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ABSTRACT 
 

Understanding how blood vessels of the brain remodel in response to metabolic 

changes is very important to understanding the progression of various disease states such 

as stroke and Alzheimer’s disease. One area within vascular research that is not well 

understood is how the blood vessels of the brain, particularly the arteriolar networks, are 

organized. In this thesis, blood vessel diameters and lengths were measured after being 

filled with FITC-Albumin. The measurements were then used to test the validity of a 

newly derived mathematical relation that is based on Murray’s Law. 
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Chapter 1  
 

Introduction 

Stroke and Alzheimer’s disease have been found to be the fourth and sixth leading 

causes of death in the U.S [11]. Stroke is, by definition, a disease in which brain tissue is 

damaged due to a lack of sufficient blood flow. Though Alzheimer’s disease is not often 

associated with cerebral blood flow, there is increasing evidence that it, too, may result 

from pathologies in blood flow [1] [18]. An understanding of how the vasculature of the 

brain is organized and the interactions between neuronal and cerebrovascular networks is, 

therefore, of great clinical relevance. 

The organization of cerebral vasculature has been studied fairly well, but is not 

well understood. Previous work has identified some of the physical changes that occur in 

the mouse cerebral vasculature during development [23]. Rodent models have been used 

to see the changes in the vasculature that occur during sensory deprivation [10] as well as 

during recovery after induced stroke [24]. Organization of the microvasculature in the 

marmoset visual cortex has also been studied to an extent [5]. Some of the organization 

of the cerebral vasculature in human brains has also been identified using cadaveric 

brains [3] [4]. 

Several hypotheses have been put forth as to how vasculature in general should be 

organized and how it should be analyzed. Blood vessels have been analyzed using fractal 

theory [3] [6] [13] and also as resistor circuits [21]. The models used to explain vascular 
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organization and vessel branching include minimization of energy loss [12], uniformity 

of shear stress [8], as well as using a model involving several different stimuli [14] [17]. 

One prominent model used to understand the organization of blood vessels is 

known as Murray’s law. Murray’s law is oftentimes written as: 

  
     

     
       

where rp is the radius of a vessel before a bifurcation (the parent vessel) and r1 and r2 are 

the radii of the vessels after a bifurcation (the daughter vessels). The application of 

Murray’s law to various vascular systems has had mixed results [4] [8] [12] [22]. 

Murray’s law has also been used to design engineered fluid networks, such as in 

microfluidics applications [25]. 

In this thesis, it is shown that Murray’s law was actually derived incorrectly. A 

new formula was derived using the same energy minimization arguments as Murray. The 

validity of the new formula was tested in the mouse cerebral arteriolar network.   
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Chapter 2  
 

Literature Review 

Murray’s law was developed using the argument that over the course of evolution, 

the circulatory system found in humans, among other animals, would be organized such 

that the energy losses incurred from flow and from the maintenance of the vasculature 

would be minimized. Murray assumed that flow in blood vessels would be Poisseuille in 

nature and thought that the metabolic cost of maintaining a blood vessel would be 

constant per unit volume [12]. Murray’s original derivation is reproduced below. 

      
   

   
             

  

  
      

    

   
               

    
      

   
      

       
   

   
      

In the above set of equations, E is energy dissipated
1
, f is blood flow, η represents 

blood viscosity, r and l are the dimensions of the blood vessel, and b is a constant that 

represents the metabolic cost of maintaining the blood vessel. Equation 5 shows that flow 

should be proportional to the cube of the radius. This result, taken with conservation of 

flow at a bifurcation, gives the common form of Murray’s law shown in Equation 1. 

                                                   
1 A dimensional analysis would show that this would in fact represent the power dissipated; this is 

irrelevant however, if one considers a system that is time-invariant 
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Murray never showed that the derived curve was in fact a minimum, but instead left it as 

an optimum and assumed that it would be a minimum. Sherman used the second 

derivative test to show that not only is the curve a minimum, but that it must be a global 

minimum [20]. This is actually impossible: if one considers the metabolic cost per unit 

volume of the blood vessel to be independent of the flow, then the minimum energy 

dissipated would occur when there is zero flow. In this case, only the energy involved in 

maintaining the blood vessel would contribute to the energy cost. 

If one pays attention to Equations 2, 3 and 5, one can pinpoint where Murray 

made the mistake in the derivation. Going from Equation 2 to Equation 3, it is evident 

that Murray treated flow as if it is independent of both radius and length; otherwise, there 

would be an additional term in Equation 3 due to a combination of product and chain 

rules of differentiation that would involve the derivative of flow with respect to radius. 

However, in Equation 5, it is shown that flow is in fact dependent on radius; this is a 

contradiction of the assumption made in going from Equation 2 to Equation 3. Both 

Murray and Sherman failed to recognize this contradiction and therefore concluded with 

the erroneous result that flow must be proportional to the cube of the radius of the blood 

vessel in order for the energy cost of blood flow to be minimized. A new version of 

Murray’s law is derived in the Methods section of this thesis, using the same arguments 

as Murray’s original formulation. 

Zhou et al. attempted to generalize Murray’s law by combining the energy 

minimization principle with the concept of stem and crown analysis [26]. In a stem and 

crown analysis of a vascular network, one must consider the stem to be the vessel 

segment between two bifurcations and the crown as the full vascular network 
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downstream. Zhou et al. looked at the flow resistance of the blood vessels and used a 

stem and crown model to find a relation that minimized a non-dimensionalized version of 

Murray’s cost function with respect to normalized arterial volume. This type of analysis 

resulted in a relationship between the normalized stem diameter, the normalized crown 

length, and the normalized flow through the stem. In essence, Zhou et al. tried to come up 

with a scaling law while considering the full vascular network, whereas Murray’s law 

was derived with consideration of only the individual blood vessel. Zhou et al. tested 

their scaling law on anatomical data from the pig coronary artery [26]. They found that 

their law is in good agreement with what is found in the arterial networks of the pig heart, 

however, their version of Murray’s law was not found to explain the organization of the 

human cerebral vascular network very well [4]. Their model was able to account for 

vessel length, which is something that is not considered in Murray’s law. 

Murray’s law itself was tested in several types of models. One of these models is 

the pig coronary vasculature used by Kassab and Fung in [8]. In this paper, Kassab and 

Fung measured vessel diameters at bifurcations using branches of the coronary artery in 

pigs who were either normal, or had right ventricular hypertrophy. Right ventricular 

hypertrophy was induced by artificial stenosis of the pulmonary artery. Among other 

measures, Kassab and Fung tested Murray’s law by calculating the ratio of sum of the 

cubes of diameters daughter vessels to the cube of the diameter of the parent vessel at 

several bifurcations (see Equation 6 below). 
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 The results of this analysis can be seen in Figure 1, which is adapted from [7]. 

The left two histograms show the distribution of the ratio of vessels from the left 

ventricle and right ventricle of normal pigs, whereas the rightmost histogram shows the 

distribution of the ratio of vessels from the right ventricle of pigs with right ventricular 

hypertrophy. It is evident from these histograms that Murray’s law has some empirical 

support in its application to biological systems, but there is a wide distribution of the 

ratio, which implies that there is a significant deviation from Murray’s law in vivo. 

 

Figure 1: Validity of Murray’s law in the coronary circulation of normal and diseased pigs [7] 

In addition to identifying the validity of Murray’s law in the coronary circulation 

of normal and diseased pig hearts, Kassab and Fung showed that if Murray’s law is 

followed in vivo, then blood shear stress must be uniform. 

In contrast to Murray’s law, and the uniform shear hypothesis, Pries and Secomb 

et al. argue that structural organization of the vasculature as a whole cannot result from a 

simple minimization of energy losses. According to Pries and Secomb, if vascular 

networks adapted to changes based on Murray’s law, then vascular networks would 

degenerate into a single arteriovenous shunt. Moreover, they argue that, although uniform 

shear is something seen among arteries, the large difference in shear stress between 

arteries and veins invalidates the uniform shear hypothesis [15]. Pries and Secomb state 

that the organization, development and adaptation of vascular networks is dependent on 
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several different factors, including wall shear stress, transmural pressure, and most of all, 

the metabolic demand that is met by tissue perfusion [14] [16] [17]. A schematic 

representation of Pries and Secomb’s hypothesis, shown below in Figure 2, was taken 

from [16]. 

 

Figure 2: (A) shows the traditional approach to how vasculature is supposed to be modified, 

whereas (B) shows Pries and Secomb’s proposed model [16] 

According to Figure 2B, Pries and Secomb argue that blood flow, transmural 

pressure and metabolic demand all contribute in an interdependent way to regulate the 

structural organization of the vasculature, namely by regulating blood vessel diameter 

and blood vessel wall thickness. 

To support their theory, Pries and Secomb imaged and measured the dimensions 

of the vasculature of the rat mesentery. They also measured various parameters relevant 

to rheology, including blood velocity and hematocrit using optical techniques. They then 
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simulated the adaptation of the various mesenteric networks using their model and found 

that their simulation matches in vivo measurements quite well [14] [16] [17]. One 

interesting result that Pries and Secomb found in their simulations is shown in Figure 3 

and was taken from [17]. 

 

Figure 3: The horizontal axis shows how sensitive vessel diameters are in response to metabolic 

stimuli, and the vertical axes are for flow weighted path length and total energy consumption [17] 

From Figure 3, it is shown that as the vascular networks being simulated become 

more sensitive metabolic stimuli, the total length of the network through which there is 

flow increases. The arrow refers to a threshold in the sensitivity of metabolic stimuli, 

below which the simulation shows an oxygen debt developing in the surrounding tissue. 

Accompanying the increase in path length is an increase in energy consumption. Pries 

and Secomb’s explanation for this trend is that when blood vessels are not very sensitive 

to changes in diameter because of metabolic stimuli, then Murray’s law is observed the 

networks show arteriovenous shunting, which leads to very small total path lengths. 
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However, when vessels become more sensitive to changes in metabolic stimuli, more 

vessels are recruited to reduce the oxygen deficit of the surrounding tissue, this leads to 

an increase in the length of the network through which flow is observed and results in a 

subsequent increase in the energy dissipated due friction. This implicitly shows that the 

total network path length, and therefore the length of the individual blood vessel, is an 

important factor in determining energy loss due to friction, but is not considered in 

Murray’s law. To the best of the author’s knowledge, Pries and Secomb’s model has not 

been tested in cerebral vasculature. 

Despite the problems with Murray’s law, efforts have still been made to test its 

validity in cortical circulation. For example, Wang et al. attempted to see how the cortical 

vasculature changes with respect to Murray’s law as mice age. To do this, mice of several 

different ages were injected with several types of fluorescent markers and had their 

cerebral vasculature imaged through a craniotomy [23]. The diameters of blood vessels at 

bifurcations were then measured and the ratio described in Equation 6 (above) was 

calculated for each bifurcation. A summary of their findings, taken from [23], is shown in 

Table 1 below. 
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Table 1: The distribution of the Murray’s law ratio shown in Equation 2, for mice of various ages 
[23] 

From Table 1, it can be seen that the calculated ratio in Equation 6 is on average 

approximately 1 for the mice at various ages. This implies that there is good agreement 

with Murray’s law. However, the distribution of the ratio for each age is very broad, 

which shows that Murray’s law may not be as valid. In addition to calculating the ratio in 

Equation 6, Wang et al. also calculated the exponent at which the ratio in Equation 6 

becomes 1. That is, they found the exponent k that made Equation 7 (see below) hold 

true. They found that in adults, the exponent is close to 2.7. The problem with the latter 

analysis is that it was only performed on 28 bifurcations [23]. 

  
    

 

  
            

Cassot et al. attempted to identify scaling laws of the cerebral vasculature in 

humans in [4]. India ink was injected into a cadaveric brain and images were acquired 

using confocal laser microscopy. Then, stem and crown analysis was used along with 
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computer modeling to calculate parameters such as flow and resistance in various arterial 

and venous networks [3] [4]. Allometric relationships were then identified among 

normalized crown length, normalized volume, normalized flow and normalized 

resistance. In addition, Cassot et al. tested the validity of Murray’s law by using 

Equation 7, similar to Wang et al.  

The results of this latter analysis are shown in Figure 4, below [4]. 

 

 Figure 4: The distribution of the Murray’s law exponent according to Cassot et al. [4] 

It is evident from Figure 4 that the Murray’s law exponent has a very wide 

distribution in the human cerebral vasculature. Cassot et al. report a mean exponent of 

approximately 6, a median exponent of approximately 3.5 and a standard deviation of 

approximately 23. Shrinkage effects were accounted for by assuming uniform shrinkage, 

which is claimed to not have a significant effect on the calculated exponents [4]. 
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Chapter 3  
 

Methods 

Theoretical Methods 

A new set of equations to describe the organization of blood vessels is described 

below. First, consider the flow in a blood vessel to be Poiseuille and assume that energy 

required in maintaining the blood and vessel as being constant per unit volume, as was 

done by Murray in his original derivation [12]. The total energy lost during normal 

functioning of the blood vessel would then be: 

      
   

   
              

In Equation 8, E is the energy lost, f is considered to be the flow through the 

blood vessel, η is the blood viscosity, r and l are the dimensions of the blood vessel 

(assumed to be cylindrical), and b is the average metabolic requirements per unit volume 

of the blood and vasculature. 

Now, take the gradient of Equation 8 and set the gradient equal to zero: 

            

The gradient of a scalar function is a vector function, where each of the components of 

the vector is the derivative of the scalar function with respect to the direction of the 

component. It is important to note that when taking the gradient, the flow is treated as if it 

is dependent on both radius and length. In this case, the gradient will only have two 

components, a radial component and a longitudinal component, since it is assumed that 

the energy dissipated is radially symmetric. The radial component of the gradient 
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(Equation 10) and the longitudinal component of the gradient (Equation 11) are shown 

below; note that both components are uniformly zero, the metabolic cost terms have 

simply been moved to the right hand side. 

   
  

  
 
   

   
      

   

   
               

   
  

  
 
   

   
     

  

   
                 

 

Observe that Equations 10 and 11 can be equated if Equation 10 is multiplied by r 

and Equation 11 is multiplied by 2l. After equating the two equations and simplifying 

both sides, one obtains the following expression: 

  

  
    

  

  
               

Now, let flow have a power relationship in radius and length, such that: 

                

where c is an arbitrary constant and n and m are some unknown exponents. If Equation 

13 was plugged into Equation 12, one would obtain the following: 

                                        

Equation 14 then simplifies to: 

                

This analysis implies that the flow relation given in Equation 13 would optimize, 

though not necessarily minimize, the energy cost of blood flow if the exponents in the 

Equation 13 are given by Equation 15. Additionally, Equation 15 implies that if the flow 

in vivo occurs as described, then the length of a blood vessel segment should scale with 
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the square of the radius of the blood vessel. In order to prove that this flow relation would 

indeed minimize the energy cost, one would have to check to make sure that the Hessian 

matrix of the energy cost is positive definite for the given flow relation. A representation 

of what the Hessian matrix of the energy cost function looks like is shown below: 

      

 
 
 
 
   

   
   

    
   

    

   

    
 
 
 

        

To prove that the Hessian matrix given in Equation 16 is positive definite when 

evaluated at the given flow relation, one would need to ensure that the eigenvalues of the 

Hessian matrix are all positive when the flow relation is substituted into the matrix. 

Though they are not shown here, the eigenvalues that were evaluated are repeated, have 

many terms, and can be positive depending on the values of radius, length, blood 

viscosity and metabolic cost per unit volume chosen. Therefore, the flow relation could 

be a minimum depending on the parameters of the specific blood vessel.  

Experimental Methods 

All animals were housed and cared for using guidelines set forth by the Penn State 

IACUC. Cerebral vasculature was imaged using methods described previously [2] [22]. 

Mice were anesthetized using isoflurane (5% for induction, 1-2% during procedure). The 

mice were then transcardially perfused using 0.9% saline with 10 units/ml heparin, 

followed by 4% paraformaldehyde in 0.1M phosphate buffer. Then, the blood vessels 

were filled using 1% FITC-Albumin (Sigma, A9773) in phosphate-buffered saline with 
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Caudal 

1% gelatin. Brains were extracted, and the cortex was flattened between two microscope 

slides. The brains were extracted within 24 hours of the transcardial perfusions to 

minimize the shrinkage due to the paraformaldehyde. The cortices were then imaged in a 

Zeiss Discovery V8 Surgical Scope with a fluorescent lamp attachment using a Canon 

Eos Rebel XS digital SLR camera. The images were stitched using 

Microsoft Image Composite Editor. The background noise in the image composites was 

subtracted using the Subtract Background plugin in FIJI. The lengths and diameters of the 

blood vessel segments were measured using FIJI. An example of a composite is shown in 

Figure 5: 

 

Figure 5: A composite image of an extracted and flattened brain 

 

Dorsal 

Ventral 

Rostral 
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The length of a blood vessel segment was measured as the distance between two 

successive bifurcations. Diameters of blood vessel segments were measured by 

measuring the full-width at the half-max (FWHM) of linear profile perpendicular to the 

blood vessel segment (see Figure 6).  

(A)  
 

(B)  

Figure 6: Part (A) shows an example how the line for a line profile was taken; part (B) shows 

how the full-width at the half maximum (FWHM) of the line profile was measured 

Three measurements of the diameter were made: one at the beginning of the 

vessel segment, one at the middle of the vessel segment and one at the end of the vessel 

segment. The diameter of the vessel segment was then measured as the average of the 

three independent measurements. This was done to account for fluctuations in the vessel 
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diameter along the length of the blood vessel segment. If a daughter vessel was measured 

to be bigger than the parent vessel in terms of both diameter and length, then that 

bifurcation was not included in the analysis. 

The measurements of the blood vessel diameter and length were then ported to 

MATLAB, where an energy landscape was generated by varying n and m for each 

bifurcation. The function used to generate the energy landscape is described in Equation 

17 below. As one can see, Equation 17 is a modification of both Equations 6 and 7: the 

values of m and n for which f is close to 0 are the exponents at which flow continuity is 

best satisfied for the parent vessel and the two daughter vessels. 

            
  

   
     

   
 

     
   

 

         

The energy landscapes were used to find all pairs of n and m that makes Equation 

17 less than or equal to 0.01; this is similar to finding the values of k that make the ratio 

in Equation 7 within 10% of the ideal value of 1. 
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Chapter 4  
 

Results 

The data for this thesis came from 53 arteriolar bifurcations that were, in total, 

composed of 99 blood vessels. When the traditional form of Murray’s Law is used, the 

ratio given in Equation 6 has a mean of approximately 1.13 and standard deviation of 

approximately 0.44. The distribution of the Murray’s Law ratio is shown in Figure 7. 

This distribution is somewhat similar to the one found by Wang et al. in [23] (p = 0.018, 

Welch’s t-test). 

 

Figure 7: The distribution of the Murray’s Law ratio for 53 bifurcations 
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Figure 8: The distribution of bifurcation exponents for 53 bifurcations 

When the bifurcations are analyzed using Equation 7, the mean exponent that makes the 

ratio close to 1 is approximately 10.84. The median exponent, however, is 2.52. It should 

be noted that though the median ratio value is approximately 1, the distribution of the 

ratio with the new exponent goes between 1 and 2. The distribution of the exponents is 

shown in Figure 8. As one can see, this is very similar to the distribution shown by 

Cassot et al. in [4] (p = 0.378, Welch’s t-test). 
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(A)  
 

(B)  

Figure 9: The values of the energy landscapes within 10% of the ideal ratio; part (B) shows the 
theoretical curve along with the most represented points in part (A) 

Figure 9A shows the distribution of points that are within 10% of the ideal ratio of 

1 over all measured bifurcations. The regions of Figure 9A that are redder are the regions 
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where the energy landscapes overlap the most. This can be represented mathematically 

using Equation 18, where i represents the ith bifurcation. Figure 9B shows the theoretical 

curve, given in Equation 15, along with the set of points in Figure 9A that shared by 

between 17 and 22 bifurcations. That is to say, the set of points shown has the maximum 

overlap and 75% of the maximum overlap (see Equation 19). A principal component 

analysis on the data in Figure 9B reveals that the first principal component, which 

accounts for approximately 80% of the variance, has a slope of 2.38. 

                              

  

   

        

                                                       

 

Figure 10: The length of an arteriole vs. the diameter of the arteriole 

 Figure 10 shows a plot of the length of a blood vessel against the diameter of the 

blood vessel. This data comes from the lengths and diameters of the same blood vessels 
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as the bifurcation data. There appears to be somewhat of a positive correlation between 

the length of the vessel and the diameter of the vessel, however this does not appear to be 

a square relationship as predicted by Equation 15. The formula for the line of best fit, 

assuming a power law relationship, is actually: 
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Chapter 5  
 

Discussion 

From the results, it can be seen that there is some evidence for the validity of the 

newly derived formula, however this evidence is mixed. The principal component 

analysis over the sum of the energy landscapes reveals a significant directional 

dependence of the exponents in length and radius that matches what is predicted in the 

model. However, the correlation between the length of the vessel and the diameter of the 

vessel does not appear to be square as is predicted. One reason for the lack of evidence in 

the new formula could be propagation of measurement error. However, measurement 

error notwithstanding, there are several theoretical reasons why the modified Murray’s 

Law fails to fully describe the organization of vasculature. 

First, it is assumed in the derivation that the viscosity of blood is identical in all 

vessels. However, it has been known for a while that blood viscosity has a non-linear 

dependence on the radius of a blood vessel. This non-linear dependence, known as the 

Fahraeus-Lindqvist effect, was first derived in vitro. However a modified version was 

developed and tested by Pries and Secomb to account for in vivo differences [15]. 

Another reason why the modified formula fails to fully explain the variance in the 

layout of cerebral vasculature is the failing of the assumption that flow in blood vessels is 

Poiseuille flow. It has been recently shown that the velocity profile of flow in mouse 

cerebral arterioles is not parabolic, as is characteristic of Poiseuille flow, but instead 

follows a cubic relationship [19]. 
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Finally, the modified form of Murray’s Law is inadequate because it fails to take 

into consideration the metabolic requirements of the tissue being supplied. If the 

vasculature were organized such that the energy lost is minimized, flow would simply be 

maintained at a level that could be insufficient for the surrounding tissue to extract 

oxygen and other important nutrients. This would eventually lead to hypoxia and tissue 

death. 

An additional consideration for cerebral vasculature in particular could be the 

requirement of sufficient flow for adequate heat transfer. It is known that brain 

temperature increases during activity [7] [9]. It is also well established that cerebral blood 

flow increases during activity, and that this increase in blood flow exceeds any increase 

in metabolic demand [1]. Therefore, regulation of brain temperature could also be a very 

important function of the cerebral vasculature that would need to be accounted for in new 

formulas. 



25 

Chapter 6  
 

Conclusion 

In this thesis, a new mathematical formula was derived to explain the structural 

organization of blood vessels. The formula was derived in a manner similar to Murray’s 

Law, and is in fact, a generalization of Murray’s Law. The formula was then tested in 

mouse cerebral arteriolar vasculature and the results were mixed. Several propositions 

were then put forth to explain the inadequacy of the newly derived formula.
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