

THE PENNSYLVANIA STATE UNIVERSITY
SCHREYER HONORS COLLEGE

Department of Computer Science and Engineering

EFFECTIVE DOCUMENT-ELEMENT SYNOPSIS GENERATION

BRENDAN HARNETT
Spring 2010

A thesis
submitted in partial fulfillment

of the requirements
for a baccalaureate degree

in Computer Science
with honors in Computer Science

Reviewed and approved* by the following:

Prasenjit Mitra
Assistant Professor of IST
Thesis Supervisor

John Hannan
Associate Professor of Computer Science
Honors Advisor

 * Signatures are on file in the Schreyer Honors College.

E�ective Document-Element Synopsis

Generation

Brendan Harnett

April 14, 2010

Abstract

In order to keep abreast of many scientiti�c developments in their

�eld, modern researchers spend signi�cant amounts of time reading those

academic papers which report or summarize the conclusions of experi-

ments similar to their own. To quickly determine the results of these

experiments, researchers heavily rely on document-element entities such

as �gures, tables, and algorithms which are not part of the running text

of a paper itself, but are instead pictorial representations of the results

or conclusions described in the paper. However, such document-elements

are almost always di�cult to interpret or understand without an accom-

panying �synopsis� - a series of sentences selected from the paper itself for

the purpose of describing the document element. In our experiments, we

manually identify ideal synopses for 160 document-elements. We then test

the e�ectiveness of algorithmic methods proposed by Bhatia et al. to au-

tomatically generate synopses by comparing the generated synopses to the

ideal ones [1]. Interestingly, our experiments produced results very similar

to those outlined in Bhatia et al., leading us to believe that our �ndings

are fairly consistent for papers in di�erent conferences, regardless of the

subject matter. But allthough synopsis generation for the collection of all

document-elements was consistent, e�ectivness varied when comparing

each document-element type individually with synopses for �gures being

the most complete, and those for algorithms being the least.

i

Acknowledgements

I'd like to thank Sumit Bhatia for providing me with the framework, guidance,
and tools necessary for carrying out my experiments and developing a written
thesis. In addition, I'd like to thank Dr. Prasenjit Mitra for his continued
oversight and support throughout the thesis development process.

ii

Contents

1 Introduction 1

2 Related Work 5

3 Setup 6

4 Description of Features 7
4.1 Content Based Features . 7

4.1.1 Similarity with Caption (CapSYM) 7
4.1.2 Similarity with Reference Sentence(RefSYM) 8
4.1.3 Cue Words . 8

4.2 Context Based Features . 8
4.2.1 IfRefSent (IfRefSent) . 8
4.2.2 Paragraph Location (IsInSamePara) 9
4.2.3 Proximity Feature . 9

5 Classi�cation 10

6 Experiments and Results 11
6.1 Main Set . 11
6.2 Figures Set . 12
6.3 Tables Set . 12
6.4 Algorithms Set . 12

7 Conclusions 13

8 Future Work 14

iii

1 Introduction

While electronic databases of academic research papers continue to grow, im-
plementing methods for e�ciently navigating these databases has become in-
creasingly important. Researchers desire ways to quickly discover the results of
experiments in their �eld, and in particular, the results of experiments similar
to their own which have been performed by others. Almost all academic papers
include more than just plain text, and usually contain visual aids supplement-
ing or summarizing data in the paper. These visual-aids, also referred to in
this paper as �document-elements�, tend to be broken down into the categories
of �gure, table, and algorithm. Figures most often depict graphs, while tables,
unsurprisingly, present information in a tabular format, and algorithms describe
pseudo-code. For our study we collected papers from a variety of conferences
to compute statistics on the number of document elements appearing in each
conference. These statistics are shown in Table 1.

1

Conference No. of Papers Figures Tables Algorithms
Total Avg Total Avg Total Avg

CIKM05 159 492 3.09 265 1.67 31 0.195
CIKM06 137 538 3.92 262 1.91 31 0.23
CIKM07 132 558 4.23 384 2.91 22 0.17
CIKM08 267 1048 3.93 634 2.37 88 0.22
SIGIR05 138 338 2.45 330 2.39 9 0.07
SIGIR06 152 373 2.45 335 2.2 4 0.03
SIGIR07 221 412 1.86 425 1.92 16 0.07
SIGIR08 207 439 2.12 460 2.22 25 0.12
SIGIR09 207 428 2.07 373 1.8 22 0.11

SIGMOD05 116 742 6.4 92 0.79 18 0.16
SIGMOD06 99 622 6.28 96 0.97 35 0.35
SIGMOD07 137 979 7.15 185 1.35 70 0.51
SIGMOD08 132 1123 8.51 180 1.36 92 0.7
SIGMOD09 124 923 7.44 141 1.14 92 0.74
STOC05 85 118 1.39 7 0.08 11 0.13
STOC06 79 89 1.13 12 0.15 6 0.08
STOC07 78 84 1.08 7 0.09 15 0.19
STOC08 85 83 0.98 4 0.05 30 0.35
STOC09 79 99 1.25 6 0.08 16 0.2
VLDB05 142 1047 7.37 146 1.03 37 0.26
VLDB06 136 1042 7.66 191 1.4 63 0.46
VLDB07 150 1276 8.51 209 1.39 91 0.61
VLDB08 68 1159 17.04 132 1.94 68 1
VLDB09 42 755 17.98 123 2.93 28 0.67
WWW05 81 503 6.21 103 1.27 13 0.16
WWW06 214 714 3.34 255 1.19 18 0.08
WWW07 229 901 3.93 355 1.55 37 0.16
WWW08 234 829 3.54 332 1.42 36 0.15
WWW09 198 811 4.1 385 1.94 38 0.19

Table 1: Document-Element distribution among conferences

As can be seen from the table, the largest portion of document elements
are �gures, the second most are tables, and the least amount of document
elements are algorithms. Since these items can provide important summaries of
results, researchers have a strong interest in being able to search through the
document-elements themselves, selecting a document-element's corresponding
paper only when the document-element has been deemed su�ciently relevant to
the user. However, often the caption associated with a document-element does
not contain enough information to determine the document-element's relevance.
For this reason, it is essential that the sentences within the paper that are
most relevant to a document-element be presented to the user along with the
document-element itself. These sentences, collectively referred to as a synopsis,
have proven historically to be e�ective at describing a document-element to a

2

user who lacks direct knowledge of a paper's content. Consider the graph shown
in �gure 1 (referred to as Figure 9 in the original paper).

Figure 1: Example document element with standard caption from [5] .

We can see that although the caption for the �gure aids our understanding
of the data being described, it still leaves much to be desired. In this instance,
a synopsis generated by our methods greatly increases our understanding of the
graph's message, as shown in Figure 2.

3

Figure 2: Generated synopsis for document-element in Figure 1.

The goal of our work is to propose methods that would automate the process
of selecting ideal sentences for a document-element's synopsis while balancing
the needs for an informative synopsis and one that is not too long for a user to
read.

4

2 Related Work

A wide variety of tools and methods have been proposed for searching and ex-
tracting information from document-elements. For extracting useful information
from Tables, Liu et al. present TableSeer, a search engine designed speci�cally
for tables in digital documents [2]. They utilize a vector-space algorithm called
TableRank to rank returned search results. Additionally, the CiteSeerX digital
library provides functionality for table search1.

A problem with the search engines mentioned is that they do not provide tex-
tual information to help a user determine the relevance of a document-element.
Futrelle has introduced a method for summarizing diagrams using the structure
of the diagram itself, captions, and running text in the document [3]. Huang et
al. use graphical and textual information to interpret the semantics of scienti�c
charts[4].

Where our methods di�er from previous e�orts is in our use of the running
text for actual summarization of a document-element. We believe that given the
high likelihood that each document-element in a document is referred to by at
least part of the running text, presenting appropriate sentences describing the
document-element would greatly increase a user's ability to make a relevance
judgement.

1http://citeseerx.ist.psu.edu/

5

3 Setup

Before a system for generating ideal synopses can be developed, the notion of an
ideal synopsis must be de�ned. From our collection of conference papers stored
in pdf-format we found ideal synopses for 160 di�erent document-elements with
the majority of them appearing in di�erent papers. This was no trivial task,
since it required that countless hours be spent examining sentences in a variety
of conference papers to see which ones would best suit a selected document-
element. We found that relevant sentences in the majority of cases tended
to be clustered together, either appearing around a sentence that referred to a
document-element by name, such as a sentence containing the phrase �Figure 23
shows...�, or appearing in the same paragraph as a reference sentence. Sentences
with equations or symbols that do not translate well to text were generally not
selected since they depended on elements of the paper not immediately relevant
to the document element. Sentences which directly refer to a document-element
are of course relevant by de�nition.

Upon selecting ideal synopses for document-elements, we performed the task
of converting all of our conference papers stored in pdf format to text �les using
the xpdf conversion tool with the raw parameter.2 This was necessary to allow
our scripts to e�ectively parse the papers in order to generate synopses. Unfor-
tunately, it becomes di�cult to read text �les containing complex mathematical
symbols and equations, and for this reason such equations and symbols were usu-
ally removed from the text �les after conversion. We also removed any headings,
sub-headings, document-element captions, and after internal document-element
data remaining after the conversion to text. These types of text contribute no
additional value in understanding the nature of a document-element and would
likely confuse a user if presented to them with other sentences.

Once our pdf-�les were converted, we ran a series of scripts to generate data
for every paper that contained one or more of our 160 document-elements. Each
text �le had an associated sentence �le, caption �le, paragraph �le, and manual
synopsis �le.

� Sentence �les list each sentence of the original text �le on a single line.
By storing the sentences in this format, we can refer to each sentence by
its line number in the sentence �le.

� Caption �les store the full caption for every document-element in a paper.

� Paragraph �les list the sentence numbers of those sentences which ap-
peared in the same paragraph as a reference sentence.

� Manual synopsis �les contain the sentence numbers of those sentences
which we had manually deemed to be most relevant to a document-
element.

2http://www.foolabs.com/xpdf/

6

4 Description of Features

Our goal is to score each sentence of a paper based on how relevant that sentence
is to a given document element. We represent a sentence as a feature vector with
each dimension of the vector representing that sentence's score for a particular
feature. We assess the relevance of a sentence by both content and contextual
features outlined in [1], but we describe them again in detail in the following
sections.

4.1 Content Based Features

We �rst devise methods for scoring sentences based on the particular words that
they contain.

4.1.1 Similarity with Caption (CapSYM)

Since the caption often provides vital information necessary for understanding
the content of a document-element, we want to attribute higher scores to those
sentences which contain many of the same words as those in the caption. We do
so by �rst removing all stopwords from the caption and then stem the remaining
words using Porter's algorithm [3]. We use this result to form a query where all
sentences in the document are assigned scores based on their similarity to the
query. We chose a variation of the Okapi BM25 similarity measure for sentence
scoring due to its successful use in a variety of Information-Retrieval tasks [7, 8].
Our method is de�ned as follows:

If q is the generated query then the BM25 score of a sentence s in document
D is computed as:

BM25(q, s) =
∑
t∈q

log
N

sf t
× (k1 + 1) tf ts

k1
(
(1− b)+b×

(
ls
lavg

))
+ tf ts

× (k3 + 1) tf tq

k3 + tf tq


(1)

where:
N is the total number of sentences in the document,
sf t is the sentence frequency, or the number of sentences that contain the

term t,
tf ts is the frequency of term t in sentence s,
tf tq is the frequency of term t in query q,
ls is the length of sentence s,
lavg is the average length of sentences in D
k1, k3, and b are constants set to 2, 2 and .75 respectively.
The BM25 score is the sum of scores for each individul term t of our query

q. The log function term of equation 1 is the Inverse Sentence Frequency and
assigns higher scores to those words which appear in both our query and a
sentence but not in many sentences throughout the document. The second term

7

represents the frequency of a each query term t in a sentence s, normalized by
sentence length and scaled by k1. This term assigns a higher score to those
sentences where a query term occurs more frequently without favoring longer
sentences. We use K1 as a constant to determine how heavily we want to
weigh the frequency of a term in a sentence, ignoring term frequency altogether
if K1 = 0. The third term scales scores for a query term by the number of
times that term appears in a query. The parameter b (0 ≤ b ≤ 1) controls the
extent to which we normalize the length of sentences, where b = 0 indicates no
length noramalization and b = 1 refers to full normalization. Upon computing
similarity scores for all sentences in a document, we assign a feature value of 1
to the top 20 scoring sentences and a feature value of 0 to all others.

4.1.2 Similarity with Reference Sentence(RefSYM)

Reference sentences are often equally as important as captions in describing the
content of a document-element. We therefore assign similarity scores to those
sentences which have similar words to the reference sentences for a document-
element using the same equation given for captions. The top 20 highest scoring
sentence are then assigned a feature score of 1 with all other sentences being
assigned a score of 0.

4.1.3 Cue Words

The cue words feature is a binary feature indicating whether or not a sentence
contains one or more words from a pre-constructed list of �cue� words. It was
implemented under the assumption that certain words appeared more frequently
in relevant sentences. To develop this list, we selected all of the words in 200
di�erent reference sentences as well as all of the words appearing in the two
sentences before and after the occurence of those reference sentences. Of the
words collected, we removed all stop words and selected the 245 most frequently
occurring words to use in our list.

4.2 Context Based Features

The above mentioned features are important, but they only capture the content
similarity of sentences. However, ideal synopses typically contain contextually
important sentences as well. Such sentences are located near reference sen-
tences and can help provide the user with a more coherent understanding of a
document-element's content.

4.2.1 IfRefSent (IfRefSent)

If a sentence makes a direct reference to a document-element in question, we
assign a score of 1 for the IfRefSent feature and 0 otherwise. Reference sentences
tend to be considerably valuable in aiding a user's understanding of a document-
element and they are used as a basis for the other two context-based features
in this section.

8

4.2.2 Paragraph Location (IsInSamePara)

We found that those sentences which appeared in the same paragraph as a refer-
ence sentence had a higher probably of being included in a document-element's
synopsis. Therefore, any sentence that appeared in the same paragraph as a
reference was assigned a feature score of 1 and 0 otherwise. The paragraph �les
mentioned in Section 3 provided a means for knowing which sentences were in
the same paragraph as a reference sentence.

4.2.3 Proximity Feature

A sentence is assigned a proximity feature score of 1 if the sentence is within
10 sentences before or after a reference sentence for a given document-element.
Otherwise, it is assigned a proximity feature score of 0. This feature utilizes the
fact that sentences located next to a reference sentence have a greater likelihood
of being relevant to a document-element.

9

5 Classi�cation

Our experiment uses Support Vector Machines (SVMs) to classify document
sentences. We want to separate all sentences into one of either two classes -
referred to as positive and negative - depending upon whether a given sentence
is relevant to a document-element. SVMs perform classi�cation by learning
a separating hyperplane which divides a set of training examples such that
positive examples, or in our case relevant sentences, are on one side of the
hyperplane, and examples of the other type - non-relevant sentences - appear
on the other side. Due to the fact that a relatively small portion of sentences
in a document are relevant to a document-element, which in turn leads to an
unbalanced distribution of points, we use di�erent penalty parameters than
those used by a standard SVM. Our SVM classi�cation is thus de�ned as a
solution to the following problem:

min
w,b,ε

1

2
wTw + C+

∑
yi=1

ξi + C−
∑
yi=−1

ξi (2)

such that,

yi
(
wTφ (xi) + b

)
≥ 1− ξi (3)

and,

ξi ≥ i = 1, ..., l. (4)

In the above equations, xi refers to our generated feature vectors, w and b are
two quantities which together form the boundaries of the separating hyperplane,
andC+ and C− are the parameters that determine the misclassi�cation penalty.
Due to the fact that the ratio of non-relevant to relevant sentences is greater
than one, we choose C+ and C− such that the ratio of C+ to C−is greater
than 1.

To perform the classi�cation we use the LIBSVM classi�cation library which
allows us to control the C+ to C− ratio [9].

10

6 Experiments and Results

We began our experiment by computing feature vectors. The vectors were
generated for every sentence in a document that contained one of our 160 se-
lected document-elements and were computed based on how they related to our
document-elements according to the features described in Section 4. We real-
ized, however, that 9 of our 160 documents did not have reference sentences and
were therefore incapable of generating appropriate feature vectors. Our experi-
ment was thus conducted with only 151 of the original document-elements.

We ran the libsvm classi�cation tool on four di�erent datasets while varying
the weight parameter w from 1 to 10 in intervals of 0.1. For each weight we
computed the Precision at N for N = {1,2,3,4,5} and R-Precision. Precision at
N refers to how many of the top N sentences returned by the SVM were relevant
to a document-element. R-Precision can be thought of as Precision at R, where
R is the total number of relevant sentences that exist for a document-element.

The �rst set consisted of all the 151 test document-elements. An experiment
with this set would yield valuable insights into the e�ectiveness of our methods
across papers in many more conferences than those tested in Bhatia et al.

Second, we wanted to discover how Precision at N and R-Precision varied
for each document-element type. We divided our major set into 3 component
sets of 52 �gures, 50 tables, and 49 algorithms while repeating our classi�cation
procedure on each set.

6.1 Main Set

For each of the weights used with the SVM, Precision at N and R-Precision
were maximized at w = 6.3 for the set of 151 document-elements. For w values
less than 6.3, the metrics were noticably worse, with initial w values between 1
and 3 failing to achieve R-Precision greater than 50%. For weights larger than
6.3, the precision values do diminish, but only by a few percentage points.

The maximized precision values of our experiment are presented in Table
2 with the results of the Bhatia et al. experiment shown in table 3. As can
be seen, the results shown in each table are remarkably similar. Table 2 shows
a modest increase over Table 3 for P@1, P@2, and R-Precision, while Table 3
shows a slight increase for P@3, P@4 and P@5.

P@1 P@2 P@3 P@4 P@5 R-Precision

0.8600 0.8667 0.8134 0.7650 0.7400 0.7107
Table 2: Precision values for our main data set.

P@1 P@2 P@3 P@4 P@5 R-Precision

0.8286 0.8500 0.8286 0.7929 0.7500 0.7032

Table 3: Precision values given for data set in [1].

11

6.2 Figures Set

Unlike the main set, there was no weight w which we tested that maximized
each precision value. We therefore chose a weight that maximized R-Precision
since knowing the percentage of relevant sentences retrieved is more useful than
the other precision values in identifying the overall quality of our methods. The
results are shown in Table 4. We can see that the �gures set performs noticably
better than the main set in every category, with R-Precision being improved by
almost 11%.

P@1 P@2 P@3 P@4 P@5 R-Precision

0.9038 0.8942 0.8782 0.8365 0.7923 0.8114
Table 4: Precision values for set consisting of 52 �gures.

6.3 Tables Set

We found that the majority of precision values were maximized with weightw =
9.2. As table 5 shows, the results are comparable to the precision values of the
main set, but are worse than the �gures set for every precision value except N
= 1.

P@1 P@2 P@3 P@4 P@5 R-Precision

0.9200 0.8400 0.7933 0.7650 0.7280 0.6725
Table 5: Precision values for set consisting of 50 tables.

6.4 Algorithms Set

After examining the precision values for weights between 1 and 10, we recog-
nized what looked like an upward trend in precision. We therefore computed
the precision values with weights between 10 and 20 using increments of 0.1
to �nd that the R-Precision was maximized at w = 13.4. As is clear from the
data in Table 6, the algorithms set had the worst precision of all the sets tested.
Interestingly, the P@3 and P@4 values were identical.

P@1 P@2 P@3 P@4 P@5 R-Precision

0.7778 0.7000 0.6889 0.6889 0.6756 0.6325
Table 6: Precision values for set consisting of 49 algorithms.

12

7 Conclusions

An important result of our experiments was that the precision values for our
main set of document-elements were very close to those found in [1]. The fact
that the values were so similar even though we used papers from many more
conferences leads us to believe that the e�ectiveness of our methods is less de-
pendent on the subject-matter of the individual conferences. However, we do
understand that our results may not adequately represent the true precision val-
ues of document-elements in papers of the STOC conferences, as those tended
to be di�cult to read due to the multitude of mathematical symbols and equa-
tions. We also realize that for each set the Precision at N = {4,5} might be
lower because a few of our ideal synopses only contained 3 or 4 sentences, and
in such an instance a Precision at 4 or 5 will always result in a precision less
than 1.

There seems to be a possible correlation bewteen the amount that a document-
element type occurs and its relative precision values. Figures occurred the
most frequently in our collection and yielded the best precision while algorithms
ocurred least frequently and yielded the worst. We attribute this di�erence to
two primary factors: the proportion of a paper dedicated to a document-element,
and the proximity with which relevant sentences occurred. Since �gures and ta-
bles occurred more frequently within papers, a smaller portion of the running
text was dedicated to each document-element, and so our system did not have
to attempt to select as many relevant sentences to compute the R-Precision.
Not only were descriptions of algoritms longer, but many of the most relevant
sentences were more widely distributed throughout a paper. On the other hand,
relevant sentences for �gures and tables were almost always close to a reference
sentence, typically appearing in the same paragraph.

Our results also show that the contextual features used to determine a sen-
tence's relevance to a document element are more importan the the content-
based features. Most of the relevant sentences were either reference sentences
or sentences appearing close to or in the same paragraph as a reference sentence.
The cue words feature was probably the least e�ective since, using our our set
of 245 cue words, most sentences in a paper contained one of the cue words. In
the future this can be easily remedied by cutting down the size of the cue words
list. There is of course a trade-o� that comes with modifying the size of a cue
words list. If the list is too long we are more likely to �nd relevant sentences
that have a cue word, but we do so at the cost of �nding more false positives.
If the list is too short, we risk failing to identify relevant sentences that do not
have one of our cue words.

13

8 Future Work

Although our paper measured the precision values of di�erent datasets, we never
generated a complete synopsis for each of our document-elements. Doing so
requires that a balance be struck between synopsis utility and synopsis length.
We want the synopses to be thorough, but not so long as to frustrate a user. A
technique for managing these competing priorities is through the use of a utility
function Uk where:

Uk = g(k)− f(k) (5)

In the above function, Uk refers to the utility of the kth highest scoring sen-
tence in a document for a particular document-element. The utility function is
designed so that any sentence where Uk>0 is presented in a document-element's
synopsis. The function g is one that favors the selection of a sentence k, and f
is another function opposing the selection of k. Di�erent formulas can be used
for g and f but generally g should be a function utilizing the computed score
of a sentence k and f should be a function that increases with k. Future work
would include developing formulas for g and f which maximize the utility of
generated synopses.

Section 7 discussed the problem of our list of cue words potentially being
too large. Future experiments should test how the precision values change with
a smaller list of cue words, or with words collected from sentences other than
the two sentences occurring before and after a reference sentence.

Even if our techniques e�ciently return most of the relevant sentences for
a document-element, it is still necessary to have those synopses evaluated by
a user. Due to certain time constraints, we were unable to perform a test
which would allow users to score our synopses and compare them with synopses
generated by other methods or tools. We did, however, develop an application
in PHP and MySQL that automates this process and we intend to use it once
users begin assigning quality scores to our synopses.

14

References

[1] Bhatia, S., Lahiri, S., and Mitra, P. 2009. Generating synopses for
document-element search. In Proceeding of the 18th ACM Conference on
information and Knowledge Management (Hong Kong, China, Novem-
ber 02 - 06, 2009). CIKM '09. ACM, New York, NY, 2003-2006. DOI=
http://doi.acm.org/10.1145/1645953.1646287

[2] Y. Liu, K. Bai, P. Mitra, and C. L. Giles. Tableseer: automatic table meta-
data extraction and searching in digital libraries. In JCDL, pages 91�100.
ACM, 2007.

[3] R. P. Futrelle. Summarization of diagrams in documents. Advances in Au-
tomated Text Summarization, pages 403�421, 1999.

[4] W. Huang, C. L. Tan, and W. K. Leow. Associating text and graphics for sci-
enti�c chart understanding. In ICDAR '05: Proceedings of the Eighth Inter-
national Conference on Document Analysis and Recognition, pages 580�584,
Washington, DC, USA, 2005. IEEE Computer Society.

[5] J. Kim, R. A. Baratto, J. Nieh. pTHINC: A ThinClient Architecture for
Mobile Wireless Web. In Proceedings of the 15th International World Wide
Web Conference (WWW), May 2006.

[6] M. F. Porter. An algorithm for su�x stripping. Program, 14(3):130�137,
1980.

[7] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-beaulieu, and M.
Gatford. Okapi at Trec-3. pages 109�126, 1995.

[8] C. D. Manning, P. Raghavan, and H. Sch¨utze. Introduction to Information
Retrieval. Cambridge University Press, 2008

[9] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines,
2001.

15

ACADEMIC VITA OF BRENDAN A. HARNETT

Brendan A. Harnett
304 South Tyson Ave.
Glenside, PA, 19038
Brendan.harnett@gmail.com

Education: Bachelor of Science Degree in Computer Science, Penn State University, Spring

2010
Honors in Computer Science
Thesis Title: Effective Document-Element Synopsis Generation
Thesis Supervisor: Prasenjit Mitra

Related Experience:

Internship with Software Deployment and Automation Engineering Team at Air
Products & Chemicals
Supervisor: Todd Houser
January – August 2009

Internship with Information Technology Department at General Electric Water &
Process Technologies
Supervisor: Adam Malinauskas
May – August 2008

Awards:
 Dean’s List 7/8 Semesters
 Richard A. McQuade Scholarship Recipient: 2006-2010

Presentations/Activities:

President and Chapter Founder of Upsilon Pi Epsilon Computer Science Honor Society,

Co-created and managed technology summer camp program: Summers 2005-2007

Alpha Epsilon Pi Fraternity: Spring 2005-Present

Penn State Certified Six Sigma Yellow Belt

mailto:Jmd#@gmail.com

	Department of Computer Science and Engineering
	BRENDAN HARNETT
	Spring 2010
	Prasenjit Mitra
	John Hannan

