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Abstract 

Background 

Monolignols are basic components of lignin; their synthesis involves a dozen enzymes. Caffeic 

acid o-methyltransferase (COMT) is one of the key enzymes involved in the synthesis of 

monolignols. The COMT gene family has been studied in several species, including model and 

non-model plants. Here we analyzed the organization, the phylogeny, and the expression of 

COMT genes in various tissues from non-stressed and stressed Populus plants. 

Results 

We identified 8 COMT genes from Populus and found that all of them are located in duplicated 

blocks. COMT genes are distributed in two phylogenetic classes with the real COMT gene 

distributed in Class I. Expression profiling showed that COMT genes present various expression 

profiles in leaves, bark, and xylem from poplar. One gene, which was previously described as a 

real COMT gene, showed preferential expression in xylem tissue. The others are either 

preferentially expressed in bark or show no differential expression.  

Conclusions 

COMT genes are highly duplicated and most of duplicates are still in conserved positions on 

homeologous blocks wthin the Populus genome. Expression profiling showed that COMT genes 

present different expression profiles in Populus tissues with only one gene differentially 

expressed in xylem. Our results suggest that COMT genes have evolved various expression 

profiles and may have evolved different functions following duplications.  
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Introduction 

Lignin is a phenolic compound in plant cell walls which functions in maintaining the 

structural rigidity of plants and defending them against pests and pathogens. It is the second most 

abundant biopolymer on earth following cellulose (Raes et al., 2003). Lignin is composed mainly 

of three monolignols: p-coumaryl, coniferyl, and sinapyl alcohol (Ye and Varner, 1995) which 

are the basic units of G (guaiacyl), H (p-hydroxyphenyl), and S (syringyl ) lignins respectively. 

Lignin varies in content and composition between gymnosperms and angiosperms. In the former, 

lignin contains G and H units while in angiosperms, it comprises G-units, H-units, (Whetten et 

al., 1998), and S-units. The synthesis of S-units is performed by methylation of 5-

hydroxyconiferyl alcohol into sinapaldehyde or sinapyl alcohol (Ye et al., 1994; Zhong et al., 

1998) under the action of the COMT enzymes. COMT is an S-adenosyl-L-Met-dependent O-

methyltransferase that includes both COMT and caffeoyl CoA o-methyltransferase (CCoAOMT) 

gene families. While both enzymes are involved in lignin biosynthesis, CCoAOMT intervenes in 

earlier steps of the lignin biosynthesis pathway by transforming caffeoyl CoA to Feruloyl CoA 

(Davin and Lewis, 1992; Ye et al., 1994). COMT acts at the end of the pathway to produce 

sinapyl alcohol which is the main component of S lignin.  

Previous studies (Anterola et al., 2002; Raes et al., 2003; Tuskan et al., 2006) enabled the 

identification of COMT genes from several model and non-model plant species. An early study 

(Collendavelloo et al., 1981) on COMT in tobacco allowed the identification of three distinct 

enzymes (COMT I, COMT II, COMT III) based on substrate specificity. Further analyses 

classified COMT genes into two functional classes. Class I genes include tobacco COMT I while 

Class II includes COMT II and III (Jaeck et al., 1992; Pellegrini et al., 1993). Class I genes are 
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involved in lignin biosynthesis whereas Class II genes are involved in plant defense against 

biotic and abiotic stresses (Pellegrini et al., 1993). This distribution was confirmed by another 

study (Joshi and Chiang, 1998) that showed that classified OMT genes are into two distinct 

groups, PL-OMT I and PL-OMT II. The PL-OMT I group is involved in lignin biosynthesis and 

uses only a pair of substrates. The members of the PL-OMT II group use a variety of substrates, 

such as caffeic acid (CA), 5-hydroxyferulic acid (5HFA), caffeoyl-CoA ester, 5-

hydroxyferuloylester, myo-inositol, chalcones and scoulerine (Joshi and Chiang, 1998). Three 

conserved sequence motifs specific to S-adenosyl-L-methionine (SAM) were discovered in 

several plants (Joshi and Chiang, 1998).  Further studies classified sequences based on sequence 

similarity to real COMT genes. For instance, in Arabidopsis, one real COMT and 13 COMT-like 

genes were reported (Raes et al., 2003). In Populus, two COMT genes and two COMT-like genes 

were reported with the initial publication of the genome sequence (Tuskan et al., 2006).  

In Arabidopsis, Populus, and Medicago, COMT genes have been shown to act as a bi-

functional enzyme (Vander Mijnsbrugge et al., 2000; Raes et al., 2003; Kota et al., 2004). Indeed, 

while COMT proteins can convert in vitro caffeic acid to sinapoylmalate (Hoffmann et al., 2004), 

their primary role is mainly in lignin biosynthesis. COMT proteins methylate 5-

hydroxyconiferaldehyde and/or 5- hydroxyconiferyl alcohol to sinapaldehyde and/or sinapyl 

alcohol, respectively (Osakabe et al., 1999; Li et al., 2000; Parvathi et al., 2001).  Many studies 

(Parvathi, 2001; Maury, 1999; Meng, 1998; Inoue et al., 2000; Zubieta et al., 2002) have 

investigated the substrate specificity of COMT proteins. In Medicago (Inoue et a.l, 2000), a 

previously characterized COMT I gene showed higher substrate preference towards 5HFA than 

CA, whereas COMT II, a novel OMT expressed predominantly is young internodes, showed the 
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opposite substrate preference. Moreover, in transgenic Medicago, down regulation of COMT 

resulted in reducing the activity against the non-esterified substrates in the following order: 5-

hydroxyconiferyl acid, 5HFA and caffeoyl alcohol, caffeoyl aldehyde, caffeic acid, and 5-

hydroxyconiferaldehyde, suggesting that COMT is unlikely to methylate caffeic acid and 

providing evidence of an alternate pathway to S lignin biosynthesis (Parvathi et al., 2001; Guo, 

2001). This can be due to the fact that Medicago COMT protein has an unusually large catalytic 

site, accommodating a broad range of substrates  (Zubieta et al., 2002).  

Functional analyses of COMT genes showed that mutation of COMT genes can affect the 

monolignol type and the content of lignin as well as plant phenotypes (Tsai et al., 1995; Lapierre 

et al., 1999; Jouanin et al., 2000). Down-regulation of COMT genes in a Populus hybrid 

(Populus tremula x Populus alba) resulted in a nearly complete suppression of COMT activity 

and a 17% decrease in lignin composition compared to control plants (Jouanin et al., 2000). 

Similar results were obtained by down-regulating COMT genes in Medicago (Guo et al., 2001) 

and maize (Piquemal et al., 2002) where the lignin amount was decreased by 30%. In other 

studies (Van Doorsselaere et al., 1995a; Lapierre et al., 1999), down-regulation of COMT genes 

led to a change in the G/S lignin ratio. Moreover, down-expression of COMT genes using an 

antisense strategy in tobacco (Atanassova et al., 1995), maize (Piquemal et al., 2002), Medicago 

(Guo et al., 2001; Weeks et al., 2008), and Populus (Jouanin et al., 2000) showed decreased or 

near loss of S lignin units, accompanied by either a decrease or increase in 5-hydroxy-G units. A 

recent study on expression profiling of hundreds of genes in the COMT natural mutant bm3 and 

in transgenic plants expressing a COMT antisense construct (AS225) (Guillaumie et al., 2008) 

showed a disturbance in cell wall assembly. In sorghum, the bmr-12 mutant showed a 22% 
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decrease in the amount of lignin at the whole plant level (Vogler et al., 2009). The bmr-12 

mutant also presented features of down-regulated COMT genes such as a decrease in the lignin 

content, decrease of the S/G lignin ratio, and the occurrence of unusual 5-OH guaiacyl units 

(Akin et al., 1986 ; Pillonel et al., 1992; Halpin et al., 1994 ; Lam et al., 1996; Hatfield et al., 

1999; Bout and Vermerris, 2003).  

COMT genes were reported as being involved in plant defense against various biotic and 

abiotic stresses (Toquin et al., 2003; Lee et al., 1997). Monolignol biosynthesis is a crucial 

process for cell wall apposition, one of the first lines of plant defense against invading fungi. For 

instance, a study showed that a COMT gene (TmCAOMT) is involved in wheat plant defense 

against powdery mildew invasion (Bhuiyan et al., 2008). The silencing of this gene was very 

effective in compromising the penetration resistance of both host and non-host pathogens 

(Blumeria graminis f. sp. Tritici and B. gramini f. sp. Hordei, respectively) (Bhuiyan et al., 2008). 

In Arabidopsis, treatment of plants with green leafy volatiles or isoprenoids such as (E)-2-

gexenal and (Z)-3-hexenal treatment, which induce several resistance genes including COMT, 

resulted in slower rate of disease development when inoculated with Botrytis cinerea (Kishimoto 

et al., 2005). In tobacco, down-regulation of COMTI (real COMT) and CCoAOMT resulted in 

plants with large necrotic lesions following tobacco mosaic virus (TMV) infection (Maury et al., 

1999; Hoffmann et al., 2000). The expression of a reporter gene (GUS) that was under the 

control of OMT promoters confirmed the reduction of Class II tobacco COMT gene (COMTII) 

in response to biotic and abiotic stresses (Toquin et al., 2003).  

An earlier phylogenetic analysis of plant OMT sequences showed that they clustered 

within a monophyletic group derived from non-plant genes (Ibrahim et al., 1998). This study 
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showed the presence of two groups clustering according to a functional trait that reflects their 

substrate specificity. Other phylogenetic analysis showed a distribution of COMT genes in two 

groups (COMT and COMT-like), of which one included a real COMT gene (Raes et al., 2003). 

The COMT-like group included COMT genes clustering with hydroxycinnamic 

acids/hydroxycinnamoyl CoA ester o-methyltransferase (AEOMT) (Li et al., 1997 ; Li et al., 

1999).  Similarly, other study (Li et al., 2006) showed evidence of two groups of COMT genes. 

While these studies provided some insight into the phylogenetic relationship between OMT 

genes, they all used a limited set of data including mainly monocots and eudicots. 

 In this study we retrieved and annotated COMT sequences from a variety of plants 

covering all land plant lineages including Physcomitrella and Selaginella. We used this set to 

analyze the phylogeny of the COMT genes. In this study we investigated the gene structure, the 

genome organization, and the expression of COMT genes in Populus.  
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Methods  

Plant materials 

Leaves, cortex, and xylem were collected from young hybrid Populus OGY (P. deltoides 

x P. nigra)  trees grown in a culture chamber at 25°C and 18°C in the day and night, respectively. 

The plants were grown at 16h/8h day/night regime and at 60% humidity. Herbivory stress 

treatment using Lymantria dispars (Lymantria dispar) larvae was described previously (Barakat 

et al., 2010). Tissues were harvested and frozen in liquid nitrogen and stored at -80°C until use.  

 

RNA isolation and cDNA synthesis 

Total RNA was isolated using a CTAB method (Chang et al., 1993) with minor 

modifications. The RNA quality and concentration was assessed using an Agilent 2100 

Bioanalyzer (Agilent Technologies). cDNA synthesis was performed as described previously 

(Barakat et al., 2009).  

COMT sequences from model species 

COMT sequences used in phylogenetic analyses include sequences from plants with fully 

sequenced genomes as well as other taxons representing key positions on the angiosperm 

phylogenetic tree. COMT sequences from Arabidopsis, Oryza, and Populus (Appendix A) were 

retrieved from TAIR, TIGR (Craig Venter Center), and Joint Genome Institute (JGI). COMT 

sequences from various other genomes Carica papaya, Vitis vinifera, and Medicago truncatula, 

Sorghum bicolor, Physcomitrella patens, Selaginella moellendorffii were identified by querying 

the genome sequences. COMT sequences from various non model species including 

gymnosperms were retrieved from TIGR Plant Genomics databases, Genbank, and a previous 
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study (Lam et al., 2007). Sequences were carefully inspected and corrected for annotation errors 

before use. Only sequences that present motifs A ((V/I/L)(V/L)(D/K)(V/I)GGXX(G/A)), B 

((V/I/F)(A/P/E)X(A/P/G)DAXXXK(W/Y/F)), and C 

((A/P/G/S)(L/I/V)(A/P/G/S)XX(A/P/G/S)(K/R)(V/I)(E/I)(L/I/V)) described previously (Joshi 

and Chiang, 1998) were considered in this study.  

 

Intron-exon structure and promoter analysis of COMT genes 

 The intron (in)-exon (ex) structure of COMT genes was retrieved from the Joint Genome 

Institute http://www/jgi.doe.gov

 

 web site. For genes having complementary DNA (cDNA) 

sequences available, the structure was checked by aligning genomic and cDNA sequences. 

Promoter analysis was done by querying all COMT genes against TRANSFAC (Wingender et al., 

1996) and PlantCARE (Lescot et al., 2002).  

COMT sequence alignment and phylogenetic analyses 

COMT nucleotide (nt) sequences were translated into protein sequences. The inferred 

protein sequences were then aligned using Muscle with default parameters (Edgar, 2004), and 

manually adjusted. Phylogenetic analyses were performed on the aligned amino acid (aa) 

sequences, as well as on the nt sequences that were aligned to match the aas. The WAG model 

(Whelan and Goldman, 2001), assuming among site rate heterogeneity (WAG+G), was used for 

the aa sequences. Maximum Likelihood (ML) analyses were implemented in PHYML v. 2.4.4 

(Guindon and Gascuel, 2003) using 100 bootstrap replicates to estimate branch support. 
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COMT expression analysis using quantitative real time RT-PCR 

Quantitative real-time reverse transcriptase polymerase chain reactions (RT-PCR) were 

performed in an Applied Biosystems 7500 Fast Real-Time PCR system (Applied Biosystems) 

with default parameters as described previously (Barakat et al., 2009). Primers used in this study 

were designed using Primer Express
®

 software (Applied Biosystems). We used the gene 

encoding the 18S rRNA as an endogenous control to normalize for template quantity. For each 

gene, three biological replicates (three different trees) and three experimental replicates were 

used. Data was evaluated using the 7500 Fast System SDS software procedures (Applied 

Biosystems). Statistical analyses were performed using Statistica 6.0 software (StatSoft Poland 

Inc., Tulsa, OH, USA). 
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Results 

COMT gene family organization 

 Sequence similarity and motifs described previously (Joshi and Chiang, 1998) allowed us 

to annotate 176 OMT genes in several model and non-model plants. Utilizing additional 

selection methods from a previous study (Lam et al., 2007), 66 of the 176 OMT sequences were 

described as COMT genes. 66 (100%) sequences include motif A and B. There are four (6.06%) 

sequences that showed one aa insertion inside motif B. Motif C was found in 66 (100%) of the 

sequences. 4 sequences (6.06%) showed insertions ranging from one to two aa within this motif. 

In model species for which the genome is completely sequenced, 66 COMT genes have been 

identified so far (Appendix A): 13 from Arabidopsis, 1 from Carica, 7 from Medicago, 4 from 

Oryza, 8 from Populus, 6 from Selaginella, 5 from Sorghum, 7 from Vitis, and 2 from 

Physcomitrella. Furthermore, we identified 8 COMT genes from gymnosperms. Three sequences 

(LpeCOMT1, ZelCOMT1, ZmaCOMT1) from (Lam et al., 2007) were included. COMT gene 

names in Appendix A include the name of species (Poptr for Populus trichocarpa for example), 

the protein name (COMT), and a number to indicate members of the family, accession numbers, 

and database sources.  

Analysis of the gene distribution in the Populus, the Arabidopsis, and the Oryza genomes 

showed that most COMT genes are located on duplicated blocks. In Populus, the eight genes 

(100%) were mapped to 6 chromosomes: I, II, XI, XII, XIV, and XV (Fig. 1). All eight of the 

mapped genes (100%) were located on duplicated blocks. Duplicate gene pairs (PoptrCOMT3 - 

PoptrCOMT8; PoptrCOMT3/PoptrCOMT5 – PoptrCOMT2/PoptrCOMT4; PoptrCOMT1 – 

PoptrCOMT6) were still located on conserved positions on homeologous duplicated blocks. Two 
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pairs of Populus COMT genes (PoptrCOMT3- PoptrCOMT5; PoptrCOMT2-PoptrCOMT4) were 

distributed one after the other and seem to have been generated through tandem duplication.  

A similar situation was found for Arabidopsis where all COMT genes (100%) were either 

duplicated in tandem or located on large duplicated blocks. Three sets of Arabidopsis COMT 

genes (AthCOMT1, AthCOMT2, AthCOMT3, AthCOMT4) (AthCOMT9, AthCOMT10) and 

(AthCOMT12 and AthCOMT13) were distributed in tandem on chromosome I, chromosome II, 

and chromosome V respectively. In Oryza, none of the four identified COMT genes were located 

on duplicated blocks.  

 

Intron-exon structure of COMT genes 

 Gene structure analysis of Populus COMT genes (Fig. 2) showed the existence of two 

patterns of intron-exon structure: Pattern 1 (4ex/3in) and pattern 2 (4ex/3in). While genes within 

these patterns showed similar size of exons, introns showed significant variations in length that 

could be associated with transposable element insertions. Pattern 2 was found in Populus, 

Arabidopsis, and rice. Pattern 1 exists only in Populus and seems to be derived from Pattern 2.  

One homeologous duplicate pair (PoptrCOMT7 – PoptrCOMT8) showed similar intron-exon 

structures (Fig. 2). Another pair (PoptrCOMT1 – PoptrCOMT6PoptrCOMT6) showed divergent 

structures. The third pair (PoptrCOMT3/PoptrCOMT5 – PoptrCOMT2/PoptrCOMT4) shared the 

same structure except PoptrCOMT4. One tandem duplicated gene pair (PoptrCOMT3- 

PoptrCOMT5) also showed similar intron-exon structures, while the other pair (PoptrCOMT2-

PoptrCOMT4) showed divergent intron-exon structures. 

 



 

１１ 

 

Evolution of COMT genes 

Maximum Likelihood (ML) phylogenetic tree using protein sequences (Fig. 6) showed 

that COMT genes were distributed in two major clades (Classes). These clades are supported by 

high bootstrap value (100). Class I includes two sub-clades. The first group includes eudicot, 

monocot, and gymnosperm sequences, whereas the second group includes eudicot and monocot 

sequences. Class II includes monocot sequences. The first sub-clade of Class I includes the 

previously characterized Populus (PoptrCOMT7 and PoptrCOMT8) and Arabidopsis 

(AthCOMT13) real COMT genes (Raes et al., 2003; Tuskan et al., 2006). The second sub-clade 

includes the previously characterized Arabidopsis COMT-like genes (AthCOMT1, AthCOMT2, 

AthCOMT3, AthCOMT4, AthCOMT5, AthCOMT6, AthCOMT7, AthCOMT8, AthCOMT9, 

AthCOMT10, AthCOMT11, and AthCOMT12). The phylogeny shared evidence of extensive 

duplication events within each species. A pair of Sorghum and Physcomitrella sequences 

represent two OMT sequences used for rooting purpose.  

Expression analysis of Populus COMT genes 

The expression of all eight COMT Populus genes was analyzed using quantitative real-

time RT-PCR. These 8 genes were chosen from different classes (clades) and include both 

duplicates generated either by tandem or segmental duplications to address various evolutionary 

questions. The results showed that all the COMT genes studied are expressed in leaves, bark, and 

xylem (Fig. 3). Based on the expression in the tissues studied, the expression patterns of COMT 

genes were classified into five different groups. Group 1 gene (PoptrCOMT8) was preferably 

expressed in xylem. PoptrCOMT8 is eight times more highly expressed in the xylem than the 
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other tissues. ANOVA statistical analysis showed that the expression differences between tissues 

were statistically significant. Group 2 (PoptrCOMT2 and PoptrCOMT4) includes genes that 

show preferential expression in bark tissue. The expression level of these genes in leaves is four 

to six times higher than the ones in xylem and bark. Group 3 (PoptrCOMT7, PoptrCOMT3, 

PoptrCOMT6, and PoptrCOMT5) did not show any differential expression in any tissue. The 

duplicate genes (PoptrCOMT7 - PoptrCOMT8; PoptrCOMT1 – PoptrCOMT6; 

PoptrCOMT3/PoptrCOMT5 – PoptrCOMT2/PoptrCOMT4) showed divergent profiles. Indeed, 

PoptrCOMT7 is highly expressed in leaves and bark, while PoptrCOMT8 is highly expressed in 

xylem. PoptrCOMT1 showed high expression in bark tissue while PoptrCOMT6 showed no 

differential expression. PoptrCOMT3 and PoptrCOMT5 showed high expression in bark tissue, 

whereas PoptrCOMT2 and PoptrCOMT4 showed no differential expression.  In herbivory 

stressed plants, both the PoptrCOMT7 and PoptrCOMT8 genes showed significant changes in 

their expression. PoptrCOMT7 showed an increase in expression within leaf tissue, whereas 

PoptrCOMT8 showed a decrease in expression within xylem tissue.  



 

１３ 

 

Discussion 

Sequence analyses allowed us to identify 26 OMT genes from Populus, of which eight 

were COMT genes. A relatively low number of genes were identified from Arabidopsis (12), rice 

(4) and other model species. It is also in accordance with previous studies on Apple (Malus × 

domestica) reporting seven COMT genes  (Han et al., 2007). 28 and 30 OMTs have been 

annotated in the Arabidopsis and rice genomes, respectively. The high number of OMT genes in 

Populus is in accordance with the high number of genes identified from Arabidopsis and rice. 

This indicates that the OMT gene family is encoded by a small gene family that was generated 

via various duplication-retention events. Genome organization showed that all of the COMT 

genes were located on duplicated blocks (100%). A similar situation was found in Arabidopsis 

where all COMT genes were located on duplicated blocks. Tandem duplication seems to have 

contributed to the duplication of 2 COMT genes (20%). This is in accordance with data published 

previously (Tuskan et al., 2006) showing that 4839 genes representing 15.6% of Populus genome 

were tandemly duplicated. A similar situation was found for Arabidopsis where 1366 (27%) 

genes were distributed in tandem (Tuskan et al., 2006). Phylogenetic distribution of tandem 

duplicates showed that some tandem duplication events preceded the split of Arabidopsis and 

Populus. For instance, duplicate pair PoptrCOMT7 and PoptrCOMT8 seems to be generated by a 

duplication that may have occurred in the ancestor of Eurosid (Tuskan et al., 2006). This 

duplication mechanism seems to have contributed significantly to the duplication of COMT 

genes in other species such as Apple (Malus × domestica) where five COMT genes duplicated in 

tandem were reported (Han et al., 2007). In contrast, rice presents a lower number of duplicate 

genes; which may be due to a higher evolution rate of the rice genome and the Poaceae.  
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 Phylogenetic distribution showed that COMT genes are distributed in two classes. Class I 

includes all previously described real COMT genes (PoptrCOMT7, PoptrCOMT8, AthCOMT13) 

(Raes et al., 2003; Tuskan et al., 2006). Class II contains monocot, eudicot, and gymnosperm 

sequences. This indicates that these Classes were generated by duplication in the ancestor of land 

plants. In Class I, two sub-clades exist. The first sub-clade includes monocot, eudicot, and 

gymnosperm sequences and all three previously described real COMT genes (PoptrCOMT7, 

PoptrCOMT8, AthCOMT13) (Raes et al., 2003; Tuskan et al., 2006). The second sub-clade 

includes eudicot and monocot sequences, including the previously described Arabidopsis 

COMT-like genes (Raes et al., 2003). They could correspond to derived sequences that have 

evolved after the split of eudicots and monocots. The disproportionate distribution of 

Arabidopsis COMT genes is supported by previous study (Raes et al., 2003). Unfortunately, none 

of the Arabidopsis COMT-like genes have been characterized in terms of biochemical 

conversions and expression profiles (Costa et al., 2003). The phylogenetic tree shows evidence 

of extensive duplication within each plant species. Moreover, there is evidence of several 

species-specific duplications revealed by comparing the genome organization of COMT in 

Arabidopsis, rice, Medicago, Vitis etc. It also showed that several duplication events were genus 

or clade-specific. For instance, there is a duplication event that seems to be shared by all species 

from Eurosid I.  

Intron-exon structure showed that COMT genes present two major patterns (Pattern 1 and 

Pattern 2). Pattern 2 was found in Arabidopsis, Populus and rice, suggesting it could be ancestral. 

Indeed, Pattern 2 is also found in a Physcomitrella sequence (PpaCOMT1). Another 

Physcomitrella sequence (PpaCOMT2) shows a 3ex/2in where the length of exon 1 almost 
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equals the sum of exon 1 and 2 of Pattern 2 (Fig. 2). These results support the possibility of 

Pattern 2 being the ancestral intron-exon pattern of COMT genes.  Phylogenetic distribution 

shows that genes with Pattern 2 and Pattern 3 belong to Class II while genes with the remaining 

patterns belong to Class I. Pattern 1 was found only in Populus and seems to be a derived pattern 

that evolved recently. A similar situation was found in Arabidopsis and rice where several 

recently derived patterns were found.  

Expression analyses showed that COMT genes present different expression patterns 

among Populus tissues with only one gene (PoptrCOMT8) preferentially expressed in xylem. 

PoptrCOMT8 corresponds to one of the real COMT genes reported previously (Tuskan et al., 

2006). These results suggest that COMT genes have evolved different expression profiles in 

different tissues and under different physiological conditions. This is in accordance with 

previous studies on COMT genes from P. kitakamiensis (Hayakawa et al., 1996 ) and apple (Han 

et al., 2007) where differences in gene expression were observed in the different plant tissues 

studied. While real COMT genes are involved in monolignol biosynthesis, the other genes may 

be involved in defense against biotic and abiotic stresses. Indeed, OMT genes (phenol OMT and 

flavonoid OMTs) retrieved from a previous study (Lam et al., 2007) were distributed exclusively 

in Class I along with several OMT genes that were differentially expressed in bark and leaf 

tissues. The large number of genes differentially expressed in leaves and bark is an indication 

that most of the COMT-like genes may be involved in stress defense. This is in agreement with 

previous studies that suggested that COMT-like genes from Class I were involved in plant 

defense (Stintzi et al., 1993; Fritig et al., 1998). The differential expression of COMT genes in 

various plant tissues is thought to be mainly due to regulation at the promoter level (Toquin et al., 
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2003). This is in accordance with a previous study suggesting that COMT gene expression is 

regulated at the transcriptional level during development as well as defense under stress 

conditions (Ni et al., 1996 ). 
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Figure 1. Distribution of COMT genes on Populus chromosomes. All COMT genes not shown in 

the figure are located on scaffolds that were not mapped yet on Populus chromosomes. The 

names of the chromosomes and their sizes (Mb) are indicated below each chromosome. 

Segmental duplicated homeologous blocks are indicated with the same color. The position of 

genes is indicated with an arrowhead. 
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Figure 2. Intron-exon structures of COMT genes from Populus. Exons and introns are 

represented by boxes and lines, respectively. Numbers above boxes indicate the exon size. The 

intron sizes are not to scale. The names of COMT genes and intron-exon structure pattern are 

indicated at the left and right sides respectively. Two Physcomitrella intron-exon structures 

(PpaCOMT1 and PpaCOMT2) indicate the ancestral structure (Pattern 2).  
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Figure 3. Quantitative expression of Populus COMT genes in non-stressed and stressed Populus. 

The name of each gene is indicated at the top of each histogram. Tissues studied are shown at the 

bottom of the diagrams. Means designated by the same letter do not differ significantly 

according to Tukey's HSD test; P < 0.05. 
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Figure 4. Maximum Likelihood bootstrap tree phylogeny based on amino acid sequences of 

COMT genes in various land plants. Numbers above branches refer to NJ bootstrap values. 
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Appendix A. List of plant genes used in COMT gene phylogenetic analyses. The gene names 

used in this study, the accession number, species, the database source, and names of previously 

published genes are indicated. 
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