreases.
This shows that it is both beneficial for optimizing the boundary and the interior of the differential
equation to place more relative weighting on the boundary. By placing more weight on the bound-
ary the differential equation is better able to solve that specific boundary value problem determined
by the a and b boundary values rather than a different problem. There is a sharp increase in the
improvement on the boundary error going from λ = 1 × 103 to λ = 1 × 104 showing that the
improvement is not linear. Additionally, the network stops improving on the test set after reaching
λ = 1 × 107, where the model still improves in the R2 value on the training set but decreases the
R2 on the test set implying that the model is now beginning to overfit and λ = 1× 106 was closer
to the ideal value for the network to optimize over.

The model overall is robust to changes in λ where large changes in the loss function still lead
to convergence and proper fitting of the model. The significant improvements due to varying
the weights suggest that one possible avenue for dealing with the problem of the network being
unable to improve for smaller lattice sizes is to modify the loss function L. This changes the
optimization problem and therefore the gradient leading to improvement from the stagnant base
state. Additionally, the largest source of error typically on the models so far is fitting the boundary
points. With equal or relative weighting of the interior and boundary then there is significantly
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more terms in the interior then the boundary. The interior is entirely separate to the boundary.
The network will not see the boundary when modifying the loss as modifying the boundary is a
small relative change in the loss compared to the large values of the interior. Coupled with the
fact that the network using the discrete derivative over oscillating points often leads to very large
magnitudes for the second derivative then the boundary and stays large even small variations in the
network then the boundary is further not seen when optimizing. This can be seen by very large
values of λ are necessary for the network to see the boundary. The boundary term seems to have
a regulating effect on being able to see the magnitude of the equation and allows the network to
center itself around solving the specific boundary value problem at hand.

log10 λ Final R2 Error Test Set Error
Training Test Boundary Interior

0 0.046 53 0.044 02 4340.1 3137.1
1 0.045 01 −0.1125 4235.8 3144.2
2 0.047 74 −0.0892 3939.2 3140.6
3 0.101 41 0.103 59 3097.8 2983.4
4 0.171 11 0.179 66 1009.1 2771.2
5 0.189 08 0.189 50 413.1 2732.7
6 0.189 50 0.201 36 315.5 2705.0
7 0.201 36 0.189 52 323.6 2751.3

Table 3.6: The tests were performed on the same architecture, but different coefficient ranges of
the Fourier series at [−1, 1] than Table 3.5. The results show that increasing the weighting on
the boundary term improved the performance of the network with each magnitude increase. The
ability for the network to increase its performance despite being in the low magnitude regime and
suffering from the vanishing gradient problem presents a means of potentially fixing the vanishing
gradient issue with further analysis.

3.2.7 Varying Initialization Strategy
Initialization is especially important when evaluating nonlinear neural networks. As supported

by the results from [5], nonlinear differential equations are highly sensitive to the initialization
method and hyperparameters. This implies that the loss landscape of the nonlinear differential
equation is complex and has many local minima and maxima that the solution can fall into. The
complex loss landscape can often be seen by the network failing into and converging far away
from the actual solution. Additionally, the Landau-Ginzburg equation describes a process with
two large potential wells representing the global minima to the solution. Therefore which global
min the network ends up in would be dependent by the distance of each well to the initial starting
location. One the best ways to deal with this is just matching the initialization to be closer to the
global minima, which can be hard to predict.

The initialization of the distribution of weights and biases is crucial as it is one of the two
sources of randomness in neural networks. The two sources of randomness are weight initialization
and randomness inherent to the data. This is a blessing and a curse because the randomness allows
the network to have a higher amount of generalizability by introducing randomness means that
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Figure 3.13: The graph on the left shows the R2 error from the tests varying the boundary weight-
ing in the small magnitude data regime. The graph on the right shows the boundary and the interior
errors compared against each other. Unlike before in the large magnitude data regime, the R2 error
consistently improves and the interior error is relatively constant even past the point where the
errors become comparable. The lack of change in the interior error shows the network approxima-
tion for the differential equation is not improved upon, but the R2 error increases as the boundary
gets closer and the network approximation becomes closer the solution in magnitude. There is
a significant gap in the R2 value between the test and training sets showing that under the dying
ReLU problem training does not necessarily generalize well to the test set.

the network is not symmetrical and can leverage its nonlinearity to approximate any function and
learn new features. This randomness also allows for better exploration of the space to find the
optimal parameterize and converge faster. However, this also requires careful selection of the
initialization procedure, as the weight initialization controls the variability of how well the space
will be explored. Classical computation methods are more deterministic in their results, but it is
often not entirely clear how to choose the initialization the best way to leverage it. Here, weight
initialization was varied to find the best-performing initialization for a network with coefficient
ranges of [−100, 100], 256 discretization points between [0, 1] for the pyramid-like network with
eight hidden layers with Leaky ReLU activation functions for each layer. The model was run for
250 epochs for each initialization at a learning rate 0.0005 and a batch size of 128. Table 3.7 shows
the outcome of the test, and overall, the initialization strategy did not have a significant effect on
the outcome. The five initialization procedures, Xavier, Kaiming, Normal, Orthogonal, and Sparse
initialization, all had relatively similar final values of R2 in the training and test set, along with
the final value of the MSE. The network performed well, and the best-performing model was the
Normal initialization by a percent better than its peers.

Comparing the results for the well-behaved case with the range of coefficient sizes in the
Fourier series is [−100, 100] to the case to the same setup, but a coefficient range from [-1,1]
shows a drastic decrease in the overall ability of the network to find a solution like expected. In
this case, the effect of initialization is less pronounced when there is equal weighting between
the boundary and interior terms, as the network generally suffers from a vanishing gradient. The
network plateaus early regardless of the initialization strategy, indicating that varying the initial-
ization, although important, is not the primary driver to fixing the vanishing gradient problem.

However, the last case considers the same hyperparameters as the model above except now
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Figure 3.14: The two graphs measure the log loss vs. epochs and R2 vs. epochs for coefficient
ranges of [−100, 100] showing the initialization is less important when the network can approxi-
mate well.

Initialization MSE on Test Set Final R2 Error
Initial Final Training Test

Xavier 362 020.3 14.141 42 0.958 81 0.958 07
Kaiming 411 905.3 16.090 05 0.952 01 0.952 19
Normal 261 462.5 10.213 38 0.969 99 0.969 68
Orthogonal 369 743.4 14.443 10 0.956 91 0.957 18
Sparse 382 924.7 14.957 99 0.955 41 0.955 59

Table 3.7: The impact of five different initialization schemes, Xavier, Kaiming, Normal, Orthogo-
nal, and Sparse, was relatively equal in the extensive magnitude data range built from coefficient
sizes [−100, 100] in the Fourier series. In this regime the network appears to be robust to the ini-
tialization scheme with small improvements for the optimal choice. The R2 value was greatest
for the Normal initialization scheme, with the other initialization schemes performing relatively
similarly.

changing λ = 1×105 instead of having equal weighting. With a greater emphasis on the boundary,
the network can better find the correct magnitude of the solution. The R2 value on the test set
improved on average by 16.0%, excluding the results for the normal initialization as an outlier.

The improvement further provides evidence that the introducing weights helps mitigate the
vanishing gradient problem. Clearly, it does not resolve the problem as the model is still unable
to find a good approximation to the solution, but there is clear improvement. In this case, the
best strategy was sparse initialization, which performed a few percent better than the Xavier, Or-
thogonal, and Kaiming initialization strategies, which performed relatively equally. The normal
initialization performed much worse compared to the other initialization schemes and was rela-
tively unable to function well when the vanishing gradient was present. This is surprising given
how well it performed in the case where the coefficient range was [−100, 100]; seemingly, the
Normal initialization does not scale as well with the magnitude of the data.
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Figure 3.15: The two graphs measure the log loss vs. epochs and R2 vs. epochs for coefficient
ranges of [−1, 1] with an equal weighting between the boundary and interior λ = 1. This shows
that that the initialization is less influential when the problem exhibits a vanishing gradient.

Initialization MSE on Test Set Final R2 Error
Initial Final Training Test

Xavier 3.235 28 3.140 72 0.0290 0.028 41
Kaiming 3.300 14 3.203 68 0.009 98 0.008 95
Normal 6.387 89 6.201 19 −0.938 55 −0.917 80
Orthogonal 3.281 62 3.185 71 0.0164 0.014 63
Sparse 3.311 17 3.214 39 0.006 24 0.005 69

Table 3.8: Unlike the results previously displayed in Table 3.7, the initialization method had a
large impact on the performance of the network even under the same hyperparameter conditions
as Table 3.7. The vanishing gradient problem is evident in the near zero R2 value for each of the
initializations as the networks plateau early. However, the Normal initialization that performed the
best in previously performs significantly worse here, demonstrating the importance of choosing
the proper initialization.
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Figure 3.16: The two graphs measure the log loss vs. epochs and R2 vs. epochs for coefficient
ranges of [−1, 1] with an weighting on the boundary term in the loss of λ = 1 × 105. This shows
that that the initialization is is influential and leads to large accuracy increases for less behaved
solutions with weighting.

Initialization MSE on Test Set Final R2 Error
Initial Final Training Test

Xavier 2.750 06 2.669 68 0.179 0.172 98
Kaiming 2.778 54 2.697 33 0.173 0.164 46
Normal 5.165 42 5.014 44 −0.574 41 −0.554 26
Orthogonal 2.783 30 2.701 95 0.170 0.162 97
Sparse 2.667 57 2.589 60 0.205 0.197 61

Table 3.9: Proper initialization combined with increasing the boundary weighting in the loss func-
tion to λ = 1 × 105 demonstrated a remarkable improvement in the overall performance of the
network as illustrated by the increase R2 values. The emphasis on putting more weight on the
boundary helped slightly overcome the problem of vanishing gradients. Notably, the initializa-
tions Xavier, Kaiming, Orthogonal, and Sparse performed similarly once again, except the Sparse
initialization developed a slight edge over the rest. However, the Normal Initialization scheme
continues to perform relatively poorly and sees improvement from the previous test in Table 3.8
with the same hyperparameters in training, but is still an overall ineffective approximation to the
solution.
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3.2.8 Regularization Terms
Another way to regulate the loss function for improvement is to add regularization terms. Often

neural networks will add additional terms to the network to get desired outputs. It was empirically
observed that the network tended to exhibit frequent oscillations when building the RHS. These
oscillations in matching the approximate RHS of the network f̂ = Aû occurred when the network
was unable to reconcile the size of the data. The examples shown in Figure 3.17 demonstrate a case
where the network solution had high-frequency oscillations in matching the built network RHS to
the actual RHS function. This network was performed for a coefficient range of [−100, 100] with
equal weighting at the boundary and six hidden layers with 1024 neurons per layer and Xavier
initialization. The solution performs relatively well with a R2 of 92.3% on the test set, but the
oscillations lead to a solution that also has high-frequency oscillations that disrupt the performance.

Figure 3.17: The graph compares the network approximation of the solution on the left and the
RHS of the equation on the right, each built from 1024 discretization points. The conditions for
the network were 1024 neurons per layer, and a flat architecture with ReLU activation functions
running for 250 epochs. The network shows that even in the regime of large magnitude data,
the network experienced high frequency oscillations that made the network perform worse than it
ideally could have.

These oscillations plague solutions, especially in the regime of small-magnitude data. Shown
in Figure 3.18, the network was run with 8 hidden layers, 2056 neurons per layer, a combination
of Leaky ReLU activation functions and Xavier initialization. For this network, the approximate
solution matches the relative boundary of the solution successfully; however, the oscillations in
building the approximated RHS are a couple of orders of magnitude larger than the value for the
actual RHS. Despite the network trying to minimize the difference in the RHS, it failed to minimize
the discrepancy significantly and still generated a relatively accurate solution. Minimizing the
difference between the approximated network RHS and actual RHS does not directly correspond
to finding an accurate approximate solution, as shown before, except this time it worked out in the
network’s favor. The network was able to have a final MSE on the test set of 1.15×10−5. However,
without these oscillations the network would most likely have a smoother quality solution and
have a lower MSE. This case exemplifies that the network can find accurate solutions in the low-
magnitude regime; it is just not consistently able to do so.

The regularization term: Loscillation =
1
T

∑
∈T ||f̂ ||2 was introduced to penalize large oscillations

from the mean of the center of the network. The term works to regulate the network to attempt
to minimize the magnitude of f̂ . f̂ = Au contains derivatives from the form of the differential
equation, so decreasing these derivatives hopefully would smooth out the function, leading to
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Figure 3.18: The network found an accurate approximate solution in the low-magnitude regime.
However, as seen in 3.11, the solutions found in this regime, even when accurate, often have large
oscillations that make the approximated solution nonsmooth

better results. Since a majority of the empirical observations of largely oscillating approximated
RHS come from when the network fails to approximate in the low magnitude data regime or fails to
approximate in the high magnitude data regime but past the computational capacity of the network,
then the goal was to add this term and improve upon these two situations.

Adding a regularization term helped improve the base state with initially equal weighting.
Shown in the Figures 3.19 and 3.20 below, in some cases, adding the regularization term led
to smooth approximations of the solution even past the previous computational capacity of the
network. However, empirical testing shows that there is a much larger cost to modifying the
weighting on the regularization. The error often increases and the network is not as robust to
changes in the weighting. There is a diminishing benefit in increasing the weighting, but the
relationship is complicated and depends on many hyperparameters such as the weighting on the
boundary term λ, the magnitude of the data, the discretization size, the amount of data, and the
architecture. Adding the regularization term complicated an already difficult challenge of choosing
the ideal hyperparameters. The results obtained were inconsistent and had large variations between
trials of the same network.

Figure 3.19: The network with the additional regularization term was able to better handle co-
efficient ranges [−10, 10]. The ideal weighting on the regularization term is roughly equal to the
interior size. This network was run with eight hidden layers, 1026 neurons per layer, a combination
of Leaky ReLU activation functions, and Xavier initialization.
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Figure 3.20: The network with the regularization term still fails to produce consistent, accurate
approximations, as lower magnitude coefficient ranges like [−1, 1] here. With equal weighting
between all three terms in the loss function, the network solution still had high-frequency persis-
tent oscillations. The network was still unable to adequately update its weights, running into the
vanishing gradient problem
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Chapter 4

Conclusion
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4.1 Discussion of Results
The study was successful in creating a nonlinear differential equation solver regardless of RHS

f and the Dirichlet boundary conditions from a feedforward fully connected unsupervised network
applied to solving the specific case of the second-order nonlinear Ginzburg-Landau equations with-
out specific RHS or boundary condition constraints. As shown for at least the case when the data
is large in magnitude, the neural network was able to accurately approximate the solution for a
variety of a large variety of varying RHS and boundary conditions. Furthermore, the versatility of
the proposed approach to be applied to any differential equation of the form Au = f allows for a
large variety of problem applications and a more general solution outcome than previous methods
for specific RHS and boundary conditions. This success lends hope that the network results could
be further improved to have a more accurate solver that could be widely adopted for industrial
applications.

To understand the impact on the network’s ability to solve differential equations, the data was
systematically varied along four main dimensions:

1. Complexity of the Solution: The network was able to approximate simple functions like
u = sin(x) incredibly quickly within a few epochs and accurately to mean square error of
7.31× 109. Therefore greater complexity was added to the solution through by building the
RHS f from data containing the first 10 modes of the discrete Fourier Series. This greatly
enhanced the complexity of the data and the higher-order terms mimic oscillations in the
real world from noise. Adding complexity to the data showed the network depending on the
parameters of the data. All the tests going forward had this complexity and the ability to
represent solutions as a Fourier Series represents a wide class of solutions the network can
find.

2. Amount of Data: By randomly generating different amounts of amounts of functions to feed
to the network, it was found that the network performed best given a few thousand functions
as input data. The accuracy increased the more data was fed to the network, but the network
was able to perform reasonably well on with less data.

3. Mesh Size and Dimensionality of Data: Adjusting the amount of points the interval [0,1]
was uniformly cut simulated having different amounts of precision of the input data and
solution. The network was able to perform well at smaller mesh sizes, but larger mesh
sizes led to a more accurate approximation. However, the network does have a limit on the
dimensionality that can be input for a given architecture. In accordance with the curse of
dimensionality, the number of computations necessary seems to scale with the data. The
exact relationship between how the dimensions of the data scale with the necessary number
of layers and neurons per layer to find an accurate solution is unknown.

4. Magnitude of Input Data: The magnitude of the input data was altered by modifying the
range of the distribution the coefficients in the Fourier Series randomly chose from. The
network demonstrated an ability to accurately predict solutions in the large data scale that
was robust to alterations in the architecture and other hyperparameters. However, challenges
arose with lower magnitude data. The network encountered the vanishing gradient problem
where the parameters in the network would stop updating and the progress would plateau.
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To attempt to resolve the issues, several adjustments to the architecture, training procedure,
hyperparameters, and loss function were made:

1. Batch Normalization: Batch normalization applied between hidden layers worked to sta-
bilize the network. After introducing batch normalization the network was less sensitive to
hyperparameters like the activation function applied to the layers, learning rate, and batch
size. The network became more robust to changes in magnitude and the selection of hyper-
parameters.

2. Boundary Weight in Loss Function: Modifying the loss function by a large positive con-
stant allowed for greater emphasis on matching the boundary conditions of the network. The
emphasis on the boundary in the loss should take away importance on finding the solution
to the differential equation on the interior; however, increasing the weight on the boundary
term consistently improved the accuracy of the network on the interior and the boundary until
reaching a critical point. After the critical point the network performs worse with increasing
the boundary weighting. The quality of the approximations were fairly smooth generally but
prone to oscillations. With the boundary weighting, the network solution was able to reduce
the error and some of the oscillations, especially coupled with an appropriate initialization
scheme.

3. Initialization Scheme: The initialization scheme for choosing the initial distribution of the
weights in biases in the layers was shown to not significantly impact performance in the
high magnitude case or the low magnitude case, with equal weighting on the boundary.
However, when the network is at a low magnitude and active, which can be spurred on by
placing weight on the boundary term in the loss function, then the initialization scheme
did influence the convergence behavior and accuracy of the network. The start point of the
network is important for the intermediate cases where the network is active but does not
perform as well.

4. Regularization Terms: Incorporating regularization terms into the loss function offered
improvements to the network when applied carefully. However, introducing weighting on
the regularization term significantly complicated the finding optimal hyperparameters for
the network empirically. The sensitivity and optimization of different types of regularization
terms warrant further investigation into their dynamics.

Across all experiments, the network exhibited a remarkable ability to generalize from the train-
ing set to the test set. This suggests that the model successfully is able to approximate a mapping of
the inverse differential operator to find the solution for a variety of RHS and boundary conditions.
The key challenge of the network is that the accuracy of the results greatly depends on the nature
of the input data. This intricate relationship makes finding the optimal network hyperparameters
and architecture difficult. The experiments highlight the characteristics of the network in different
regimes. In the case of low magnitude data, the experiments elucidate potential strategies to miti-
gate the effects of the vanishing gradient and find the best network approximation to the solution.
It is an open question to resolve these issues.
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4.2 Future work
Using neural networks to solve differential equations is area of research that has exploded in

interest in recent years. There are plenty of intriguing potential modifications that could be made
to the networks to examine characteristics of the network and improve it.

One future area of investigation would be verifying the methods ability to solve differential
equations of form Au = f . Theoretically, it should be able to solve these problems for an unsu-
pervised network, but verifying and classifying the range of equations that can be solved would
further develop the theory behind the solver. The project here investigated solving primarily bound-
ary value problems with Dirichlet boundary conditions, but other types of boundary conditions like
Neumann or initial value problems could just as easily be implemented with an additional term in
the loss function.

Expanding on this, one potential area of focus would be expanding on the applications of the
method to problems where terms in the differential equation are changing. This would increase the
variety of applications with the method. One type of problem like this would be Strum-Louiville
Eigenvalue problem. Solving eigenvalues problems appears frequently in industrial and theoretical
applications like quantum mechanics and heat conduction. The Strum-Louiville boundary value
problem describes a general class of second-order differential equations of the form:

d

dx

(
p(x)

dy

dx

)
+ q(x)y = −λw(x)y for x ∈ (a, b)

α1y(a) + α2y
′(a) = 0

β1y(b) + β2y
′(b) = 0

(4.1)

where p(x), q(x), and w(x) are given functions, y is the solution, λ is a parameter, and α1 and α2

are constants that are both not 0 simultaneously, and β1 and β2 are constants that are both not 0 si-
multaneously. λ is often an eigenvalue which has physical meaning for representing the harmonics
of the solution. The solution for the Strum-Louiville is not known in all cases or guaranteed to be
unique. There was a long attempt to solve the Strum-Louiville eigenvalue problem by the author;
where uniqueness of the solution was introduced by the network finding the number of oscillations
in the solution on an interval and assigning that as the eigenvalue. However, the network failed to
find convincing solution that matched the expected magnitude of the data. In part, this could be
because the landscape is complicated, but this could also be due to more analysis on the vanishing
gradient to be performed.

A potential future application would be to apply the method to partial differential equations.
By describing a partial differential equation that varies in time and space with two separate update
mechanisms this method of solving ordinary differential equations could be applied to solve an
ordinary differential equation that varies in space and time separately. The implications for whether
this is realizable need further study and analysis.

Another potential avenue of research could be studying further the properties of the network
like the implications of adding more regression terms, varying the means of taking a derivative, or
varying the different ways to build the solution like polynomial, Fourier series, or others. Moreover
empirical comparisons for analyzing the impact of different means of measuring the error in the
loss in H1, L1 to see if it provides any benefits. However, the results from this testing were
inconsistent and did not match the existing theory, therefore this exists as a promising method of
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varying the method. Along this same idea, different network structures could be use like using
convolutions networks instead of feedforward fully connected neural networks. Convolutional
networks are especially good at finding local patterns and potentially convolutional neural networks
would be good at matching the local characteristics of the inverse differential operator landscape.
This could possibly be a solution to the vanishing gradients.

Lastly, modifying the architecture and hyperparameters that go into making the network to
deal with low magnitude data is an open question and being able to find a solution or correctly
optimizing the parameters to solve this problem would be a future avenue of research.
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Chapter 5

Appendix A
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5.1 Traditional Computation of Differential Equations
Understanding traditional methods for computing differential equations is instrumental when

employing neural networks for similar purposes. These methods, although in computer science are
thought of as a blackbox, are also methods to approximate the map A−1f = F (f) where F maps f
into the solution u. There are methods to solve differential equations that both use a mesh and are
mesh-free, where a mesh is a specifically defined discretization of the domain. Typical ordinary
differential equation solvers use a mesh and rely on discretizing the problem from continuous
functions to a discrete representation that is solvable numerically through algorithms; however, this
transformation also introduces a error associated with solving the equations. This transformation
can be chosen a number of different ways, but the general ordinary differential equation solver can
be broken down into the steps:

1. Mesh Creation: Split the domain into parts. This subdivision is often uniform but it does
not have to be and can be defined depending on the method.

2. Discretization: Now we convert the governing equations from a continuous form to a dis-
crete form so that we can evaluate the problem numerically using the mesh.

3. Solution: Use a method of stepping or traversing from different points to solve the system
of discrete equations.

4. Post-processing: After finding the solution, we use the solution to extract desired quantities
and create visualizations.

This general format is widely applicable and has incredible variation in the choice of mesh,
descretization, derivative approximation, and more.

5.1.1 Finite Difference Method (FDM)
In the finite difference method, the idea is to approximate continuous functions by a series of

discrete grid points where at a specific grid point we use information from neighboring grid points
to compute necessary derivatives. Derivatives are necessary to compute the differential equation
and the stepping mechanism. The grid chosen for FDM is most of the time a rectangular grid
with points arranged subdivided uniformly but can be defined on non-uniform or non-rectangular
domains. These derivative approximations can be seen as discrete versions of the definition of
the derivative which become equal to the continuous definition of the derivative in the case where
limh→0. We define finite difference approximation of the derivative for the first-order and second-
order derivative, but higher order derivatives with differing points taken can be taken.

u′(x) ≈ u(x+ h)− u(x)

h
(First-order Forward Difference) (5.1)

u′′(x) ≈ u(x+ h)− 2u(x) + u(x− h)

h2
(Second-order Central Difference) (5.2)

where h is the distance between neighboring grid points. For a uniform domain h remains fixed.
In FDM, we are approximating the derivatives in the differential equation with a system of finite
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difference approximations which are solved through a direct or iterative method. The FDM was
derived using Taylor series approximations and we can define the accuracy of the approximation
through the Taylor series expansion. Examining the first-order forward difference for a smooth
function u(x) the Taylor series expansion is given by:

u(x+ h) ≈ u(x) + u′(x)h+
u′′(x)

2
h2 (5.3)

Then the error for Equation 5.1 is found through plugging in Equation 5.3∣∣∣∣u(x+ h)− u(x)

h
− u′(x)

∣∣∣∣ ≈
∣∣∣∣∣u(x) + u′(x)h+ u′′(x)

2
h2 − u(x)

h
− u′(x)

∣∣∣∣∣
≈
∣∣∣∣u′′(x)

2
h2

∣∣∣∣ = O(h2)

(5.4)

The computational accuracy of equation 5.1 goes as O(h2) and higher order derivatives increase
there order by one for every further derivative and the coefficient of the approximation depending
on the scheme and the number of points taken for the derivative approximation.

5.1.2 The Euler Method
The Euler method works in iterative steps, by approximating the solution u(x) by its Taylor

polynomial of around the data points.

Step 1: Starting from the initial condition we have: u(0) = a

Step 2: We start the iterative process:

• Pick N (the number of iterations we want to perform) and set: x0 := a.

• For every 1 ≤ i ≤ N define: ∆xi to be a small distance we pick at each iteration.

• For every 1 ≤ i ≤ N Define: xi = xi−1 +∆xi

• Approximate the solution u at the point: xi by using the Taylor expansion of u around
xi−1 +∆xi:

u(xi) ≈ u(xi−1) + u′(xi−1)∆xi + ...+ u(n)(xi−1)
n!

∆xn
i .

The degree of Taylor polynomial matches the order of the ODE. The derivatives u′(xi−1) can
be computed by using the given ODE.
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Step 3: Once we complete the iterative process, we now have estimated the solution in N
points. The larger N , the more precise the approximation is.

The computational accuracy of the Euler method is O(N).

5.1.3 Finite Element Method (FEM)
The finite difference method follows a similar idea to FEM, but its often times more compli-

cated to define and use but is often more powerful. FEM is a specific method in a class of Galerkin
Projection Methods. The idea is that we can expand functions into a linear combination of their
basis elements with coefficients. Then after expanding functions we solve differential equations
in their weak form (integral form) with the product between the equation and the basis functions.
The domain is specially discretized so that for a set of elements Ψi then they represent the space
∪Ψi = Ψ and Ψi ∩ Ψj = ϕ for i ̸= j where ϕ are piecewise continuously differentiable functions
called basis functions. Then the basis functions can be approximated by low degree piecewise
polynomials. This method therefore breaks complicated functions into simple polynomials which
we solve in the weak form.

5.1.4 Shooting Method
The idea behind the Shooting method is that we are given BVPs and we can reformulate the

problem into an initial value problems (IVP) by adding sufficient conditions to one of end of the
IVP until the conditions are satisfied. This IVP can then be solved more easily using methods like
finite difference and the solution to the IVP that creates a solution that matches the boundary value
on the other side then obtains a solution to the BVP.

For example: If we consider the BVP given by:

Au(x) = f(x) with u(0) = a and u(1) = b (5.5)

Then we can solve this problem by guessing choosing to keep u(0) = a and guessing an appropri-
ate value of c for the condition u′(0) = c to reformulate the problem as an IVP problem.

Au(x) = f(x) with u(0) = a and u′(0) = c (5.6)

Then numerically integrating the equation or solving using numerical methods we continue varying
values of c systematically until we get a value that matches u(1) = b. At this point then solution
to Equation 5.6 solves the BVP 5.5.

5.2 The Trial Solution Method for Differential Equations

5.2.1 Introduction
In 1997, I. E. Lagaris, A. Likas, and D. I. Fotiadis in their paper ”Artificial Neural Networks

for Solving Ordinary and Partial Differential Equations” [12] laid out both a general framework
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and specific technique for solving differential equations with neural networks. Before the paper,
the attempts to solve differential equations with DNN were limited to trying to linear systems of
algebraic equations. With the framework Lagaris et. al. formualted allowed for the implementation
of DNNs to solve any type of diff eq and is still generally applicable and most modern DNN diff
eq solvers are built off of this framework at least implicitly. However, the trial solution method
proposed by Lagaris et al. in 1997 offers a unique approach to solving diff equation that has
comparable efficiency while resulting in a smooth approximation of the analytical solution.

5.2.2 Hard Assignment: Trial Solution Method
This method is characterized by two key components: the loss function and the form of the

trial solution, referred to as uapprox, which takes the form:

uapprox(x) = A(x) + F (x)N(w, x), (5.7)

where:

• A(x) is a prechosen function that inherently satisfies the boundary conditions of the differ-
ential equation.

• F (x) is a function chosen such that it does not alter the boundary conditions, i.e., F (x) = 0
for x on the boundary of the domain.

• N(w, x) represents the output of a feedforward neural network parameterized by the set w
of weights and biases.

The neural network N(w, x) now represents a solution to the differential equation with homo-
geneous boundary conditions that is scaled by the function F (x). N(w, x) still represents a solution
to the differential equation with a closed analytical form given by uapprox(x) = A(x)+F (x)N(w, x)
which we could substitute N(w, x) back into to find the actual solution. This is a smooth approx-
imation the actual solution with infinite differentiability. We ensure the solution is a smooth ap-
proximation by taking only smooth activation functions like the sigmoid activation function, so we
can smoothly take derivatives. However, the function N(w, x) is easier to find and approximate
than the actual solution to the differential equation, because the term A(x) satisfies the boundary
conditions and F (x) = 0 for x on the boundary of the domain so N(w, x) does not effect the
boundary. Therefore since the network adjusts the weights and biases of N(w, x) to find the form
which minimizes the error. Then the problem is turned from a constrained optimization problem
to an unconstrained optimization problem where the network does not have to worry about the
boundaries.

5.2.3 Motivation
This same idea and form of the trial solution is present in classical diff equation techniques

for example in solving the one-dimensional heat equation with non-homogeneous boundary con-
ditions:

∂u

∂t
= α

∂2u

∂x2
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u(0, t) = u0,

u(L, t) = uL.

u(x, 0) = ϕ(x).

where u(x, t) represents the temperature at position x and time t, and α is the thermal diffusivity
of the material. Now using the superposition principle we can decompose the solution u(x, t) is
decomposed into two parts:

u(x, t) = uss(x) + utr(x, t).

uss(x): Steady-state solution, capturing the long-term behavior of the solution with homogeneous
boundary conditions. utr(x, t): Transient solution, capturing time-dependent behavior of the solu-
tion with non-homogeneous boundary conditions.

For the steady state solution (∂u
∂t

= 0), the problem reduces to:

∂2uss

∂x2
= 0

which after solving this differential equation leads to a solution of the form

uss(x) = (uL − u0)
x

L
+ u0.

Now we can find the equation for the transient solution by substituting the superposition principle
decomposition into the original PDE:

∂utr

∂t
=

∂2utr

∂x2

utr(0, t) = 0,

utr(L, t) = 0.

utr(x, 0) = ϕ(x)− uss(x).

where using the form of the steady state solution you could find the transient solution after solving
the differential equation.

Both the trial solution method and the superposition principle method both have similar forms
of the decomposition where the term A(x) similar to utr(x, t) is the term that satisfies the boundary
conditions. Additionally the term in the trial solution N(w, x) is the neural network output, and
F (x) is a function ensuring that the boundary conditions are not affected by N , which is similar to
the term uss(x) which is similarly not effected by the boundary conditions and an easier problem to
solve than then the exact form of the solution but given utr(x, t) or A(x) could be used to recreate
the full solution. However, in the case of the trial solution method it is not as important that we find
the exact form of the differential equation that decomposition into A(x) + F (x)N(w, x) creates
but rather we care that we solve the differential equation once we find N(w, x).
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5.2.4 The Loss Function
The loss function is central to training the neural network. It is defined to minimize the residual

of the differential equation over the domain.

Definition: Consider the general ODE given in (1), and let w be the set of weights of the DNN
N(x) mentioned in definition (3). We define the following loss function:

L(w) =
∫ 1

0
(Auapprox(x,w)− f(x))2dx

This definition of the loss function follows rather naturally, since minimizing L(w) also mini-
mizes the integrand in this case (follows from the non-negativity of the integrand, and hence uapprox

will be, in fact, an approximation of the analytical solution u.

Note: Derivatives are taken using built-in autodifferentiation functions like the Autograd pack-
age of PyTorch which is able to implement backpropogation using the chain rule in the form of
a computational graph to calculate the partial derivatives of each term and build the necessary
derivatives.

The following example best illustrates how the Trial Solution method can be used to solve
ODEs.

5.3 An Example of using The Trial Solution Method
Let’s consider the following ODE:

u′(x) + 1
5
u(x) = e−

x
5 cos(x) x ∈ [0, 2]

u(0) = 0

By using the method of integrating factors, we can obtain the analytical solution: u = e−
x
5 sinx.

Now we will use the trial solution method to find an approximation uapprox to the analytical
solution u.

Since the Trial function needs to satisfy the same initial conditions as the analytic function,
then the trial function uapprox(x) must satisfy: uapprox(0) = u(0) = 0.

One choice of uapprox can be:

(1) uapprox(x) = xN(w, x).
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Here:

• F (x) = x and A(x) = 0 ∀x ∈ [0, 2].

• N(w, x) is a DNN with one hidden layer and 10 nodes, with weights w = (w1, ..., w10, v1, ..., v10)
, biases 0, and input x, described in the following way:

N(w, x) =
∑10

i=1 viσ(xwi). w = (w1, ..., w10, v1, ..., v10)

Where σ is the sigmoid function: σ(y) = 1
1+e−y .

We wish to minimize the Loss function:

L(w) =
∫ 2

0
(u′

approx(x) +
1
5
uapprox(x)− e−

x
5 cos(x))2

Keep in mind that integration is a continuous process, and therefore cannot be done by a com-
puter unless we discretize the domain. We can do so by using Riemann sums.

We create a mesh of the domain [0, 2] by taking a uniform partition (made out of 10 points for
example):

0 = x1 < x2 < ... < x10 = 2. Then, by using the Riemann sum of the function in the inte-
grand, we obtain:

(2) L(w) ≈ γ
∑10

j=1(u
′
approx(xj) +

1
5
uapprox(xj)− e−

xj
5 cos(xj))

2

Where γ = 2
9

is the size of each interval in the partition.

Now minimizing (2) is the same as minimizing:∑10
j=1(u

′
approx(xj) +

1
5
uapprox(xj)− e−

xj
5 cos(xj))

2.

Hence, we can minimize L(w) by minimizing:

(⋆)
∑10

j=1(u
′
approx(xj) +

1
5
uapprox(xj)− e−

xj
5 cos(xj))

2.

Now we proceed to computing (⋆) explicitly:

By (1), we have: u′
approx(xj) = N(w, xj) + xj

∂N
∂x

(w, xj)

Hence:

(⋆) =
∑10

j=1(xj
∂N
∂x

(w, xj) + (1 +
xj

5
)N(w, xj)− e−

xj
5 cos(xj))

2
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Which after computing ∂N
∂x

(w, xj) and substituting the DNN:

N(w, x) =
∑10

i=1 viσ(xwi) =
∑10

i=1
vi

1+e−xwi

one obtains:

(⋆) =
∑10

j=1(xj

∑10
i=1

viwie
−xjwi

(1+e−xjwi )2
+ (1 +

xj

5
)(
∑10

i=1
vi

1+e−xwi
)− e−

xj
5 cos(xj))

2

This is a continuously differentiable function w.r.t w1, ...., w10, v1, ..., v10. Therefore we can
minimize (⋆) by computing the derivative and finding the critical points.
By doing so, we find the parameters w1, .., w1, v1, .., v10 that minimize the loss function L(w). The
trial solution method does not specify a specific optimization algorithm to minimize the loss func-
tion and it is left as a free choice to the user.

Note: Derivatives are taken using built-in autodifferentiation functions like the Autograd pack-
age of PyTorch which is able to implement backpropagation using the chain rule in the form of
a computational graph to calculate the partial derivatives of each term and build the necessary
derivatives.

5.3.1 Results and Error Analysis for Euler vs. FDM vs. Trial Solution
Method

Evaluating the network returns a closed analytic form of the trial function uapprox is obtained.

This problem was realized and solved using a neural network using the trial solution method.
The implementation used the architecture of a neural network with one input node which we give
x, one hidden layer with 50 neurons, and one output node which outputs N(w, x). The network
was evaluated on the domain of [0, 2] where we take 100 points uniformly. Note the trial solution
is a meshless method so we did not have to take a specific mesh or uniform partition of the domain
it was done in this way to compare to classical methods. The network was evaluated for 10 epochs,
which is relatively small amount of epochs, but the solution quickly converges using the gradient
descent optimization algorithm.

To measure the accuracy of the network we use evaluate the error as the difference between
the approximated solution through the network and the actual solution ∆u = uapprox − ua, where
ua is the analytic solution which after the method of using the method of integrating factors to the
original problems gives ua(x) = e−

x
5 sin(x). From this error, the maximum deviation of the error

and average of the error were taken over the uniform mesh from [0,2] to evaluate how well the
network performs at worst and on average.

The network results in the trial function closely approximated the analytical solution, with an
average difference of average diff of 6 × 10−5 and maximum deviation of 1 × 10−5 over the 10
epochs. The trial function approximation of the analytic solution practically overlaps the actual
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solution showing a very strong matching, and only after finding the error do we see

Figure 5.1: Trial Solution Approximation vs.
Analytical Solution

Figure 5.2: Trial Solution Error ∆u = uapprox−
ua

Furthermore, by comparing the evaluation of this example problem using two different types of
classical methods such as the Euler method and FDM an iterative and matrix method, then the trial
solution can be directly compared to classical methods. Using N = 100 iterations of the Euler’s
method showed an average difference of 6.1× 10−3 and a maximum deviation of 1.2× 10−2 from
the analytical solution. Euler’s method has a linear computational complexity O(N) making it
computationally efficient for a small number of iterations. However, the precision of the Euler
method is considerably lower than that of the trial solution method.

Figure 5.3: Euler Method Approximation vs.
Analytical Solution

Figure 5.4: Euler Method Error ∆u = uEuler −
ua

Again using N = 100 points on the domain the FDM is evaluating by finding the inverse matrix
A−1 that finds the solution u = A−1f . The results were FDM exhibited an average difference of
1.2 × 10−2 and a maximum deviation of 2.1 × 10−2. Similar to the Euler method, FDM has a
computational complexity of O(N). The FDM method performs similarly to Euler’s method and
has a considerably higher error than the trial solution method by three orders of magnitude. The
three methods were performed over the same domain and the same mesh of uniform partition of
100 points of the domain [0,2]. The trial solution method is conjectured to have a slightly higher
computational complexity then the classical methods; however, both Euler and FDM methods show
greater errors compared to the neural network-based trial solution method where we have chosen
a similar number of computations in all three cases. This difference becomes more pronounced as
the complexity of the differential equation increases. The adaptability of neural networks to the
characteristics of the differential equation at hand contributes to their superior performance.
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Figure 5.5: FDM Approximation vs. Analyti-
cal Solution

Figure 5.6: FDM Error ∆u = uEuler − ua

5.3.2 Comparative Analysis with Finite Element Method (FEM)
In addition to simpler classical methods like Euler and FDM, the trial solution method was

compared with the Finite Element Method (FEM) in the original Lagaris et. al. paper [12] to show
the difference between the neural network methods and the state of the art classical methods. The
paper compares the maximum deviation between FEM and the trial solution method on the training
set and test set, for four problems much more complicated time-dependent nonlinear PDEs with
homogeneous and nonhomogeneous boundary conditions to compare this method to more difficult
higher dimensional problems. The results can be summarized in the table below from [12]:

Trial Solution Method FEM
Problem No. Training set Test set Training set Test set

1 5× 10−7 5× 10−7 2× 10−8 1.5× 10−5

2 0.0015 0.0015 0.0002 0.0025
3 6× 10−6 6× 10−6 7× 10−7 4× 10−5

4 1.5× 10−5 1.5× 10−5 6× 10−7 4× 10−5

Table 5.1: Comparison of trial solution method and FEM maximum deviation for various problems
between the approximate solution and the actual solution ∆u = uapprox − ua and ua is the analytic
solution. The data and table are results from [12].

Observations and Implications

From the table, several key observations and implications can be drawn:

• Training Set Performance: FEM shows better performance on the training set in most
cases, indicating high accuracy during the learning phase.

• Test Set Performance: On the test set, the trial solution method outperforms FEM. This
suggests the DNN has a greater capacity to generalize its learning on the training set to the
test set, which is great as the goal of training is the greatest accuracy on the test set and the
training set is only a means to get there.
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• Consistency: The trial solution method exhibits consistent performance between training
and test sets, highlighting its stability and reliability across different data sets to the test set.

• Implications: These results imply that while FEM is highly accurate in well-defined, con-
trolled settings (training set), its performance can degrade in more varied or uncontrolled
environments (test set). In contrast, the trial solution method, though potentially less accu-
rate on the training set, provides a more robust and generalizable solutions.

5.4 Conclusion

5.4.1 Advantages of the Trial Solution Method
• Flexibility and Generality to Any Diff Eq : This method is applicable to a wide range

of differential equations, including single ODEs, PDEs, and to coupled systems of ODEs
and PDEs. The general framework for the loss function can be applied to any differential
equation paving the way for future methods for solving diff eqs with neural networks.

• Inherent Satisfaction of Boundary Conditions: The term A(x) ensures that the trial solu-
tion inherently satisfies the boundary conditions by construction. This greatly simplifies the
problem and transform the minimization problem from a constrained optimization problem
to an unconstrained optimization problem which is much easier.

• Differentiable Solutions: Unlike classical methods like FEM and FDM which provide so-
lutions that often are only discrete solutions and have limited differentiability, which greatly
limits their applications and the problems they can be applied to. The trial solution method
provides solutions in a differentiable, closed analytic form, which is advantageous for fur-
ther analytical and numerical applications. Derivatives of the solution can be taken easily,
are known to be smooth, and an exact analytical form allows for further analytic form analy-
sis of different problems, like when you then have to compute gradients of the approximated
solution to get desired quantities.

• Efficiency of Computation and Implementation and Parallelizability: The trial solution
method extends to higher high-dimensional problems as well. Additionally, the nature of the
method allows for implementation on parallel architectures, suitable for large-scale compu-
tational problems in higher dimensions. This is due to the architecture for this process often
only requiring a single hidden layer and the exclusion of biases in the layers.

DNN are both efficient in the adaptive time cost and implementation. DNNs work in an iter-
ative process, where we take the output after one epoch and use plug it back into the network
at the next epoch. During this process, unless the loss converges early, it will continue to
decrease for longer epochs. Then if we only require a certain accuracy we can stop the DNN
once that accuracy is hit in the training set during validation. However, for traditional solvers
we cannot stop the solving scheme early, we have to wait for all values to compute in the full
scheme until we get a result. We cannot further tune this result to run for longer if we need
a higher accuracy like DNN.
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DNNs are also incredibly fast in implementing found solutions. Once we train a DNN we
have a series of weights and given a set of inputs we can compute an answer to a future prob-
lem quickly often in seconds just using matrix multiplication, which has gotten incredibly
fast with today’s computing power.

One example illustrating this benefit is say that you wanted to predict how major disturbances
under the ocean or sea caused by shifting fault lines or earthquakes would generate tsunamis
or waves. You could use the shallow water equations which are complicated hyperbolic
PDEs that give the propagation of a disturbance in a fluid. From an earthquake in some
location under the water you detect you want predict how high the waves would be from
the water once it reached the coastline of a major city. This is a very complicated model
especially in three dimensions. If a tsunami is coming towards a major city especially if the
city is close to the source you will not have a lot of time to solve the problem and which the
current numerical methods calculation would be way too long. However, if you had a DNN
that solved the differential equation then all you would have to do is give the DNN the inputs
and it could then perform matrix computation to solve the problem in seconds. Saving lives
and giving people time to evacuate before its too late.

• Strong Generalization from Training Set to Test Set: Since the trial solution method is
trying to match the error in the differential equation specifically rather than just minimiz-
ing the discrepancy between the training set and the solution. Then when the domain of
the problem is extended and the approximate solution is evaluated on the test set, the trial
solution method experiences a much smaller loss the classical methods.

• Reduced Parameter Demand: Requires a significantly lower number of model parameters
compared to other techniques, leading to compact solution models with minimal memory
requirements.

• Meshless Nature: The method does not rely on mesh generation, enhancing flexibility and
reducing complexity of problem setup to problems with irregular domains like a star or
handle data arriving at irregular intervals that are traditionally difficult or impossible for
classical methods. This greatly expands the types and domains of problems that we can
solve and the choices we can make when defining the problem.

5.4.2 Disadvantages of the Trial Solution Method
• Convergence Issues: Due to the recency of the method and DNNs in general, there is a

lack of mathematical underpinning to DNNs and the theory. So far there is no proof of the
convergence rate of the trial solution method. It is conjectured with numerical support that
the method should have the same or better computational complexity as classical methods,
but this is not proven. This means there is no guaranteed error reduction with increased net-
work size or complexity, implying uncertainty in achieving higher accuracy through network
expansion. This is a feature of all neural network methods.

• Randomness in Initialization: Randomness during network initialization can lead to vari-
ations in results. This may necessitate multiple runs for desired results and additional prob-
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lems the randomness and initialization leads to like the exploding gradient problem when
training. This is another feature of all neural network methods.

• Dependence on Choice of A(x) and F (x): The appropriate design of A(x) and F (x) is
determined by the implementer and incredibly important to achieving desired results. Incor-
rect specifications can lead to inconsistent or inaccurate solutions. While there exist multiple
methodologies to derive A(x) and F (x), often a more intuitive or ”obvious” choice presents
itself given the nature of the differential equation. The crux of the neural network approach
remains the optimization of the parameters α according to the same general loss function
above. However, if there were some sort of error or poor results generated it is unclear if the
problem is due to suboptimal choices of A(x) and F (x), which would need to be changed by
hand if ran again, a problem in the neural network hyperparameters, or some other additional
problem that could effect results. Overall, making these neural networks hard to adjust and
decipher when they have suboptimal results.
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