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Abstract

This thesis focuses primarily on understanding the structure of Hof inverted pendulum walking
models, analyzing both the state space structure and the stability properties. We assert that walk-
ing models require mechanics, a controller, and constraints; and without all three, the model is not
complete. Under this premise, we generate the concept of recovery basins, derived from viabil-
ity/global stability of these complete models. In generating these basins, we recover a potential
reason for a stability strategy called basin-shifting: changing walking parameters or controllers to
keep one’s center of mass state within the recovery/viability basin.
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Chapter 1

Introduction
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Walking. We all do it. Every day, we take thousands of steps without even thinking about it, and
most of them are taken without falling. But, how do we do this supposedly easy task? This research
aims to answer that question primarily through physics-based modeling.

The principle behind simple, physics-based walking models is that walking is simply falling into
steps, and that doing so continuously generates the overall gait. The particular model in use in this
thesis, the so-called inverted pendulum model, leans heavily into this concept. The main portion
of the model only describes the motion between each step (i.e. falling into the next step), while
choosing step locations is left to be determined from the goals and constraints.

In this sense, we assert that walking models are not just simply the mechanics behind the center of
mass motion, but also the control inputs and biomechanical constraints. In many models, control
is often asserted directly on the center of mass; in our formulation, we control the center of mass
indirectly by choosing steps, since that is how people affect their walking trajectories. Without
biological constraints, a walking model can perform maneuvers that are, while mathematically
valid, simply physically impossible. Thus, the imposing of constraints permits our walking model
to better match human walking properties.

In this thesis, we study the local and global stability properties of one of these hybrid walker-
controller-constraint systems. In doing so, we create recovery basins, regions in the stepping plane
in which the walker can return to a stable steady gait. These basins are derived from the concept of
viability, incorporating the limitations imposed by the controller and constraints. These recovery
basins are limited to a particular controller and set of constraints, and as such provide insight into
complex strategies and behaviors exhibited by real walkers.

1.1 Literature Review

Why do we care about walking models? People generally know how to walk. Our interest is not
only in understanding the nature of walking, but also to learn about the mechanisms by which we
can prevent falling. Inherently, walking is just a sequence of steps which humans fall into, catching
themselves repeatedly. Falling occurs when, for whatever reason, be it a mental, perceptual, or
physical disturbance, a person cannot catch themselves. This issue is particularly pertinent to the
elderly, 3 million of whom are treated for fall-related injuries per year, according to the CDC [3].
Another study found that, in 2015, medical costs from fall-related injuries costed $50 billion [4].
Research on fall prevention could alleviate these massive costs, 75% of which were covered by
taxpayers through Medicare and Medicaid [4]. Another important application of this research is
physical therapy. Often, patients with leg and spinal cord injuries exhibit odd gait patterns that
are difficult to assess [5]. Data-based models can be used to predict the projected improvement in
walking ability and can be used to discern some characteristics of the gaits used. However, this
work serves as a foundation for understanding the physics behind these gaits, which is essential for
charting a path towards improved methods of physical therapy.

Even within this field, there are many perspectives from which to approach the development of
walking models. One approach to this is data-based predictive modeling, where data taken during
walking trials is used to build error-correcting optimal control models, that predict where steps
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Figure 1.1: Compass walker with swing-leg dynamics. In [1], the compass walker is placed on
a ramp of angle γ. The feet in this model have mass m, while the remainder of the mass is
concentrated at the center of mass. Stance leg refers to the leg that is planted during the step, while
the swing leg rotates about the center of mass throughout the step. This figure is derivative of [1].

will be taken [6]. The advantage of this approach is that it aims to quantify observables and deter-
mine the underlying mechanisms through experimentation, without the need to build a new model
from first principles. These methods also have the inherent advantage of predicting system behav-
ior, without needing to be reductive for the sake of mathematical and computational tractability.
Because of this, the data-driven approach is widely used in the study of gait biodynamics.

However, the approach taken in this analysis is primarily physics-based simple models derived
from physics principles, also called templates [7], only intended to capture certain aspects of the
biological system they represent. While they are not complete, they can provide valuable insight
into the underlying properties of the system and allow for more thorough mathematical, due to
their lower dimensionality and mathematical simplicity. That is, the purpose of template models
is not necessarily to precisely model every degree of freedom in a system (i.e., a walking person),
but to reduce the order of the problem to a degree where the principles of mechanics can inform
the analysis.

The most common of these models for walking dynamics are the inverted pendulum (IP) and
related models, such as the compass walker. The compass walker is often referred to as the simplest
dynamic walker [1, 8, 9, 10, 11]. In its simplest form, it is uncontrolled and, hence, provides an
example of passive dynamic walking. As seen in Figure 1.1, this model captures the most basic
feature of walking walking: falling into each step. Many analyses of this model occur with the
model being placed on a descending slope/descending staircase [8] or with an impulse applied at
each step [9], both of which allow the walker to be propelled forwards. The model has masses at
each foot and at the center of mass (COM), and massless “legs” connecting the feet to the center
of mass.
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Figure 1.2: Inverted pendulum model. Center of pressure (COP) is used as a proxy for foot place-
ment. Note that the true inverted pendulum has length l and originates at the center of pressure
(rather than the heel) and connects to the center of mass (COM) [2].

The inverted pendulum (IP) model, shown in Figure 1.2, is the simplest workable leg model, which
gives ample room for analysis and adding complexity. The model consists only of a mass, repre-
senting the full mass of the walker concentrated at its COM, connected to a massless center of
pressure by a massless link. Swing-leg dynamics are not incorporated in the formulation; instead,
the “step” location is given by the center of pressure (COP), which is taken as a control input
[2, 12]. Other versions of this model include the spring-loaded inverted pendulum [13], damped
bipedal inverted pendulum [14], and linear inverted pendulum plus flywheel [15]. These models
contain additional degrees of freedom yielding different levels of biological accuracy at the cost of
analytical simplicity.

Many papers studying the compass walker and inverted pendulum models use Poincaré sections
and maps [1, 8, 9, 10, 11]. Given the stepping structure of walking, it is useful to study the systems
as operating in discrete time. To do this, a snapshot of the state of the system is taken when a
certain condition is met during each step cycle. The subspace of the full state space at which these
snapshots are taken is called a Poincaré section. When studying the compass walker, the Poincaré
section is generally taken at heel strike/step transition [1, 8, 9, 10, 11]; however, it can also be taken
elsewhere, such as at midstance. The function relating states between successive snapshots is called
a Poincaré map, which is a dynamical model that discretizes the continuous-time gait dynamics.
In dynamic walking, the fixed points of these maps are the primary interest, since the fixed points
of the discretized system represent periodic gaits in the continuous time system. Local stability of
the gait can also be analyzed by linearizing the Poincaré map, through eigenvalue analysis.
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Global stability of the models is generally more difficult to capture. In this thesis, as well as in
recent literature [9, 12], the concept of viability will be used to characterize global stability. A
viability region Vn is defined in [12] as “the region in the state space, from which failure can, with
appropriate feasible controls, be avoided for at least n steps (one can reach a nonfailed state in n
steps) ”. The boundaries for failed and non-failed states are generally defined by kinematic and
control restrictions. The viability kernel V∞ is the region in which failure never happens, under the
same restrictions.

The term “stability” can be ambiguous when discussing gait, since it is often applied both as
mathematical stability (as discussed above) and as in the colloquial sense of “remaining upright”.
To disambiguate the two terms, stability in the mathematical sense will be referred to as “stability”
henceforth and stability in the every-day walking sense will be referred to as “fall avoidance”.

Ultimately, the goals of this thesis are twofold. First, we aim to clarify the state space of the in-
verted pendulum class of walking models. The standard state space formulation used in the gait
literature is incorrect, as it only considers the motion of the COM between steps [2], which is
unstable. While it is technically correct as an analysis of the autonomous inverted pendulum, we
argue that the IP model is naturally nonautonomous. The most basic inverted pendulum formula-
tions take the center of pressure (COP; a proxy for foot placement) to be constant during each step,
only changing at the moment of heel-strike, when the COP moves instantaneously to the next step
location. Even for these models, the nature of the phase space depends on the temporal sequence
of COP positions, which is a discrete time-dependent input. Thus, time becomes a state variable
which, when combined with the unstable IP phase space, allows for periodic gaits to emerge; if this
did not occur, the model’s path would always diverge. This discrepancy highlights the importance
of clarity when defining the state space, which is arguably the most fundamental concept needed
for a mathematical understanding of dynamical systems. Moreover, correcting the state space per-
mits the exploration of variations to the inverted pendulum model, such as analyzing the effects of
foot roll during a step and the bipedal stance phase.

The second goal of this thesis is to use viability to analyze the behavior of the inverted pendulum
model under the specific controllers originally used in Hof 2008 [2]. We first provide stability anal-
yses (both locally and globally) for this well-known system. In so doing, we gain new insight into
dynamic mechanisms relevant to fall avoidance. To do this, kinematic/biological constraints are
put on the model as inequalities, and a transgression of these constraints is counted as a “failure”,
in the sense of Zaytsev’s definition [12]. Given the low-dimensionality and linearization of the
inverted pendulum model, these restrictions can be evaluated both analytically and numerically.
We define viability basins that will be generated analytically using the Poincaré maps and mathe-
matical induction; they will be generated numerically using a simulation of the model constructed
in MATLAB.
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Chapter 2

The Inverted Pendulum Walking Model
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2.1 The Inverted Spherical Pendulum

The primary purpose of this chapter is to derive the equations of motion used by Hof [2], and in
so doing establish the correct state space structure for the IP model. Hof’s IP formulation is a
planar pendulum and assumes that the forward and lateral directions can be decoupled when the
equations are linearized. We validate this approach by linearizing the equations of motion of an
inverted spherical pendulum.

Consider an inverted spherical pendulum of length L and end mass m on a base at position u(t),
as seen in Figure 2.1. The mass m represents the center of mass (COM) of the walker, and u(t)
represents the position of the center of pressure (COP). For the inverted spherical pendulum, define
θ as the angle between the pendulum and the vertical, and ϕ as the angle deviation from the forward
direction when the pendulum is projected down into the z-x plane. For such a system, the position
is defined as

r = L+ u(t), (2.1)

where r is the position of the mass with respect to the current origin, L is the position of the mass
with respect to the COP, and u(t) describes the position of the COP with respect to the origin. The
vectors L and u(t) can be written:

L = L (sin θ cosϕ î+ cos θ ĵ+ sin θ sinϕ k̂). (2.2)

u(t) = ux(t)̂i+ uz(t)k̂ (2.3)

To linearize the model, take the angle θ to be small. Using the first-order Taylor expansion of sin θ
and cos θ,

L = L (θ cos ϕ̂i+ ĵ+ θ sinϕk̂) +O(θ2), (2.4)

which can be simplified by making appropriate trigonometric substitutions:

θ = sin(θ) +O(θ3) =

√
x2 + z2

L
+O(θ3),

cosϕ =
x√

x2 + z2
,

sinϕ =
z√

x2 + z2
,

L = x̂i+ L̂j+ zk̂+O(θ2). (2.5)

From this, the acceleration vector can be written by taking two time derivatives, ignoring higher
order terms:



8

Figure 2.1: Inverted spherical pendulum with mass m, length L, displacement from vertical θ,
and heading ϕ. Note that in this formulation, x is the forward/sagittal direction and z is the lat-
eral/frontal direction.

r̈ = L̈+ ü(t)

r̈ = (ẍ+ üx)̂i+ (z̈ + üz)k̂. (2.6)

Applying Newton’s second law:

F = −mg ĵ+R L̂ = mr̈, (2.7)

,

where

L̂ =
L

L
,

and R is the reaction force from the ground. This can be decomposed into a system of equations
in ẍ, z̈ and R:

m(ẍ+ üx) = R
x

L
, (2.8a)
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0 = −mg +R, (2.8b)

m(z̈ + üz) = R
z

L
. (2.8c)

Solving for ẍ and z̈ yields two linear decoupled ODEs in x & z:

ẍ− g

L
x = −üx, (2.9a)

z̈ − g

L
z = −üz. (2.9b)

This is identical to modeling the system as two uncoupled linear inverted planar pendulums, as
is done in Hof’s original work [2]. Furthermore, these are the same equation in x and z, so their
solutions will be the same. In our analysis, the full state space of the system is (x, ẋ, z, ż; t). That
is, there are five state variables: the four kinematic states plus time. Time must be included due to
the input terms u, which, as will be incorporated in the final model, are necessarily time-varying.

2.2 Step Transition Maps

We now restrict our analysis to the case when the center of pressure u is constant within each
step (i.e. piecewise constant). For this case, Equations (2.9a) can be simplified to a homogeneous
equation:

ẍ− ω2x = 0, (2.10)

where ω =
√

g
L

is the natural frequency. Despite the input term vanishing, time is not removed
entirely as a state variable, since the location of the center of pressure changes at each step. Other
COP models may not vanish from the differential equations, but the following analysis can still be
done for those cases. Since Equations (2.9a) and (2.9b) are identical and uncoupled, the following
analysis is equivalent in both directions. Converting this into a system in the state space (x, ẋ), this
equation becomes:

[
ẋ
ẍ

]
=

[
0 1
ω2 0

] [
x
ẋ

]
. (2.11)

The solution to this system is elementary, and can be written in matrix form as:

[
x
ẋ

]
=

[
cosh(ωt) 1

ω
sinh(ωt)

ω sinh(ωt) cosh(ωt)

] [
xn

ẋn

]
, (2.12)

where the subscript n reflects the values for x and ẋ at step n; that is, xn and ẋn are the initial
conditions for the differential equation in each step.

Writing the elapsed time of a step as T , this solution gives the Poincaré map:



10

[
xn+1

ẋn+1

]−
=

[
cosh(ωT ) 1

ω
sinh(ωT )

ω sinh(ωT ) cosh(ωT )

] [
xn

ẋn

]+
, (2.13)

in which the subscript “−” indicates the state just before heel strike (i.e.at the end of a step) and
“+” indicates the state just after heel strike, just as in [1]. The corresponding map for the lateral
direction is obtained by substituting z for x in Equation (2.13).

2.3 Heel-Strike Transition

The map of Equation (2.13) only takes the step up to just before the next step (i.e. to just before
the next heel strike). Thus, to complete the Poincaré map for each step, a heel-strike transition
map is needed that will account for the alternation of stance feet. The relationship between the
state variables before and after the heel-strike transition makes use of a local, heel-strike-centered
reference frame, as shown in Figure 2.2. The inertial reference frame for this analysis will simply
be defined as originating at the first COP location, which will be denoted u0.

These relationships can be described mathematically as:

[
xn

ẋn

]+
=

[
xn

ẋn

]−
−
[
uxn

0

]−
(2.14a)[

zn
żn

]+
= −

[
zn
żn

]−
+

[
uzn

0

]−
. (2.14b)

Where u−
xn is a prescribed step length and u−

zn is a prescribed step width, given how the reference
frame is constructed. Since the center of pressure at heel-strike is set to be the origin of the
reference frame at each step, u+

n = 0. This makes the superscripts for u unnecessary, so they will
be omitted in further analysis. This means that the value of un is always measured with respect to
the previous COP, un−1.

Recall that the vector un is an input to the system. In this thesis, we endeavor to analyze the
dynamics of the IP model for controllers for u given in [2].

Consider a control model with constant step length uxn = L and step width uzn = W , the heel-
strike transition described in Equations (2.14) can be composed with Equation (2.13) to yield the
complete step transition map:

[
xn+1

ẋn+1

]+
=

[
cosh(ωT ) 1

ω
sinh(ωT )

ω sinh(ωT ) cosh(ωT )

] [
xn

ẋn

]+
−
[
L
0

]
(2.15a)

[
zn+1

żn+1

]+
= −

[
cosh(ωT ) 1

ω
sinh(ωT )

ω sinh(ωT ) cosh(ωT )

] [
zn
żn

]+
+

[
W
0

]
. (2.15b)
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Figure 2.2: The coordinate system used in this formulation to account for the alternation of stance
feet. The direction of the z measurement flips during each step transition, so that COM locations
between the step positions are always positive. The origin of the coordinate system also shifts
during each step transition, shifting between the step positions. The figure shows the various
measurements as derived from each coordinate frame with the “+/-” superscripts, as previously
described.

Another controller [2] is designed to provide constant step length and width using a “constant
offset” The controller has the following form:

uxn = x−
n +

ẋ−
n

ω
− bx (2.16a)

uzn = z−n +
ż−n
ω

+ bz, (2.16b)

where the constants b are constant offset values giving steady-state step length and width:

l∗ = bx(e
ωT − 1) (2.17a)

w∗ = bz(e
ωT + 1). (2.17b)

These relationships can be substituted into Equations (2.14) and composed with Equation (2.13)
to obtain the step transition map.

[
xn+1

ẋn+1

]+
=

[
− sinh(ωT ) − 1

ω
cosh(ωT )

ω sinh(ωT ) cosh(ωT )

] [
xn

ẋn

]+
+

[
bx
0

]
(2.18a)

[
zn+1

żn+1

]+
=

[
sinh(ωT ) 1

ω
cosh(ωT )

−ω sinh(ωT ) − cosh(ωT )

] [
zn
żn

]+
+

[
bz
0

]
. (2.18b)
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The final controller is similar to the previous, but with absolute positional error proportional control
[2]. This controller is only applied in the z-direction, so the analysis of this controller will be
restricted to the lateral direction. The step locations are chosen using the following equation:

uzn = z−n +
ż−n
ω

+ k(z−n +
ż−n
ω

− zcn) + bz, (2.19)

where zcn is the z-position target in the heel-strike frame and k is the controller gain. While its
value will change at each step, it is important to emphasize that its true position is fixed. That is,
the inertial target position is a fixed value, and is denoted zc0. In essence, this means that zcn is
how a walking person perceives their target. Since this global value must be converted to the local
reference frame at each step, we instead use an update equation:

zc(n+1) = uzn − zcn = (k + 1)z−n + (k + 1)
ż−n
ω

− (k + 1)zcn + bz. (2.20)

Since the map has another parameter that updates after each step, this parameter must be included
in the Poincaré map as an additional state variable. The complete step transition map is derived
from composing Equation(2.13) with Equations (2.19) and (2.20):

 zn+1

żn+1

zc(n+1)

+

= A

 zn
żn
zcn

+

+

bz0
bz

 , (2.21)

with

A =


k cosh(ωT ) + (k + 1) sinh(ωT ) k+1

ω
cosh(ωT ) + k

ω
sinh(ωT ) −k

−ω sinh(ωT ) − cosh(ωT ) 0

(k + 1)(cosh(ωT ) + sinh(ωT )) k+1
ω
(cosh(ωT ) + sinh(ωT )) −(k + 1)

 . (2.22)

As a final remark on the model construction, in Hof’s work, and most of the gait biomechanics
literature, the IP walking model is not distinguished from an inverted pendulum. The primary
difference is the dimensionality of the state space. An inverted pendulum has a two-dimensional
state space: (θ, θ̇) or (x, ẋ). However, the fact that the COP is a function of time, even in the
stepwise constant case, makes time t itself an additional state variable. Thus, for the uncontrolled
and constant offset controller, the state space is five-dimensional with state vector (x, ẋ, z, ż; t).
In this analysis, we treat this as two independent systems with state space (x, ẋ) and (z, ż), with
the only coupling being time. Furthermore, the positional controller adds another state variable,
raising the state space’s dimension to six, with state vector (x, ẋ, z, ż, zc; t). As with the other
models, the x and z state variables can be treated independently of each other. The use of Poincaré
maps to reduce the continuous-time systems to discrete-time systems then reduces the dimension
by one by removing time as a state.
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Chapter 3

Local & Global Stability Analysis
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3.1 Fixed Points & Local Stability

The local stability of these hybrid walker-controller models is determined using the eigenvalues of
the Jacobian of the step transition maps evaluated at their fixed points. They will be evaluated both
analytically and numerically using MATLAB simulation. Since all of these maps are written in a
local coordinate frame, the analysis here is exclusive to this frame.

First, consider the constant step length/width map presented in Equations (2.15). Combining these
into one matrix equation, the fixed point of the map can be computed to be


x∗

ẋ∗

z∗

ż∗

 =


−L

2

Lω sinh(ωT )
2 cosh(ωT )−2

W
2

−Wω sinh(ωT )
2 cosh(ωT )+2

 . (3.1)

Linearizing around this fixed point, we can get the Jacobian of the combined map in Equations
(2.15). The characteristic equation of this matrix in the (x, ẋ, z, ż) state space is

λ4 − 2 cosh(2ωT )λ2 + 1 = 0, (3.2)

which has solutions

λ1 = ±eωT . (3.3a)

λ2 = ±e−ωT (3.3b)

Since |λ1| = eωT ≥ 1 and |λ2| = e−ωT ≤ 1 for ωT ≥ 0, this system is an unstable saddle.
Furthermore, the magnitudes of the eigenvalues are the same in both the x and z directions. The
eigenvectors for both x and z are similarly identical, being equal to:

e1 =

[
1
ω

1

]
and e2 =

[
− 1

ω

1

]
, (3.4)

for eigenvalues λ1 = ±eωT and λ2 = ±e−ωT , respectively. Thus, e1 is the unstable eigendirection,
while e2 is the stable eigendirection. Since this fixed point is a saddle, the solution moves further
from this stable manifold. MATLAB simulations built using this model confirm this instability, as
even initial conditions within machine precision of the fixed point diverge in just a few steps. The
results of the MATLAB simulation are shown in Figure 3.1.

Similarly, for the constant offset map in Equations (2.18), the fixed point is
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Figure 3.1: Unstable trajectory generated from the constant step width/length controller. Done for
a constant step width of 0.1 m, step length of 0.5 m, 0.5 s step time, and natural frequency 4.952
Hz for 15 steps. The initial conditions for the simulation were the fixed point defined in Equation
(3.1) to within machine precision. Note that the trajectory diverges from the periodic trajectory
after about 13 steps.


x∗

ẋ∗

z∗

ż∗

 =
1

2


−bx(e

ωT − 1)
bxω(e

ωT + 1)
bz(e

ωT + 1)
−bzω(e

ωT − 1)

 . (3.5)

This results in a characteristic equation

λ4 − e−2ωTλ2 = 0, (3.6)

with solutions

λ1 = 0 (3.7a)

λ2 = ±e−ωT . (3.7b)

Since ωT ≥ 0 implies λ2 ≤ 1, the constant offset map is stable. Note that, again, the magnitudes of
the eigenvalues are equivalent in the x and z directions, but have opposite signs. The eigenvectors
for both x and z are
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(a) (b)

Figure 3.2: Results of MATLAB simulation of the constant offset model. (a) A bundle of stable
trajectories centered around the fixed point given in Equation (3.5). The simulation was done with
target step width 0.1m, target step length 0.5m, step time 0.5s, and natural frequency 4.952Hz.
These simulations also display the inertial semistability of the constant offset controller, since it
does not have any bias towards a particular final inertial position, unlike the proportional controller.
(b) MATLAB simulation demonstrating that the constant offset controller can produce biodynam-
ically unviable trajectories while remaining stable. In this simulation, the walker takes a large
backwards crossover step.

e1 =

[
− cosh(ωT )

ω sinh(ωT )

1

]
and e2 =

[
− 1

ω

1

]
, (3.8)

for eigenvalues λ1 = 0 and λ2 = ±e−ωT , respectively.

This map always returns stable simulations, even in extreme circumstances. Figure 3.2a shows
convergence in a bundle of initial conditions, and Figure 3.2b shows one with “extreme” initial
conditions. It should be noted that the simulation in 3.2b takes a step of over two meters in length
backwards as a first step. Since this is unlikely to appear in stable gaits, kinematic restrictions are
necessary to model realistic walking.

Finally, we evaluate the stability properties of the proportional controller in Equations (2.21) and
(2.22). As noted when those equations were derived, only the z-direction will be considered for
this controller. The fixed point of this map can be evaluated to

 z∗

ż∗

z∗cn

 =
bz

k − keωT + 2

 eωT + 1
−ω(eωT − 1)
eωT + 1,

 (3.9)

The eigenvalues for this map evaluate to
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(a) (b)

Figure 3.3: Results of MATLAB simulation of the absolute positional error proportional controller.
Note that this controller only applies in the lateral direction, so the sagittal direction is controlled
by the constant offset controller. (a) A bundle of stable trajectories centered around the fixed
point given in Equation (3.9). The simulation was done with target step width 0.1m, target step
length 0.5m, step time 0.5s, natural frequency 4.952Hz, and controller gain k = 0.101. These
simulations converge very quickly to one trajectory. (b) A bundle of unstable trajectories. These
were generated using the same methods and parameters as the stable trajectories, but use a k value
of 0.193. While these trajectories remain centered around the target z position, the total width of
the trajectory increases step-over-step.

λ ∈ {0,−e−ωT , k(eωT − 1)− 1}. (3.10)

For this map to be stable, we must have λ3 = k(eωT − 1)− 1 < 1. Since eωT > 1 for ωT > 0, we
find the following relationship:

k <
2

eωT − 1
. (3.11)

This provides a maximum gain for stability. As step time T increases, the maximum allowable gain
decreases. Again, the simulations confirm this: for small k, the walker converges to a particular
target position zc (see Figure 3.3a), and for large k, the walker’s gait width slowly diverges while
remaining centered on the target position (see Figure 3.3b).

Simulations were also used to numerically confirm the instability condition in Equation (3.11). For
different values of k, the eigenvalues of the system follow exponential curves (which are confirmed
numerically, as seen in Figure 3.4). For higher values of k, the allowable normalized step time is
small; whereas, for smaller values of k, the range of allowable step times is large.

The eigenvectors for this controller are:
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Figure 3.4: Numerical (dotted) and analytical (smooth) eigenvalues for the absolute positional
error proportional controller for variable controller gains. The simulations were done using target
step width 0.1m, and varied over the nondimensional time variable ωT . The pink curve represents
the non-zero eigenvalue that is independent of k, while the other curves show the gain-dependence
of the third eigenvalue.

e1 =

 cosh(ωT )
−ω sinh(ωT )

1

 , e2 =

− 1
ω

1
0

 ,

and e3 =
1

2(keωT − 1)(k + 1)

k(eωT + 2keωT − 1)
−kω(eωT + 1)

2(keωT − 1)(k + 1)

 .

(3.12)

3.2 Global Stability: Recovery Basins

A useful way to describe if a state is stable is to determine if stable walking can be recovered using
any available stepping map. The set of all such states, referred to here as a recovery basin, can be
constructed using the viability kernel V∞, defined in [12]: starting from any state in V∞, the walker
can take an infinite number of permissible, or “viable” steps.

Our analysis is restricted to locally stable maps. Thus, we take local stability as a precondition of
viability. Given this precondition, it can be said that a state is viable (i.e. it is contained in V∞) if
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the next step satisfies the kinematic constraints. One such constraint we impose is maximum step
width, which can be written as:

w = uz(n+1) − uzn < wmax. (3.13)

Thus, the step width cannot exceed some biomechanical maximum. We also disallow crossover
steps which can be written

w = uz(n+1) − uzn > 0. (3.14)

Note that uzn = 0 in our local coordinate system (Figure 2.2), so it is ignored in the analysis.
These biomechanical constraints do not account for whether these maps reach a particular state
of interest; it only determines if the actions prescribed by the controller violate our predetermined
restrictions.

While these recovery basins are defined in a manner similar to viability basins, it is important to
note the difference between computing the entire viability kernel and computing the space under
just one controller. Recovery basins are viability kernels for the system when any one given con-
troller is applied, and do not determine a system’s viability when any control scheme is available.
Given the assumption that people have a pool of controllers from which they can pull to achieve
different walking gaits, the overall viability kernel for a given person is the union of the recovery
basins for all plausible walking controllers.

3.2.1 Recovery Basin for Constant Offset

As an example, consider the recovery basin for the controller described in Equation (2.18b). The
step width can be written using Equation (2.16b):

wn+1 = uz(n+1) = z−n+1 +
ż−n+1

ω
+ bz =

[
1 1

ω

]
z−n+1 + bz. (3.15)

Using Equation (2.13), this can be written in reference to the state at step n:

wn+1 =
[
1 1

ω

] [ cosh(ωT ) 1
ω
sinh(ωT )

ω sinh(ωT ) cosh(ωT )

]
z+n + bz, (3.16)

wn+1 = eωT (z+n +
1

ω
ż+n ) + bz. (3.17)

Applying the inequalities from Equations (3.13) and (3.14), we can obtain a region bound by two
parallel lines:

0 < wn+1 = eωT (z+n +
1

ω
ż+n ) + bz < wmax, (3.18)
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−bze
−ωT < z+n +

1

ω
ż+n < (wmax − bz)e

−ωT . (3.19)

The boundary in Equation (3.19) only gives the region under which the walker is viable after 1
step. This region will be notated R1

n. This can be generalized to Rm
n , which represents the set

of states at step n where the walker will be viable after another m steps (this region is forward
invariant through m steps). To expand this to include all steps, consider the following:

1. R2
n = R1

n ∩R1
n+1,

2. Rm
n = Rm−1

n ∩Rm−1
n+1 ,

3. Rm
n =

⋂n+m−1
i=n R1

i .

These properties define a clear procedure for finding the recovery basin. To generate the region
at step n where the walker is always viable (viable after an infinite number of steps), Equation
(3.19) must be applied at every step n + m, then the intersection of the resulting regions defines
the recovery basin. For the constant offset map, R1

n+1 can be written as

−bze
−ωT < z+n+1 +

1

ω
ż+n+1 < (wmax − bz)e

−ωT . (3.20)

Using Equation (2.18b), we can write:

z+n+1 +
1

ω
ż+n+1 = sinh (ωT )zn + cosh (ωT )

żn
ω

+ bz − sinh (ωT )zn − cosh (ωT )
żn
ω

= bz, (3.21)

so Equation (3.20) becomes

−bze
−ωT < bz < (wmax − bz)e

−ωT . (3.22)

This result is independent of the step number n, so this defines R1
n+m for all m ≥ 1. The left

inequality bound is always true; the right bound is true only for certain values of wmax:

bz < (wmax − bz)e
−ωT

wmax > bz(e
ωT + 1) = w∗. (3.23)

If this inequality is true, then R1
n+m is the whole (z, ż) plane. If it is false, then the set is the empty

set. This result comes from the construction of the constant offset controller, which determines
step width directly from bz. Thus, this condition is equivalent to stating that the maximum step
width must be higher than the controller’s set step width as was found previously by Hof [2].

Using this result, we can say that
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Figure 3.5: The recovery basin for the constant offset controller. The boundaries were generated by
evaluating the state numerically using the Poincaré map defined in Equation (2.18b) and checking
the kinematic conditions, and then overlaying the analytical boundaries from Equation (3.25). The
numerical and analytical boundaries line up exactly in this simulation.

Rm
n =

n+m−1⋂
i=n

R1
i = R1

n ∩R1
n+m = R1

n or ∅. (3.24)

Thus, for the constant offset controller, if the walker is viable after one step, it is viable for an
infinite number of steps, as long as wmax is sufficiently large (via (3.23). Note that if wmax =
bz(e

ωT + 1) (its minimum value), R1
n can be written

−bze
−ωT < z+n +

1

ω
ż+n < bz, (3.25)

,

which is thus the limiting case of the smallest possible recovery basin.

Using MATLAB simulations, we verified this theoretical result, as shown in in Figure 3.5, using
ω = 4.952 Hz, T = 0.5 s, bz = 0.0078 m, and wmax = 0.8 m.
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3.2.2 Recovery Basin for Positional Control

As was done in the previous section, for the absolute positional error proportional controller, we
write the step width at the next step as

wn+1 = uz(n+1) = (k + 1)z−n+1 +
k + 1

ω
ż−n+1 − kzc(n+1) + bz, (3.26)

wn+1 = (k + 1)eωT z+n +
k + 1

ω
eωT ż+n − kzcn + bz. (3.27)

From this, we determine the steady-state step width using the fixed points of Equation (3.9):

w∗ = (k + 1)eωT z∗ +
k + 1

ω
eωT ż∗ − kz∗c + bz = 2bz

eωT + 1

2− k(eωT − 1)
(3.28)

Again, this is the same as was found in Hof [2]. Applying the inequalities from Equations (3.13)
and (3.14), 0 < wn+1 < wmax becomes

0 < (k + 1)eωT z+n +
k + 1

ω
eωT ż+n − kzcn + bz < wmax, (3.29)

kzcn − bz
(k + 1)eωT

< z+n +
1

ω
ż+n <

wmax + kzcn − bz
(k + 1)eωT

. (3.30)

The region R1
n+m can thus be written as

Fmzcn +Gm < z+n +
1

ω
ż+n < Fmzcn +Hm, (3.31)

where we recall that zcn is the additional state variable representing the absolute target position
in the current local (body centric) coordinate system. Then F , G, and H , are state-independent
coefficients. This creates a new discrete-time dynamical system. Equation (3.30) describes the
case for m = 0, so we can write

F0 =
k

k + 1
e−ωT , (3.32a)

G0 =
−bz
k + 1

e−ωT , (3.32b)

H0 =
wmax − bz
k + 1

e−ωT . (3.32c)

Writing R1
n+m+1 using Equation (3.30) yields

Fmzcn+m+1 +Gm < z+n+m+1 +
1

ω
ż+n+m+1 < Fmzcn+m+1 +Hm. (3.33)
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Using Equations (2.21) and (2.22), we can write this at step n as:

e−ωT zcn+m+
(Fm − 1)bz +Gm

[k − Fm(k + 1)]eωT
< z+n+m+

1

ω
ż+n+m < e−ωT zcn+m+

(Fm − 1)bz +Hm

[k − Fm(k + 1)]eωT
. (3.34)

Again, identifying the state-independent coefficients, comparing Equations (3.31) and (3.34) yields

Fm+1 = e−ωT , (3.35a)

Gm+1 =
(Fm − 1)bz +Gm

Dm

, (3.35b)

Hm+1 =
(Fm − 1)bz +Hm

Dm

, (3.35c)

where for all m ≥ 0, the denominator term Dm is defined as

Dm = [k − Fm(k + 1)]eωT .

Again, the system described in Equations (3.35) are themselves a discrete dynamical system with
stability properties. Fm is necessarily stable (since it is constant for m ≥ 1), but the stability of G
and H is less clear.

Since F ∗ = e−ωT :

D∗ = [k − F ∗(k + 1)]eωT = k(eωT − 1)− 1, (3.36a)

G∗ = H∗ =
(F ∗ − 1)bz +G∗

D∗ , (3.36b)

which reduces to

G∗ = H∗ =
(e−ωT − 1)bz

D∗ − 1
=

e−ωT − 1

k(eωT − 1)− 2
bz. (3.37)

Since the map is affine, the stability of G and H is determined by the magnitude of the coefficient
of Gm and Hm in the update Equations (3.35):

| 1

D∗ | < 1,

which reduces to

k >
2

eωT − 1
or k(eωT − 1) < 0. (3.38)
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The last inequality is always false, given the assumptions that ωT and k are both positive. The left
inequality is exactly the reverse of the stability condition in Equation (3.11). So, the G and H maps
are stable if and only if the walker is unstable. This could also be intuited using the definition of
the recovery basin: if the maps defining the bounds were stable, the recovery basin would shrink
towards the fixed point at each step. Since the fixed points of G and H are the same, the recovery
basin would collapse to a line.

As with the constant offset map, we are interested in whether the recovery basin R∞
n can be de-

termined after a finite number of steps. If so, it will be determined either by the most restrictive
basin boundaries or by whether the basin disappears altogether. First, consider the condition for
the lower boundary to increase. This can be written as the statement:

(Fm+1 − Fm)zcn + (Gm+1 −Gm) > 0.

Substituting the update equation for Gm+1:

(Fm+1 − Fm)zcn +
(Fm − 1)bz + (1−Dm)Gm

Dm

> 0. (3.39)

Since F and D only have two “states”, this will be evaluated twice: once for m = 0 and once for
m ≥ 1. Recalling the definitions of F0, G0, and Dm, after some algebra, this inequality for m = 0
reduces to

zcn >
bz
k

1 + e−ωT

1− e−ωT
. (3.40)

Note that D0 = k(eωT−1) is always positive. This equation is the condition for the lower boundary
to increase after the first step.

A similar analysis can be applied to Hm. The condition for the upper bound to decrease is similar
to Equation (3.39):

(Fm+1 − Fm)zcn +
(Fm − 1)bz + (1−Dm)Hm

Dm

< 0. (3.41)

Similar to Gm, for m = 0, using the definitions of F0, H0, and D0:

zcn <
bz
k

1 + e−ωT

1− e−ωT
+ wmax(1−

1

k(eωT − 1)
). (3.42)

This is the condition for the upper bound to decrease after the first step.

After the first step (i.e., m ≥ 1), Fm+1 = Fm = F ∗ and Dm = D∗, so the inequality in Equation
(3.39) reduces to
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(F ∗ − 1)bz + (1−D∗)Gm

D∗ > 0.

A similar inequality exists for Hm. It is known that −1 < D∗ < 1, but its sign cannot be determined
a priori, so consider both the positive and negative cases. For the positive case,

Gm >
(F ∗ − 1)bz
D∗ − 1

= G∗. (3.43)

This means that, for D∗ > 0 and m ≥ 1, Gm increases if it is greater than its fixed value, and
it can be further determined that Gm always moves in the opposite direction of its fixed point.
Alternatively, for D∗ < 0, Gm alternates between being greater than and less than G∗. For the
“negative” case, take Gm+1 > G∗ for m ≥ 1:

(F ∗ − 1)bz +Gm < G∗D∗ =
(F ∗ − 1)bzD

∗

D∗ − 1
,

Gm < (F ∗ − 1)bz(
D∗

D∗ − 1
− 1) = G∗. (3.44)

The same result (with flipped inequality) applies for Gm+1 < G∗. We also know that, since the
system is unstable, the distance between Gm and G∗ will increase after each step. From these cases,
we know that the bound due to Gm is the smallest after 1 step. Note that it would not be correct to
always call this boundary the lower bound, since Hm may be less than Gm in this alternating case.
Since the map is the same for Hm, this result also applies to H .

For this alternating case, since Gm and Hm can no longer approach the fixed point after the first
step, it is sufficient to say that the recovery basin is set after i steps, where i = 1 if either of the
following inequalities hold:

|G1 −G∗| > |H2 −H∗| = |H1 −H∗

D∗ | (3.45a)

|H1 −H∗| > |G2 −G∗| = |G1 −G∗

D∗ |, (3.45b)

and is 0 otherwise. This accounts for the possibility that the boundaries switch while making the
recovery region smaller. Note that this is true only for the alternating case.

There are a few additional cases of interest. Consider the case where Gm and Hm are both greater
than or both less than G∗ = H∗. Since we know that Gm and Hm both either alternate or stay on
the same side of G∗ after the first step, we only need to check if they are on the same side after the
first step. First, consider the case where G1 > G∗ and H1 > H∗:

G1 =
(F0 − 1)bz +G0

D0

> G∗ = bz
e−ωT − 1

k(eωT − 1)− 1
.
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After some algebra, and using the definitions of F0 and G0, this reduces to the inequality

2 + 2e−ωT < 0,

which is always false. Note that this means that G1 < G∗ in all cases.

Now, consider the other case, where H1 < H∗ and G1 < G∗:

H1 =
(F0 − 1)bz +H0

D0

< H∗ = bz
e−ωT − 1

k(eωT − 1)− 1
. (3.46)

Again, after some algebra, this inequality reduces to

wmax < bz
2(1 + eωT )

2− k(eωT − 1)
= w∗. (3.47)

In this case, this means that, if wmax < w∗, Gm and Hm stay on the same side of H∗. Since
both Gm and Hm are unstable, both boundaries increase out to infinity, so the infinite intersection
generating R∞ returns the empty set. It does make sense for the recovery basin to be the null set
for a walker that cannot accommodate its own step width.

For completeness, one final case is for either G0 > G∗ or H0 < H∗. G0 > G∗ reduces to

k >
eωT + 3

2(eωT − 1)
>

2

eωT − 1
,

which is always false for a stable walking map. For the other inequality:

H0 =
wmax − bz
k + 1

e−ωT < H∗ =
e−ωT − 1

k(eωT − 1)− 2
bz.

After some algebra, this reduces to

wmax < bz
eωT + 1

2− k(eωT − 1)
=

w∗

2
.

Given the previous condition with wmax and step width, this case is redundant.

Having considered all cases, it is sufficient to conclude that, for D∗ > 0, the most restrictive case
always occurs before the second step; that is, R∞

n = R2
n. For the alternating case, R∞

n = Ri+2
n ,

where i is determined by the inequalities in Equations (3.45a) and (3.45b). Since i is always either
0 or 1, it is sufficient to say that R∞

n = R3
n in all cases.

For any individual starting value of zcn, we can generate the boundaries of R∞
n using this method.

Extrapolating this for all zcn, we get the full recovery basin in the 3D state space. To project this
into two dimensions, we will represent it in a zcn-(zn + 1

ω
żn) plane. We can do this since the slope
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Figure 3.6: The recovery basin for the absolute positional error proportional controller. The bound-
aries were generated by evaluating the state numerically using the Poincaré map defined in Equa-
tion (2.22) and checking the kinematic conditions, and then overlaying the analytical boundaries
from the procedure laid out above. The numerical and analytical boundaries line up exactly in
this simulation. Note that the axes in this figure are zc and zn + 1

ω
żn to allow for the figure to be

represented in two dimensions, as a slice of the full three-dimensional recovery basin.

of the boundary lines is the same for all values of zcn. The result for an example case is shown
in Figure 3.6, generated both using the analytical boundaries as well as evaluating the conditions
numerically. Perhaps the most surprising result of generating the recovery basin for the positional
error controller is that the tracking of the absolute position target is limited, suggesting that this
controller is only viable for targets up to a certain distance away from the current position.
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Chapter 4

Discussion
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The most fundamental result of this thesis is its description of state space structure. It is important
to recognize the true time-dependent nature of the state space of the IP walking model to perform
analyses that assess the impact of different control models. This is because the nature of its so-
lutions does not arise from the dynamics of the inverted pendulum itself: that system is unstable,
whereas stability of the walking model arises from from the time-dependence of the center of pres-
sure (COP). Even when the COP is held constant within each step, it is not constant between steps,
shifting positions at each step transition, acting as a “forcing” term even as the equations of motion
during each step are homogeneous.

The other primary result of this thesis is the properties of the recovery basins, of which the most
notable is the number of steps until convergence. For the constant offset controller, whose recovery
basin is described by Equations (3.24) and (3.25), it turns out that the recovery basin, and therefore
the global stability properties of the hybrid system, are set after one step. In other words, using
this controller, either the walker violates one of our constraints during its first step, or it never
does. Similarly, the basin for the absolute positional error proportional controller, the recovery
basin converges in only three steps. These results are very similar to those of Zaytsev [16], in
which they show that if a given gait is achievable, it is achievable in two steps in most cases.
While recovering this with simple controllers may be unsurprising, achieving similar results using
a different implementation of viability theory is encouraging.

As in this study, most other discussions of the IP and related models have used a constant center
of pressure located at heel strike. However, people roll their feet during their steps, which would
make the between-step equations of motion (Equations (2.9)) non-homogeneous. Furthermore,
whereas piecewise constant COP models assume that the COP shifts instantaneously between step
positions, in reality the COP shifts continuously during mid-stance. Understanding the he time-
dependent nature of the system’s state space will allow for the implementation of COP controllers
that mimic these behaviors using the same model structure developed here.

Another extension of these higher-fidelity COP models is understanding the effects of continuous
system noise. It is possible to approximate the solution to a stochastic (noisy) system analyti-
cally, e.g. using the Euler-Maruyama method [17, 18], which uses a sum of sinusoids to represent
continuous pseudorandom noise. The statistics of the pseudorandom noise could thus generate a
probability of walking instability, further evaluating the global stability of given COP controllers.

This thesis focuses solely on controllers developed by Hof [2]; however, the same procedures can
be used to analyze other control schemes. For example, a multi-objective optimal controller could
be implemented, as was studied in [6]. This would allow us to investigate the relationship between
the controller costs and recovery basin boundaries. It is likely that each person weights walking pa-
rameters differently (such as step width and walking speed) from each other, from task to task, and
throughout their lives. Understanding the effects that these weightings have on the recovery basin,
and therefore the global stability of the walker, may be important in understanding the deteriora-
tion of fall avoidance in older humans and in analyzing the effects of neuromuscular disorders. A
natural continuation of this work would be analyzing the relationship between parameter weights,
recovery basin shape, and ultimately fall avoidance. These results are testable as well; it is possible
to generate multi-objective control models based on walking data from real subjects, extracting the
parameter weights from center of mass and center of pressure data [6]. These models could be
used to generate recovery basins from human walking data. Using the model in this way would
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provide a metric for global stability that is otherwise impossible to obtain.

Finally, this thesis provides insight into the fall-avoidance strategy known as basin-shifting, pre-
viously proposed as a mechanism for fall recovery [9]. The results of the recovery basin for the
proportional controller in Figure 3.6 suggest that the recovery basin is limited in the range of target
positions that lead to stable walking, a characteristic that this controller likely shares with other
simple formulations. This limitation is perhaps not surprising: after all, attempting a large course-
correction within a small number of steps is typically not feasible. But, the same effect can be
achieved by dividing the larger maneuver into many sub-maneuvers, hence shifting the recovery
basin for the controller along the desired trajectory. Note, however, that the specific controllers
used may significantly impact the implementation of basin shifting: Hof specifically states that the
proposed control laws are intended only to reach a stable gait, and are not designed to match a
particular gait [2]. Thus, it is possible that a different controller would be able to accommodate for
this limitation by being more conservative or by considering many future steps.
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