A thesis
submitted in partial fulfillment
of the requirements
for a baccalaureate degree
in Supply Chain & Information Systems
with honors in Supply Chain & Information Systems

Reviewed and approved* by the following:

Dr. Felisa Del Carmen Preciado
Clinical Assistant Professor of Supply Chain Management
Thesis Supervisor

Dr. John C. Spychalski
Professor Emeritus of Supply Chain Management
Honors Adviser

* Signatures are on file in the Schreyer Honors College.
ABSTRACT

Debris management is a critical component of the disaster management process, accounting for up to 40% of the total disaster management budget (Committee on Homeland Security and Governmental Affairs 1), yet preparing to deal with the inevitable disaster debris is often overlooked until the crisis itself is occurring. FEMA has identified that strategic planning drastically impacts affected area’s response times and total budgets, but shockingly, most communities do not have a disaster debris management plan prepared. The reason stems mainly from responsibility falling to the local and state governments, who are equipped with insufficient knowledge or experience in debris management and have limited manpower to carry out the planning process. Under Presidentially declared states of emergency, FEMA and the Army Corps of Engineers will step in to help affected communities deal with disaster debris, but often their involvement comes days to weeks after the initial crisis. By this time, the communities have been left to establish and administer often ill-advised debris removal plans that will affect the total time, budget and environmental impacts of disaster recovery. The purpose of this thesis is to explore the benefits of process mapping and its usefulness in creating and executing better debris management plans within affected communities. By coordinating a FEMA approved process map to disaster debris removal, the uncertainties that currently surround clean up efforts can be mitigated and those local and state governments with the responsibility and authority to directly manage the debris removal process can be empowered to secure more efficient and effective plans to rebuild their communities.
LIST OF FIGURES

FIGURE 1: Sample of Process Map for Penn State Office Physical Plant………..8
FIGURE 2: Sample of Process Map for Catalog Telephone Procedure…………..10
FIGURE 3: Sample of Current Procedure Process Mapping……………………12
TABLE OF CONTENTS

List of Figures .. ii

Chapter 1: Current Disaster Debris Management ... 1

- Error! Bookmark not defined. 1: The Definition and Outline of Disaster Debris Management .. 2
- 1.2: The Role of FEMA .. 2
- 1.3: The Role of Local and State Governments ... 3
- 1.4: The Importance of Debris Management ... 4
- 1.5: The Knowledge Gap ... 4

Chapter 2: Process Mapping ... 7

- 2.1: Definition of Process Mapping ... 7
- 2.2: Outline of the Process Mapping Project ... 8
- 2.3: Benefits of Process Mapping ... 11

Chapter 3: Process Mapping Applications ... 13

- 3.1: Business Applications ... 13
- 3.2: Government Applications .. 14
- 3.3: Disaster Debris Management Potential Application .. 16

Chapter 4: Recommendations and Conclusions .. 17

- 4.1: Suggested FEMA Mapping Process ... 17
- 4.1 A: Objective ... 18
- 4.1: Timeline .. 19
- 4.1: Benefits .. 19

4.2: Process Mapping Conclusions ... 20

References ... 21
Chapter 1

Current Disaster Debris Management

“The term *disaster* is derived from the Latin roots *dis-* and *astro*, meaning ‘away from the stars’ or in other words, an event to be blamed on an unfortunate astrological configuration” (Coppola 25). To be more relevant to the times however, disasters are periods when hazardous risk is identified and overwhelms an affected community. In more detail, as defined by the Federal Emergency Management Agency (FEMA), hazardous risks have the potential to “cause fatalities, injuries, property damage, infrastructure damage, agricultural loss, damage to the environment, interruption of business, or other types of harm or loss (Coppola 24). Such examples of hazardous risks include floods, tornados, hurricanes, earthquakes, and every other disaster imaginable, natural and man-made. These disasters, wielding their own particular hazardous risks, share one very large common denominator: the havoc that ensues in their wake. The communities and regions affected by a disaster must handle rescue activities, healthcare provisions and logistics coordination, amid the destroyed infrastructure, property, and once structured daily routines. Nothing is a greater inhibitor to this aid and renovation of daily life than the physical debris left behind in the wake of a disaster. Blocking roadways and amplifying dangerous health hazards, disaster debris is naturally one of the first issues to be tackled on the road to recovery, but surprisingly, responsibility for preparing and executing debris management decisions lies somewhere in the middle ground between local and federal governments. This ambiguity directly fuels the confusion surrounding disaster debris management and thereby creates a rippling effect
throughout the entire disaster relief network. To better understand this uncertainty, we must first clarify what disaster debris is and how its management is carried out.

Definition and Outline of Disaster Debris Management

Disaster debris can be anything from solid wastes disrupted from their original locations, such as personal property, building material or industrial equipment, to soils, sediment or vegetation uprooted during the course of events (FEMA’s Oversight and Management of Debris Removal Operations 2). Sometimes overlooked, disaster debris also contains hazardous and chemically dangerous wastes intermixed throughout the rubble. The management process of such debris removal efforts can be outlined in what FEMA describes as three general steps: planning, initiation and implementation (FEMA’s Oversight and Management of Debris Removal Operations 2). These steps contain a multitude of processes and decisions, including identifying the collection site location, collection methods, contractor selection, and contractor monitoring standards that will be enforced. Depending on the responsibility, they are assigned to either of the major players in disaster relief: the federal (FEMA) or local and state governments.

The Role of FEMA

FEMA’s primarily responsibility in regards to disaster debris management is financial aid to assist the local and state governments to implement their plans of recovery. Through the Public Assistance (PA) program, FEMA helps to facilitate
emergency aid measures, restoration of infrastructure and of course the management of disaster debris (FEMA’s Oversight and Management of Debris Removal Operations 2). FEMA also collaborates with the Army Corps of Engineers through their National Response Plan that also includes debris management processes (Committee on Homeland Security and Governmental Affairs 2). Although FEMA does make personnel and their expertise, especially on debris management, available to the affected communities, the help often arrives too late to be beneficial. If FEMA cannot respond with on site consultation during the crucial 70-hour decision timeframe in which parameters for the disaster debris management process will be set, it is then too late to impact the processes which have already been set into motion (FEMA’s Oversight and Management of Debris Removal Operations 10-11).

The Role of Local and State Governments

State and local governments bear primary responsibility for disaster debris management planning, initiation, implementation and monitoring efforts (Committee on Homeland Security and Governmental Affairs 2). State and local governments are entrusted to first prepare reaction plans in advance of disasters, which includes outlining roles and responsibilities of all staff, departments and personnel that will be utilized, as well as identifying debris removal locations and prequalification of suppliers to provide agreed upon removal services. They are then asked to initiate those plans based on situational evaluation during the peak of disaster stress, when debris management can seem almost irrelevant in comparison to search and rescue or healthcare efforts. Lastly,
the local and state governments are required to monitor the debris removal process and ensure that environmental and health regulations are upheld and observed.

The Importance of Debris Management

Debris management should be paid great attention due to its high funding nature and long-term decision impacts, but as mentioned earlier, it is often undervalued due to other pressing matters in disaster aid relief. However, when considered as accounting for up to 40% of the total disaster management budget (Committee on Homeland Security and Governmental Affairs 1) and acknowledging its impact on all subsequent relief efforts, including the responsiveness of the rest of the disaster relief supply chain, as well as the total timeframe for community recovery, debris management clearly emerges as an area of great importance. This critical nature of debris management can be traced primarily to the coordination of governmental and contracted resources, as well as protocol and process definition, all occurring in the initiation phase as described by FEMA.

The Knowledge Gap

Those expected to carry out the planning and organization of responsibilities for debris management outlined in the initiation phase, are incapable of accomplishing those tasks effectively. Local and state governments repeatedly come to FEMA for assistance due to their own limited knowledge or experience in debris management processes, but
due to FEMA’s overall workload, policies preventing general contract templates and lack of transparency specific debris management tasks, those seeking help are often still surrounded by uncertainty in how to actually complete their obligations. FEMA has tried to amend this communication problem, by providing communities with specific debris management guidelines through the *Debris Management Guide* and *Debris Removal Applicant’s Contract Checklist*, as well as online courses in debris management preparation and execution (FEMA’s Oversight and Management of Debris Removal Operations 15, 18). The material, however, has still proven to be too difficult to properly master for local and state governments without FEMA guidance, leaving debris management decisions in the dangerous grey area of a knowledge gap.

FEMA’s best attempt to combat this gap surrounding debris management was through *The Post-Katrina Emergency Management Reform Act of 2006* (FEMA’s Oversight and Management of Debris Removal Operations 4) which enabled a congressionally funded intensive pilot PA program to engage communities directly in compiling a disaster debris management plan, as well as providing additional grant opportunities to fund the extended debris removal activities. The devastation caused by Katrina provided a prime example of the mishandling of disaster debris and demonstrated how uncoordinated efforts lead by state and local governments can lead to unnecessarily long recovery times (Hurricane Katrina: Continuing Debris Removal and Disposal Issues 1). Unfortunately, the program was only conducted from June 2007 through June 2008, when funding and support expired, leaving only a handful of participating communities with a fully functional debris management plan.
With the termination of the pilot PA program, there now exists a huge void in collaborative efforts between FEMA and communities in definitive pre-emptive disaster management planning. Instead of attempting the same solution once more and reviving a pilot program that was too expansive and intricate to work initially, FEMA should seek to first work with communities previously involved in the pilot PA program to amend a major problem with the previous method: unclear process definitions. Problems frequently arose over lack of transparency in the decision-making processes and unidentified resources to consult for help. By attempting to clearly document all obligations, processes required to meet those obligations and the individual owners responsible for each step along those processes, the communities and FEMA can better understand how to deal with disaster debris management. But how can such clarity be established? The answer lies with a rising trend in business planning: process mapping.
Chapter 2
Process Mapping

Process mapping, also known as system task analyzing, process task analysis,
process diagramming, or work mapping (Marelli 1), has been closely intertwined with the
concept of process management since its conception in the 1930s (Palmberg 95). Process
management and process mapping in particular, did not achieve high notoriety however
until the early 1980s, but unlike many other management concepts and methods, the
interest in process management and process mapping has only grown over the years
(Palmberg 95). Over the last three decades in particular, well-established procedures and
computer based program for process mapping have developed based on two
complementary aspects of traditional analysis: “data modeling (or entity relationship
modeling) and function modeling (or data flow diagramming)”(Bond 2). In order to
better understand the concept, let us first explore the definition of process mapping.

Definition of Process Mapping

“Process mapping is the step-by-step description of the actions taken by workers
as they use a specific set of inputs to produce a defined set of outputs” (Marelli 1). The
resulting process outlines the specific inputs, personnel, process sequence, and outputs of
the analyzed work process in the form of a matrix or flowchart format, combining both
words and simple graphics (Marelli 1). Simply put, process mapping defines the actions
of each and every worker in the process outlined, allowing for a visual representation of
the interconnectivity of processes. It can focus on the high-level organization (such as in Figure 1) or drill down to specific workers in cross functional groups.

Figure 1: Sample of Process Map for Penn State Office Physical Plant (Klotz 630)

Outline of Process Mapping

Process map creation is a very intricate and time-consuming procedure consisting of 6 major steps (Jacka 44-50):

1. Process Identification – define the process you wish to map by investigating current knowledge of its parameters and outcomes. This
initial identification will be compared to the actual details collected from workers responsible for physically completing the tasks. You may start with defining the theoretical process, but this initial description will help guide the definition of the real process, its start and end, what should be accomplished through its completion and where the outcomes are utilized.

This step is meant to capture a picture of current procedures so the discrepancy between what is expected and what actually occurs can be identified with the help of the following steps.

2. Data Gathering – requires a deeper dive into available information about the process, especially clearly defining what the process actually does so irrelevant or unnecessary actions can be eliminated.

3. Interviewing and Preliminary Map Generation – perhaps the most taxing portion of the method, you need to interact closely with all players involved in the researched process, paying special attention to the workers actually conducting the actions rather than overseers managing the process. This way you can align the perspectives of all involved in the process through discussing a preliminary map generated from their inputs. It should now be easier to identify miscommunication over outcomes, responsibilities, or deadlines after collecting individual work definitions, as in Figure 2.
4. **Analyzing Collected Data** - although you are constantly analyzing the information collected, a final and more formal analysis needs to be conducted to ensure the entire process has become clearly visible, accurate and efficient.

5. **Presentation of Process Map** – composition of the complete map, with breakdowns of individual units in the process, needs to be shared with everyone involved in the researched procedure. Through the inclusion of each worker and proof of input usage through the final process map, each contributor will feel closely connected to the mapping process, use produced resource because they helped to formulate it and will aid in its periodic update.
6. Review Period – once the process map is completed, a plan of action to update the resource periodically needs to be established, so as to continue to usage of current data. This review period will also help instill the lessons learned throughout each process mapping step and will help to provide guidance for future mapping projects for other processes.

Benefits of Process Mapping

“The value of process mapping as an intermediate step leading to process improvements is broadly accepted” (Klotz 624). Most easily identified, the benefits of process mapping are often focused on future improvements resulting from revising current processes, as exemplified in Figure 3. Once the status quo is defined, it is easy to create ideal future-state process maps and work towards changing your procedures in model of those goals (Klotz 625). This evaluation of process mapping may take years, however, to recognize through improvements within a business or organization, but the long term is not the only timeframe positively affected through process mapping. It can also be very helpful to understand the value of process maps prior to implementation of any future improvements as defined through the mapping procedure. One method to measure this present value of process maps can be through employee recall and understanding of the business processes included in the specific map designed (Klotz 624). Another method of measurement can be the impact on individual process stakeholders’ performances, and that influence on the overall process as well (Bandara 357). By acknowledging these almost immediate benefits, process mapping can be more
easily justified by management and can prompt further investment towards larger scale mapping initiatives (Klotz 624).

Figure 3: Sample of Current Procedure Process Mapping (Symons 73)
Chapter 3

Process Mapping Applications

Process mapping can be used in almost any situation where deeper understanding of set procedures and steps is necessary. Common applications are closely linked to the corporate world, in which businesses hope to reap financial benefits through improved company methods such as reengineered design processes, implementation of lean manufacturing, or a restructure of management. Process mapping can also be utilized in non-corporate settings as well, such as helping to organize academic department resources in the event of a restructure, identifying redundant healthcare policies, or even better alignment of government committees. To help identify the transferable benefits derived from process mapping to potentially be used in disaster debris management, further application explanation is necessary.

Business Applications

In a 2011 business process management study conducted by two Italian universities, *Business Process Re-engineering In Healthcare Management: A Case Study*, process mapping was identified as a crucial component to identifying current use of resources in a hospital surgical ward and better defining responsibilities to increase patient satisfaction. The study credited process mapping as useful for creating simulation models to increase the analysis of common hospital situations (Bertolini 43), thus
presenting caretakers with a more realistic preparation plan for stretched resources. The study also highlighted the benefits of visual outlining utilized in process mapping to guide the identification and monitoring of strategic hospital objectives (Bertolini 45).

Another example of process mapping application in business is a banking technology case study conducted by The Hull University Business School, *Re-engineering service quality process mapping: e-banking process*. The 2004 study described their findings on process mappings simply as a straightforward way to visually organize process steps and easily identify problems contained in one procedure method as well as those which spread throughout the entire decision map (Raphaël 31). Process mapping was also outlined as a way to simplify current operational practices due to the easily seen interconnectivity of steps and reduction of doubled efforts by uncoordinated areas.

Government Applications

As mentioned before, the private sector is not the only area to embrace the usage of process mapping. A 2006 study conducted by Aston Business College, *Using process mapping and business process simulation to support a process-based approach to change in a public sector organization*, found that process mapping and process simulation can be effectively used in a change of policy process and assist in communicating the current process design, including people’s roles in the overall performance of that design (Greasly 95). In particular, the researches used process mapping to help implement new information systems utilized by UK police forces to record traffic violations. Outlining
each step in the reporting process and converting those actions to a manageable computer program was accomplished first through a simplistic process map, but without the clarity provided by the process charts, the program developed would not have accomplished the goal of simplifying police records.

Another study to explore the usage of process mapping in governmental context was carried out by the City of Winnipeg, Manitoba, Canada for their Property Assessment Department (WPAD). In the 2007 report, *Quality Culture in Government: The Pursuit of a Quality Management Model*, WPAD described how they used process mapping to visualize and organize steps to improve quality excellence in accordance to ISO 9001:2000 guidelines. Through process mapping the city was able to implement quality standards and review methods, as well as easily communicate newly established goals with the entire department staff (Ntungo 136).

Generally speaking, process mapping has been employed more often in governmental settings due to the need to adapt to newer technological trends. For example, in a 2009 report conducted by Canadian universities, *Modeling e-government business processes: New approaches to transparent and efficient performance*, researchers found that governments worldwide are relying on process mapping to increase customer (constituent) satisfaction and accessibility. Through mapping operational, monitoring and support functions of various governmental departments, simplified procedures for communication with the public have been outlined and implemented successfully (Chourabi 94).
Disaster Debris Management Potential Application

As demonstrated through the various business and governmental studies discussed above, universal organizational benefits can be claimed in disaster debris management through process mapping. Mainly, clear visibility of responsibilities and task ownership can be established, helping to decrease the current confusion over who should perform what task. Providing step by step instructions on how to handle general situations surrounding debris management can provide local and state governments the guidance lacking during the initial 70-hour reaction timeframe and help build self dependence for future crisis decision making. Also, providing a larger overview of the disaster debris removal process can help communities affected to take a longer-term approach to debris management solutions and help coordinate efforts once separated through poor communication channels.
Chapter 4

Recommendations and Conclusions

Through this collective research, a strong case can be made to recommend a collaborative FEMA processes mapping effort to better define disaster debris management to enable local and state governments to properly manage their disaster debris situations. Although other methods of structural analysis are available and applicable, it is arguable that process mapping is the easiest procedure to implement, allowing for immediate action to take place.

Suggested FEMA Mapping Process

FEMA needs to build off its currently available debris management information, which includes the Debris Management Guide, Debris Removal Applicant’s Contract Checklist, and online courses in debris management preparation and execution, and concentrate on clarifying the information intended to guide users through debris management. FEMA also has as the experience with successful points of the previous pilot PA program to help initiate process mapping planning with individual communities themselves. Another helpful source is a 2008 publication of a Debris Management Plan Workshop, in which FEMA details extremely basic and high level outlines of disaster debris management. From general health concerns to contractor selection tips, FEMA gave an overview of how to handle debris management (a Debris Management Plan
Workshop 8) in their single day seminar targeting leaders in local and state governments. The workshop however only served to begin the conversation on disaster debris management, since specifics were often condensed into easily presented but still vague take away points. Although failing to achieve the total clarification on debris management FEMA desired, the workshop did help to demonstrate the need for more intense knowledge transfer through direct involvement in individual community response plans.

Objective

FEMA’s main goal for implementing a universal debris management plan, as well as specifically tailored preparation for individual communities, would be to improve the quality of management in this crucial disaster mitigation step. To do so, a multi-level process map, creating a hierarchy of flowcharts and lists, needs to be utilized to thoroughly break down the process into progressively finer levels of detail (Symons 71). “The mapping process is descriptive, rather than normative” (Symons 72), and should focus, as mentioned before, on describing the process as it actually exists, not how theoretically it should exist. The upper levels of the process map would contain simple flowcharts, such as those presented in the Debris Management Plan Workshop, that outline key steps in the execution of the process. The main difference however would lie in the drilling down for further information in this new process mapping project, creating lower levels of process units, and in those lowest levels, “key performance measures and trouble modes” (Symons 72) would be identified and addressed.
Timeline

A reconfiguration of the *Debris Management Plan Workshop* to extend through a recommended three to five day seminar (Fulscher 3-4) would be a great place to start for FEMA. Next, the agency should consider a short-term roadmap to complete the process mapping project. Over the first six months, FEMA should focus internally on detailing as much of the disaster debris management process as possible through process maps, and creating general templates for workflow to be individualized in each participating community they plan to work in. Over the course of the first year, FEMA should target the same areas previously included in the 2007-2008 pilot PA program, and test their newly developed process maps with communities already familiar with portions of the method. After successful implementation of the process mapping projects in a few communities, FEMA should then work off that progress and expand the procedure to surrounding communities enabling local areas to reach out to one another for help through their planning phases. Within five years FEMA should be able to see full process map completion and execution of disaster debris management plans, allowing for reflection on the produced results and an alteration period before the method is carried nation wide.

Benefits

As demonstrated through business and governmental applications of process mapping, disaster debris management can be greatly benefited through use of its organization techniques. First and foremost, a transparent work and authority flow will be
provided for communities to utilize during the 70-hour crisis reaction period, reducing the hesitation to make decisions and the potential to overlook important management steps. Secondly, the communities will now have increased responsiveness in dealing with debris since a plan of action has been laid out well in advance of the crisis and can be quickly and efficiently executed when needed. This preparation will also help to reduce debris management costs, by pre-approving contractors to conduct debris removal and mapping out where and when the removal process will take place. Lastly, process mapping will aid in reducing recovery time through immediate reaction to the disaster and faster clean up efforts, lessoning friction in other aid channels as well.

Process Mapping Conclusions

Process mapping provides a simple and easily replicated method to reduce uncertainties surrounding debris management through improving communication and empowering those with the authority to conduct the outlined processes with confidence. By investing the time and energy needed to develop a thorough process map of disaster debris management procedures, FEMA can effectively share its collective knowledge on the subject matter with local and state governments whose primary expertise does not lie in disaster management. Most importantly, FEMA will able to persuade more communities to better prepare for disasters ahead of time, reducing the strain on the federal government’s funds and personnel usually needed on scene during the key disaster reaction period.
References:

Palmberg, Klara. "Experiences of Implementing Process Management: A Multiple-Case Study."

Katherine Kozak
KGK2012@gmail.com | 570-885-6594

Permanent Address: 11 Reservoir St Pittston PA, 18640
Local Address: 501. Vairo Blvd. 332C State College, PA 16803

Education:
The Pennsylvania State University
University Park, PA

Smeal College of Business: B.S. Supply Chain Management
Graduation: May 2012
College of The Liberal Arts: Minor-Economics

- Dean’s List Fall 2008-Present
- Schreyer Honors College Fall 2010
- Sapphire Leadership Program Fall 2008-Present
- Beta Gamma Sigma Fall 2010

Work Experience:
Johnson and Johnson Co-op
Skillman, N.J.

Indirect Procurement
January 2010-July 2010

- Led various sourcing activities including 3 Request for Proposals (RFP); $2M spend with $80K savings
- Managed 2 non RFP bid proposals; $2.5M spend with $750,000 savings
- Standardized reporting templates and periods for the Indirect Procurement Operations Team; developed departmental reports including savings, spend, and diversity
- Increased supplier diversity spend by contacting 20+ contracted vendors and guiding them through the diversity certification process
- Supported the Indirect Procurement Operations Team in ad hoc data requests and analysis
- Co-led annual campus wide Vendor Appreciation Day event with 30 preferred suppliers in attendance
- Volunteered with philanthropic committees coordinating: American Red Cross blood drives, March of Dimes walk, Relay For Life team

ACLU-NCA Internship
Washington D.C.

Legal Assistant/Public Outreach
Summer 2011

- Shadowed ACLU-NCA attorneys through various trial processes
- Assisted in potential case intake
- Maintained member and donor relations
- Coordinated and executed public outreach events to inform the public of ACLU-NCA issues

Leadership Activities:
Pink Zone
University Park

Student VP of Marketing
Fall 2011-Spring 2012

- Supervised team of 15 students in creating and executing an official marketing plan to increase support of Pink Zone, a breast cancer awareness non-profit
 - 2012 Attendance Goal: 2,000 students
 - 2012 Fundraising Goal: $20,000

Student Co-Director of Marketing
Fall 2010-Spring 2011

- Guided committee of 10 students in marketing campaigns for Pink Zone
 - 800 students in attendance of Pink Zone Lady Lions game
 - $5,000 fundraised through corporate donors and merchandise sales
Global Business Brigades University Park

Director of Corporate Donations University Park Fall 2011

• Forged sponsor relationships with local businesses to support our brigades to Ghana and Panama
 o 2012 Fundraising Goal: $1,000

Brigade Leader University Park Fall 2010-Spring 2011

• Organized a 17 person trip to Panama to help implement innovative business solutions in existing small enterprises

Smeal Student Mentors University Park

Student Mentor University Park Spring 2008-Fall 2011

• Mentored 8 freshmen to smooth transition from high school to college
• Guided students through class selection process and exploration of majors
• Helped in the planning and execution of social events to welcome freshmen to campus

Penn State Dance MaraTHON University Park

OPPerations Committee Member University Park Fall 2010-Spring 2011

• Responsible for set-up, tear-down, and smooth functioning of THON weekend
• Increased sustainability efforts as a 4DRE (Four Diamonds Recycling Effort) Representative
• Canned (fundraising) for THON, the largest student run philanthropy benefiting pediatric cancer patients

University Park Undergraduate Association University Park

Department of Legal Affairs - Student Advisor University Park Fall 2008- Fall 2010

• Advise, represent, and guide peers through the university Judicial Affairs process; counseled roughly 5 cases/semester