THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE

DEPARTMENT OF FINANCE

USING VALUATION RATIOS TO PREDICT RETIREMENT PORTFOLIO PERFORMANCE

MOHIT KUDARAVALLI Spring 2012

A thesis submitted in partial fulfillment of the requirements for baccalaureate degrees in Finance and Economics with honors in Finance

Reviewed and approved* by the following:

James Miles Professor of Finance Thesis Supervisor Honors Advisor

Timothy Simin Associate Professor of Finance Reader

* Signatures are on file in the Schreyer Honors College.

Abstract

Retirees face great risk when planning for retirement. They can prematurely run out of funds due to the volatile equities and bond markets. The ability to accurately measure the future risk of a portfolio will tremendously benefit retirees in securing their financial future.

This thesis aims to use valuation ratios, such as Shiller P/Es and dividend yields, to forecast the ending balance of retirement portfolios over a 30 year horizon. Historical data was utilized to generate models that could predict when a retiree would prematurely run out of funds, and a range of models were developed for a wide array of portfolio allocations and withdrawal habits.

Valuation ratios were found to have predictive capabilities with retirement portfolio balance. Utilization of valuation ratios could benefit retirees with retirement planning by hinting at the performance potential of the markets. Acknowledgements

Thank You Dr. Miles for inspiring and guiding me through this thesis. Also, Thank You Dr. Simin for calling it like it is, being an exceptional educator and providing input on this thesis.

Table of Contents

Introduction1
Background
Chart 1- CAPM- Markowitz Frontier - (Wikipedia, 2005)4
Literature Review
Model and Data
Results and Findings11
Table 1- Zero Balance Predictions- Shiller P/E and Dividend Yields 11
Table 2- R ² Measures- P/E12
Table 3- R ² Measures- Dividend Yield
Table 4- T-Statistic- 95% Confidence Level14
Table 5- T-Statistic- 95% Confidence Level 14
Table 6- Recent "In-Progress" Portfolio 2010 Ending Balance
Implications16
Limitations
Conclusion
Bibliography
Appendix i- Sample VBA Code
Appendix ii- 3 % Withdrawal Rates Graphs-P/Es
Appendix iii- 3 % Withdrawal Rates Graphs- Dividend Yields
Appendix iv- 4 % Withdrawal Rates Graphs-P/Es
Appendix v-4 % Withdrawal Rates Graphs-Dividend Yields
Appendix vi- 5 % Withdrawal Rates Graphs-P/Es
Appendix vii= 5 % Withdrawal Rates Graphs-Dividend Yields
Appendix viii- Sample of Data Set
Appendix ix- Subsequent 10 Year Average Returns

Introduction

Retiring in the midst of a financial crisis can be painful for any retiree, as it was during the Wall Street Crash of 1929, the 1973 Oil Crisis induced stock market crash, the dot-com bubble, and most recently the Global Financial Crisis. In a very short period of time a retiree can lose a substantial portion of their portfolio due to financial crises caused by a wide array of negative economic shocks. For example, a retiree in 2008 who was hoping to kick back, hit the links, and enjoy a quality of life secured by a lifetime of savings is worried what a 25%- 40% loss of their portfolio would spell for their way of life. In 2009 Robert Shipley a 68-year-old retired dreaming of spending retirement at a golf-course, and now he spends his days at the Niagara Falls Country Club not as a patron but as a golf-cart mechanic (Gandel, 2009). Due to the substantial loss he experienced in 2008, Shivley has to work part time to augment his income--- something he thought he would never have to do after a lifetime of working. Unfortunately, due to a move toward market driven retirement funds, Shivley's misfortune is far more common today than it was a generation ago.

A middle aged person and, especially, a young-saver will be able to make up for their portfolio loss with annual contributions and over time the market shall recover. On the other hand, a retiree who cannot make any additional contributions, but also has to regularly withdraw from their retirement fund can mean either running out of funds prematurely or permanently diminishing their quality of life. To hedge against these negative shocks, the general investment consensus suggests that investors closest to retirement should hold safer assets such as bonds and treasuries (ensuring security but very low returns). However, 1 in 4 investors between ages 56-65 had more than 90% of their account balances in equities at year-end 2007, and more than 2 in 5 had more than 70 percent (VanDerhei, 2009). Furthermore, it is important to note older investors with less exposure to equities (thought to be less vulnerable to negative shocks) still tend to have larger account balances than younger investors, and, therefore, have a lot more to lose in aggregate (VanDerhei). In essence, a financial crisis hits those closest to retirement the hardest.

Due to the current economic climate, many retirees and near-retirement individuals are opting to delay retirement, get a job, or cut back substantially on their spending. Naturally, predicting long term stock market performance would tremendously empower retires to plan efficiently. But, the prevailing notion in finance suggests that the market is randomly driven and predicting stock market returns is not possible. This thesis will present evidence against this notion and demonstrate that certain valuation ratios have significant predictive capabilities, especially concerning the ending balance of retirement portfolios.

Despite the widespread subscription to the random walk theory, economists and financial engineers have long sought to predict the stock price of a certain stock (or even an index) for short term gains and goals. Those who have successfully developed models to predict long term stock market performance have not applied them to model retirement portfolio performance. Usefully, Shiller P/E's and Dividend Yields have been shown to have predictive capabilities with broad market index performance (Campbell & Shiller, 1988). By using historical data and these variables, this thesis aims to predict the ending portfolio balance after 30 years of retirement. By using these variables, senior citizens and retirees can hope to simulate their ending balance in thirty years based on the current economic conditions and their personal withdrawal rate. This predictive capability could drastically change the behavior of senior citizens in the United States.

Background

The main goal of maintaining a retirement portfolio is to smooth consumption. Based on past income and lifestyle, a retiree would like to maintain a similar quality of life after retirement. To sustain such a lifestyle, a retiree needs to have a substantial pool of assets (ranging from stocks, bonds and cash) to withdraw from for a 30 year retirement window. Hopefully, from an early age the retiree has annually invested in a mutual fund, a 401(k) plan, Individual Retirement Account (IRA) or is provided an employee benefit package or pension. These saving mechanisms, along with Medicare and Social Security, are intended to allow senior-citizens a similar style of life they enjoyed prior to retirement.

The aim is to save during the peak employment ages of 25 to 65 that the retiree has enough money to withdraw for 30 years and maintain a standard of living. Most of these accounts are heavily vested in the stock market and the remainder is locked into safer assets. So saving early means that these contributions have a longer time to grow (with the stock or bond markets) and the government provides numerous tax incentives for individuals who chose to save for retirement.

It can be easily argued that the major link Main Street has with Wall Street is the effort to save for retirement. Much of the money that flows into Wall Street is sourced from institutional investors, pension funds, and mutual funds. In some way shape or form this flow of income directly, indirectly and constantly has an impact on the average retirement portfolio. The financial industry is a massive one—earnings comprising 7-8% of the US GDP (Phillipon). Numerous investment strategies are implemented, but the most widely accepted would be the Capital Asset Pricing Model (CAPM). The model states that much of the risk (deviation) associated with individual assets in a portfolio can be eliminated by diversifying the portfolio.

3

The objective of the model is to maximize the Sharpe Ratio— ((Expected Portfolio Return-Risk Free Rate) /Beta of the portfolio). The Beta measures the sensitivity of the expected excess portfolio returns versus expected excess market returns. In other words, how does the asset move with the market. The Sharpe ratio is a measure of return per unit of risk and by maximizing this ratio one gains the most while risking the least (least volatility). The final component of this model is the Capital Allocation Line, which is a line that connects the risk-free rate (going T-Bill or other treasuries rate) and the portfolio on the Efficient Portfolio Frontier that maximizes the Sharpe Ratio (always a tangent to the efficient frontier).

Chart 1- CAPM- Markowitz Frontier - (Wikipedia, 2005)

CAPM implies that there are only two things you can and should invest in: a diversified efficient portfolio that maximizes the Sharpe ratio and treasuries (risk free rate). Depending on what kind of risk and return one wants to take they can move along the CAL, but will always gain the greatest return while being exposed to the least risk. There are several other caveats like the borrowing rate etc. but the CAPM is in some way, shape or form is used by most mutual funds and institutional investors. This thesis will use the S&P 500 as the optimal diversified portfolio because it is sufficiently diversified that it eliminates all idiosyncratic risk(risks associated to individual stocks) and only is effected by market risk (un-diversifiable risk that effects all assets). The other merits of using the S&P 500 as the optimal diversified portfolio will be discussed in the Model section of the paper. 10-year U.S. T-Notes are used as the safe asset in the portfolio allocation. This thesis does not aim to construct a balance of risk-free and optimal diversified portfolio to realize a certain return or volatility, but to see how a selection of common ratios of the two would perform over the retirement horizon; more on the merits of the selection are discussed in the literature review of the thesis.

Literature Review

Some of the most prolific work done with predicting stock returns has been conducted by Robert Shiller. Over a span of almost a decade, Price-to-Earnings ratios and Dividend Yields have proven to possess substantial capability to predict future performance (Campbell & Shiller, 1998). Shiller, in fact, has developed his own form of P/E ratio (Shiller P/E) that averages the last ten years of monthly S&P 500 P/E's and provides a forward looking measure. Furthermore, vector-autoregressive method has been developed to weigh the potential of key historical averages of real earnings to forecast present values of future real dividends (unique way of determining if assets are over or underpriced) (Campbell & Shiller).

Valuating ratios are valid variables when forecasting future performance, "Because they relate stock prices to careful evaluations of the fundamental value of corporations," (Campbell & Shiller, 1998). Furthermore, they assert that dividends are set by corporations with an understanding that they need to maintain the dividends at a reasonable rate with future prospects. Most importantly, when Shiller and Campbell conducted their research and publication, based on the distance of valuation ratios from historical averages they both warned against the bearish future of the stock market (amongst the midst of the dot-com bubble).

Presently, valuation ratios, especially P/E's and Dividend Yields, are monitored by analysts to forecast a company or a portfolio's future performance potential—despite the fact that valuation ratios have very little predictive ability for individual firms. Also, much more research has been conducted by other parties and companies all in an effort to develop the perfect crystal ball. An area of financial services that seldom utilizes these findings is the sector of retirement planning.

Similar to the appeal of developing the perfect crystal ball, there is great appeal in finding the perfect withdrawal rate for retirees. An inappropriate withdrawal rate either causes a retiree to run out money or lower their standard of living unnecessary. Retirees need to constantly monitor their portfolio and adjust their withdrawal rate as such that they maximize their consumption over their retirement horizon (Weston, 2012). Additionally, individual circumstances are important to consider; for example, younger retirees able to partake in leisurely activities, while older retirees are burdened with deteriorating health and higher healthcare costs (Weston, 2012). There are no steadfast rules but consumption is based on individual means and circumstances. It is an ultimate balancing act; one which has been studied (Cooley, Hubbard, and Walz, 1998). By conducting Monte-Carlo simulations they experimented with numerous withdrawal rates ranging from 3% to 12% of the starting portfolio, different composition of stocks and bonds, and inflation adjusted rates. The research found that some bonds in a portfolio help with certainty but a stock heavy portfolio can better capture upside (and downside) potential. Therefore, retirees with stock heavy portfolios can maintain higher withdrawal rates. Interestingly, the researchers also concluded that a withdrawal rate of 4% under any composition is very safe and almost always guarantees a successful portfolio (Cooley, Hubbard, and Walz, 1998).

On the other hand, different means of securing income during retirement have been explored as well (Horneff, Maurer, Mitchell and Dus, 2006). Since most retires have a substantial amount of savings, they can turn that into an annuity (via an insurance company) and receive consistent payments over a set period of time. Many retirees choose not to annuitize their savings because they cannot capture any upside in the equities market, cannot bequeath their wealth in case of early death, and they pay a premium to receive the annuity. Therefore the best option, based on the retiree's portfolio, age, and risk aversion, can be a combination of an annuity and an individual Retirement Account (IRA) (Horneff, Maurer, Mitchell and Dus, 2006).

7

Model and Data

The model and data were developed to reconstruct how a portfolio of \$1,000,000 would perform for thirty years with an annual withdrawal rates of 3%,4% or 5% with a compositions of 100% stocks, 70% stocks/30% bonds, and 50% stocks/50% bonds. The ending balance of a thirty year stint was calculated for every year since 1871. For example, using historical data the model would calculate how much money would be left over in the portfolio in 1900 after annual withdrawals beginning in 1871.

The simplest components of the model are the real return on 10 year T-Bills, real S&P 500 market return, S&P 500 dividend yield, and Shiller price-to-earnings ratios. The S&P is one of the broadest, oldest, and heavily invested indexes for which the previously mentioned components are available. All data utilized was compiled by the office of Dr. Robert Shiller for his recent book *Irrational Exuberance* and is made publicly available on his Yale Economics Department webpage. The source and methodology are outlined on the webpage as well. Also, Dr. Shiller's data is collected monthly, but for the purposes of the thesis the data points were annualized because retirement portfolios are adjusted and withdrawn from on an annual basis. Lastly, all appropriate variables have been adjusted to be in real terms, rather than the nominal form that the data was reported in. The conversion to real terms allows us to analyze the data without inflation bias and keeps the withdrawal rate consistent as well.

Real S&P 500 Market Return

The real market return is composed of the real capital gains and real dividend yields. In order to calculate these two variables the nominal stock price and nominal dividends needed to be converted to real stock prices and real dividends. By multiplying the corresponding (for example 1871) year's nominal S&P price or S&P dividend times the ratio of 2012's CPI over the corresponding year's CPI gives us the real stock price and the real dividends.

8

Equ. Real Price= Nominal S&P 500 Price X-year*(2012's CPI/ X-year CPI)

From here, the Real Capital gain is simply the difference between next year's S&P price and the corresponding year's price all divided by the corresponding year's price.

Equ. Real Capital Gain= $(P_1-P_0)/P_0$

0The real dividend Yield is calculated similarly, except the two-year dividends are averaged and divided by the corresponding S&P real price. The two dividends are averaged to compensate for the fact that dividends that are not always paid at the beginning of each year.

Equ. Real Dividend Yield = $((D_1+D_0)/2)/P_0$

Real Bond Returns

A nominal bond return adjusted for inflation also yields a real bond return. Shiller provide 10year Treasury Yields for every month since 1871. The change in yield from year to year was used to estimate the return from holding a 10-year Treasury for one year. Excel was utilized to calculate the present value of a bond by using next year's bond rate as the prevailing interest rate, nine payments as the number of payments that would be left at the end of next year (payments were annualized for simplicity), annual bond payments of the corresponding year's interest rate, and with a future value of 100. The present value is the value the bond will sell for at the end of one year of holding the asset. The initial sum of 100 was subtracted but one annual interest payment was added to the bond return because the payment was made while the bond was held.

ExcelEqu. PV= (current interest rate, payments remaining, interest payment, future value)

Equ. Nominal Bond Return = $(-PV (G_1, 9, 100*G_0, 100))-100+G_0*100$

The inflation rate is simply the ratio of next year's CPI divided by the current year's CPI, all subtracted by 1.

Equ. Inflation Rate= (CPI_1/CPI_0) -1

Dividing the nominal bond return by the inflation rate, the real bond return can be derived.

Equ. Real Bond Returns=(1+Nom Bond Ret/1+Inflation Rate)-1

Ending Balance Calculations

Real S&P 500 market returns and real 10 year T-Notes returns were used to simulated how each portfolio would act during a 30 year retirement window. Every portfolio starts out with the arbitrary sum of \$1,000,000 and an annual sum of 3%,4% or 5% of the initial portfolio is withdrawn at the end of each year. The balance is rolled over each year and is also grown by the real S&P 500 market return and if applicable by the real 10 year T-Note returns. The net sum is unimportant because the value of money changes over time, but what matters is the net percentage gained or lost. In order to expedite the repetitive process of multiplying the returns to the ending balance each year, withdrawing a set sum each year, and adjusting the portfolio annually, Visual Basic for Excel code was used to loop the process. It's also important to note that VBA was implemented to extract data from the Shiller data on an annualized basis (every January data set) instead of manually arranging the data.

Once the ending balances are compiled they are plotted against the beginning year's P/E's and dividend yields to test the hypothesis of whether theses valuation ratios have predictive capabilities with retirement portfolio performance.

Results and Findings

The following linear model was utilized for all predictions and findings:

Equ 1. 30-year Ending Balance= $\beta_0 + \beta_1 *$ Beginning Year Shiller P/E

Equ 2. 30-year Ending Balance= $\beta_0 + \beta_1 *$ Beginning Year Dividend Yield

Below are the starting year P/E's and Dividend Yields, as predicted by the simple linear

regression that would lead to zero balances.

Zero Balance	100% Stocks	70% Stocks	50% Stocks
P/E	0% Bonds	30% Bonds	50 % Bonds
3 % Withdrawal	25.42	26.51	27.26
4 % Withdrawal	22.44	22.48	22.04
5 % Withdrawal	19.56	18.62	17.16
Zero Balance	100% Stocks	70% Stocks	50% Stocks
Dividend Yield	0% Bonds	30% Bonds	50 % Bonds
3 % Withdrawal	.01382	.00950	.00789
4 % Withdrawal	.02307	.02246	.02396
5 % Withdrawal	.03219	.03458	.03840

Table 1- Zero Balance Predictions- Shiller P/E and Dividend Yields

Based on these P/E's, Dividend Yields, and portfolio allocation a retiree can predict if she will run out of money prematurely. To avoid running out of funds, the retiree can reallocate their portfolio and/or consider annuitizing a portion if not all of their savings, because the equities market does not ensure positive growth for the retirement horizon. The following tables outline the predictive capabilities of both Shiller P/E's and the Dividend Yields. The predictive capabilities are measured by R^2 statistics resulting from a simple regression line of best fit with the ending balance as the dependent variables and the valuation ratios as the independent values

R-Squared Measures-	100% Stocks	70% Stocks	50% Stocks
P/E	0% Bonds	30% Bonds	50 % Bonds
3 % Withdrawal	.4326	.5796	.5119
4 % Withdrawal	.5204	.6580	.5791
5 % Withdrawal	.5903	.6818	.5854

Table 2- R² Measures- P/E

R-Squared Measures-	100% Stocks	70% Stocks	50% Stocks
Dividend Yield	0% Bonds	30% Bonds	50 % Bonds
3 % Withdrawal	.3874	.3853	.2825
4 % Withdrawal	.4528	.4502	.3457
5 % Withdrawal	.5032	.4968	.3992

Table 3- R² Measures- Dividend Yield

The R^2 values, first and foremost, demonstrated that valuation ratios have predictive capability with retirement portfolio performance from the lowest estimator of 38.74% for dividend yields to the highest of 68.18% for Shiller P/E's. Furthermore, the predictive capabilities increase for all parameters as the withdrawal rates increase. Such results can be attributed to the fact that larger withdrawals are a greater burden for any portfolio and the ending balance is more closely linked to how the portfolio grows with the market. With a lower withdrawal rate, and a lower burden on the portfolio, the ending balance is a result of frugal spending and the portfolio intensely growing with the market. In other words, the more one withdraws the more the portfolio is depended on the performance on the market to determine the ending balance.

The movement of the predictive capability of the dividend yield is consistent across all parameters. As discussed earlier the predictive capabilities increase as the withdrawals rates increase, but they also increase as the portfolio's equities weight increases. The positive correlation can be credited to the fact that valuation principles are sourced from the equities market and will predict only the performance of the equities portion of the portfolio.

Surprisingly, the predictive capabilities of Shiller P/Es for the 70/30 portfolio are relatively high----higher than the pure equities portfolio. As with the dividend yields, one would expect the predictive capability to decrease as the equities weight increases but to the contrary, the 70/30 portfolio is tracked best by the valuation ratios. The main reason the 70/30 portfolio responds so well to the valuation ratios could be that the shocks (both positive and negative) are damped by the minority inclusion of the bonds. As found in previous studies, the inclusion of some bonds allows for stability but reduces exposure to market volatility. Similarly, the outlier portfolios are damped or eliminated by the inclusion of some bonds. Such influence of stability is apparent with the dividend yield R² ratios as well, because there is only a slight difference between pure equities portfolios versus the 70/30 portfolios. The predictive ability of valuation ratios falls precipitously with 50/50 portfolios but are relative strong with 70/30 portfolios.

Predictive capability can be further verified by studying the statistical significance of the slope coefficients of the ending balance linear regression. Statistically significance is established by statistical hypothesis testing. The null hypothesis; the slope coefficient is statistically insignificant (equal to zero), is tested by calculating the Student T-Statistic for the sample data. Based on a normal T-distribution chart, the T-Statistic will determine the probability that the slope coefficient it zero and, therefore, insignificant. The larger the absolute value of the T-Statistic the larger the probability that the true mean of the slope coefficient is not equal to zero. The following chart summarized the statistical significance of the slope coefficients predicted by the linear regressions.

13

P/E Slope Coefficient	100% Stocks	70% Stocks	50% Stocks
T-Statistic	0% Bonds	30% Bonds	50 % Bonds
3 % Withdrawal	-8.64	-11.62	-10.14
4 % Withdrawal	-10.31	-13.73	-11.61
5 % Withdrawal	-11.88	-14.49	-11.763
	1		

Table 4- T-Statistic- 95% Confidence Level

Div.Yield Slope Coef.	100% Stocks	70% Stocks	50% Stocks
T-Statistic	0% Bonds	30% Bonds	50 % Bonds
3 % Withdrawal	8.27	8.22	6.52
4 % Withdrawal	9.45	9.40	7.55
5 % Withdrawal	10.46	10.33	8.47

Table 5- T-Statistic- 95% Confidence Level

All null hypotheses were rejected even at a 99% confidence interval. Statistical hypothesis testing has shown that all valuation ratios are statistically significant in predicting ending balances for retirees. As expected, the significance increases as the withdrawal rate and weight of equities increases. Moreover, the anomaly with predictive capability of the valuation rations with 70/30 portfolios is captured again by the increase in statistical significance. T-statistics and the R^2 are both congruent and support the predictive capability of valuation ratios.

Recent Portfolio Performance

The model utilizes 30 years of data, and as such, the last ending balance was calculated for 1980. A more recent application of valuation principles to portfolio performance further supports the hypothesis. If someone with a million dollar portfolio of 70% equities and 30% bonds retired in 2000, amid record high Shiller P/E's and low dividend yields, and withdrew at 4%, by 2010 the

retiree would have less than \$500,000 to consume for 20 more years. Even with a conservative strategy, the retiree will be in trouble and the valuation ratios have foreshadowed the outcome. By noting the Shiller P/E of 43.7 and a dividend yield of 1.1%, an informed retiree could have annuitized a portion, if not all, of their portfolio to avoid the predicament most traditional retirees would have found themselves in.

Year-4% Withdrawal	Shiller P/E	Divdend Yield	2010 Balance
(70/30)-Distribution-			
1982	7.39	.057	\$5,923,812.70
1990	17.05	.033	\$2,392,293.42
1998	32.86	.016	\$818,966.98
2000	43.77	.012	\$581,355.68

Table 6- Recent "In-Progress" Portfolio 2010 Ending Balance

The 1998 and 2000 Portfolio may need to reevaluate their portfolio; based on the beginning year P/E's and div yields, this is no surprise. Valuation ratios may not be able to predict the exact portfolio balance, but they are precursors to the trends that will prevail in the near further. The directionality of trends could tremendously help retirees plan for their future.

Implications

Despite the fact that 73 million Americans (approx. 50% of working population) have a 401(k), retirement funds are a recent phenomenon (VanDerhei). In the 1980's, Fortune 500 companies started to replace expensive pension plans for defined-contribution 401(k) systems. Experts believe that since the 401(k) has replaced the company pension and social security as the cornerstone of American retirement saving, retirees today risk having a lower quality of life than their parents. They are exposed to this risk because the longer one holds a 401(k) the more market-exposed it becomes (VanDerhei). Retirees have very few resources to predict how their portfolio will do, but based on the valuation ratios, they can have some idea of what to expect and plan accordingly.

Utilization of valuation principles has a place in every retiree's portfolios and investment strategies because most of them are fledgling accounts. According to the Society of Professional Asset-Managers and Record Keepers, the average 401(k) has a balance of \$45,519 and 46% of all 401(k) have less than \$10,000 (Gandel). In other words, most accounts have not been around long enough to accumulate enough wealth for retirement (Gandel). As Baby Boomers, the largest group of American retirees, begin to enter retirement, large swaths of Americans will become dependent on the proverbial Wall Street roll of the dice to determine how they live. This risk can be mitigated by adjusting investment strategy based on the valuation principle models discussed in the paper.

If the Shiller P/E's are close to the thresholds discussed in the paper the retiree should look to annuitize at least a portion of their savings and, perhaps, even look into safer assets. If the Shiller P/E's are low and the dividend Yields are high then one should invest heavily in equities and choose a high withdrawal rate.

16

Most importantly, the data also contradicts the random walk hypothesis and places emphasis on existing valuation principles and methods. More research needs to be conducted with different predictive objectives, indices, bonds, and timeframe. The additional research may further strengthen and refine the predictive capabilities of valuation ratios or elucidate the limitations of valuation ratios. At the very least, financiers and economists need to begin paying attention to valuation ratios. A balanced belief in both the random walk theory and the predictive capabilities of valuation ratios could serve investors well.

Limitations

This thesis has a narrow scope and application. The equities studied represent only the S&P 500 and the treasuries used are only the 10 year T-notes. Investors have hundreds of different equities, indices, corporate/government bonds, international equities, international bonds, derivatives and exotic investments etc. in their portfolio. It is important to note that the valuation ratios in this thesis predict broad market index performance and such predictive capabilities may or may not be present in a personal portfolio of selected equities.

By design the model itself accounts for the data multiple times. Basically, the market and bond performance for a single year is used 30 times to calculate the ending balances of portfolios starting in 30 different years. A market shock is not captured by just one portfolio but every portfolio active during that time period. Such lack of independence is inherent when using historical data and may skew the data.

Conclusion

The American work ethic is truly unique and a pillar of American economic success. Many work hard to ensure a high standard of living for their families and themselves. 401(k)s, IRAs, 529 plan and other financial products have become pivotal in financial security for the average American. Unfortunately, the volatile nature of the market, coupled with the general lack of knowledge of finance, places the dream of financial security and independence in jeopardy.

Educated retirees make informed decisions on how to allocate their portfolio and what withdrawal rate to apply. But, this thesis has aimed to provide a few tools to predict the future of the equities market. By closely monitoring valuation ratios, such as the Shiller P/E and dividend yields, a retiree can choose to capture the gains of the market or annuitize to protect against poor future performance. Valuation ratios, most definitely, have predictive capability because they aim to capture the fundamental current and prospective worth of a firm. Further research and refinement could elucidate the abilities of valuation ratios. But, one thing is for certain, after a lifetime of working and saving, retirees have earned their piece of mind. Such peace of mind is impossible to guarantee and, at times, cannot be afforded to them, but a pursuit to secure this right is well worthwhile.

Bibliography

- Ambrose, Eileen. "Fewer Workers Saving for Retirement, More under Financial Stress." Baltimore Sun. 13 Mar. 2012. Web. 02 Apr. 2012. http://articles.baltimoresun.com/2012-03-13/business/bs-bz-ambrose-retirement-confidence-20120313_1_workers-and-retirees-age-ebri-retirement-confidence-survey>.
- Cambell, John Y., and Robert J. Shiller. "Valuation Ratios and the Long-Run Stock Market Outlook." *The Journal of Portfolio Management* (1998): 11-26. Yale Department of Economics. Web. 2 Apr. 2012. http://www.econ.yale.edu/~shiller/online/jpmalt.pdf>.
- Campbell, John Y., and Robert J. Shiller. "Stock Prices, Earnings, and Expected Dividends." *The Journal of Finance* 43.3 (1988): 661-76. JSTOR, 30 Mar. 2004. Web. 2 Apr. 2012. http://kuznets.fas.harvard.edu/~campbell/papers/campbellshiller_jf1988.pdf>.
- Cooley, Phillip L., Carl M. Hubbard, and Daniel T. Walz. "Retirement Savings: Choosing a Withdrawal Rate That Is Sustainable." *The American Association of Individual Investors Jornal* 20.2 (1998). Web. 2 Apr. 2012.

<http://www.bobsfinancialwebsite.com/Trinity/trinity.htm>.

Gandel, Stephen. "Why It's Time to Retire the 401(k)." *Time*. Time, 09 Oct. 2009. Web. 02 Apr. 2012. http://www.time.com/time/magazine/article/0,9171,1929233,00.html.

Horneff, Wolfram J., Raimond Maurer, Olivia S. Mitchell, and Ivica Dus. Optimizing the Retirement Portfolio: Asset Allocation, Annuitization, and Risk Aversion. Thesis. National Bureau of Economic Research, 2006. Web. http://www.nber.org/papers/w12392.pdf>.

- Markowitz Frontier. Digital image. Wikipedia. 12 Feb. 2005. Web. 4 Apr. 2012. http://en.wikipedia.org/wiki/File:Markowitz_frontier.jpg>.
- Phillipon, Thomas. "Stern on Finance: The Future of the Financial Industry Thomas Philippon." Stern on Finance. NYU Stern, 16 Oct. 2008. Web. 02 Apr. 2012. http://sternfinance.blogspot.com/2008/10/future-of-financial-industry-thomas.html.
- VanDerhei, Jack. The Impact of the Recent Financial Crisis on 401(k) Account Balances. Issue brief no. 326. Employee Benefit Research Institute, Feb. 2009. Web. 2 Apr. 2012. http://www.ebri.org/pdf/briefspdf/EBRI_IB_2-2009_Crisis-Impct.pdf>.
- Weston, Liz. "5 Keys to Make Retirment Last." *Ask Liz Weston*. Web. 02 Apr. 2012. .

Appendix i- Sample VBA Code

Sub EndingBalance45Bond() For j = 0 To 109 bal = 1000000with dr = 40000For i = 4 To 33 bal = (bal - withdr) * (0.5 * (1 + Cells(i + j, 3)) + (0.5 * (1 + Cells(i + j, 2))))Next i Cells(j + 4, 13) = balNext j End Sub Sub EndingBalance55Bond() For j = 0 To 109 bal = 1000000with dr = 50000For i = 4 To 33 bal = (bal - withdr) * (0.5 * (1 + Cells(i + j, 3)) + (0.5 * (1 + Cells(i + j, 2))))Next i Cells(j + 4, 14) = balNext j End Sub Sub EndingBalance35Bond() For j = 0 To 109 bal = 1000000with dr = 30000For i = 4 To 33 bal = (bal - withdr) * (0.5 * (1 + Cells(i + j, 3)) + (0.5 * (1 + Cells(i + j, 2))))Next i Cells(j + 4, 15) = balNext j End Sub

Appendix ii- 3 % Withdrawal Rates Graphs-P/Es

Appendix iii- 3 % Withdrawal Rates Graphs- Dividend Yields

Appendix iv- 4 % Withdrawal Rates Graphs-P/Es

Appendix v-4 % Withdrawal Rates Graphs-Dividend Yields

Appendix vi- 5 % Withdrawal Rates Graphs-P/Es

Appendix vii= 5 % Withdrawal Rates Graphs-Dividend Yields

Apr	Interest]	Market 7	it ^{urn} Sa	mpl	e of	Data	Stingt	Ending	Ending	Ending	Ending	Ending	Ending	Ending
1971 01	0.0246	0 12600	0 1245572	0.059550	P7E	6207507 960	5025272 051	Balance (3%)	5420727 696	A209705 194	Balance (3%)	Balance(4%)	Balance (5%)	5790952 921
1872.01	0.0340	0.13035	0.11345575	0.054177		6232648 935	4871822 214	7593475 657	5392152 049	4308733.184	6543101.86	4700333.374	3730554 816	5757214 365
1873.01	0.1125	0.017646	0.11074792	0.059198		5678023.086	4437907.136	6918139.037	5003568.865	3972266.065	6034871.664	4452071.673	3553397.144	5350746.201
1874.01	0.1636	0.120274	0.11137466	0.070815		5103589.75	4110726.262	6096453.238	4578573.954	3695616.621	5461531.287	4116142.446	3312536.937	4919747.955
1875.01	0.1521	0.113277	0.09706931	0.072137		5710141.132	4540338.243	6879944.021	4687975.216	3714394.258	5661556.173	3955064.944	3108408.504	4801721.384
1876.01	0.0469	-0.14183	0.11927064	0.067265		6082003.032	4780707.242	7383298.823	4677122.646	3637317.773	5716927.519	3764082.071	2883681.386	4644482.756
1877.01	0.2479	0.157614	0.14528402	0.081915		8057399.148	6902211.172	9212587.125	5618821.156	4689598.589	6548043.723	4239274.367	3447728.537	5030820.196
1878.01	0.1732	0.288969	0.12457026	0.058215		5272742.203	4467362.391	6078122.015	3850050.638	3125844.347	4574256.93	2954567.757	2292629.352	3616506.162
1879.01	-0.1242	0.234217	0.10365721	0.050754		491/982.82/	3938684.866	5897280.788	33/0246.216	2541/86.108	4198706.323	2456/95.99/	1/31/84.124	3181807.869
1881.01	-0.0349	-0.06945	0.05091942	0.042811	18.47395	2182603.536	1273601.992	3091605.081	1898310.903	1126336.958	2670284.848	1652649.655	974508.2	2330791.109
1882.01	0.0552	0.053652	0.08368984	0.054054	15.67876	2938768.333	2038370.762	3839165.904	2481623.625	1715322.913	3247924.338	2123273.701	1448379.468	2798167.934
1883.01	0.1226	0.023913	0.0769887	0.055215	15.27026	2827354.818	1982357.9	3672351.737	2335647.28	1627887.594	3043406.967	1966046.453	1348626.106	2583466.799
1884.01	0.1638	-0.02278	0.06805129	0.063378	14.43282	2697283.117	1957408.147	3437158.088	2164914.854	1521106.374	2808723.333	1780625.272	1204067.572	2357182.972
1885.01	0.0841	0.33529	0.07839225	0.071745	13.12982	2828298.643	2178013.826	3478583.459	2084859.97	1500161.833	2669558.108	1605051.383	1069346.209	2140756.558
1886.01	0.0223	0.118301	0.04841424	0.045827	16.69232	2082585.454	1314064.209	2851106.699	1565222.543	90/11/.846/	2223327.239	1222062.43	639069.2423	1805055.619
1888.01	0.1036	0.04932	0.04270833	0.039873	15 35866	1385979 54	926831 6769	1845127 404	1138248 582	719759 4684	1556737 696	943002 0759	556569 2368	1329434 915
1889.01	0.0886	0.122309	0.0830326	0.04374	15.80229	1241437.95	802813.4312	1680062.469	956330.2138	567893.7947	1344766.633	751950.6966	399823.257	1104078.136
1890.01	-0.0058	-0.08236	0.05975704	0.040892	17.22007	1022289.594	592045.807	1452533.382	747314.7581	381894.6115	1112734.905	560398.2229	238186.754	882609.6918
1891.01	0.1051	0.258259	0.09111227	0.045455	15.42898	1170558.023	809472.3345	1531643.712	869298.5519	540848.7879	1197748.316	656639.7053	353533.1259	959746.2846
1892.01	-0.0494	-0.01336	0.08177802	0.040236	19.01639	856769.2371	433640.6777	1279897.797	658612.8189	268326.8991	1048898.739	499659.1831	135567.6099	863750.7564
1893.01	0.2004	-0.06546	0.08200145	0.042923	17.65664	1233521.581	706038.3441	1761004.818	929498.102	468516.7222	1390479.482	703071.0006	288482.13	1117659.871
1894.01	0.1012	0.08063	0.07535669	0.057106	16 52444	1799501 584	10/9//1.14/	2109190.437	985718.8091	176543 856	1522903 825	563723.83	2131/3.4928	1026280 681
1896.01	0.0822	0.061844	0.1129431	0.04309	16.57622	2157514.654	1452905.654	2862123.653	1151906.728	573449.7155	1730363.74	631521.3696	132342.0908	1130700.648
1897.01	0.0082	0.165829	0.10315097	0.042654	17.02652	2301821.294	1546735.586	3056907.001	1154804.701	533910.7942	1775698.608	578026.2468	41316.2549	1114736.239
1898.01	0.0380	0.267127	0.06412732	0.037234	19.249	2368295.742	1386793.68	3349797.804	1118817.626	358450.5638	1879184.688	520048.325	-109772.517	1149869.167
1899.01	-0.1214	-0.11045	0.07148476	0.033026	22.93281	1856821.815	480951.1302	3232692.5	748240.5455	-231669.3837	1728150.475	249712.2616	-514030.398	1013454.921
1900.01	0.0609	0.23119	0.08750237	0.035656	18.67428	2753274.981	1558916.41	3947633.551	1426759.875	525928.716	2327591.033	763509.6979	33938.22657	1493081.169
1901.01	0.0001	0.164917	0.06/60801	0.042673	20.97858	1340/91.018	394890.3535	2286691.683	/53369.45/3	-3/000.49821	1543/39.413	390399.1304	-292858.921	10/365/.181
1902.01	0.0075	-0.13191	0.05571437	0.039307	22.34029	615617 6762	43375 73599	1187859 617	549018 439	-231055.9555	1168497 107	411867 2411	-212966 039	1036700 521
1904.01	0.0048	0.28252	0.06332797	0.051901	15.86183	1720427.442	880532.9438	2560321.941	1178157.042	357252.2771	1999061.808	733997.2207	-35951.8986	1503946.34
1905.01	0.0386	0.209485	0.02887063	0.036975	18.45985	683825.2913	-30869.51218	1398520.095	537407.1546	-196893.024	1271707.333	352843.65	-359456.781	1065144.081
1906.01	-0.0275	-0.03608	0.03474286	0.034022	20.1324	260090.6387	-782524.2776	1302705.555	220924.4975	-748343.6475	1190192.642	111034.528	-764434.497	986503.5532
1907.01	0.0442	-0.22441	0.03466914	0.042186	17.21891	728382.8485	-575801.4198	2032567.117	587294.6601	-544381.5384	1718970.859	383641.9524	-591304.941	1358588.845
1908.01	0.0136	0.340701	0.02607405	0.063752	11.90297	1805296.034	949332.8932	2661259.176	1266601.274	409174.6342	2124027.915	803570.264	-2514.13775	1609654.666
1909.01	0.1085	0.04973	-0.00760644	0.044314	14.70442	713611 1796	-244940 3651	1672162 724	670972 2949	-268934 578	1610879 168	533680 8605	-339405 769	1406767 49
1911.01	0.0484	0.045982	-0.02556854	0.050701	14.04922	640803.8285	-188275.1804	1469882.837	540554.8536	-308258.0986	1389367.806	375725.7543	-436230.113	1187681.622
1912.01	-0.0605	3.47E-06	-0.00749828	0.051623	13.79495	481428.4886	-176383.1329	1139240.11	405036.7348	-283015.9426	1093089.412	270093.3736	-398474.15	938660.897
1913.01	0.0446	-0.0669	0.02190202	0.051613	13.14809	633319.8157	-79186.91712	1345826.549	587399.9687	-124863.2294	1299663.167	455075.8826	-216830.412	1126982.177
1914.01	0.0255	-0.06205	0.03070733	0.05675	11.63609	1177367.523	353224.3962	2001510.65	914135.4156	131815.755	1696455.076	631831.0806	-81397.1062	1345059.267
1915.01	0.0260	0.268207	0.06292605	0.056257	10.35983	1879050.775	959052.2287	2799049.321	1327039.08	485737.3126	2168340.848	866160.8475	117261.3548	1615060.34
1910.01	-0.0809	-0.31036	0.03703462	0.047243	10 99236	1217949 371	366819 3071	2069079 434	1027160 748	268596 553	1785724 942	771357 2394	108002 2516	1420005.577
1918.01	-0.1084	0.003896	0.14322213	0.094313	6.640646	3212949.77	2452514.987	3973384.554	2403959.55	1728893.645	3079025.455	1746299.487	1156095.55	2336503.424
1919.01	-0.1352	0.027656	0.19100517	0.072191	6.098468	3673732.734	2908596.948	4438868.521	2897077.911	2222992.839	3571162.983	2204851.308	1616981.518	2792721.098
1920.01	0.0576	-0.1253	0.17925443	0.05983	5.989668	4430811.155	3588198.371	5273423.938	3671223.816	2951017.744	4391429.888	2911634.539	2294562.898	3528706.181
1921.01	0.2466	0.226685	0.17556283	0.071139	5.122184	7195481.694	6237879.121	8153084.266	5021138.185	4260828.597	5781447.773	3544644.281	2924208.832	4165079.73
1922.01	0.0448	0.294006	0.11646186	0.063589	6.28/08/	6461145.89	5464666.224	/45/625.555	4182866.607	3420047.646	4945685.569	27/0122.553	21608/1.969	33/93/3.13/
1923.01	0.0350	0.021151	0.08977833	0.057494	8.1542	5297108 822	4052304.989	6255902 154	3442/25.5/9	2855496 546	4212845.249	2346201.131	18/9365 272	2955475.508
1925.01	0.0169	0.209493	0.10291383	0.052382	9.692619	5482586.376	4195308.043	6769864.71	3637797.828	2734841.739	4540753.917	2409882.218	1724500.971	3095263.466
1926.01	0.0872	0.135724	0.13322849	0.048024	11.34097	5154656.304	3629958.524	6679354.084	3507767.827	2502528.868	4513006.786	2339272.289	1605297.528	3073247.05
1927.01	0.0461	0.378777	0.14899972	0.051993	13.18593	4382714.484	2905699.918	5859729.05	2997669.418	2044260.379	3951078.457	1977698.097	1287754.418	2667641.776
1928.01	0.0247	0.481727	0.07934072	0.044307	18.80613	1756313.115	494980.3167	3017645.912	1649740.127	803021.8764	2496458.377	1256485.929	624339.9561	1888631.902
1929.01	0.0598	-0.08985	0.04934966	0.034594	27.0832	-306755.6329	-1962649.582	1349138.316	649310.4775	-356888.2695	1655509.225	701012.6823	-1376.80454	1403402.169
1930.01	0.106/	-0.36/32	0.0679/1214	0.060/04	16 705/19	2351492 502	-1142/50.302 634998 0625	2270442.155	1050185.419	48054.55511 746588 7791	2003/16.282	8/3984./14	446869 2002	1871506 622
1932.01	0.1203	0.027171	0.08665271	0.095578	9.312406	9409377.419	7478206.124	11340548.72	4084289.806	2980417.379	5188162.232	2015479.928	1266574.089	2764385.766
1933.01	0.0240	0.518258	0.09584444	0.069817	8.728046	9210814.257	7512998.544	10908629.97	3747772.56	2734131.069	4761414.051	1708100.236	997568.3039	2418632.169
1934.01	0.0261	-0.10562	0.06386378	0.041822	13.02512	5173391.426	3332020.52	7014762.332	2164882.228	1094615.173	3235149.282	961575.2629	223601.3925	1699549.133
1935.01	0.0239	0.512639	0.09096917	0.048596	11.49591	8161413.572	6181779.41	10141047.74	3156885.058	2027368.271	4286401.845	1350126.526	578489.6991	2121763.353
1936.01	0.0023	0.293437	0.07514461	0.034884	17.08736	3624447.513	1624928.782	5623966.244	1453620.164	323833.1664	2583407.161	572645.3212	-196241.079	1341531.722
1937.01	0.0290	-0.31/81	0.020/9538	0.041501	21.618/4	12//568.081	-434/49.4058	2989885.567	592093.9063	-419981.8252	1604169.638	1999/0.5656 921005 252	-511860.309	911801.4401
1938.01	0.0505	0.181816	0.04589230	0.070144	15 59963	J988947.790 //691518.661	2876397 693	7820428.173	2134040.005	582997 /3/	2628176 993	547352 1553	-152296 9/1	12/17/001 252
1940.01	0.0286	-0.10183	0.05127635	0.050677	16.37848	4074094.373	2601171.722	5547017.024	1383830.414	532151.933	2235508.895	452131.0784	-142374.936	1046637.092
1941.01	-0.1210	-0.17723	0.08508452	0.063823	13.90416	5658764.783	4251578.099	7065951.468	1946807.529	1093197.736	2800417.322	677282.8853	60709.88537	1293855.885
1942.01	-0.0489	0.119089	0.11903618	0.078761	10.10169	9373092.35	7935086.365	10811098.33	3416031.502	2536266.713	4295796.291	1412703.384	772799.7164	2052607.053
1943.01	-0.0055	0.198452	0.12084981	0.058474	10.15053	9454475.005	7982413.371	10926536.64	3500994.465	2605555.277	4396433.653	1483916.217	835729.0386	2132103.394
1944.01	0.0104	0.165435	0.10257453	0.051758	11.05241	5752912.907	4732087.025	6773738.789	2370284.215	1685635.265	3054933.165	1067294.372	539410.6206	1595178.122
1945.01	0.0154	0.354394	0.13273437	0.04769	11.96046	3343112.983	2681273.154	4004952.812	1543927.679	1045039.978	2042815.38	/34941.1233	320542.0363	1149340.21
1946.01	-0.1390	-0.25006	0.15417001	0.030996	11 4602	200/092.0/9 4941486 802	4150834 070	5732130 529	2289347 0/9	335210.9356 1710383 033	2868313 862	4/04/00.8213	19251.95039	357301.0922 1623476 381
1948.01	0.0219	0.080871	0.15199392	0.056867	10.41934	4962232.951	4347216.351	5577249.551	2476115.834	1995028.154	2957203.515	1347293.331	938227.8152	1756358.846
1949.01	0.0440	0.190479	0.18151764	0.061632	10.24829	4958402.293	4372814.257	5543990.329	2402112.667	1945234.174	2858991.161	1273619.649	886568.6132	1660670.684
1950.01	-0.0717	0.236254	0.16895078	0.068128	10.74573	4151944.787	3615189.229	4688700.344	1953524.046	1536865.792	2370182.3	998662.372	647971.871	1349352.873
1951.01	-0.0252	0.162287	0.14981791	0.070093	11.89576	3549052.788	3005750.848	4092354.729	1697017.168	1283666.05	2110368.285	885848.1406	543892.881	1227803.4

Academic Vita **Mohit Kudaravalli**

Current Address: 220 North Burrowes Street, State College PA 16801 Permanent Address: 1104 Woodlawn Drive, Pittsburgh PA 15317

EDUCATION

The Pennsylvania State University, Schreyer Honors College	
Smeal College of Business	University Park, PA
Bachelor of Science in Finance	May 2012
Honors Thesis: Predicting Retirement Fund Performance	
The Pennsylvania State University, College of Liberal Arts and Science	
Bachelor of Science in Economics	May 2012
University of Maastricht	Maastricht, Netherlands
Study Abroad- Economics of European Integration	Summer 2011

EXPERIENCE

Johnson & Johnson- McNeil Consumer & Specialty Pharmaceutical Sarbanes-Oxley Compliance Co-op

- Exclusive tester of a broad spectrum of internal controls across 16 SOX cycles ranging from Application Security • and Segregation of Duties (APSOD) to Tax.
- Interacting and collaborating with employees (co-ops to CEOs) from different functions and companies to facilitate . the proper gathering and testing of internal controls.
- Closely partnering with Corporate Internal Audit (CIA) and external auditors (PWC) to ensure a complete, . thorough, and compliant audit.
- Maintaining, creating and delegating access to the McNeil Finance SharePoint and SOX controls. .
- Optimizing companywide document control matrixes. .
- Training current employees and new hires on compliance standard operating procedures.
- Creating training materials/courses for department wide bi-annual training.

Kenva Agricultural Utility System

BA 301 H Water Drill –Business Team Lead

- Developed a Business Plan to be applied in Kenya. •
- Conducting research and surveys to facilitate proper product development and delivery. •
- Collaborating internationally with students from Moi University (JKUAT) in Nairobi Kenya.
- Producing informative and persuasive literature for prospective entrepreneurs and customers.

ACTIVITIES

Beta Theta Pi –*Brother/Member of Risk-Management Representative*

- Learning Beta Theta Pi lore and tradition, supporting fellow brothers, and maintaining high academic standards.
- Completing community service and numerous fraternal requirements.
- Mitigating risk and liabilities by establishing/enforcing safety policies, and educating brothers on protocol. .

Inter-Fraternal Council Judicial Board- Board Member

- Initiating sanctions and corrective actions for fraternities that have violated IFC rules and regulations.
- Closely liaising with university leaders and fraternities to facilitate a fair and reasonable course of action.

International Student Council- Treasurer

- Responsible for all ISC finances ranging from sales, application for university funding to procurement for events.
- Directing and researching costs for all branches of the organizations. Created a new system of tracking costs and • funding received.

SKILLS

Software: Microsoft Excel, SharePoint, Word, and Publisher. SAP, Ariba Buyer, Ariba Views, and HTML.

State College, PA Jan- May 2010

Ft. Washington, PA June- December 2010

2011- Present

2009-Present

Present