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Abstract 

Association control algorithms play a significant factor in the performance of mobile clients 

traversing a dense wireless mesh network. In this paper, we introduce TAR, a novel 

association control algorithm which uses trip prediction alongside previous knowledge of 

the wireless network topology in order to select the APs which the client will associate with. 

We note that different applications have different wireless requirements. Interactive 

applications will demand a minimum amount of bandwidth and the least number of 

handoffs which introduce unwanted hiccups in live service (e.g. VoIP or live video). Non-

interactive applications have no time demands but desire the maximum throughput 

possible. With cross-layer communication, the application can notify TAR about its 

bandwidth requirements and whether it wishes to perform handoff reduction or maximum 

throughput. Furthermore, we propose a distributed fairness mechanism around a weighted 

max-min scheme to allow interactive users to gain priority during the association cycle, 

perform a sort of load balancing, and act as a quality-of-service admission control. This can 

either be done with assistance from the AP or through peer-to-peer coordination with a 

mobile peer-to-peer database of client-AP associations. We then show that these algorithms 

perform better than some commonly known and deployed association control algorithms, 

which tradeoff simplicity for poor performance in mobile scenarios. 
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Chapter 1: 

INTRODUCTION 

In the past decade, the popularity and low cost of 802.11 wireless products have ushered a 

new age of commodity wireless communications. Organizations worldwide have moved 

toward wireless networks to provide their constituents with network access wherever they 

may be located. For example, a metropolitan area may provide free Internet access to its 

citizens downtown and a university may provide wireless access to its students in all its 

campus classrooms. Wireless networks have also proven themselves in crisis situations. 

During Hurricane Katrina, relief services established wireless networks to better 

communicate amongst themselves after the local infrastructure was knocked offline [1]. 

A wireless network that spans a wide geographic area with a multiplicity of access 

points (AP) is called an infrastructure-based wireless mesh network. These networks are 

normally comprised of hundreds or thousands of APs that are stationed to provide the 

greatest network coverage within a target geographic area. While 802.11 products make 

great mesh networks due to their popularity among client devices, their limited 

transmission range introduces new challenges. 

The typical range of an AP to client association is 250 meters [2]. If the client is 

stationary, limited wireless range is a nonissue; the client merely associates with the AP 

with the highest signal strength. 802.11 dynamic bitrate scaling ensures that associating 

with APs with a higher signal-to-noise ratio leads to better transmission bitrates. However, 

recent interest in networks with mobile clients may invalidate this simple association 

control scheme. For instance, a wireless client on a vehicle moving 80 kph will receive at 

most 9 seconds of useful connectivity from a single AP [2]. That figure also assumes the AP 

is road-side and within line-of-sight; the plethora of radio obstacles in an urban 

environment further reduces this range. Given such constraints, the mobile client must 

reassociate itself with new APs frequently to sustain network access, placing a burden on 

applications requiring constant access. 

With every AP handoff, the wireless stack must reassociate with the new access 

point, reauthenticate itself, transfer any state, and notify its applications of the change and 

possibly new IP address. Handoff durations can range from a few hundred milliseconds to 
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several seconds, especially when 801.11i authentication is being used. During this time, the 

mobile client cannot use any network resources. The length and frequency of this sort of 

service interruption is generally unacceptable for interactive or streaming applications such 

as VoIP and live video. Moreover, handoffs are also energy intensive thereby serving as an 

impediment to battery-operated devices. Finally, handoff penalty is constant, so the faster 

the mobile client is moving, the bigger it will seem compared to actual association time. 

In a sparse wireless mesh network, there could be geographic locations where there 

is limited network coverage. When a mobile client navigates these regions, it cannot do 

anything but wait until serviceable coverage is available again. Association control 

algorithms cannot deal with these situations, nonetheless, there has been work in 

extending coverage by using cooperative, multi-hop, ad-hoc networks amongst the mobile 

clients [3]. On the other hand, in a properly-designed, dense wireless mesh network, a 

single geographic location may be covered by several APs. Often times, these regions are 

along the fringe of connectivity of the APs in question. These regions provide ample 

opportunity for a mobile client to reassociate itself with a new AP in its current trajectory; 

these are known as handoff regions. 

When there are many APs to choose between, association control algorithms must be 

smart enough not to select APs that will lead to unnecessary handoffs in the future. This 

decision is especially difficult when the client does not know where it is in relation to the 

APs or where it expects to go. At the same time, it is desirable to exploit dynamic bitrate 

scaling and select APs with the greatest signal strength. As network applications evolve to 

consume greater bandwidth, it is important for an association control algorithm to also 

ensure that the AP it is connected to can supply the needed bitrates. But if an AP is 

satisfying a client with consistent bandwidth demand, there is no need to reassociate even 

if there are APs that can provide a better bitrate. 

The tradeoff is clear: To maintain high bitrates, it is necessary to switch networks 

often so that the client has the highest possible signal strength at every location along its 

trajectory. Along the same lines, in order to reduce the number of handoffs, it is necessary 

to sacrifice the overall signal strength as the client will choose to stay connected to far-away 

access points for longer periods of time. 
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In addition, an association control must be mindful of other clients and the topology 

of APs in the immediate area. If every client is making the same decision about which APs 

to associate with, then they will all suffer from increased contention and overloading at 

those APs. Similarly, if a flash crowd occurs, clients will need to coordinate in some fashion 

to distribute their collective load on all the APs in the vicinity. Flash crowds are not 

uncommon; e.g. one can occur at a busy intersection blocked with a lengthy red light. This 

paper defines fairness as distributing the total available bandwidth in an area to all clients 

in an equal manner, while placing an importance to servicing those with a minimum 

bandwidth requirement. 

In this paper, we introduce Trajectory-Aware Roaming (TAR), an association control 

algorithm that optimally handles this tradeoff and performs especially well in vehicular 

wireless networks. With location information (GPS) and channel scan information, each 

vehicle creates a wireless coverage map of the roads it travels. Using trip prediction, each 

vehicle can map out which APs will be visible in the foreseeable future in order to make the 

best decisions about how to switch between them. The application also communicates with 

the wireless stack in a cross-layer scheme to define network requirements, such as 

bandwidth and handoff scheme. TAR will then maintain an actively-updated AP association 

schedule that will satisfy application requirements for the duration of the user’s trip. 

Furthermore, TAR employs weighted max-min to perform load balancing, a process that 

could affect AP selection. Two distributed weighted max-min implementations are 

suggested: allocating bandwidth to individual clients at the AP, and allocating bandwidth 

to clients in a peer-to-peer manner over a vehicular ad-hoc network with a novel mobile 

database. 

Related Work 

Association control algorithms play an important part in network performance. The 

majority of wireless clients will collect AP beacons for a short duration and associate with 

the one with the highest signal strength. The client can also reject APs that are too busy 

[4]. In [12], clients and APs could cooperate to satisfy bandwidth requirements for all users, 

sometimes advising clients to physically move. In the real world, however, the wireless 

stack cannot expect the driver to change his route to achieve better wireless performance. 
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In [11], a centralized algorithm provides max-min fairness by assigning users to APs. While 

a centralized algorithm can benefit from global knowledge, it is impractical to implement 

and requires existence and maintenance of such a service. Clients could also maintain 

different associations for unicast and broadcast communications to exploit the differences 

between them [10]. 

 Reducing the time of handoffs has been studied in MIT’s CarTel project by tuning 

timeout and retry parameters to vehicular speeds, performing association and 

authentication asynchronously, and scanning frequently used channels first [8]. In [9], 

clients perform multiple associations according to a centralized selection procedure. In 

addition, a new 802.11 amendment, 802.11r-2008, aims to provide faster BSS transitions on 

802.1X-based authentication systems by reducing the number of messages needed to 

reassociate [14]. These techniques require significant changes and are anyway orthogonal 

to the improvements in AP association discussed in this paper. 

MobiSteer uses a steerable beam directional antenna and a history of traces to select 

the beam that leads to the highest signal strength, while reducing handoff time [5]. 

However, this is only in an attempt to maximize throughput by beam selection; interactive 

or streaming network applications such as video conferencing will suffer from the number 

of handoffs. Furthermore, it is not always necessary to have the maximum amount of 

throughput, rather, the necessary amount required by the application. One IBM work 

argues that optimal handoff reduction will maximize the expected association time, and 

provides a rudimentary association control algorithm based on average association time 

given the set of APs currently visible [6]. But these algorithms do not maximize throughput. 

Trip prediction is discussed in [7] in an effort to efficiently route query packets over 

a vehicular ad-hoc network (VANET). Another prediction scheme based on a Markov-

modeled mobility grid, Breadcrumbs, provides connectivity forecasts and notes the 

importance of keeping an individual history over centralized efforts [13]. Mobility 

prediction is discussed in [15] to predict which APs will be visible to avoid the time it takes 

to scan either activity (during associated time) or passively. 
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Chapter 2: 

TRAJECTORY-AWARE ROAMING (TAR) 

Given mobile client roaming through a mesh wireless network, the TAR association control 

algorithm actively predicts the client’s route and selects new APs along the way in an effort 

to maximize throughput while minimizing handoff time (throughput maximization mode). 

We can also configure it to minimize the total number of handoffs since handoffs during 

interactive applications have penalties not associated with throughput, such as delays, 

unwanted interruption of service, or even connection failures (handoff reduction mode). 

TAR optimizes three metrics: throughput, handoff time, and handoff count. An association 

control algorithm that covers all three has yet to be studied. 

 The are many benefits in knowing the client’s route. For example, an AP with high 

signal strength may only be in range for a short time due to physical obstructions in the 

environment. Meanwhile, there could be an AP with weaker signal strength but that would 

be available for a longer time. 

The best example would be a commuter driving to work along a straight road. At any 

instant, her wireless client could scan and connect to the access point with the highest 

signal strength. On average, this commuter would have 125 meters of coverage before she 

would have to find a new access point. Now, over a period of several trips to-and-from work, 

her wireless client has saved enough scan histories along this road. Upon an association 

decision, her client may select an AP with a weaker signal but that would be available for 

twice as long as she moved closer to the access point and then away. Instead of 125 meters 

of coverage, she now has 250 meters, reducing the number of handoffs. 
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Figure 1: A vehicle moving through a region with three APs. (a) select-high-and-retain 

association control; (b) actively-select-high; (c) TAR. 

 

Figure 1(a) shows select-high-and-retain, an association control which selects the AP with 

highest signal strength and retains it until it is no longer available (most popular scheme, 

termed). It performs two handoffs. The last AP may not even be usable by the time it has 

completed the association because of low signal quality and bitrates. Subfigure (b) shows 

actively-select-high, an association control that is actively scanning and selecting the AP 

with the best signal strength, and it also performs two handoffs. Subfigure (c) shows TAR in 

handoff reduction mode efficiently selecting only two APs for one handoff. By the time the 

second association is complete, it will have very good bitrates for a longer period of time 

than the other two algorithms. TAR would also perform similar to (b) if handoff reduction 

mode is off, depending on the handoff time penalty. 

Furthermore, if the client knows it will be spending an average of 40 seconds at an 

intersection, it may as well disconnect from an AP with poor signal quality and reassociate 

itself with an AP with higher signal quality for the duration of the intersection stay. 

Otherwise, in a naïve handoff reduction algorithm, the client would have remained 

associated with the weaker AP because it may not have crossed the threshold for roaming. 

a) 

b) 

c) 
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Knowing the client’s trajectory means it can do pre-emptive roaming to improve overall 

quality and throughput, especially if a handoff is required anyway. 

 

Figure 2: A vehicle stopped for 40 seconds before an intersection. (a) A naïve handoff 

reduction algorithm; (b) TAR. 

 

Figure 2(a) shows a naïve handoff reduction algorithm that wastes an opportunity for 

higher throughput because it based on short-term handoff reduction. Subfigure (c) shows 

TAR performing a pre-emptive association to the second AP to take advantage of 40 seconds 

of high throughput while waiting at the intersection. This would happen regardless of 

which mode TAR is configured under: throughput maximization or handoff reduction. 

Cross-Layer Cooperation 

To determine how TAR should be configured, we shall categorize applications as either 

interactive or non-interactive. A cross-layer communication between the application and the 

wireless stack will establish these requirements. For example, if the application is being 

used interactively such as in VoIP, it may demand a minimum amount of bandwidth and 

smallest number of handoff interruptions possible (handoff reduction). On the other hand, if 

the network is being used non-interactively such as in email or in a system upgrade, the 

application can request the highest overall bandwidth while optimizing handoffs for 

smallest download time (throughput maximization). 

Communicating with the association algorithm in such a manner ensures that it will 

make the best decisions based on how the network will actually be used. Even in an 

actively-select-high association control algorithm, a cross-layer interaction can ensure that 

a) b) 

40s 40s 
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the client does not attempt to reassociate at every possible moment, but instead only when 

the minimum bandwidth requirement has been violated. 

 In Linux, a sort of cross-layer communication already exists in the power 

management module. The pm-qos kernel module allows applications to specify their desired 

network throughput and latencies so the network drivers can power their devices 

adequately when necessary and power them down when they are not needed [16]. A similar 

protocol can be used to guide an association control algorithm to better decisions. 

Trip Prediction 

The next essential step is predicting the client’s route. It can be easily observed that 

vehicles generally follow common everyday routes; e.g. work, school, gym, friend’s house, 

etc. Even buses have a specific route they follow every day. The Mobidrive project found 

these sorts of regular activities in the 30,000 trips performed by 320 correspondents over a 

six-week study [17]. This fact allows TAR to predict where the client will be in the future to 

make better association decisions. 

TAR presents a new way of trip prediction based on the decisions made at every 

junction or intersection. This has the advantage of being fast and saving storage space over 

grid-based approaches like [13]. Furthermore, it does not explicitly predict your destination 

as in [7], opting to perform incremental prediction instead. Therefore it does not rely on a 

routing algorithm to determine a future route, which could be wrong if the user takes 

shortcuts or other colloquial paths. Also, if the vehicle begins to take a different route 

halfway through the trip, it makes no difference as this algorithm will continue to 

incrementally predict. Lastly, our prediction algorithm tracks travel time. 

Building the Trip Database 

The prerequisites for the client are a GPS device and a map of the area. Many mobile 

clients are now equipped with GPS by default, such as the iPhone or navigation systems in 

cars. The map may be preloaded on the client, or downloaded on demand and cached locally 

from a central service. The map is specially parsed into roads, lanes, and junctions. A road 

is any path between two junctions in which a vehicle cannot stray. A set of lanes is a 
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direction along the road; a one-way road only has one set of lanes while a two-way road has 

two sets of lanes. A junction is any location where two or more roads meet, such as a stop 

sign, traffic lights, or a highway exit. In other words, the map is parsed into a graph where 

roads are edges, lanes represent the edge directions, and the junctions are nodes. Roads 

retain information about their type (service, residential, tertiary, secondary, primary, 

motorway), name, and their speed limit. 

 

 

Figure 3: Excerpt of a map graph. It contains a primary road leading underneath a 

westbound highway segment, with a traffic light connecting a residential road an on-ramp 

to the highway. 

 

The algorithm keeps track of lane changes as the client leaves a junction by incrementing a 

counter associated with the change previous lanes → current lanes. It also ages all other 

possible changes from previous lanes to ensure that new routes will eventually replace old 

routes. Additionally, it keeps track of the duration of travel spent along a set of lanes with 

an exponential moving average. Two duration averages are kept: one for pass-throughs and 

another for stop times. Some junctions could affect the duration of travel on incoming lanes 

in a significant, variable manner, such as a traffic light. In these cases, the client keeps 

track of junction approach velocity. If the vehicle’s approach velocity as it nears the junction 

(within 50 meters) is below a threshold (16 kph), then it is determined that the vehicle is 

stuck at the intersection and the duration is averaged into the stopping duration. 

Otherwise it is averaged into the pass-through duration. The stopping frequency is also 

stored. Some traffic lights are rarely green, such as a residential road leading into a 

primary road. 
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All this data is binned into time slots since trip information could be very different 

in the morning or in the afternoon. Specifically, we make each bin 2 hours long: e.g. 8am-

10am, 10am-12pm, 12pm-2pm, and so on for 24 hours. 

Predicting a Route 

To predict the route, the algorithm pulls data from the current time slot. Given the current 

set of lanes, it will select its next set of lanes based on the change that has the highest 

probability (or counter). Then it will predict how long the vehicle will spend on those lanes 

by the following equation: 

 

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑠𝑡𝑜𝑝𝑓𝑟𝑒𝑞 × 𝑠𝑡𝑜𝑝𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 +  1 − 𝑠𝑡𝑜𝑝𝑓𝑟𝑒𝑞  × 𝑝𝑎𝑠𝑠𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛          (1) 

 

Since the trip prediction algorithm may be called at any time, durations are interpolated for 

the current road if the vehicle is already travelling on it. This is especially useful to correct 

travel times as a vehicle approaches a traffic light. If the vehicle is stopped, then stopduration 

is used outright instead of equation (1), and likewise for passduration if the vehicle does not 

seem to be stopping. Lastly, if the predicted time for the current set of lanes is less than the 

minimum time it would take to get there given the client’s current speed and acceleration, 

then the duration is bounded by this minimum time instead. 

 The lane prediction procedure may be run many times to produce enough future 

points as necessary. 
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Figure 4: TripPrediction Algorithm. 

Default Prediction 

When vehicles are moving along new routes, the prediction cannot go further than the 

upcoming junction due to lack of data. In these situations, the algorithm will look at other 

time slots for the strongest prediction data for this route (the highest counter). Otherwise, 

the algorithm assumes the vehicle will continue to travel in a straight-line trajectory. The 

predicted route will continue on the set of roads that share the same name and lane 

direction. This default prediction may eventually be wrong; however, as demonstrated in 

chapter 3, making a prediction allows for more scan histories to be considered and leads to 

better algorithm performance. 

Creating a Scan History 

Besides route information and application requirements, TAR needs to know about the set 

of APs it will encounter along its path. When the wireless client is idle, it will scan the 

TripRediction Algorithm: 

  → Given (Lane, DistanceOnLane, Status): 

  → Initial: TotalDuration = 0, TotalDistance = 0 

  → Returns: [(NextLanes, Duration), … ] 

 

If lane == None: 

  Return [(None, 0)] 

 

LD = LaneDurations[Lane] 

Case status: 

 

  When STOPPING: 

    Duration = LD.Stopping 

 

  When Status == PASSING_THROUGH: 

    Duration = LD.PassThrough 

 

  When Status == UNKNOWN: 

    Duration = LD.StopFreq * LD.StopDuration + 

               (1 – LD.StopFreq) * LD.PassDuration 

 

DistanceLeft = Lane.Distance - DistanceOnLane 

Duration *= DistanceLeft / Lane.Distance 

 

TotalDuration += Duration 

If TotalDuration > MAX_DURATION: 

  Return [(Lane, Duration)] 

 

TotalDistance += DistanceLeft 

If TotalDistance > MAX_DISTANCE: 

  Return [(Lane, Duration)] 

 

NextLanes = Maximize Counter in LaneChanges[Lane] 

Return [(Lane, Duration)] + 

       TripPrediction(NextLanes, 0, UNKNOWN) 
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wireless medium for APs and tag this scan on the spot on the road it is currently travelling 

along. This is a continuously running process. Since a scan takes several seconds to 

complete, a comprehensive coverage map of a road can take several passes. Nevertheless, it 

can be observed that vehicles travel on habitual routes and over time such a comprehensive 

coverage map could be compiled. This means that the routes a vehicle travels often will be 

well covered. 

Alternatively, a coverage map may be downloaded on demand and cached locally, or 

it can be shared amongst vehicles on the road over an ad-hoc network. It does not matter 

how it is created or obtained, but it is necessary for AP selection, otherwise, the algorithm 

degrades to either select-high-and-retain or actively-select-high. The former is used in 

handoff reduction mode, the latter in maximum throughput mode. 

Selecting APs 

The goal of the AP selection process is to create a schedule for AP associations containing 

the distances or coordinates along the travelled roads when the client should switch to the 

new AP. First, trip prediction is performed to obtain 300 meters or distance of 40 seconds of 

duration, whichever one leads to the greatest predicted distance. Next, it collects all the 

scans it stored along the predicted route, and calculates from the prediction data how long 

it will spend in the vicinity of each scan. If no scan is available for a route segment, a null 

AP with zero bandwidth capacity is assigned for that length. 

 Each scan represents a layer in a directed-acyclic graph, with complete bipartite 

connections between each layer. Each layer is comprised of the APs seen during that scan, 

with incoming edges from the previous layer and outgoing edges to the next layer. There 

are two additional layers that are added artificially: a start and end layer with a single AP 

each. The start layer contains the currently associated AP. The end layer contains a null 

AP. See figure 5 for an example. 
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Figure 5: A vehicle travelling along a road with a scan history, and the corresponding 

graph. (a) A vehicle—currently associated with A—travelling along a road with previously 

recorded scans a given time interval from each other. This time interval is calculated by the 

trip prediction component. (b) The corresponding graph using 4 future scans. Each scan is a 

layer in the graph with complete bipartite connections between all their APs. The Ø symbol 

represents a null AP. 

 

The weight for edge (u, v) represents the benefit that is obtained by using AP v for the 

duration of its scan, coming from AP u. More specifically: 

 

𝐵 𝑢, 𝑣 = 𝑣𝑏𝑖𝑡𝑟𝑎𝑡𝑒 ×  𝑣𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 𝐻 𝑢, 𝑣  − 𝑀 𝑢, 𝑣    (2) 

 

vbitrate in equation (2) is estimated from v’s signal strength during the scan. It can also be 

learned from experience. For example, a client may learn that AP has poor performance 

because of an inadequate backhaul connection. Instead of relying solely on signal strength, 

the client may update the AP’s vbitrate from the client’s past experience. 

The function H(u, v) is the handoff time penalty for switching between APs u and v. 

If u = v, there is no penalty; otherwise, it is the time spent to reassociate to v and begin 

useful communication. This function may be variable depending on AP v as different APs 

may have different association performance. It also may depend on u if switching between 

A 

 

Ø 

 

A 

B 

A 

C 

D Ø 

Start 

 

4s 4s 2s 5s End 

 

a) 

b) 

A 

B 
C 

D 

4s 4s 2s 5s 
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APs in the same network is quicker. This function may be hardcoded, downloaded from a 

central authority with knowledge of association performance, or learned from experience. 

The function M(u, v) is the mode penalty for handoffs, which will make TAR favor 

either maximum throughput or handoff reduction. In maximum throughput mode, equation 

(3) is applied. In handoff reduction mode, equation (4) is applied. 

 

𝑀 𝑢, 𝑣 = 0                                                                       (3) 

𝑀 𝑢, 𝑣 =  
−𝐾 𝑢 ≠ 𝑣 𝑜𝑟 𝑣𝑏𝑖𝑡𝑟𝑎𝑡𝑒 < 𝑚𝑖𝑛𝑏𝑖𝑡𝑟𝑎𝑡𝑒

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (4) 

 

In equation (4), the quantity −K is a very large negative constant used to give a large 

incentive for the algorithm to choose the least number of handoffs when maximizing the 

benefit. It is applied when there is a handoff or when the bitrate for AP v in this scan would 

not satisfy the application-specified minimum bandwidth requirement. Nonetheless, 

between two different AP schedules with the same number of handoffs or unsatisfactory 

scans, it will optimize for maximum throughput because –K is so largely negative and 

because they will cancel out in equally bad paths. 

Maximizing Benefit 

To maximize the benefit in the AP graph is an instance of the well-known longest path 

problem. It can be solved in linear time using dynamic programming. We will feed the 

algorithm described in figure 6 a list of APs sorted in ascending topological order by layer 

(the first layer comes first, then the second, etc). The same AP in two different layers do not 

share the same graph node—they are two different AP objects in different scans, but 

compare equally for handoff penalty and mode purposes. 

 

 

Figure 6: MaximizeBenefit Algorithm. 

MaximizeBenefit Algorithm: 

  → Given (topologically sorted APs): 

  → Initial: Benefit[*] = -∞, Path[*] = None 

 

For u in APs: 

  For each edge u → v: 

    If Benefit[v] ≤ Benefit[u] + B(u,v): 

      Benefit[v] = Benefit[u] + B(u,v) 

      Path[v] = (u, coordinate for u) 
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To determine the final AP schedule, we follow Path backward from the final null AP in the 

end layer. We then have a list of APs in the order we will associate with them and when to 

make the switch. 

When to Select APs 

The selection algorithm is a computationally intensive process, especially if there are many 

APs in every scan. However, it only needs to be run when the distance left in the schedule 

is less than some minimum threshold (100 meters), if a road on the predicted route was 

incorrect, or if road conditions change. A condition change could be a deacceleration when 

approaching a known traffic light intersection. 

Weighted Max-Min Fairness 

To implement fairness, TAR implements a weighted max-min algorithm to distribute load 

among APs in the area, with coordination with the APs or with adjacent vehicles over a 

vehicular ad-hoc network. With max-min, the client must advertise its bandwidth request. 

Max-min equally divides the available bandwidth among all clients while redistributing 

surplus bandwidth to clients that requested more than the equal allocation. Each client is 

allocated at least a minimum share, but never more than it requested. Max-min is fair for 

the majority of clients who request similar amounts of bandwidth while attempting to 

satisfy clients with large requests; it maximizes the minimum share of a client that is not 

fully satisfied [18]. 

A weighted max-min algorithm may give higher priority to the bandwidth requests 

of some clients. Each client now advertises a weight alongside its bandwidth request; the 

higher the weight, the better satisfied this client will be compared to clients with smaller 

weights. For a detailed explanation, the reader is referred to [19]. In this implementation, a 

higher weight is assigned to clients in handoff-reduction mode since those are the clients 

who are interested in fewer interruptions and TAR should attempt to guarantee their 

bandwidth over other clients. That means that a VoIP application will have a higher weight 

than simple downloads and will have a higher priority over an AP’s bandwidth. 
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It is the client’s responsibility to restrict its transmission to its allocated share; if 

every client does this then there will be less overall contention on the wireless channel. The 

appendix contains a comprehensive proof showing that if clients follow a max-min 

bandwidth allocation, it will always perform better than the naïve random allocation 

scheme, as would be observed if neither the client nor the AP operated with any quality-of-

service mechanisms. It is important to note that this type of fairness is orthogonal to 

802.11e (commonly known as the WiFi Wireless Multimedia Extensions). 802.11e provides 

quality-of-service to clients based on their advertised priority class once the client is 

associated to the AP. This usage of max-min fairness is primarily used to determine how 

well an AP can satisfy a client’s bandwidth request before the association takes place, 

acting as an upper limit for vbitrate in equation (2). A highly loaded AP will have a lower 

max-min calculated upper limit for vbitrate and therefore, clients will tend to associate with 

other APs, achieving a form of load balancing. It is important to have admission control at 

the AP that distinguishes between different types of applications; a weighted max-min 

approach does just that. Allowing a best-effort type of client into a moderately loaded AP is 

more acceptable than allowing a client that requires a minimum bandwidth requirement. 

Performing quality-of-service mechanisms only after the client has associated itself with 

the AP is inefficient for the client and unfair for the previously associated clients. 

Note that even though the client may not know this upper limit for every AP in its 

foreseeable future, if it knows the upper limit for every AP in its current vicinity, then it 

will be able to make a locally good choice achieving incremental load balancing in its 

current location. 

AP-Centered Max-Min 

The most obvious way to implement max-min fairness is at the AP. Some APs already 

broadcast their current load, but with weighted-max-min, the algorithm must be re-run to 

take account different client weights. Upon an association decision, a non-associated client 

can ask all the APs in its vicinity the amount of bandwidth it would be allocated if it were 

to associate with it, given its bandwidth request and weight. The APs, knowing their 

bandwidth requests and weights of the clients currently associated with it, will re-run the 

weighted max-min algorithm including the requesting client’s bandwidth request and 
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weight to determine the new allocations. Each AP will then reply with the client’s 

bandwidth should it associate with it, serving as the upper bound for vbitrate. This is the 

simplest scheme but requires modification to the 802.11 protocol. 

Peer-to-Peer Max-Min 

Another approach that has not been studied in the literature is to allow clients to 

coordinate in sharing a common dumb resource instead of relying on an authority to 

allocate shares. In this case, vehicles will coordinate among themselves over a wireless ad-

hoc network to share AP bandwidth, which has no knowledge of such a sharing scheme. 

Basically, each client will need to know the bandwidth requests and weights of every other 

client currently associated with the APs it is interested in. This is a challenge if the AP is 

not involved since clients may not be in wireless range of each other. Without any loss of 

generality, this paper presents an ad-hoc mobile database to solve this problem while 

reducing the overall number of coordination messages over the ad-hoc network. Truly, the 

same mobile database can be used to share other data such as traffic conditions on a road, 

accident information, or even to extend the range of a particular stationary node (e.g. a 

movie theater advertising its movie show times to nearby vehicles). It is useful for local 

information which must be shared by all clients within the geographic area. 

 Data in this mobile database is segmented into contexts. A context is a group of 

client data that is available to all clients interested in that context. In this case, a context is 

an AP and the data are the bandwidth requirements and weights of each client associated 

with the AP—although contexts and data can be interpreted to mean anything in a general 

sense. To post data into a context, a client must be interested in that context, but interested 

clients are not required to post data. For example, associated clients will post their 

bandwidth data, but clients that are not yet associated with that AP may become interested 

in that context—thereby receiving all the context data—to run max-min to calculate vbitrate. 

One simple approach is that each client becomes interested in the contexts for the APs that 

are currently in range. When an association decision comes up, it will already have the 

bandwidth data for the clients associated with the surrounding APs in order to calculate 

vbitrate. 
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Coordination within the Mobile Database 

A requirement of this mobile database is the knowledge of each client’s neighbors and the 

contexts they are interested in. Clients may transmit this data within a beacon packet in 

common practice with wireless networks. To post data into a context, a client will flood an 

update-packet containing its data to all the clients interested in the context. An update-

packet contains the context, previous receivers, source client, and the source’s data for the 

context. The previous receivers list contains all the clients that update-packet has seen 

during its flooding. This is to prevent future clients from sending the update-packet to a 

client that has already received it, and reduces the number of retransmissions. Clients may 

discard any update-packets it has already seen, but it must at least store the most recent 

update-packet from each source client that has transmitted one. Those clients uninterested 

in the context have no obligation to forward packets to other interested clients in their 

vicinity, but they may choose to do so altruistically if their wireless devices are idle. 

 To enter a context, a client sends a sync-packet to the neighboring clients that are 

interested in that context. The sync-packet simply requests the client to retransmit all the 

update-packets it has received for that context. If this client is bridging two previously 

unconnected groups of clients interested in the same context, the update-packets will be 

forwarded to the opposite group of clients by the nature of the flooding technique. This 

ensures the property that all clients interested in a context have the entirety of the data 

associated with that context, as long as they there is a wireless route to each client. 

To leave a context, a client simply removes the context from its interested list. It will 

no longer be forwarded update-packets and it may discard all its stored packets. If it had 

posted data to the context at some point, it should send an update-packet with null data to 

remove its data, unless the data has an expiry date and/or it is unnecessary to void the 

data.  

Transmission Reduction Optimizations 

One optimization to further reduce the number of messages transmitted during a flood 

requires one-hop knowledge of every client’s neighbors. Upon a retransmission, clients will 

add all its neighbors to the previous receivers list, and only select a few clients to actually 



 

19 

 

retransmit the message to their neighbors. The choice of which neighbors will retransmit 

the update-packet to their neighbors is the minimum set cover problem, which is NP-

complete, but can be approximated with a greedy algorithm [20]. A further optimization is 

to only send the sync-packet to clients that have differing sets of data (the stored update-

packets). This can be done by broadcasting a hash of the data for each context a client is 

interested in with the beacon packet. Clients wishing to enter a context would only send 

sync-packets to clients with different hashes. 
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Chapter 3: 

EVALUATION 

A simulator was used to evaluate TAR against other common association algorithms, 

specifically select-high-and-retain (SHR) or actively-select-high (ASH). Three requirements 

were needed from a simulator: 

 

1. Since a major component of TAR is trip prediction with individual vehicle histories, 

vehicles must have realistic travel patterns day-after-day. Each vehicle must behave 

as it would if it were commuter, student, or any other category of driver. 

Furthermore, it should select destinations from a pool of possible locations for that 

driver (pool locations can be updated over time). For example, a driver may only 

have one work location but three lunch locations. 

 

2. The simulation of hundreds or thousands of vehicles with unique travel patterns to 

test the fairness aspects of TAR. In the absence that many real-world vehicle traces, 

a simulator must create realistic patterns. 

 

3. Since TAR also does time prediction to determine when to proactively switch APs, 

vehicles must have realistic traffic behavior complete with lane changing, stop signs, 

traffic lights, yielding junctions, acceleration, deacceleration, varying types of 

driving styles (e.g. convervative vs. aggressive), all the while preventing vehicle 

collisions and maintaining some level of inter-vehicle distance depending on driver 

type. 

 

No simulator was found that satisfied these requirements to an adequate level, so a new 

discrete-time simulator was developed. Maps are exported from the OpenStreetMap project 

[21] in their open XML format, parsed into a graph of intersections and roads, reduced to 

their largest strongly-connected component, and saved into an intermediary file format for 

fast future access. 
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Simulation Parameters 

Any OpenStreetMap map may be used in the simulator; we chose downtown Lancaster, PA 

and State College, PA as graphed in figure 7. We used the smaller State College map for 

fairness simulations to increase the amount of AP contention. The simulator is also fed 

configuration data to create realistic travel patterns modeled after the distributions found 

from studying 30,000 trips in the Mobidrive project [22]. Figure 8 shows the trip simulation 

of a single worker and student vehicle, simulated for a period of 365 weekdays (weekends 

were not considered in this simulation). Different vehicles may have slightly different 

distributions; e.g. different worker types may leave for work at varying times. The 

simulator then runs whatever experimental module the user desires. Common simulation 

parameters are enumerated in table 1. All simulations were run using the same random 

seed to ensure that results are comparable. 

  

a) 

 

b) 
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Figure 7: Maps used in our simulation (not shown to scale). (a) Map of downtown 

Lancaster, PA, used in our simulation, shown without vehicles. Triangles represent APs; 

orange circles are stop signs; red circles are traffic lights; all other junctions are yielding. 

(b) Map of small area of downtown State College, PA. 

 

Table 1: Common simulation parameters. None of these parameters are known by the 

client. Interactive trips stands for the percentage of trips that are done in handoff-reduction 

mode. 

Name Value 

Path Loss Exponent [23] 3.35 

Receiver Sensitivity -91.0 dbm 

AP Bandwidth Capacity 8.0 Mbps – 11.0 Mbps 

Association Time 0.1 secs – 2.0 secs 

AP Count (randomly placed) 1,000 for Lancaster, PA 

150 for State College, PA 

Vehicle Number 1,000 for Lancaster, PA 

400 for State College, PA 

Interactive Trips 50% 

Interactive Bandwidth 1.0 Mbps – 3.0 Mbps 

Interactive Max-Min Weight 3.0 

Interactive Mode Handoff Reduction 

Non-interactive Bandwidth 3.0 Mbps – 7.0 Mbps 

Non-interactive Mode Maximum Throughput 
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Figure 8: Travel pattern distributions for a worker and student vehicle. 

 

To simplify the simulator, we assumed vehicles could generate comprehensive scan 

histories for every road on a single pass. In other words, scan histories were available for 

every 15 meter stretch after a single pass on the road, making the results presented in this 

paper for TAR how it would perform in the ideal case. Generating a comprehensive scan 

history in a single pass is not possible in practice unless the vehicle is moving slowly, but it 

does not change the fundamental results of our experiment. Instead, TAR would perform 

incrementally better until it created a comprehensive scan history over several passes on 

the road. 
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Trip Prediction 

Figure 9(a) shows the prediction accuracy of the trip prediction component of TAR. Recall 

that default prediction entails looking at trajectories in other time slots or estimating a 

straight-line trajectory on the current road if no prediction data currently exists. Subfigure 

(b) shows prediction accuracies for the travel duration on each road. 

 

  

Figure 9: Prediction accuracies for the next road at every junction. 

 

Trip prediction with default prediction is expected to perform worse than prediction without 

it because it is almost always going to be wrong at some point in the future; e.g. vehicles do 

not typically maintain a straight-line trajectory without any turns during their trips. 

Nonetheless, performing default predictions allows TAR to select more scan histories in the 

foreseeable future; without it, it would not select scan histories beyond the last available 

prediction. The more scan histories that are available, the further in the future TAR can 

see to determine the best association path. If a prediction is wrong, TAR simply reevaluates 

its path under its new trajectory. Table 2 demonstrates that TAR with default prediction 

performs better than without it, as compared to the optimal TAR algorithm which uses the 

actual route of the vehicle instead of predicting it. In practice, the actual route of the client 
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is generally unknown to the association control algorithm, unless the driver has 

programmed it into a GPS; e.g. for longer trips or to previously untraveled destinations. 

 

Table 2: TAR performance with different trip models. 

Algorithm Satisfaction Association Duration 

TAR-TP w/o Default 0.776 8.97 

TAR-TP w/ Default 0.805 9.81 

TAR-ROUTE 0.826 10.61 

 

Non-Interactive Applications on TAR 

Figure 10(a) shows the satisfaction performance of the three association algorithms 

evaluated. Satisfaction is the ratio of bandwidth received vs. bandwidth requested. The 

satisfaction ratio is computed for every association performed by every client. TAR 

outperforms in terms of satisfaction because it is able to predict which APs a client will 

encounter in the future, and chooses the best association path to maximize throughput in 

non-interactive mode. Subfigure (b) shows the association duration—the higher the 

association duration, the fewer the number of handoffs the association control algorithm 

forced. SHR outperforms all other algorithms because it is designed to retain an association 

until it is no longer available; however, that design choice is not conducive for satisfaction 

as is seen in subfigure (a). ASH has the worst association duration because it is frequently 

reassociating to maintain the highest signal strength between a client and an AP. Recall 

that it is inconsequential how TAR performs in association duration in non-interactive 

mode since it was throughput that was being maximized (satisfaction) and not the number 

of handoffs (association duration). 
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Figure 10: Performance of association control algorithms for non-interactive applications. 

Interactive Applications on TAR 

Figure 11(a) shows the satisfaction performance of the three association algorithms while 

subfigure (b) shows the association duration performance for applications in interactive 

mode. It is expected that SHR and ASH will perform similarly in interactive mode vs. non-

interactive mode since they make no distinction about the application using the network 

resources. However, TAR’s cross-layer communication allows the association algorithm to 

reconfigure itself easily to interactive applications. TAR here is configured in handoff 

reduction mode and the association duration for TAR is far greater than those of SHR and 

ASH. At the same time, TAR also performs better in satisfaction because while it is 

primarily optimizing for handoff reduction, it also performs throughput maximization as a 

secondary goal. Moreover, the longer association durations allow a relatively larger transfer 

window within an AP’s coverage, especially with larger bandwidth requirements (i.e. lower 

association overhead vs. usable time). 
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Figure 11: Performance of association control algorithms for interactive applications. 

 

It should be argued that the differences between handoff reduction mode and maximum 

throughput mode for TAR become more pronounced as the AP association time decreases. 

As AP associations become quicker, the frequent switching of the maximum throughput 

mode will lead to greater satisfaction ratios over handoff reduction as the association 

overhead goes to nil. Certainly, there has been a trend toward faster AP associations as 

evidenced by the 802.11r effort [14]. At the same time, TAR in handoff reduction mode will 

always be needed to prevent incessant, unwanted hiccups in service for interactive 

applications such as VoIP or live video. 

Fairness 

To evaluate the fairness component of TAR, we used a smaller map (State College, PA) and 

ensured that there would be enough traffic to ensure a heavy load on the APs in the area. 

We evaluated SHR, ASH, and TAR without any modification, and added TAR-P2P and 

TAR-AP, the two distributed max-min schemes discussed in chapter 4. Figure 12(a) shows 

the satisfaction for non-interactive uses; subfigure (b) shows the satisfaction for interactive 

users. As can be noted, the satisfaction for the three unmodified association control 
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algorithms run similar performance specifications because the area is heavily loaded and 

only the closest APs to the road are being used. These algorithms have no notion of other 

clients or the load on the AP. On the other hand, TAR-P2P and TAR-AP show considerable 

improvement in the satisfaction for interactive users. Recall that these algorithms perform 

load balancing to spread the load among all the APs in the area, giving preference to clients 

with interactive applications. Although the satisfaction for non-interactive clients is 

negatively affected (TAR-AP or TAR-P2P vs. regular TAR), a significant positive change in 

interactive client satisfaction is observed—in accordance to our goals. 

TAR-AP serves as the upper bound for TAR-P2P since in TAR-AP, the AP manages 

the max-min algorithm and is always present for any client that wishes to request a 

bandwidth estimate. In TAR-P2P, a context may be split into several unconnected groups of 

clients outside collective wireless range which therefore fail to share bandwidth information 

because they cannot communicate with each other. Nonetheless, that is a rare occurrence 

as TAR-P2P performs very similarly to TAR-AP. 

 

 

Figure 12: Satisfaction for association control algorithms in a heavily congested area. 

 

Figure 13 shows the association duration for the association control algorithms. The max-

min versions of TAR perform better in association duration with non-interactive clients 
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because before an AP is used from a previously determined AP association path, the path is 

reevaluated from that point using the current load conditions in that location. Since the 

area is heavily congested, it is less likely for TAR to force a handoff between two heavily-

loaded APs if the client still has a good connection with the original AP. This is due to 

trying to reduce the handoff penalty and lost throughput during this penalty (the 

association time). TAR will then only force a handoff when the throughput expected from 

moving to another heavily-loaded AP would be greater than staying at the current AP as it 

goes out of range, hence increasing the average association time. For interactive clients, the 

association time remains unchanged because TAR is already optimizing for handoff 

reduction, regardless of load conditions. 

 

 

Figure 13: Association duration for association control algorithms in a heavily congested 

area. 
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Chapter 4: 

CONCLUSIONS 

In this paper, we have introduced TAR, a novel association control algorithm which uses 

trip prediction alongside previous knowledge of the wireless network topology in order to 

select the APs which the client will associate with. With cross-layer communication, the 

application can notify TAR about its bandwidth requirements and whether it wishes to 

perform handoff reduction or maximum throughput. Furthermore, we also proposed a 

distributed fairness mechanism around a weighted max-min scheme to allow interactive 

users (e.g. VoIP or streaming video) to gain priority to bandwidth during the association 

cycle and to do a form of load balancing. This can either be done with assistance from the 

AP or through peer-to-peer coordination with a mobile database of client-AP associations. 

We have then shown that these algorithms perform better than the commonly known and 

deployed select-high-and-retain and actively-select-high association control algorithms, 

which tradeoff simplicity for poor performance in mobile scenarios. 
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Appendix: 

Max-Min vs. Random Allocation Proof 

We shall prove that a contention-free max-min bandwidth allocation is better than 

randomly allocating bandwidth to users at every contention window, a scenario that would 

occur if clients are competing for AP bandwidth without any quality-of-service provisions. 

Some notes: 

 

1. Multiple access point problem is equivalent to single access point problem. So in this 

proof we assume there is one access point with a capacity X bandwidth. 

 

2. This proof can be extended to the case with 2+ vehicles. 

 

Theorem: The performance on satisfaction degree of MAX-MIN bandwidth allocation 

algorithm will not worse than that of the random-selection algorithm. Satisfaction is 

defined as the ratio of bandwidth received versus bandwidth requested from the AP. 

Proof 

We assume that the bandwidth can be provided is X. There are two vehicles competing for 

the bandwidth, and their requirements are x1 and x2, respectively. Without loss of 

generality, we assume x1>x2. 

Case 1: X>x1+x2 

In this case, obviously both vehicles can be satisfied. Therefore, the satisfaction degrees in 

both algorithms are 100%. The performance of MAX-MIN is not worse than the random-

selection algorithm. 

 

 

 



 

35 

 

Case 2.1: X<x1+x2, and X>x1>x2, and x1>X/2>x2 

We use S to denote the satisfaction degree. Then, in this case, the expected satisfaction 

degree of random-selection algorithm can be calculated as, 

 

𝐸 𝑆𝑟𝑎𝑛𝑑  =  
1
2
𝑥1 + 1

2
 𝑋 − 𝑥2  

𝑥1
+

1
2
 𝑥2 + 1

2
 𝑋 − 𝑥1 

𝑥2
 /2 

 

And similarly, the expected satisfaction degree of MAX_MIN can be calculated as, 

 

𝐸 𝑆𝑀𝑀 =  
𝑋 − 𝑥2 

𝑥1
+

𝑥2

𝑥2
 /2 

Then, 

 

𝐸 𝑆𝑀𝑀 − 𝐸 𝑆𝑟𝑎𝑛𝑑  =  
𝑋 − 𝑥2 

𝑥1
+

𝑥2

𝑥2
−

1
2
𝑥1 + 1

2
 𝑋 − 𝑥2  

𝑥1
−

1
2
 𝑥2 + 1

2
 𝑋 − 𝑥1 

𝑥2
 /2 

=  
𝑋 − 𝑥2 

2𝑥1
−

𝑋 − 𝑥1

2𝑥2
 /2 

=  
𝑋𝑥2 − 𝑥2𝑥2 − 𝑋𝑥1 + 𝑥1𝑥1

𝑥1𝑥2
 /4 

=  
 𝑥1 + 𝑥2 − 𝑋 (𝑥1 − 𝑥2)

𝑥1𝑥2
 /4 

 

Since x1+x2>X and x1>x2, 

 

𝐸 𝑆𝑀𝑀 − 𝐸 𝑆𝑟𝑎𝑛𝑑  > 0 

                                                                ⇒ 𝐸 𝑆𝑀𝑀 > 𝐸 𝑆𝑟𝑎𝑛𝑑   

Case 2.2: X<x1+x2, and X>x1>x2, and x1>x2>X/2 

Similar to case 2.1, 

 

𝐸 𝑆𝑟𝑎𝑛𝑑  =  
1
2
𝑥1 + 1

2
 𝑋 − 𝑥2  

𝑥1
+

1
2
 𝑥2 + 1

2
 𝑋 − 𝑥1 

𝑥2
 /2 
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But, 

𝐸 𝑆𝑀𝑀 =  
𝑋 

2𝑥1
+

𝑋

2𝑥2
 /2 

 

Then, 

𝐸 𝑆𝑀𝑀 − 𝐸 𝑆𝑟𝑎𝑛𝑑  =  
𝑋 

2𝑥1
+

𝑋

2𝑥2
−

1
2
𝑥1 + 1

2
 𝑋 − 𝑥2  

𝑥1
−

1
2
 𝑥2 + 1

2
 𝑋 − 𝑥1 

𝑥2
 /2 

=  
𝑥2 − 𝑥1 

𝑥1
−

𝑥1 − 𝑥2

𝑥2
 /2 

=   𝑥1 − 𝑥2 (
1 

𝑥2
−

1

𝑥1
) /2 

 

Since x1>x2, (𝑥1 − 𝑥2) > 0 and  
1 

𝑥2
−

1

𝑥1
 > 0. Therefore, 

 

𝐸 𝑆𝑀𝑀 − 𝐸 𝑆𝑟𝑎𝑛𝑑  > 0 

                                                                ⇒ 𝐸 𝑆𝑀𝑀 > 𝐸 𝑆𝑟𝑎𝑛𝑑   

Case 3.1: X<x1+x2, x1>X and X/2>x2 

Similarly, in this case, the satisfaction degree of random-selection algorithm can be 

calculated as, 

𝐸 𝑆𝑟𝑎𝑛𝑑  =  
1
2
𝑋 + 1

2
 𝑋 − 𝑥2  

𝑥1
+

1
2
 𝑥2

𝑥2
 /2 

 

And the satisfaction degree of MAX-MIN is still the same as that in case 2.1. Therefore, 

 

𝐸 𝑆𝑀𝑀 − 𝐸 𝑆𝑟𝑎𝑛𝑑  =  
𝑋 − 𝑥2 

𝑥1
+

𝑥2

𝑥2
−

1
2
𝑋 + 1

2
 𝑋 − 𝑥2  

𝑥1
−

1
2
 𝑥2

𝑥2
 /2 

=  
1

2
−

𝑥2

2𝑥1
 /2 

                                                                       > 0    because x2<x1 

                                          ⇒ 𝐸 𝑆𝑀𝑀 > 𝐸 𝑆𝑟𝑎𝑛𝑑   
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Case 3.2: X<x1+x2, x1>X and x2>X/2 

𝐸 𝑆𝑟𝑎𝑛𝑑  =  
1
2
𝑋 + 1

2
 𝑋 − 𝑥2  

𝑥1
+

1
2
 𝑥2

𝑥2
 /2 

 

And the satisfaction degree of MAX-MIN is still the same as that in case 2.2. Therefore, 

 

𝐸 𝑆𝑀𝑀 − 𝐸 𝑆𝑟𝑎𝑛𝑑  =
𝑋 

2𝑥1
+

𝑋

2𝑥2
−

1
2
𝑋 + 1

2
 𝑋 − 𝑥2  

𝑥1
−

1
2
 𝑥2

𝑥2
 

=
𝑥2 − 𝑋 

2𝑥1
+

𝑋 − 𝑥2

2𝑥2
 

=
 𝑋 − 𝑥2 

2
 

1 

𝑥2
−

1

𝑥1
 > 0 

                                         ⇒ 𝐸 𝑆𝑀𝑀 > 𝐸 𝑆𝑟𝑎𝑛𝑑   

 

Case 4: X<x1+x2, and x1>x2>X 

𝐸 𝑆𝑀𝑀 − 𝐸 𝑆𝑟𝑎𝑛𝑑  =
𝑋 

2𝑥1
+

𝑋

2𝑥2
−

1
2
𝑋 

𝑥1
−

1
2
 𝑋

𝑥2
 

= 0 

 

Sum up case 1-4, we can conclude that𝐸 𝑆𝑀𝑀 ≥ 𝐸 𝑆𝑟𝑎𝑛𝑑  . Therefore, the performance of 

MAX-MIN will not be worse than the random-selection algorithm. ▪ 
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