THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE

DEPARTMENT OF GEOSCIENCES

The Carbon Footprint of Penn State Dining's Buffet Menus

OCTAVIA SZKUTNIK SPRING 2024

A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in Earth Science and Policy with honors in Earth Science and Policy

Reviewed and approved* by the following:

Douglas Goodstein Student Programs Coordinator Thesis Supervisor

Timothy Bralower Professor of Geosciences Honors Adviser

* Electronic approvals are on file.

ABSTRACT

In the face of an escalating climate crisis, the urgency of sustainability has reached every corridor of Penn State University's operations; Penn State's Dining operations will need to follow suit in sustainability efforts across campus. Food choices significantly contribute to environmental challenges through the production of greenhouse gas-intensive foods, like red meat and dairy, which result in large amounts of methane emissions and deforestation, amplifying the carbon footprint. Penn State's buffet menus become the focal point, as this thesis employs a carbon rating system---utilizing carbon footprints from CarbonCloud and recipe specific information from FoodPro---to quantify greenhouse gas emissions for each recipe and menu item and identify which recipes have higher or lower carbon footprints. Recipe information specific to Penn State is pulled from FoodPro, including serving sizes, and each ingredient is attributed a certain amount of kg CO₂e, identified in CarbonCloud. Footprints are calculated in Excel, finding that steak is the most carbon heavy meal. However, it proves challenging to pinpoint strategies for reducing the carbon footprint without compromising student and customer satisfaction. Therefore, this study encourages Penn State to adjust its menus to offer less carbon heavy meat options (such as beef) and measure consumer satisfaction, and offers practical recommendations for sustainable dining practices. This thesis positions Penn State as a proactive institution, addressing the intersectionality of climate change and food choice and paving the way for a sustainable and environmentally conscious future for the University.

Keywords: Carbon Impact • Penn State Buffet Menus • Sustainable Dining • Climate Change • Greenhouse Gas Emissions

TABLE OF CONTENTS

Chapter 1 Introduction	1
I. Climate Change	1
II. Food Systems and the Environment	3
III. University Dining Emissions	4
IV. Carbon Footprint Calculations	6
V. Stakeholder Engagement	7
Chapter 2 Literature Review	8
I. Root Causes of Agricultural Pollution	8
II. Food Justice	10
III. Gaps in Research	11
IV. Existing Carbon Footprint Models	13
IV. Conclusion	14
Chapter 3 Methods	15
I. Data Collection and Preparation	15
II. Carbon Footprint Attribution	16
III. Recipe Analysis	17
IV. Analytical Exploration	18
a. Comparative Analysis of Dietary Patterns	18

b. Exploration of Menu Optimization Strategies19
c. Assessment of Customer Preferences and Obligations19
Chapter 4 Results and Discussion
I. Comparative Analysis of Dietary Patterns
II. Exploration of Menu Optimization Strategies
III. Assessment of Customer Preferences and Obligations25
IV. Limitations
V. Further Research
Chapter 5 Conclusion
Bibliography
Appendix A Data and Calculations from FoodPro and CarbonCloud35

LIST OF FIGURES

Figure 1: Global greenhouse gas emissions across levels of food production	.3
Figure 2: GHG Emissions Across Various Food Productions	.9
Figure 3: Recipe spreadsheet next to global recipe	.15
Figure 4: Set-up of CarbonCloud ingredient database	.16
Figure 5: Set-up of FoodPro	.17
Figure 6: Example of conversion Excel	.39

LIST OF TABLES

Table 1: Dietary patterns derived from menu data	21
Table 2: Top 3 carbon intense dishes per day	24
Table 3: Amount of servings utilized at Findlay Commons	25
Table 4: Comprehensive meal usage from Findlay Commons	41

ACKNOWLEDGEMENTS

First, I want to thank Douglas Goodstein, my Thesis Supervisor and long-time mentor at Penn State. His commitment to sustainability at Penn State and continuous support of students to propel their work in the sustainability space is astounding. He proposed this thesis idea to me after an informational meeting with the University of Massachusetts, who employed a similar methodology at their dining halls, excited that I could be a good fit based on my background. Doug's passion and creativity has encouraged me to become a more systematic thinker and a better leader in life. I am honored to have worked with him throughout my academic career at Penn State, so thank you, Doug, for making such an impact on my life.

This thesis idea would not exist if not for the passionate individuals at the University of Massachusetts, namely Kathy Wicks, who played a key role in initiating the launch of an A-E carbon footprint rating system on menu identifiers, complemented by their educational campaign titled Dining for a Cooler Planet. UMass utilizes carbon footprint calculations are carried out collaboratively with My Emissions, who utilize carbon emissions factors to assign values to food items. So, thank you, Kathy, for introducing this wonderful idea to Penn State.

I'd also like to thank Jim Meinecke, Susan Santos, and the rest of the Penn State Dining and FoodPro team for providing me with the data necessary to run the carbon footprint report. The turnaround in providing me with a list of recipes and ingredients with the Dining cycle menu from my initial ask was astounding and instrumentally helpful in kickstarting my research, so thank you for supporting me from the start. Thank you to the Schreyer Honors College (SHC) staff, and particularly my honors advisor Dr. Timothy Bralower, for looking through all my proposals and updates and always replying to my emails in a timely fashion. Thank you to SHC broadly for combing through my grant proposals, academic plans, and continuously supporting my journey through sustainability at Penn State to put me in a position to write this thesis.

Thank you to my friends and family for always supporting me when I was rambling about my thesis work.

Thank you to everyone else who supported me in any manner throughout my time working on this thesis.

I am beyond grateful for the tools that SHC has provided me with to write this thesis; I have gained invaluable knowledge throughout my time at Penn State and am indebted to those who have supported me.

Chapter 1

Introduction

This introduction provides an overview of climate change, the environmental impact of food systems, and the logical processes lining carbon footprint calculations within university dining services. It underscores the urgency of addressing climate change and highlights the importance of sustainable practices in mitigating emissions. Additionally, it emphasizes the role of undergraduate students and outlines the benefit of carbon footprint calculations.

I. Climate Change

Climate change is a long-term alteration in the statistical distribution of climactic patterns over periods over a long period of time (decades to millions of years) (Fleming, 2005). Recent climate change is likely caused by anthropogenic activities---which increase greenhouse gas concentrations in the atmosphere---such as burning fossil fuels, deforestation, and industrial processes (Hardy, 2003). These gases trap heat from the sun, causing the Earth's temperature to rise, leading to global warming; the period from 1983 to 2012 was likely the warmest 30-year period of the last 800 years in the Northern Hemisphere (Hardy, 2003; IPCC, 2013).

We should be worried about climate change; the effects of this phenomenon include frequent and severe weather events, rising sea levels, biodiversity loss, and negative economic impacts. These changes can have significant impacts on human communities and health, ecosystems, and infrastructure (Urry, 2015). Climate change is causing more frequent and severe extreme weather events, such as heatwaves, droughts, floods, and storms. For example, heat wave frequency and season has nearly tripled since the 1960s (Hayhoe, 2010). These events can cause significant damage to infrastructure, homes, and crops, leading to economic losses and displacement of people (Hayhoe, 2010). Additionally, global sea levels are rising due to the melting of glaciers and ice sheets and thermal expansion (Mimura, 2013). This poses a significant threat to coastal cities and low-lying areas, which could face increased flooding and erosion (Mimura, 2013).

Climate change is affecting human health in many ways, including increased air pollution, the spread of infectious diseases, and heat-related illnesses (McMichael, 2010). It is also causing species to become endangered or extinct as their habitats are altered or destroyed (Lovejoy, 2006). This can break chains in ecosystem interrelationships and impact society's access to adequate food, clean air and water (McMichael, 2010).

Society could also face economic impacts, including damage to infrastructure, loss of productivity, and increased costs associated with mitigation and adaptation measures (Mitchell, 2012). Just to stay even---according to recent global estimates and the IPAT formula---we must improve our environmental performance on goods and services by 5 percent a year (Mitchell, 2012).

Overall, climate change poses a significant threat to our planet's health, security, and prosperity. Therefore, it is crucial that humanity takes action to reduce greenhouse gas emissions and adapt to the changes that are already underway, including in food and dining systems.

II. Food Systems and the Environment

As the impacts of climate change reverberate across many different sectors of human life, the linkage between these climactic changes and food systems become increasingly evident. Recent studies indicate a concerning trend: food systems' emissions have been steadily increasing, now constituting approximately 26% of global greenhouse gas emissions (Ritchie, 2019). This trend highlights the need for action to mitigate the environmental impact of food production and consumption.

Within food production, three primary sources contribute to carbon emissions, as seen in Figure 1: livestock and fisheries, crop production, and land use practices (Ellis et al., 2020). Each of these sectors presents unique challenges and opportunities for reducing carbon footprints and fostering sustainability.

Figure 1: Global greenhouse gas emissions across levels of food production.

Livestock rearing, including cattle, sheep, and poultry, is a significant contributor to greenhouse gas emissions due to methane production and land use for feed cultivation (Sonesson et al., 2010). Similarly, industrial fisheries contribute to global emissions through fuel usage and habitat destruction (Sonesson et al., 2010). Addressing emissions from these sectors requires carbon drawdown approaches such as regenerative farming practices, dietary adjustments, and aquaculture reforms (Hawken, 2017).

Crop production, while essential for food security, also accounts for a substantial portion of food systems emissions, mainly stemming from fertilizer application, machinery usage, and land clearing (Sonesson et al., 2010). Embracing agroecological principles, promoting organic farming methods, and increasing resource availability can help in mitigating emissions in this sector (Hawken, 2017).

Land use changes associated with agriculture, including deforestation and habitat conversion, also negatively impact carbon emissions (Sonesson et al., 2010). Forest clearance for agricultural expansion not only releases stored carbon but also diminishes biodiversity and disrupts ecosystems (Sonesson et al., 2010). Implementing policies to protect natural habitats, promoting reforestation efforts, and incentivizing sustainable land management practices can drawn down on or curb emissions from land use (Hawken, 2017).

III. University Dining Emissions

As the need for action to mitigate the environmental impact of food production and consumption becomes increasingly urgent, the importance of university dining is highlighted, where the influence of undergraduate students on consumption patterns and carbon footprints holds power over university emissions. Undergraduate students compose the majority of the consumer base within university dining services, holding most of the influence over consumption patterns and food preferences (Costello, 2016). Their choices have a direct impact on the carbon footprint of Penn State Dining. Consumption of high-emission foods, such as beef and other meats, contributes disproportionately to carbon emissions, which highlights the need for additional, lower carbon dietary options (Costello, 2016). Additionally, food waste generated by undergraduate students only adds to university carbon emissions, further highlighting the importance of promoting mindful consumption practices (Costello, 2016).

Carbon emissions associated with food production extend across multiple stages, including agricultural practices, transportation, and waste management (Striebig, 2018). Penn State Dining's sourcing practices and supply chain decisions directly influence the carbon intensity of food offerings. For instance, the transportation of food products, especially those sourced from out of state or foreign locations, contributes significantly to carbon emissions, highlighting the need for a shift towards local sourcing whenever feasible (Striebig, 2018).

Promoting plant-based alternatives or sustainable seafood options can also reduce the carbon footprint of undergraduate dining choices while also accommodating for diverse dietary needs (Franchini et al., 2023). Educational initiatives and awareness campaigns within university communities can empower students to make informed and sustainable food choices, thus fostering a culture of environmental consciousness (Franchini et al., 2023).

The University of Connecticut (UConn) achieved all eight dining halls reaching the highest level of certification from the Green Restaurant Association (GRA) (Desroches, 2023). UConn stands out as the sole campus in the United States where every dining facility has attained a this four-star certification (Desroches, 2023). For instance, UConn has adopted

trayless dining to curtail food waste and water usage, alongside initiatives such as pre-consumer waste measurement, waste transformation into biogas and compost, and recycling programs (Desroches, 2023). Additionally, UConn Dining prioritizes the procurement of local produce, further enhancing its sustainability profile within the community (Desroches, 2023). Through its comprehensive efforts across multiple sustainability categories, UConn sets a strong precedent for universities wanting to engage in sustainable practices. As evidenced by this case study, collaboration between Penn State Dining, students, and suppliers can aid in implementing effective sustainability measures, such as waste reduction strategies or carbon-neutral transportation initiatives.

IV. Carbon Footprint Calculations

In response to the growing concern over climate change and the contribution of agriculture and consequently dining services to greenhouse gas emissions, universities must therefore evaluate the environmental impact of food served across university-wide operations. The carbon footprint of food recipes encompasses the greenhouse gas emissions associated with every stage of food production, transportation, preparation, and disposal (Costello, 2016). To conduct a comprehensive assessment, universities must consider factors such as ingredient sourcing, cooking methods, portion sizes, and waste management practices (Costello, 2016).

Key steps in calculating the carbon footprint of food recipes include ingredient analysis, emissions estimation, portion control, and waste management; this thesis in particular focuses on ingredient analysis and portion control (Costello, 2016). Ingredient analysis identifies and quantifies the ingredients used in each recipe, considering their production methods, transportation distances, and associated emissions (Lambrecht et al., 2023). Emissions estimation determines the greenhouse gas emissions generated during ingredient production, transportation, storage, and preparation, using established emission factors and life cycle assessments (Costello, 2016). Portion control assesses portion sizes and consumption patterns to accurately estimate the carbon footprint per serving of each recipe (Costello, 2016). Waste management evaluates waste generation and disposal practices, including food waste prevention, composting, and recycling, to account for emissions associated with food waste (Costello, 2016).

By conducting carbon footprint calculations for food recipes, universities can identify high-emission dishes, prioritize sustainable alternatives, and implement targeted strategies to reduce their overall environmental impact. This data-driven approach not only promotes sustainability within university dining services but also educates stakeholders and fosters a culture of environmental responsibility campus-wide.

V. Stakeholder Engagement

The data on food carbon emissions can serve as a valuable tool for Penn State Dining in making informed purchasing decisions and creating educational materials. By prioritizing lowemission ingredients and sustainable sourcing practices, Penn State Dining can reduce the environmental footprint of its operations without compromising consumers' needs and enjoyment (Lambrecht et al., 2023). Moreover, leveraging this data can facilitate discussions around climate goals and foster collaboration towards reducing carbon emissions throughout the entire university.

Chapter 2

Literature Review

I. Root Causes of Agricultural Pollution

Over the past five decades, advancements in agricultural practices and increased harvests have contributed to higher life expectancy and reduced hunger rates (Merrington et al., 2002). Despite these benefits, these developments have led to significant challenges for both human health and the environment, highlights by the large amount of emissions generated by food systems (Merrington et al., 2002). These emissions stem from underlying issues rooted in land use, crop production, livestock and fisheries, and supply chain complexities, which are further compounded by intensified food production efforts (Poore et al., 2019). One may only understand the fundamental causes of these challenges through the examination of the social and economic factors influencing food carbon emissions.

Income disparities play a crucial role in exacerbating food emissions, as rising incomes often correlate with increased consumption of meat and dairy products (Song, 2022). Healthier food options, such as fruits and vegetables, have become more costly and less accessible to economically disadvantaged households (Song, 2022). Thus, when, financial constraints arise, nutritious foods are often the first to be sacrificed, further exacerbating this disparity and increasing emissions.

Meat protein production has a notably higher greenhouse gas emissions rate when compared to vegetable protein, as seen in Figure 2 (Suri et al., 2023; Song, 2022). Feed production for animals typically generates more emissions compared to vegetable protein farming due to factors such as low digestibility and growth of feed by-products and the need for additional transport to deliver feed to livestock (Song, 2022). Additionally, deforestation for agriculture---particularly for feed crops like soy, maize, and pasture----contributes significantly to greenhouse gas emissions, resulting in carbon losses from both above- and below-ground sources (Song, 2022). So, not only are these inequities harming human health, but also the environment.

Figure 2: GHG Emissions Across Various Food Productions

II. Food Justice

The alternative food movement scrutinizes the global food system, particularly focusing on environmental and social issues such as topsoil loss, greenhouse gas emissions, food-related diseases, and poor labor conditions (Horst, 217). Researchers criticize the movement for focusing too much on local food and environmental sustainability, neglecting social injustices inherent in food production, distribution, and consumption (Horst, 2017). They argue that the movement's emphasis on consumer choices and neoliberal strategies fails to address structural causes and promote systemic change (Horst, 2017).

In response, food justice emerges as a more radical approach, prioritizing equity and systemic change over local and sustainable food systems. It emphasizes the racial and class disparities embedded in the food system and advocates for policies and practices that address these inequalities (Horst, 2017). Food justice movements seek to undo institutional racism, critique policies upholding inequalities, and develop non-exploitative relationships within the food system (Horst, 2017).

Municipal governments, particularly in the USA, have increasingly engaged in food systems planning, aiming to address issues of food access and sustainability (Horst, 2017). However, researchers argue that municipal efforts often prioritize economic interests over equity and justice. While some cities like Seattle have prioritized equity in their food planning efforts, challenges remain in effectively promoting food justice within the constraints of modern policy frameworks (Horst, 2017).

The case study of the Puget Sound Regional Food Policy Council (PSRFPC) illustrates the challenges and progress in achieving food justice within municipal contexts (Horst, 2017).

The PSRFPC has made strides in identifying and prioritizing equity in food systems planning, demonstrating progress in addressing race and class-based disparities (Horst, 2017). However, modern governmental structures hinder further advancements. A key challenge is the lack of sufficient and stable resources, reflecting broader trends of reduced funding for local government initiatives (Horst, 2017). Despite such obstacles, municipal food systems planners can drive deeper change by engaging in anti-racism efforts, advocating for redistributive policies, and nurturing alternative forms of land management and exchange (Horst, 2017).

III. Gaps in Research

Various measures have been proposed to mitigate the environmental impacts and carbon emissions associated with food systems, with solutions often categorized based on stakeholders (consumers, producers) and methods. This thesis aims to address existing gaps in sustainable food production by emphasizing the importance of food choices and consumer behavior in reducing greenhouse gas emissions.

Meat from ruminant animals like cows stands out as a significant emitter of greenhouse gases, primarily methane, with a kilogram of beef producing substantially more GHGs compared to plant-based alternatives (Lambrecht, 2023). Consumers can play a significant role by adopting dietary changes, such as reducing consumption of animal products, which could lead to substantial reductions in environmental impacts (Poore et al., 2019).

Additional mitigation strategies should involve empowering producers to monitor and mitigate their impacts through setting and incentivizing targets (Poore et al., 2019). However, relying solely on producers may not be sufficient, and efforts should also involve other actors in

the food supply chain, such as processors, distributors, retailers, and consumers (Poore et al., 2019). Communication of environmental impacts up the supply chain and to consumers is crucial for driving change.

There still remains a critical gap in procurement information, highlighting the need to assess whether knowledge of food carbon footprints influences purchasing decisions among large organizations. While food transportation contributes to emissions, the overall impact of locality is relatively minor, with food transport accounting for only a fraction of total emissions (Poore et al., 2019).

Building upon the foundational understandings past research has set up, this thesis aims to address these gaps by emphasizing the significance of consumer behavior and food choices in mitigating greenhouse gas emissions. By focusing on the carbon footprint associated with dining choices at a specific institution, this study fills critical knowledge gaps by providing empirical insights into the carbon intensity of dining options and the potential for reducing environmental impacts through consumer-oriented interventions. By assessing the carbon footprint of various meal options and exploring strategies for emission reduction, this research offers practical insights for institutions seeking to implement sustainable dining practices. Furthermore, by examining the intersection of food justice and environmental sustainability within the context of institutional dining, this study contributes to a more holistic understanding of sustainable food systems.

IV. Existing Carbon Footprint Models

In order to assess the carbon footprint of meal options and explore strategies for emission reduction at Penn State, it is critical to look at other university models. UMass Dining Services has implemented a comprehensive carbon rating system in collaboration with MyEmissions, a leading provider of food carbon labeling (Howland, 2022). The system utilizes a standardized process to calculate the carbon footprint of each menu item, considering factors such as ingredient sourcing, preparation methods, and transportation (Howland, 2022). Once the carbon footprint is determined, each menu item is assigned a rating on a scale from A to E, with "A" indicating low carbon impact and "E" indicating very high carbon impact (Howland, 2022). These ratings are displayed on menu cards and the UMass Dining App, providing customers with clear and accessible information to make informed food choices (Howland, 2022).

The existing carbon footprint model implemented by UMass Dining Services presents strengths and limitations that inform the research approach for this thesis. UMass exports recipe information from FoodPro to MyEmissions, allowing for a streamlined calculation of the carbon footprint of each menu item that Penn State can implement as users of FoodPro. Moreover, the integration of carbon rankings into the menu card enhances customer awareness and facilitates informed food choices. The availability of reports on the carbon impacts of individual ingredients offers valuable insights for dining chefs to refine recipes, modify standard processes, and identify alternative ingredients to reduce carbon emissions. Additionally, the model serves as a valuable tool for measuring progress and tracking the percentage of dishes within specific carbon rating categories over time, enabling continuous improvement. However, several limitations exist within the current model. The cost and resource intensity associated with setup and ongoing charges from MyEmissions may present financial barriers for universities or researchers with limited budgets. Furthermore, MyEmissions' reliance on standardized processes and carbon ratings may oversimplify the complex dynamics of carbon footprint calculation, potentially overlooking certain nuances or variations in ingredient sourcing, preparation methods, and waste management practices. Challenges also arise in calculating the carbon footprint of off-menu items or changes in ingredient availability. This thesis will particularly address the challenge in cost and resource intensity, with the carbon rating system employed in this thesis focusing on public software and software already employed by the university, coupled with calculations on Excel.

IV. Conclusion

Addressing the environmental impacts of food systems requires a holistic approach involving consumers, producers, and policymakers. This thesis serves as a prime example of this comprehensive strategy, emphasizing the significance of sustainable food choices, economic considerations, and university structuring. By promoting plant-based diets, improving access to healthier foods, and implementing sustainable procurement methods, universities can effectively reduce greenhouse gas emissions in food production.

Chapter 3

Methods

This methods section outlines the steps taken to collect, attribute, and analyze carbon footprints for food recipes within university dining services, highlighting the use of relevant databases and software tools to ensure accuracy in the assessment.

I. Data Collection and Preparation

Global recipe data is obtained from the university dining services, specifically exporting all recipes located in facility 11 while excluding wraparounds, as seen in Figure 3. The exported data lacked immediate listing of ingredient names following the ingredients; however, it preserved the correct order. To organize the dataset effectively, the spreadsheet is sorted by the headers to ensure coherence and accuracy in subsequent analyses.

G	$0 \cdot \times \checkmark f_x$						🏘 Glo	obal Recipe	e
	AB	С	D	E	F	G	File E	Edit Tools	s List Help
1	RECIPE NUMBER 🔽 RECIPE NAME	PORT.SIZE	PORT.UNIT	SOURCE.PORT	INGRED -	INGRED.NAME	nle		BROBUNICE M
2	189092 ACAI	8	OZL	4	1908		Desir		
3	189092 ACAI	8	OZL	4		# SAMBAZON ACAI	Recip	015	
4	299002 ACALACAI BOWL \$0	1	SERVG	1	189092		049	015 14	CC BRD CRUUTUNS GARL SALT
5	299002 ACALACAI BOWL \$0	1	SERVG	1		ACAI	F	Print As C	Croutons
6	49140 ACC BRD BISC CRUMBS GARL	1	OZ	16	216001		Web	Codes 🖪	м
7	49140 ACC BRD BISC CRUMBS GARL	1	OZ	16	151141		_	,	1
8	49140 ACC BRD BISC CRUMBS GARL	1	OZ	16		BRD BISC SM RAW	Ingre	dients	Preparation Method Cost
9	49140 ACC BRD BISC CRUMBS GARL	1	OZ	16		COND BUTTER GARL			
10	49015 ACC BRD CROUTONS GARL SALT	1	OZ	90	213036		1	ngred. No	Ingredient Name
11	49015 ACC BRD CROUTONS GARL SALT	1	OZ	90	260			213036	6 BRD LOAF WHIT PULL PUR
12	49015 ACC BRD CROUTONS GARL SALT	1	OZ	90	282			0260	0 SPICE GARLIC SALT
13	49015 ACC BRD CROUTONS GARL SALT	1	OZ	90	288			0283	
14	49015 ACC BRD CROUTONS GARL SALT	1	OZ	90	451			02.04	
15	49015 ACC BRD CROUTONS GARL SALT	1	OZ	90		BRD LOAF WHIT PULL PUR		0288	B SPICE PEPPER WHIT GROUND
16	49015 ACC BRD CROUTONS GARL SALT	1	OZ	90		SPICE GARLIC SALT		0451	1 MARGARINE BULK
17	49015 ACC BRD CROUTONS GARL SALT	1	OZ	90		SPICE PAPRIKA GROUND	*		
18	49015 ACC BRD CROUTONS GARL SALT	1	OZ	90		SPICE PEPPER WHIT GROUNE			
19	49015 ACC BRD CROUTONS GARL SALT	1	OZ	90		MARGARINE BULK			

Figure 3: Recipe spreadsheet next to global recipe

II. Carbon Footprint Attribution

Carbon footprints for ingredients are sourced from the CarbonCloud database, a comprehensive repository comprising carbon emissions data for over 50,000 products and ingredients, including more than 20,000 crop and animal ingredients worldwide (CarbonCloud, 2024). The data is derived from scientifically validated models conforming to the GHG Protocol and IPCC standards (CarbonCloud, 2024). Each data point is accompanied by detailed activity parameters used in the calculation and a technical report, enhancing transparency and credibility (CarbonCloud, 2024). The carbon footprints are attributed as emissions factors in kilograms of CO₂e per recipe-attributed amount of each ingredient.

As CarbonCloud pulls data from around the world to create emissions footprints, this thesis is limited by the assumption that carbon footprint for identical ingredients is equal across countries. Additionally, emissions footprint can be listed from "In Store" to "At Farm", as seen in Figure 4; the secondary limiting assumption is that "In Store" and "At Farm" footprints are equal for identical ingredients.

Name	Organization	Category	Market \$	Stage	Live footprint \$
Tomato		Fruitbearing vegetables	UA Ukraine	😽 At farm	0.05 kg CO ₂ e/kg
TOMATO SAUCE, TOMATO	Topco Associates, Inc.	Food product	US United States of A	At store	0.61 kg CO ₂ e/kg

Figure 4: Set-up of CarbonCloud ingredient database

III. Recipe Analysis

Further analysis is conducted utilizing FoodPro, a food production, planning, and control system developed by Aurora Information Systems (FoodPro, 2024). This system provides comprehensive management solutions for food service operations, encompassing modules for menu planning, cost estimation, forecasting, purchasing, inventory control, food production, and financial analysis (FoodPro, 2024). This thesis utilizes FoodPro to determine the portion size of each ingredient, as seen in Figure 5, allowing for the calculation of emissions attributable to individual recipes (FoodPro, 2024). By integrating the emissions factor of each ingredient with its corresponding portion size within recipes in Excel, an estimation of emissions for each recipe is calculated.

🍇 Global Recipe							-	×
File Edit Tools List Help								
D 🕞 🖬 🛍 🗠 🗗 🖤 🚻 i 📀 P 🏘	₿×							
- <u>R</u> ecipe	Port	ion		_				
163063 RICE LIME CILANTRO	S	ize 3		Unit	OZ	-	Recipe Status	-
PrintAs Cilantro Lime Rice	Sou	rce 75			<u>S</u> cale Am	ounts	List2	-
Web Codes V *GF *HF	Ser	rings Per	Contair	ner 1			Label Size	-
Ingredients Preparation Method Cost		۲)	<u>l</u> utritive	Analys	is	ר <u>ף, ס</u>	S. Interface	
		Recipe Ingr	edients					
Ingred. No Ingredient Name	Amount	Unit	Vary	Yield	Process	NDB		
0062 GRAIN RICE CONVERTED LONG	4.1667	LB	1	1	00	2		
1734 WATER	5.0000	QT	1	1	00	1		
0582 JUICE LIME	0.1042	QT	1	1	00	3		
0285 SPICE PEPPER BLACK GROUND	0.0156	LB	1	2	00	1		
0298 SPICE SALT COOKING	0.0463	LB	1	1	00	1		
4748 PRD HERB CILANTRO	0.2500	LB	1	2	25	1		
*								
Enter block number or keyword for search or click on pulldown button.							05/17/23 14:39 ksb15	1

Figure 5: Set-up of FoodPro

IV. Analytical Exploration

To quantify the carbon intensity of the daily menus offered by the dining services, it is necessary to comprehensively analyze menu composition. This interrogation will be conducted along three main components to elucidate different aspects of carbon intensity and dietary choices: comparative analysis of dietary patterns, exploration of menu optimization strategies, and assessment of customer preferences.

a. Comparative Analysis of Dietary Patterns

The objective of this analysis is to determine the carbon intensity associated with various dietary patterns, including omnivorous, vegetarian, vegan, and carnivorous diets. This approach involves calculating the total carbon intensity in Excel of one serving of every item on a given day's menu, as shown in Appendix A. Additionally, items are further classified into main dishes (proteins) and side dishes (non-proteins) to compare their carbon intensities. Furthermore, this analysis examines the theoretical carbon footprint for individuals of specific dietary patterns, such as vegetarian, vegan, or carnivorous diets, on a per-day basis; for example, if a meal has no meat in its ingredients, it is categorized as vegetarian, and if it has no animal products in its ingredients, it is categorized as vegen.

b. Exploration of Menu Optimization Strategies

This approach involves identifying and prioritizing high-impact items and exploring strategies to decrease their frequency in menu offerings. This thesis will identify highest impact items via average footprint per serving and calculate the frequency it is served via occurrences in menu in Excel.

c. Assessment of Customer Preferences and Obligations

This approach will analyze consumption data to compare the popularity of meat options versus vegetarian alternatives. This thesis utilizes dining data of how often servings from meals of each diet (vegetarian vs carnivore) are taken, and calculates if more high-intensity or lowintensity meals are served from a consumer's choice point of view in Excel.

Chapter 4

Results and Discussion

I. Comparative Analysis of Dietary Patterns

The carbon intensity of 1 serving of every dish for each day, as seen in row 1 of Table 1, showcases that the most carbon intensive day is Saturday, where an individual's tray would contain 12.730 kg CO₂e. The least carbon intensive day is Tuesday, where an individual's tray would contain 5.831 kg CO₂e. Additionally, when meals are further classified into main dishes and side dishes, one serving size of the side dishes have an average carbon footprint of 0.278 kg CO₂e across 1 week and main dishes have an average carbon footprint of 7.348 kg CO₂e across 1 week. Main dishes are clearly more intensive than sides, with main dishes being on average 7.070 kg CO₂e more than side dishes.

Additionally, as seen in Table 1, if an individual were to eat only carnivore dishes on a given day, they would have an average carbon footprint of 7.187 kg CO2e, with the most carbon intensive day being Saturday, where a carnivore's tray would contain 12.527 kg CO2e. An omnivore would have an average carbon footprint of 2.812 kg CO23, with the most carbon intensive day being Saturday with a footprint of 5.396 kg CO2e. A vegetarian would have an average carbon footprint of 0.339 kg CO2e, with the most carbon intensive day being Sunday, with a footprint of 0.513 kg CO2e. A vegan would have an average footprint of 0.212 kg CO2e with the most intensive day being Friday, with a footprint of 0.378 kg CO2e. It is important to note that a feasible vegan meal could not be constructed for Sunday or Monday from the served dishes.

	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday
Carbon Intensity (1 serving of every dish)	5.831217343	6.583225325	6.831631202	8.55585	12.73014955	6.888427019	6.603665939
Carbon Intensity of Side Dishes	0.453591881	0.559255481	0.28088897	0.210238	0.050869139	0.265223238	0.126218793
Carbon Intensity of Main Dishes	4.737006379	6.023969844	6.550742232	8.345611	12.67928041	6.62320378	6.477447146
Carnivore Meal Footprint	4.595922256	6.038398121	6.543774026	7.952826	12.52736233	6.355046353	6.293893004
Omnivore Meal Footprint	1.755045763	3.29370406	3.306421756	1.866317	5.396094648	1.956582976	2.106564949
Vegetarian Meal Footprint	0.365034336	0.39695388	0.206771016	0.377783	0.202787218	0.513355666	0.309772935
Vegan Meal Footprint	0.365034336	0.334851964	0.206771016	0.377783	0.202787218	-	-

Table 1: Dietary patterns derived from menu data

These findings reveal the environmental impact of meat consumption. Carnivorous diets consistently exhibit the highest carbon footprint, followed by omnivorous diets, while vegetarian and vegan diets have substantially lower carbon footprints. Moreover, all the main dishes---aside from one vegetarian option---include meat-based proteins, which, as highlighted by the carnivore diet example, have a higher carbon footprint compared to plant-based options. Thus, meat-centric diets contribute more to carbon emissions.

If an omnivore were to consume one vegetarian dinner per week----for example, to avoid the most carbon intensive day of Saturday----they would lower their carbon footprint by 0.742 kg CO₂e. This emphasizes the importance of individual dietary choices in mitigating carbon emissions, with plant-based diets offering a more sustainable alternative to meat-heavy diets.

This therefore raises considerations regarding Penn State Dining's role in promoting sustainable food choices. While individuals have the agency to select their meals, dining establishments play a crucial role in shaping menu offerings and influencing consumer behavior.

The question of Penn State Dining's responsibility as an organization arises regarding offering meat-centric menus. The ethical implications of serving high-carbon items extend across contributing significantly to climate change, and thus, Penn State Dining needs to consider the feasibility of limiting or excluding such products from menus.

The feasibility of implementing low-carbon meal options lies in the balance between individual and collective actions in reducing carbon emissions. While individuals may express preferences for meat-based dishes, Penn State Dining has the opportunity to influence consumer behavior; if Penn State Dining is offering the food, it is unlikely that consumers will choose not to eat the higher carbon meat options (Lambrecht, 2023). This highlights the importance of collaborative efforts between individuals and organizations in promoting sustainable dining practices and addressing the environmental impact of food choices.

One concrete step Penn State Dining can take to improve sustainability is to be transparent about sourcing and preparation (University of Connecticut, n.d.). Penn State Dining can enhance transparency by identifying the farms that provide Penn State's meats and explaining the rationale behind sourcing decisions (University of Connecticut, n.d.). Providing information to students about food production methods and sourcing strategies can build trust and engage consumers (University of Connecticut, n.d.).

II. Exploration of Menu Optimization Strategies

The most intensive foods week by week are mostly meat based proteins; in fact, only 2 of the top 21 most intensive dishes are vegetarian, as seen in Table 2. 6 out of 7 of the most intensive dishes per day are chicken, with Saturday's most intense dish being Steak-Frites Au Poivre. In fact, the Steak-Frites Au Poivre is the most intense dish of the entire week, coming in at 5.345 kg CO2e per serving. The second most intense dish overall, BBQ Chicken, is also served on Saturday, coming in at 4.097 kg CO₂e per serving. The third most intense dish overall, BBQ seasoned chicken, is served on Friday, coming in at 3.093 kg CO₂e.

The highest impact items are meat specifically, and the single most carbon intense dish is beef. If Penn State Dining would like to reduce its carbon footprint, it can easily reduce the frequency that these types of dishes are offered. By limiting the availability of these items, dining services can effectively lower the overall carbon footprint associated with meal choices. For example, implementing a policy to serve beef-related products every other week could substantially reduce carbon emissions without eliminating omnivore options entirely. Or, Penn State Dining could prioritize locally-produced, pasture-raised meats, which tend to have lower carbon footprints compared to conventional production methods, thus offering beef-related products in a more environmentally responsible manner (Costello, 2016).

However, the discussion extends beyond frequency reduction to consider the ethical implications of serving high-carbon items. Given the disproportionate environmental impact of meat production, particularly beef, Penn State Dining must evaluate whether the benefits of offering these dishes outweigh the environmental costs (Costello, 2016). There is a moral imperative to prioritize sustainability and consider alternative protein sources that have lower carbon footprints, such as bean focused dishes. For example, the Bean Bourguignon has 5.193 kg CO₂e less than the Steak-Frites Au Poivre.

Therefore, Penn State can take a concrete step towards leverage globally inspired, plantbased culinary strategies (University of Connecticut, n.d.). Shifting towards plant-based meals can have benefits for the environment, as evidenced by these lower carbon footprints associated with vegetarian and vegan meals (University of Connecticut, n.d.). Penn State Dining can explore new ways to incorporate popular plant-based dishes into its menu offerings, drawing inspiration from traditional food cultures that prioritize plant foods (University of Connecticut, n.d.).

Additionally, Penn State can reward better agricultural practices (University of Connecticut, n.d.). Supporting farms and ranches that prioritize sustainable and environmentally friendly practices can align with Penn State Dining's sustainability goals (University of Connecticut, n.d.). By emphasizing fresh foods during the peak of their local growing season and shifting purchases toward farms with responsible management programs, Penn State Dining can contribute to promoting better agricultural practices and reducing the carbon footprint of its food supply chain (University of Connecticut, n.d.).

	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday
Least intensive	Crumbled Queso Fresco	Roasted Garlic Mashed Potatoes	Chicken and Cashew Stir Fry	Boneless Buffalo Chicken Wings	Halal Grilled Chicken	Meatloaf	Country Fried Pork Chop
	Chicken Tinga	Grilled Corn and Black Bean Farro	Fire Cracker Shrimp	Boneless BBQ Chicken Wings	BBQ Chicken	Chicken Tandoori	Chicken with Preserved Lemon
Most intensive	Grilled Chicken	Grilled Southwest Chicken	Grilled Chicken	Halal BBQ Seasoned Chicken	Steak- Frites Au Poivre	Halal Grilled Jamaican Jerk Chicken	Halal Italian Herb Grilled Chicken

Table 2: Top 3 carbon intense dishes per day

III. Assessment of Customer Preferences and Obligations

Table 3 showcases how many servings of each meal were prepared for versus how many servings consumers actually used. For data taken from Findlay Commons during a Saturday dinner, consumers ate 176% of the prepared for amount of BBQ Chicken and 100% of the cauliflower and Bean Bourguignon. On the contrary, consumers only ate 77% of the Steak-Au Frites, which has a much higher carbon footprint than the more in-demand items.

	Meal	Prepared For	Actually Used	Percent of Prepared Actually Used
	Steak-Frites Au Poivre	691	530	76.70043
	Fries	840	800	95.2381
	BBQ Chicken	170	300	176.4706
Saturday	Cauliflower	280	280	100
	Sauteed Spinach	208	165	79.32692
	Bean Bourguinon	348	348	100
	Grilled Chicken	320	211	65.9375

Table 3: Amount of servings utilized at Findlay Commons

Thes findings challenge the assumption that carbon intensive meat options are inherently more popular than vegetarian or lower carbon intensity meat alternatives. While meat-centric dishes may have higher serving intensities, this does not necessarily correlate with consumer demand. Therefore, the question arises: should Penn State Dining continue to prioritize beef-related products if they do not align with consumer preferences and sustainability objectives? The overarching trend of Penn State being a meat-oriented campus underscores the need for dining services to reconsider their approach to menu planning and address the ethical implications of meat production and serving practices (Striebig, 2018).

Therefore, Penn State should focus on whole, minimally processed foods, aligning with consumer preferences for healthier and more sustainable options (University of Connecticut, n.d.). As seen in Appendix A, on a Wednesday, students consumed 225% of the steamed green beans; clearly, healthy options are in demand (University of Connecticut, n.d.). Penn State Dining can emphasize plant-based ingredients such as vegetables, legumes, and whole grains in its menu planning to meet consumer demand for nutritious and environmentally friendly meals (University of Connecticut, n.d.). By reducing reliance on processed meats and ingredients, Penn State Dining can align with sustainability objectives and address ethical concerns related to serving meats (University of Connecticut, n.d.).

Additionally, Penn State should reduce portions, emphasizing calorie quality over quantity, to address consumer preferences while promoting sustainability (University of Connecticut, n.d.). Moderating portion sizes can be a strategic approach for Penn State Dining to align with the findings highlighted in Table 3. By offering smaller portions of meat-centric dishes and larger portions of plant-based options, Penn State Dining can respond to the demand for healthier and more environmentally friendly meals (University of Connecticut, n.d.). This approach ameliorates the disconnect between students eating all, or even requesting more, of the lower carbon options, and leaving behind food waste of the higher carbon options. Consumers will therefore be encouraged to choose lower carbon options.

IV. Limitations

While the findings of this study provide valuable insights into the carbon footprint of dining options at Penn State, several limitations must be acknowledged. Firstly, the availability

and quality of data present constraints. The carbon footprints of specific ingredients were not tailored to Pennsylvania specifically, potentially impacting their reliability. Instead, data from across the globe were utilized, as detailed information about where Penn State specifically sources each ingredient from was not available. This introduces variability that could affect the accuracy of the calculations.

Similarly, another limitation pertains to the scope of the analysis. Key steps in calculating the carbon footprint of food recipes include ingredient analysis, emissions estimation, portion control, and waste management; however, this thesis specifically focuses only on ingredient analysis and portion control. The other factors that significantly contribute to the overall carbon footprint are not fully accounted for in the analysis. Omitting these factors may result in an incomplete assessment of the carbon footprints.

Moreover, the generalizability of the study is partially limited. Section III focuses on a specific dining facility, Findlay Dining Commons, and a specific population consisting of first-year students. Consequently, the results may not be applicable to the other four dining halls across Penn State, which could have different demographics or dining practices. Variations in consumer preferences, dietary habits, and meal offerings across different dining facilities could influence the observed patterns and conclusions drawn from the data. Therefore, caution should be exercised when applying the findings to broader contexts within the university's dining services.

Furthermore, section III has a reliance on self-reported data from dining hall records, which introduces a potential source of bias. While efforts are made to ensure the accuracy of the data, there may be inconsistencies or errors in recording consumption and meal preparation quantities. Factors such as misreporting or variations in portion sizes could affect the integrity of the data and subsequent analyses. Therefore, the conclusions drawn from this study should be interpreted through the lens of these limitations.

V. Further Research

Further research would greatly benefit Penn State Dining in its journey to decreasing its carbon footprint. Further research could include longitudinal studies to track changes in consumer behavior and dining practices over time. By conducting longitudinal analyses, researchers can assess the effectiveness of interventions implemented by Penn State Dining to mitigate carbon footprints. These studies could provide insights into the long-term impacts of initiatives such as menu modifications, portion control strategies, and educational campaigns on consumer preferences and sustainability-related behaviors.

Further research can also focus on understanding consumer behaviors and educational programming on promoting low-carbon dining habits among consumers. This could delve into the psychological factors that shape individuals' food choices within the context of sustainability. By designing targeted educational interventions, researchers can explore strategies to encourage low-carbon diets.

Furthermore, further research could investigate the feasibility and impact of implementing carbon labeling on menus, similarly to UConn or UMass. Examining the practical challenges and potential benefits of integrating carbon labeling within dining establishments like Penn State can inform strategies for fostering environmental awareness among consumers.

Additionally, to address limitations within this study, future research could employ alternative data collection methods or validation techniques to enhance the reliability of the findings, conduct more comprehensive data collection efforts tailored to a broader sample of dining halls and student populations for a more representative analysis, and incorporate a broader range of variables to capture a more holistic understanding of the environmental implications of certain ingredients.

Chapter 5

Conclusion

This thesis provided insights into the carbon footprint associated with dining choices at Penn State, with the main dish meat proteins constituting 19/21 of the top carbon intense dishes. Through rigorous analysis of menu data and consumption patterns, key opportunities for reducing carbon emissions while maintaining customer satisfaction are identified; these findings advocate for a fundamental shift in Penn State Dining's menu planning approach, urging the elevation of low-carbon and vegetarian options to the forefront.

Penn State Dining's current approach to menu planning falls short of aligning with the University's commitment to sustainability. The findings underscore the urgent need for a paradigm shift in dining offerings. Rather than relegating low carbon and vegetarian options to the sidelines, Penn State Dining must elevate them to the forefront of its menus. By prioritizing healthy and sustainable choices every day, it can send a powerful message about the University's dedication to environmental responsibility and public health.

Moving forward, it is imperative that Penn State takes proactive steps to expand and diversify low carbon offerings. This may involve collaborating with local farmers and suppliers to source fresh, seasonal ingredients, as well as investing in its chefs to develop creative plant-based meals. Moreover, Penn State must actively engage with its community to promote awareness and appreciation for the benefits of low carbon dining. In doing so, it does not only reduce the University's environmental impact but also demonstrate leadership in fostering a

culture of sustainability on campus. By embracing the principle that sustainability and culinary excellence go hand in hand, Penn State can pave the way for a healthier, more resilient future for generations to come.

Bibliography

- CarbonCloud. (2024, January 24). *The Climate Intelligence Platform*. CarbonCloud. https://carboncloud.com/
- Costello, C., Birisci, E., & McGarvey, R. G. (2016). Food waste in campus dining operations: Inventory of pre-and post-consumer mass by food category, and estimation of embodied greenhouse gas emissions. *Renewable Agriculture and Food Systems*, *31*(3), 191-201.
- Desroches, R. (2023, May 12). UConn Dining Halls Receive Certifications & Awards for Sustainability. https://dining.uconn.edu/2023/05/12/uconn-dining-halls-receivecertifications-awards-forsustainability/#:~:text=UConn%20Dining%20has%20implemented%20several,compost%2 C%20and%20recycling%20cooking%20oil.

Fleming, J. R. (2005). Historical perspectives on climate change. Oxford University Press.

FoodPro. (2024). About FoodPro. FoodPro. https://www.myfoodpro.com/

Franchini, C., Bartolotto, C., Scazzina, F., Carpenter, C. L., & Slusser, W. (2023). Increasing the Consumption of Environmentally Friendly Foods in a University Dining Hall Using Menu Item Placement. *Nutrients*, 15(18), 3873.

Hardy, J. T. (2003). Climate change: causes, effects, and solutions. John Wiley & Sons.

Hawken, P. (2017). Drawdown. Penguin.

- Hayhoe, K., Sheridan, S., Kalkstein, L., & Greene, S. (2010). Climate change, heat waves, and mortality projections for Chicago. Journal of Great Lakes Research, 36, 65-73.
- Howland, C. (2022, April 26). UMass Amherst Dining Initiates Ground-Breaking Program to Measure Carbon Footprint. UMass Amherst News & Media Relations.
 https://www.umass.edu/news/article/umass-amherst-dining-initiates-ground-breakingprogram-measure-carbon-footprint
- IPCC. (2013). Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, 1535.
- Lambrecht, N. J., Hoey, L., Bryan, A., Heller, M., & Jones, A. D. (2023). Limiting red meat availability in a university food service setting reduces food-related greenhouse gas emissions by one-third. *Climatic Change*, *176*(6), 67.
- Lovejoy, T. E. (2006). Climate change and biodiversity.
- McMichael, A. J., Woodruff, R. E., & Hales, S. (2006). Climate change and human health: present and future risks. The Lancet, 367(9513), 859-869.
- Merrington, G., Nfa, L. W., Parkinson, R., Redman, M., & Winder, L. (2002). *Agricultural pollution: environmental problems and practical solutions*. CRC Press.
- Mimura, N. (2013). Sea-level rise caused by climate change and its implications for society. Proceedings of the Japan Academy, Series B, 89(7), 281-301.

- Mitchell, R. B. (2012). Technology is not enough: Climate change, population, affluence, and consumption. The Journal of Environment & Development, 21(1), 24-27.
- Poore, J., & Nemecek, T. (2018). Reducing food's environmental impacts through producers and consumers. *Science*, *360*(6392), 987-992.
- Ritchie, H. (2019) "Food production is responsible for one-quarter of the world's greenhouse gas emissions". Our World In Data. https://ourworldindata.org/food-ghg-Emissions
- Sonesson, U., Davis, J., & Ziegler, F. (2010). Food production and emissions of greenhouse gases: an overview of the climate impact of different product groups.
- Song, K., Baiocchi, G., Feng, K., Hubacek, K., & Sun, L. (2022). Unequal household carbon footprints in the peak-and-decline pattern of US greenhouse gas emissions. *Journal of Cleaner Production*, 368, 132650.
- Striebig, B., & Smits, E. (2018). GREET-based comparison of carbon emissions from locally and non-locally sourced food for a college dining hall. *EESD 2018*, 280.
- Suri, S. & Ray, S. (2023). Will a Plant-based Approach Be Sufficient to Address Food Security, Nutritional Adequacy and Sustainability in the Future?. Environment and Urbanization ASIA. 14. 299-308. 10.1177/09754253231193130.

Urry, J. (2015). Climate change and society (pp. 45-59). Palgrave Macmillan UK.

Appendix A

Data and Calculations from FoodPro and CarbonCloud

TUESDAY											
Meal	Ingredient	Emissions Factor kg CO₂e/kg	mount in Recip	Unit	Amount in Recipe in kg	Total Emissions per	Total Emissions per Recipe in	Serving Size	Unit	Serving Size in kg	Total Emissions per Serving
Cilantro Lime Rice	GRAIN RICE	2.19	4.1667	LB	1.889659864	4.138355102					
Cilantro Lime Rice	VATER	0	5	QT	4.731765	0					
Cilantro Lime Rico	JUICE LIME	1.09	0.142	QT	0.134382126	0.146476517	5 119000227	2	07	0.095049479	0.062121195
Cilantro Lime Rice	SPICE PEPI	28.18	0.0156	LB	0.00707483	0.199368707	3.113000321	, v	02	0.003040410	0.003121133
Cilantro Lime Rice	SPICE SAL1	28.18	0.0463	LB	0.020997732	0.5917161					
Cilantro Lime Rice	PRD HERB	0.38	0.25	LB	0.113378685	0.0430839					
Chicken Tinga	OIL VEGICA	5	1.5625	QT	1.478676563	7.393382813					
Chicken Tinga	PRD VP ON	0.24	7.8125	LB	3.5430839	0.850340136	1				
Chicken Tinga	VATER	0	6	QT	5.678118	0	1				
Chicken Tinga	SPICE SAL1	28.18	0.3475	LB	0.157596372	4.44106576	070 4070007			0 4000707	4540400470
Chicken Tinga	VEG TOMA1	0.61	37.5	LB	17.00680272	10.37414966	972.1873397	4	02	0.11339797	1.510420472
Chicken Tinga	BASEOPT	28.18	10.9375	IB	4 96031746	139 781746					
Chicken Tinga	PBD VEG G	0.71	15625	IB	0 70861678	0.503117914					
Chicken Tinga	CHIX HALAI	20.5	87	IB	39 45578231	808 8435374					
Charred Corp	OIL YEG CA	5	0.0312	OT	0.029526214	0 147631068					
Charred Corn	VEGEZMICE	0.44	125	ID ID	0.566992424	0.249422107					
Charred Corn	PPDVEGO	0.74	0.625	I D	0.202446712	0.243433107	0.927729027	3	07	0.085048478	0.08803234
Charred Com	PROVEGO	20.24	0.023	10	0.203440712	0.00002721	0.021120021	Ŭ	02	0.000040410	0.00000204
Charried Com	SPICE SALT	20.10	0.0312	LD	0.01414366	0.330737413					
Charred Com	SPICE UNE	20.10	0.005	LD	0.002267574	0.063300227					
Chill Roasted Zuc	PROVEGSI	0.38	1.8182	LB	0.824580499	0.31334059					
Chill Hoasted Zuc	OIL VEGICA	5	0.0189	U I	0.017886072	0.089430359	0.745750004			0.005040470	0.070700070
Chill Hoasted Zuc	SPICESALT	28.18	0.0189	LB	0.008571429	0.241542857	0.740703261	261 3	02	0.000040470	0.072736676
Chill Roasted Zud	SPICE PEPI	28.18	0.0067	LB	0.003038549	0.085626304					
Chili Roasted Zud	CHILES GRE	0.92	0.0379	LB	0.01/188209	0.015813152					
Pinto Beans with	VEG BEANS	0.99	12	LB	5.442176871	5.387755102					
Pinto Beans with	PEPPERS	1.66	0.25	LB	0.113378685	0.188208617	7.173469388	3	02	0.085048478	0.108707418
Pinto Beans with	SPICE SAL1	28.18	0.125	LB	0.056689342	1.597505669					
Crema	SOUR CRM	8.39	5	QT	4.731765	39.69950835	41,27991786	1	oz	0.028349493	0.206100811
Crema	MILK HALF	1.67	1	QT	0.946353	1.58040951					
Onions and Cilant	PRD VP ON	0.24	2.625	LB	1.19047619	0.285714286	0.501133787	1	07	0.028349493	0.008084178
Onions and Cilant	PRD HERB	0.38	1.25	LB	0.566893424	0.215419501					
Salsa Roja	OIL VEGICA	5	0.0078	QT	0.007381553	0.036907767					
Salsa Roja	PRD VP ON	0.24	0.0938	LB	0.042539683	0.010209524					
Salsa Roja	PRD VEG P	0.61	0.0625	LB	0.028344671	0.017290249					
Salsa Roja	PRD VEG G	0.71	0.0313	LB	0.014195011	0.010078458	1506575429	1	07	0.029249492	0.022959024
Salsa Roja	VEG TOMA1	0.61	2.3906	LB	1.084172336	0.661345125	1.000010420		02	0.020040400	0.0000000004
Salsa Roja	OIL VEGICA	5	0.125	LB	0.056689342	0.283446712					
Salsa Roja	JUICE LIME	1.09	0.0078	QT	0.007381553	0.008045893	1				
Salsa Roja	SPICE SAL1	28.18	0.0375	LB	0.017006803	0.479251701	1				
Crumbled Queso	CHEESE QU	18.11	1	LB	0.453514739	8.213151927	8.213151927	1	OZ	0.028349493	0.51340931
Mexican Mushroo	PRD VP PO	0.26	0.8065	LB	0.365759637	0.095097506					
Mexican Mushroo	OIL VEGICA	5	0.1008	QT	0.095392382	0.476961912	1				
Mexican Mushroo	PRD VEG M	2.06	1.6129	LB	0.731473923	1.506836281	1				
Mexican Mushroo	PBD VEG G	0.71	0.0252	LB	0.011428571	0.008114286	1				
Mexican Mushroo	PBD VP ON	0.24	0.4032	LB	0.182857143	0.043885714	1				
Mexican Mushroo	PBD VEG P	0.61	0.4032	LB	0.182857143	0.111542857					
Mexican Mushroo	VEG TOMA	1.03	1.6129	LB	0.731473923	0.753418141	4.193465767	3	oz	0.085048478	0.141084123
Mexican Mushror	SPICE CUM	3.29	0.0254	IB	0.011519274	0.037898413					
Mexican Mushroo	SPICE COB	1.38	0.0126	LB	0.005714286	0.007885714	1				
Mexican Mushroo	SPICE CHIL	28 18	0,0403	IB	0.018276644	0.515035828					
Mexican Mushroe	SPICE PEPI	28.18	0,0149	IB	0.002176971	0.061344219					
Mexican Mushroe	SPICE SALT	28.18	0.0040	IB	0.018911565	0.532927991					
Mexican Mushroe	VEGEZNER	0.25	0.0417	LB	0.170068027	0.042517007					
Grilled Chickers	CHIVENER	20.5	0.010	IB	11 22796040	222 4262020					
Grilled Chicken	SPICE PEPI	20.0	0.00	I P	0.027210004	0.766900701	235 3657143	1	FACH	0.15	3 085501784
Grilled Chicken	SPICESALT	20.10	0.06	IB	0.077097500	2 17260774	200.0001110		211211	0.10	0.0000011.04
crimed Chickell	OF ICE ORE I	20.10	0.17		0.011031306	2.11200111					

WEDNESDAY										
Roast Turkey	TURKEY BRS	10.71	8 LB	3.628117914	38.85714286	38.85714286	4	OZ	0.11339797	1.214492261
Turkey Gravy	ACC ROUX B	8.48	3.2 OZ	0.090718376	0.76929183	5 00040045			0.05000005	0.000070750
Turkey Gravy	SOUP BASE (5.03	32 OZ	0.907183761	4.56313432	5.33242615	2	02	0.056638385	0.302978758
Bread Stuffing	BREAD PUR (0.89	2.5 LB	1.133786848	1.009070295					
Bread Stuffing	MARGARINE	4.3	1 LB	0.453514739	1.950113379					
Bread Stuffing	PRD VP ONIC	0.24	0.75 LB	0.340136054	0.081632653					
Bread Stuffing	PRD VEG CEL	0.32	0.75 LB	0.340136054	0.108843537					
Bread Stuffing	SPICE SALT (28.18	0.0313 LB	0.014195011	0.40001542					
Bread Stuffing	SPICE PEPPE	28.18	0.0026 LB	0.001179138	0.033228118	8.337738402	2	OZ	0.056698985	0.147873324
Bread Stuffing	SPICE CELEF	28.18	0.003 LB	0.001360544	0.038340136					
Bread Stuffing	SPICE ONION	28.18	0.0032 LB	0.001451247	0.040896145					
Bread Stuffing	SPICE SAGE	28.18	0.0054 LB	0.00244898	0.069012245					
Bread Stuffing	SPICE THYME	28.18	0.0034 LB	0.00154195	0.043452154					
Bread Stuffing	SOUP STOCK	5.03	32 OZ	0.907183761	4.56313432					
Roasted Garlic Ma:	PRD VEG PO	0.26	3.125 LB	1.41723356	0.368480726					
Roasted Garlic Ma:	BUTTERCRA	1.67	0.625 LB	0.283446712	0.473356009					
Roasted Garlic Ma:	MILK BULK 2:	1.67	0.3125 QT	0.295735313	0.493877972	1 407050000			0.085048478	0.062101916
Roasted Garlic Ma:	SPICE SALT (28.18	0.0063 LB	0.002857143	0.080514286	1.487356062	3	02		
Roasted Garlic Ma:	SPICE PEPPE	28.18	0.0049 LB	0.002222222	0.062622222					
Roasted Garlic Ma:	VEGE FRE G	0.24	1.25 OZ	0.035436866	0.008504848					
Steamed Green Be	WATER	0	80 QT	75.70824	0	40 3355400	0.5		0.070070704	
Steamed Green Be	VEG FZN BEA	0.99	24 LB	10.88435374	10.7755102	10.1155102	2.5	02	0.070873731	0.008813468
Togarashi Seared	OIL SESAME	5.02	0.39 QT	0.36907767	1.852769903					
Togarashi Seared	FISH TILAPIA	15.79	6.25 LB	2.83446712	44.75623583	50 530044				
Togarashi Seared	SPICE SALT (28.18	0.0417 LB	0.018911565	0.532927891		4	OZ	0.11339797	1.421397848
Togarashi Seared	SPICE SHICH	28.18	0.1042 LB	0.047256236	1.331680726	50.578844				
Togarashi Seared	SAUCEYAKI	2.94	25 OZ	0.708737314	2.083687702					
Togarashi Seared	PRD HERB CI	0.38	0.125 LB	0.056689342	0.02154195					
Honey Glazed Carr	FRD VF FAR	0.13	12.4997 LB	5.668798186	0.736943764					
Honey Glazed Carr	PRD VP CARL	0.15	12.4997 LB	5.668798186	0.850319728					
Honey Glazed Carr	OIL VEG CAN	5	0.2498 QT	0.236398979	1.181994897					
Honey Glazed Carr	SPICE SALT (28.18	0.1871 LB	0.084852608	2.391146485	C CE004774	25	07	0.070070701	0.007400045
Honey Glazed Carr	SPICE PEPPE	28.18	0.0271 LB	0.012290249	0.346339229	0.00004114	2.5	02	0.010013131	0.037462015
Honey Glazed Carr	BUTTER CRM	1.67	0.8394 LB	0.380680272	0.635736054					
Honey Glazed Carr	HONEY WHIT	0.76	0.2769 QT	0.262045146	0.199154311					
Honey Glazed Carr	VINEGAR CID	1.18	0.2769 QT	0.262045146	0.309213272					
Grilled Corn and Bl	OIL OLIVE PL	2.35	0.0586 QT	0.055456286	0.130322272					
Grilled Corn and Bl	VEG FZN COF	0.44	0.2344 LB	0.106303855	0.046773696					
Grilled Corn and Bl	PRD VP ONIC	0.24	0.1758 LB	0.079727891	0.019134694					
Grilled Corn and Bl-	PRD VEG PEF	0.61	0.2344 LB	0.106303855	0.064845351					
Grilled Corn and Bl-	PRD VEG PEF	0.61	0.2344 LB	0.106303855	0.064845351					
Grilled Corn and Bl	GRAINFARS	1	0.9375 LB	0.425170068	0.425170068	8.761519088	3	OZ	0.085048478	0.288550481
Grilled Corn and Bl	SOUP VEGA	5.03	55.3125 OZ	1.568081306	7.887448971					
Grilled Corn and Bl	PRD VEG ON	0.22	0.0625 LB	0.028344671	0.006235828					
Grilled Corn and Bl	VEG BEANS E	0.99	0.2344 LB	0.106303855	0.105240816					
Grilled Corn and Bl	SPICE PEPPE	28.18	0.0001 LB	4.53515E-05	0.001278005					
Grilled Corn and Bl	SPICE SALT (28.18	0.0008 LB	0.000362812	0.010224036					
Grilled Southwest (CHIX HALAL	20.5	4.5 LB	2.040816327	41.83673469	42.00702000		EACH	0.15	2 000520254
Grilled Southwest (SEASONING	28.18	3 TB	0.0444	1.251192	43.00132063	· · ·	CAUN	CI.U	3.033523254

				THURS	DAY					
Chicken and Cash	OIL SESAME	5.02	0.0325 QT	0.030756473	0.154397492					
Chicken and Cash	OIL VEG CAN	5	0.0625 QT	0.059147063	0.295735313					
Chicken and Cash	CHIX BRST S	20.5	3.125 LB	1.41723356	29.05328798					
Chicken and Cash	PRD VEG GIN	4.66	0.0625 LB	0.028344671	0.132086168					
Chicken and Cash	VEG CHESTN	0.44	0.5 LB	0.22675737	0.099773243					
Chicken and Cash	VEG BAMBOI	0.92	0.5 LB	0.22675737	0.20861678					
Chicken and Cash	BAKEA NUT (1.38	0.5 LB	0.22675737	0.31292517	21 7521700	c	07	0 1700000055	1 000001107
Chicken and Cash	PRD VP ONIC	0.24	0.75 LB	0.340136054	0.081632653	31.7521730	ь	02	0.170036355	1.220301107
Chicken and Cash	PRD VP PEPF	0.61	0.75 LB	0.340136054	0.207482993					
Chicken and Cash	PRD VEG PEF	0.61	0.75 LB	0.340136054	0.207482993					
Chicken and Cash	PRD VEG CEL	0.32	0.75 LB	0.340136054	0.108843537					
Chicken and Cash	SUGAR GRAI	0.62	0.125 LB	0.056689342	0.035147392					
Chicken and Cash	PRD VEG ON	0.22	0.185 LB	0.083900227	0.01845805					
Chicken and Cash	SAUCE TERM	1.18	25 OZ	0.708737314	0.83631003					
Brown Rice	GRAIN RICE E	2.19	5.7471 LB	2.606394558	5.708004082					
Brown Rice	WATER	0	6.8966 QT	6.5266181	0	6.73040771	3	OZ	0.085048478	0.062426937
Brown Rice	SPICE SALT (28.18	0.08 LB	0.036281179	1.022403628					
Sugar Snap Peas	WATER	0	0.1875 QT	0.177441188	0	1 07000000	0.5		0.070070701	0.050000007
Sugar Snap Peas	VEG FZN PEA	0.95	3.1875 LB	1.445578231	1.37329932	1.37329932	2.5	02	0.070873731	0.053368337
Fire Cracker Shrimp	SHLFSH SHF	10.48	0.3125 LB	0.141723356	1.485260771					
Fire Cracker Shrimp	SEASONING	28.18	1 OZ 1	0.028349493	0.7988887					
Fire Cracker Shrimp	FLOUR CORN	1.08	0.03 LB	0.013605442	0.014693878	0.700070474			0.470000055	0.007004400
Fire Cracker Shrimp	SEASONING	28.18	1 TB	0.0148	0.417064	2.739379471	ь	02	0.170096955	2.237891136
Fire Cracker Shrimp	SPICE PEPPE	28.18	0.0006 LB	0.000272109	0.007668027					
Fire Cracker Shrimp	MILK 1/2 GAL	1.67	0.01 QT	0.00946353	0.015804095					
Giner Thai Chili Sau	SAUCE FZN T	2.94	8 QT	7.570824	22.25822256					
Giner Thai Chili Sau	VEG DRIED C	1.66	0.5 LB	0.22675737	0.376417234	22 00005020		07	0.000040400	0.001000101
Giner Thai Chili Sau	PRD VEG GIN	4.66	0.375 LB	0.170068027	0.792517007	23.60005929	'	02	0.028349493	0.081086161
Giner Thai Chili Sau	PRD VEG PEF	0.61	0.625 LB	0.283446712	0.172902494					
Roasted Garlic Bru	OIL VEG CAN	5	0.1638 QT	0.155012621	0.775063107					
Roasted Garlic Bru	PRD VP BRU:	0.61	5.9401 LB	2.693922902	1.643292971					
Roasted Garlic Bru	SPICE SALT (28.18	0.0535 LB	0.024263039	0.683732426	3.359259932	2.5	OZ	0.070873731	0.077406875
Roasted Garlic Bru	SPICE PEPPE	28.18	0.0091 LB	0.004126984	0.116298413					
Roasted Garlic Bru	PRD VEG GA	0.71	0.4375 LB	0.198412698	0.140873016					
Red Chili Thai Tofu	OIL VEG CAN	5	0.0052 QT	0.004921036	0.024605178					
Red Chili Thai Tofu	PRD VEG ON	0.24	2.25 LB	1.020408163	0.244897959					
Red Chili Thai Tofu	ENT VEGAN 1	2.49	288 OZ	8.164653853	20.32998809	21.53625966	4	OZ	0.11339797	0.006968206
Red Chili Thai Tofu	PRD HERB CI	0.38	60 OZ	1.700969553	0.64636843					
Red Chili Thai Tofu	SAUCE PEP F	2.94	0.2178 LB	0.09877551	0.2904					
Grilled Chicken	CHIX HALAL1	20.5	25 LB	11.33786848	232.4263039					
Grilled Chicken	SPICE SALT (28.18	0.06 LB	0.027210884	0.766802721	235.3657143	1	EACH	0.15	3.085501784
Grilled Chicken	SPICE PEPPE	28.18	0.17 LB	0.077097506	2.17260771					

1					FRIDA	AY .					
Boneless Buffalo C	CHIX BNLS W	20.5	6.25	LB	2.83446712	58.10657596	01 00010750			0.44000707	1 201510000
Boneless Buffalo C	SAUCE HOT F	2.94	37.5	OZ	1.06310597	3.125531553	61.23210752	4	02	0.11339797	1.781518022
Hot Cauliflower Win	PRD VP CAUL	0.37	4.6875	LB	2.12585034	0.786564626					
Hot Cauliflower Win	SOYMILK 32(0.78	0.5	QT	0.4731765	0.36907767					
Hot Cauliflower Win	FLOUR RICE '	2.68	1	LB	0.453514739	1.215419501	4.632392129	4	OZ	0.11339797	0.139427293
Hot Cauliflower Win	SPICE SALT (28.18	0.0139	LB	0.006303855	0.17764263					
Hot Cauliflower Win	SAUCE HOT F	2.94	25	OZ	0.708737314	2.083687702					
Boneless BBQ Chi	CHIX BNLS W	20.5	0.25	LB	0.113378685	2.324263039	0.440004004			0.44000707	4 704540000
Boneless BBQ Chi	SAUCE BBQ	2.94	1.5	OZ	0.042524239	0.125021262	2.449284301	4	02	0.11339797	1.781518022
Bleu Cheese Dress	DRESS BLUE	2.94	4	QT	3.785412	11.12911128	11.12911128	1	OZ	0.028349493	0.083347508
Vegan Ranch Dres	VEGENAISE	1.18	8	LB	3.628117914	4.281179138					
Vegan Ranch Dres	SPICE GARLI	28.18	0.0208	LB	0.009433107	0.265824943					
Vegan Ranch Dres	SPICE SALT (28.18	0.0417	LB	0.018911565	0.532927891					
Vegan Ranch Dres	SPICE ONION	28.18	0.0208	LB	0.009433107	0.265824943					
Vegan Ranch Dres	SPICE PEPPE	28.18	0.0156	LB	0.00707483	0.199368707	5.858685179	1	OZ	0.028349493	0.042091313
Vegan Ranch Dres	PRD HERB P/	0.61	0.008	LB	0.003628118	0.002213152					
Vegan Ranch Dres	VINEGAR CID	1.18	0.2496	QT	0.236209709	0.278727456					
Vegan Ranch Dres	PRD HERB DI	0.12	0.008	LB	0.003628118	0.000435374					
Vegan Ranch Dres	JUICE FZN LE	1.09	0.0312	QT	0.029526214	0.032183573					
Celery Sticks	PRD VP CELE	0.61	1	LB	0.453514739	0.276643991	0.276643991	1	OZ	0.028349493	0.01729319
Orange Teriyaki Sa	FF FISH SALM	15.79	12.5	LB	5.66893424	89.51247166					
Orange Teriyaki Sa	SAUCE GF TA	2.94	1	QT	0.946353	2.78227782					
Orange Teriyaki Sa	PRD FRU OR	0.3	8	EACH	0.997904	0.2993712					
Orange Teriyaki Sa	SUGAR BRO'	1.4	0.75	LB	0.340136054	0.476190476	99 50577799	4	07	0 11000707	1 2002004220
Orange Teriyaki Sa	PRD VEG GA	0.71	0.125	LB	0.056689342	0.040249433	33.30311133	4	UZ	0.11555151	1.230234330
Orange Teriyaki Sa	PRD VEG GIN	4.66	0.125	LB	0.056689342	0.264172336					
Orange Teriyaki Sa	MIRIN	1.65	0.0625	QT	0.059147063	0.097592653					
Orange Teriyaki Sa	LIQUOR SAK	1.58	0.0625	QT	0.059147063	0.093452359					
Jasmine Rice	RICE JASMINI	2.68	1.3887	LB	0.629795918	1.687853061	1 697952061	2	07	0.095049479	0.065040212
Jasmine Rice	WATER	0	1.6667	QT	1.577286545	0	1.001033001	5	02	0.003040410	0.000040010
Summer Bean Bler	WATER	0	40	QT	37.85412	0	1632653061	25	07	0.070873731	0.002465928
Summer Bean Bler	VEG FZN BLE	0.18	20	LB	9.070294785	1.632653061	1.032033001	2.0	02	0.010013131	0.002403320
Vegetarian Grilled	OIL VEGICAN	5	0.03	QT	0.02839059	0.14195295					
Vegetarian Grilled	PRD VEG SQ	0.38	0.7825	LB	0.354875283	0.134852608					
Vegetarian Grilled	PRD VEG SQ	0.38	0.7825	LB	0.354875283	0.134852608					
Vegetarian Grilled	PRD VEG PEF	0.61	0.7825	LB	0.354875283	0.216473923					
Vegetarian Grilled	PRD VEG ON	0.24	0.7825	LB	0.354875283	0.085170068	7 210321962	0.5	FACH	0.185	0.253358384
Vegetarian Grilled	SEASONING	28.18	1	TB	0.0148	0.417064		0.0	211211	0.100	0.20000004
Vegetarian Grilled	VGTN BURGE	2.04	3.125	LB	1.41723356	2.891156463					
Vegetarian Grilled	VEG BEANS F	0.99	3	LB	1.360544218	1.346938776					
Vegetarian Grilled	SAUCE SALS	2.94	0.29	QT	0.27444237	0.806860568					
Vegetarian Grilled	WRAP TORTI	1.38	25	EACH	0.75	1.035					
Halal BBQ Season	CHIX HALAL	20.5	25	LB	11.33786848	232.4263039	237 6396039	1	FACH	0.15	3 093495395
Halal BBQ Season	SEASONING	28.18	12.5	TB	0.185	5.2133	231.0000000		CHOIL 1	0.10	0.000400000

					CATUD	DAV						-
Stopk-Fritos Au Pol	BEEE STMEL	20.5	4 6875	B	2 12585034	UAT 43 57993197						
Steak-Frites Au Po		5	0.0475 1	οτ Ι	0.044951768	0.224758838						
Steak-Frites Au Po	PBDVEGGA	0.71	0.0935	LB	0.042403628	0.030106576						
Steak-Frites Au Po	PBD HEBB B(0.35	0.0312	LB	0.01414966	0.004952381	46.45636536	1	EACH	0.34	5.345225509	
Steak-Frites Au Po	SPICE SALT (28.18	0.0417	LB	0.018911565	0.532927891						
Steak-Frites Au Po	SAUCE AU PO	2.94	25	oz	0.708737314	2.083687702						
Fries	VEG FZN PO	0.26	25	LB	11.33786848	2.947845805	2.947845805	4	OZ	0.11339797	0.029483472	
BBQ Chicken	CHIX QUARTI	20.5	5.625	LB	2.551020408	52.29591837	50 50445300			0.00070504	4 000005000	
BBQ Chicken	SAUCE BBQ	2.94	14.5	OZ	0.411067642	1.208538867	53.50445723	8	02	0.22679594	4.036635038	
Cauliflower	WATER	0	40 1	QT	37.85412	0	4.007040004	0.5	07	0.07007070	0.005050005	
Cauliflower	PRD VP CAUL	0.37	24	LB	10.88435374	4.027210884	4.027210664	2.5	02	0.07067373	0.005656225	
Sauteed Spinach	PRD VP SPIN	0.16	18.3824	LB	8.336689342	1.333870295						
Sauteed Spinach	OIL OLIVE PL	2.35	0.0649	QT	0.06141831	0.144333028						
Sauteed Spinach	PRD VEG GA	0.71	0.1961	LB	0.08893424	0.063143311	1.862125772	2.5	OZ	0.070873731	0.015529442	
Sauteed Spinach	SPICE PEPPE	28.18	0.0039	LB	0.001768707	0.049842177						
Sauteed Spinach	SPICE SALT (28.18	0.0212	LB	0.009614512	0.270936961						
Vegetarian Bean E	OIL VEG CAN	5	0.0325 (QT	0.030756473	0.153782363						
Vegetarian Bean E	FLOUR ALL F	1.22	0.0326	LB	0.01478458	0.018037188						
Vegetarian Bean E	OIL VEG CAN	5	0.0162	QT	0.015330919	0.076654593						
Vegetarian Bean E	PRD VP ONIC	0.24	0.2604	LB	0.118095238	0.028342857						
Vegetarian Bean E	PRD VP CARI	0.15	0.5208	LB	0.236190476	0.035428571						
Vegetarian Bean E	PRD VEG GA	0.71	0.0326	LB	0.01478458	0.010497052						
Vegetarian Bean E	PRD VEG MU	2.06	0.7812	LB	0.354285714	0.729828571						
Vegetarian Bean E	SPICE THYME	28.18	0.0027	LB	0.00122449	0.034506122	3.75715726	3	oz	0.085048478	0.151918078	
Vegetarian Bean E	PRD HERB RU	0.35	0.0108 1	LB	0.004897959	0.001714286						
Vegetarian Bean E	SPICE BAY LI	28.18	1.0417 1	EACH	0.00020834	0.005871021						
Vegetarian Bean E	VEGTUMATU	0.61	0.5208 1	LB	0.236190476	0.14407619						
Vegetarian Bean E		5.03	8 0 10 1		0.22679594	1.14078358						
Vegetarian Bean D		1.33	1.5025.1		0.12302563	0.163624434						
Vegetarian Dean D	COLOR DEANON	0.33	1.00201		0.015700001	0.101530612						
Vegetarian Dean D		20.10	0.0347		0.013136361	0.443401314						
Halal Grillad Chieles		20.10	0.0034 1	LD	11 33786848	232 4263039						
Halal Grilled Chicke	SDICE DEDDE	28.19	0.06		0.027210884	0.766802721	235 36571/3	1	EACH	0.15	3 085501784	
Halal Grilled Chicke	SPICESALT	28.18	0.00 1	LB	0.021210004	2 17260771	200.0001140	· ·	LACIT	0.15	3.003301104	
Traial Office Chicke	SHOLOHEIR	20.10	0.111		0.0110313001	2.11200111			1	1	1	
					SUND	AY						
Chicken Tandoo	ori CHIX HALAL	20.5	0.25	LB	0.113378685	2.324263039						
Chicken Tandoo	ori MARINADE T	5.32	0.015	LB	0.006802721	0.036190476					_	
Chicken Tandoo	ori YOG CRMRY	2.85	0.015	QT	0.014195295	0.040456591	2.402968155	4	oz	0.11339797	1.869455675	
Chicken Tandoo	ori ACC VEGE O	0.18	0.025	LB	0.011337868	0.002040816					_	
Chicken Tandoo	ori PRD HERB C	0.38	0.0001	LB	4.53515E-05	1.72336E-05		-				
Naan Bread	BREAD NAAI	0.89	0.25	EACH	0.0225	0.020025	0.020025	1	SLICE	0.0225	0.020025	
Meatloaf	# BEEF GROI	20.5	2.5685	LB	1.164852608	23.87947846					_	
Meatloaf	PORK BUTT	10.71	1.7123	LB	0.776553288	8.316885714					_	
Meatloaf	ACC VEGE O	0.18	0.4281	LB	0.19414966	0.034946939					_	
Meatloaf	PRD VEG GA	0.71	0.0428	LB	0.019410431	0.013781406					_	
Meatloaf	SAUCE CATS	2.94	0.1712	QT	0.162015634	0.476325963					_	
Meatloal	SAUCE MUS	2.94	0.2055	LB	0.093197279	0.274	04 74000404			0 44000707	1 000740000	
Meatloaf	BREAD CRUI	0.89	0.4281	LB	0.19414966	0.172793197	34.74098464	4	02	0.11339797	1.338748692	
Pleatioar	EGGERESH	3.2	4	EACH	0.268	0.8576					_	
Meatloar	SAUCE WUR	2.34	0.0531	UI LD	0.050251344	0.147738952					_	
Pleatioar	SPICE UREG	20.10	0.0068	LB	0.0030839	0.086904308					_	
Meatioar		20.10	0.0000	LD	0.0030633	0.000304300					-	
Meatloar		28.18	0.0000	LD	0.0030833	0.000304300					-	
PeatCasu	ACCIDOLINE	8.48	0.024	07	0.010004334	2.946469149						
Beef Gravy	ACC ROOME	0.40	4 9356	02	4 576194567	3.040433140					-	
Beef Grow	SOUPRASE	5.03	4.0355	LB	9.010104007	0 380272562	4 275053821	2	07	0.056698985	0.047312732	
Beef Grow	SPICE DEDPI	28.18	0.1007	LB	0.013000307	0.00212002	1.210000021	2		0.0000000000	0.041012102	
Beef Grawy	FOODCOLO	1.13	0.0023	OT	0.00167504/8	0.020004104					-	
Scalloned Poter	VEG POT SC	0.26	45	LB	2,040816327	0.530612245						
Scalloped Potal		4.3	0.5	LB	0.22675737	0.975056689	1.505668934	1	EACH	0.141748	0.019789568	
Scalloped Poter	toe WATER	0	9	OT	8.517177	0	······					
Harvest Blend	WATER	0	40	OT	37.85412	0						
Harvest Blend	PRD VP BRC	0.37	12	LB	5.442176871	2.013605442	E OCCORTES	0.5		0.07007070	0.000540404	
Harvest Blend	PRD VP CAU	0.37	12	LB	5.442176871	2.013605442	5.006802721	2.5	02	0.070873731	0.006549401	
Harvest Blend	VEGFZNICAL	0.18	12	LB	5.442176871	0.979591837					-	
Sauteed Butter	THOIL VEGICAN	5	0.0156	QT	0.014763107	0.073815534						
Sauteed Butter	TH BUTTER CRI	1.67	0.0312	LB	0.01414966	0.023629932					F	
Sauteed Butter	TH PRD VEG GA	0.71	0.0015	LB	0.000680272	0.000482993					F	
Sauteed Butter	TH PRD VEG MU	2.06	1	LB	0.453514739	0.934240363	1.381113191	2.5	OZ	0.070873731	0.171546537	
Sauteed Butter	TH SPICE SALT	28.18	0.0052	LB	0.002358277	0.066456236					L L	
Sauteed Butter	TH SPICE THYM	28.18	0.0139	LB	0.006303855	0.17764263						
Sauteed Butter	TH LIQUOR WINI	1.33	0.0833	QT	0.078831205	0.104845503						
Vegetarian Pad	TH NOODLE RIC	3.64	1.2681	LB	0.575102041	2.093371429						
Vegetarian Pad	THOIL VEGICAN	5	0.0453	QT	0.042869791	0.214348955						
Vegetarian Pad	THOIL SESAME	5.02	0.0226	QT	0.021387578	0.107365641						
Vegetarian Pad	THPRD VEG GA	0.71	0.0453	LB	0.020544218	0.014586395						
Vegetarian Pad	THPRD VP TOF	1.37	2.5362	LB	1.150204082	1.575779592						
Vegetarian Pad	TH FLOUR RICE	2.68	0.317	LB	0.143764172	0.385287982	8.271473586	6	OZ	0.170096955	0.315470159	
Vegetarian Pad	TI SAUCE PAD	2.94	28.9855	OZ	0.821724216	2.415869195						
Vegetarian Pad	THPRD VEG ON	0.22	0.4529	LB	0.205396825	0.045187302						
Vegetarian Pad	TI PRD VP BEA	0.61	1.4493	LB	0.657278912	0.400940136						
Vegetarian Pad	TI PRD VP SPR	0.55	1.4493	LB	0.657278912	0.361503401						
Vegetarian Pad	TI BAKEA NUT I	4	0.3623	LB	0.16430839	0.65723356						
Halal Grilled Jarr	nai CHIX HALAL	20.5	4.5	LB	2.040816327	41.83673469	43.08792669	1	EACH	0.15	3.099529254	
I Halal Grilled Jarr	ai SEASONING	28.18	. 3	11B	0.0444	1.251192						

					MOND	IAY					
Chicken with Prest CHI	IX THIGH E	20.5	5	LB	2.267573696	46.48526077					
Chicken with Prest SOL	UP STOC	5.03	48	OZ	1.360775642	6.84470148					
Chicken with Pres AQ	CLEMFA	0.21	1	EACH	0.1	0.021					
Chicken with Prest VEC	GE FRE O(0.24	5	OZ	0.141747463	0.034019391					
Chicken with Prest VEC	GE FRE G	0.71	5	OZ	0.141747463	0.100640699	54,0000806	1	FACH	0.15	1 980346156
Chicken with Pres XAN	NTHAN G	7.75	0.014	LB	0.006349206	0.049206349	34.0000000		LHCH	0.15	1.000040100
Chicken with Pres PRE	D HERB C	0.38	0.062	LB	0.028117914	0.010684807					
Chicken with Press SPI	ICE SALT	28.18	0.014	LB	0.006349206	0.178920635					
Chicken with Press SPI	ICE PEPPI	28.18	0.016	LB	0.007256236	0.204480726					
Chicken with Pres OIL	OLIVE PL	2.35	0.032	QT	0.030283296	0.071165746					
Country Fried Pork POF	BK FBITT(10.71	0.25	LB	0.113378685	1.214285714					
Country Fried Pork PIC	KLE CHIP	1.66	1	EACH	0.135	0.2241	1.444192536	1	EACH	0.198	1.128900268
Country Fried Pork 'SA	AUCEHO	1.18	0.0052	QT	0.004921036	0.005806822					
Mashed Redskin F PRD	D VEG PC	0.26	10	LB	4.535147392	1.179138322					
Mashed Redskin F <i>BU</i>	ITTER CRI	1.67	1	LB	0.453514739	0.757369615					
Mashed Redskin F MIL	KBULK2	1.67	1	QT	0.946353	1.58040951	3.971887061	3	OZ	0.085048478	0.056762536
Mashed Redskin F SPI	CE SALT	28.18	0.02	LB	0.009070295	0.255600907					
Mashed Redskin F SPI	ICE PEPP(28.18	0.0156	LB	0.00707483	0.199368707					
Broccoli Florettes PRE	D VP BRC	0.54	23.4375	LB	10.6292517	5.739795918	5.739795918	2.5	OZ	0.070873731	0.038271815
Corn VEC	GFZNCO	0.44	23.4375	LB	10.6292517	4.676870748	4.676870748	2.5	OZ	0.070873731	0.031184442
Vegetarian Cous (GR/	AIN COUS	1.31	1.894	LB	0.858956916	1.12523356					
Vegetarian Cous (SPI	CE SALT	28.18	0.0394	QT	0.037286308	1.050728165					
Vegetarian Cous (FRL	JRAISINS	4	0.4734	LB	0.214693878	0.85877551					
Vegetarian Cous (VEG	3 PEAS C	0.77	0.7161	LB	0.324761905	0.250066667					
Vegetarian Cous (BAH	KEB SEEE	1.27	0.3906	LB	0.177142857	0.224971429	3.988267666	3	OZ	0.085048478	0.183554142
Vegetarian Cous (PRE	DFRULE	0.22	2	EACH	0.116	0.02552					
Vegetarian Cous (MAF	RGARINE	4.3	0.1953	LB	0.088571429	0.380857143					
Vegetarian Cous (SPI	ICE PEPPI	28.18	0.0048	LB	0.002176871	0.061344218					
Vegetarian Cous (PRE	D HERB C	0.38	0.0625	LB	0.028344671	0.010770975					
Halal Italian Herb COIL	VEG CAN	5	0.0013	QT	0.001230259	0.006151295					
Halal Italian Herb C CHI	XHALAL	20.5	0.25	LB	0.113378685	2.324263039	2.747478333	1	EACH	0.15	3.18464658
Halal Italian Herb C SEA	ASONING	28.18	1	TB	0.0148	0.417064					

Figure 6: Conversions in Excel

 $Total \ emissions \ per \ serving = \frac{Total \ Emissions \ per \ recipe \ in \ kg \ CO2e}{Total \ amount \ of \ recipe \ in \ kg} * Serving \ size \ in \ kg$

Equation 1: Total Emissions per Serving

	Meal	Prepared For	Actually Used	Percent of Prepared Used
	Roast Turkey	1172	1000	85.32423
	Turkey Gravy	768	575	74.86979
	Bread Stuffing	800	804	100.5
	Roasted Garlic Mashed Potatoes	746	750	100.5362
Wednesday	Steamed Green Beans	153	345	225.4902
	Togarashi Seared Tilapia w/ Soy Glaze	240	300	125
	Honey Glazed Carrots and Parsnips	352	300	85.22727
	Grilled Corn and Black Bean Farro	277	139	50.18051
	Grilled Southwest Chicken	270	202	74.81481
Thursday	Chicken and Cashew Stir Fry	1200	1000	83.33333
mursuay	Brown Rice	533	744	139.5872

	Sugar Snap Peas	230	236	102.6087
	Fire Cracker Shrimp	373	373	100
	Ginger Thai Chili Sauce	N/A	230	-
	Roasted Garlic Brussels Sprouts	275	279	101.4545
	Red Chili Thai Tofu	80	80	100
	Grilled Chicken	150	169	112.6667
	Boneless Buffalo Chicken Wings	676	600	88.7574
	Hot Cauliflower Wings	160	166	103.75
	Boneless BBQ Chicken Wings	618	600	97.08738
	Bleu Cheese Dressing	N/A	91	-
	Vegan Ranch Dressing	N/A	50	-
Friday	Celery Sticks	N/A	182	-
	Orange Teriyaki Salmon	290	480	165.5172
	Jasmine Rice	550	533	96.90909
	Summer Bean Blend	229	307	134.0611
	Grilled Vegetable Burrito	200	192	96
	BBQ Seasoned Chicken	137	175	127.7372
	Steak-Frites Au Poivre	691	530	76.70043
	Fries	840	800	95.2381
	BBQ Chicken	170	300	176.4706
Saturday	Cauliflower	280	280	100
	Sauteed Spinach	208	165	79.32692
	Bean Bourguignon	348	348	100
	Grilled Chicken	320	211	65.9375
	Chicken Tandoori	800	702	87.75
	Naan Bread	0	300	300
	Meatloaf	446	446	100
	Beef Gravy	300	300	100
Sunday	Scalloped Potatoes	600	675	112.5
	Harvest Blend	154	231	150
	Sauteed Butter Thyme Mushrooms	256	273	106.6406
	Pad Thai w/ Peanuts	160	250	156.25
	Grilled Jamaican Jerk Chicken	385	248	64.41558
	Chicken with Preserved Lemon	440	315	71.59091
	Country Fried Prok Chop w/ Mike's Hot			
	Honey Sauce	560	338	60.35714
Monday	Mashed Redskin Potatoes	1067	851	79.75633
	Broccoli Florettes	448	448	100
	Corn	538	498	92.56506
	Cous Cous	171	169	98.83041

Table 4: Comprehensive Meal Usage from Findlay Commons
Table 4: Comprehensive Meal Usage from Findlay Commons