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Abstract 
 

Atomic force fields for small clusters of gold, silver, and copper atoms are necessary for 

performing molecular dynamic simulations.  This work presents a method for developing these force 

fields and an analysis of the force fields we obtained.  Specifically, a potential energy function form, a 

parameterization method, and training algorithms are presented.  This thesis also provides a theoretical 

background of the project including discussions on Density Functional Theory, the concept of a force 

field, potential energy functions, and computational methods used.  
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Introduction 
The evolution of structures and properties of metal clusters has been a subject of considerable 

interest for many years [1-22]. Clusters often serve as a convenient means for gaining a systematic 

understanding of bulk structure and properties. The importance of clusters, which can range from 

subnano scale to meso scale in size, is further underscored in view of recent developments in 

nanoscience and nanotechnology. As the cluster size increases, the structure and properties can 

undergo systematic and often dramatic changes. Modeling novel materials requires development of 

computational tools which can account for such behaviors. One such tool is a reactive force field (FF) 

obtained as gradients of a potential energy function (PEF).  

A fast and reliable FF allows molecular dynamics simulations to be carried out for systems where first 

principle electronic structure-based simulations would be too computationally intensive to be of 

practical use. The FF may also be used to study the evolution of structure and properties of clusters and 

nanoparticles.  Detailed understanding of the growth of metal nanostructures would allow particle sizes 

and shapes to be controlled during synthesis for a variety of applications including heterogeneous 

catalysis [23, 24] and the formation of metallic glasses which lack the long-range order of normal 

crystalline metals [25, 26].  Parameterization of the FF using bulk data may lead to significant errors for 

the energies of small clusters and nanoparticles.  Since the formation process may involve the 

coalescence of nanostructures and clusters, it is desirable to develop analytic and transferable FFs that 

are capable of describing clusters and nanoparticles of all sizes and shapes. 

Many different PEF forms have been introduced in the literature with varying success [27-50]. Whatever 

the chosen form of PEF, the ultimate success depends on a combination of flexibility and constraint from 

a training set of reliable benchmarks. A FF derived from a PEF containing only a few parameters with 

limited flexibility would likely be incapable of modeling important features of novel materials. On the 

other hand, the enhanced flexibility provided by the use of a large number of parameters may introduce 

unphysical behavior for cluster configurations that are not included in the training set. A balance is 

sought where a physically motivated form of the PEF is used together with a compact set of parameters 

which may be safely constrained with benchmark experimental or theoretical data. This is the approach 

taken in this thesis.   We first describe the theory used to obtain the benchmark electronic structure 

data used to constrain the PEF.  We then describe the general properties of an atomic FF followed by 
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the details of our specific model.  Algorithms of our approach and a sample of our extensive testing are 

provided.  The efficiency and reliability of our model are assessed and we conclude with a discussion of 

applications which could benefit from the use of our novel FF. 

 

Theory 

Density Functional Theory (DFT) 
 All information about an atomic system may be described by the Schrodinger equation.  The 

Schrodinger equation facilitates calculating the quantum state or wavefunction (ψ) of the system, which 

is the most accurate description of that system.  Results from the Schrodinger equation are called ab 

initio (Latin for from first principles).  The time-independent Schrodinger equation for a single particle 

with mass m in a central potential V(r) is 

  ( )    
  

  
   ( )    ( ) ( ) (1) 

where   is Planck’s constant.  For atomic systems, the Born-Oppenheimer approximation allows the 

Schrodinger equation for the combined nuclear and electronic motion to be approximately separated 

into a nuclear Schrodinger equation which describes the molecular dynamics (at ordinary temperatures, 

this part may be further approximated using Newtonian physics) and an electronic Schrodinger 

equation, which is given by  

{ 
  

  
∑  

 

 

 ∑
   

 

|     |   

 
 

 
∑

  

|      |    

  }                          ( ) 

where    are the positions of the electrons,    and    are the positions and atomic numbers of the 

nuclei, and   is the charge of an electron.  The electronic Schrodinger equation is solved under the 

assumption that the light electrons are moving so much faster than the heavy nuclei that the nuclei may 

be treated as though they are stationary with respect to the electrons.   The energy eigenvalue of the 

electronic part is then computed as a function of nuclear coordinates and used in the molecular 

dynamics part as an effective potential energy surface.  

The Schrodinger equation, when solved allows observable quantities to be computed.  However, often 

the only practical means of solving the Schrodinger equation is by using computational methods that 
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approximate the solution [52].  A few of these computational methods are: the Quantum Monte Carlo 

method, Peturbation theory, and the variational method.  Determining lowest energy states based on 

these wavefunction methods gives very accurate results.   

However, wave-function based results may only be found for small atomic systems where the number of 

electrons, n < 20.  The Schrodinger equation for larger systems may be impractical to solve.  

Nevertheless, there are methods that facilitate accurate calculations of the properties for larger atomic 

systems.  One such method is Density Functional Theory (DFT). 

DFT is an ab initio method that seeks to describe a system in relation to its electron density n(r).  The 

electron density depends only on 3-spatial variables and is formally related to the 3N-dependent 

wavefunction via the identity 

 ( )   ∫  (         ) (         )        .       (3) 

This identity is easily verified for small numbers of particles.  For large-N, the wavefunction contains so 

many independent variables that it is impractical to compute it in order to obtain the density.  Instead, 

Hohenberg and Kohn found that the Rayleigh-Ritz variational principle, which was conventionally 

formulated in terms of wavefunctions, could be formulated for the density function itself [52]. 

An early approximation of the electronic density was published by Hartree [53].  He proposed that n(r) 

could be well-approximated by treating each electron as if it were in independent motion.  That is, 

 ( )   ∑ |  ( )|
  

                              (4) 

where   ( ) is the eigenfunction of a single particle Schrodinger equation of the form given in equation 

(1).  Then, by considering the electrons to be non-interacting, but under an external potential v(r), the 

variational energy of the system becomes 

  ( )[ ]   ∫  ( ) ( )      [ ( )]                  (5) 

where   [ ( )] ≡ kinetic energy of the groundstate of non-interacting electrons with density distribution 

ñ(r).  The groundstate energy is found by minimizing   ( )[ ] with respect to  ( ).  To apply this 

method to a system of interacting electrons, the energy of the system becomes 

  ( )[ ]   ∫  ( ) ( )      [ ( )]   
 

 
∫

 ( ) (  )

|    |
          [ ( )]              (6) 
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where Exc is the exchange-correlation energy functional that accounts for many-body effects.  The 

exchange-correlation energy is often approximated by the Local Density Approximation (LDA).  LDA is 

derived from the exchange-correlation energy of a uniform electron gas, and it depends only on the 

electron density at a particular coordinate.   

A better approximation is the Generalized Gradient Approximation (GGA) which depends on the 

electron density as well as the gradients of the electron density.  The particular GGA functional that we 

use is the Perdew-Wang exchange-correlation functional (PW91) as implemented in the DMol package 

[50].  DFT provides very accurate results from first principles.  It is for this reason that we use DFT to 

obtain empirical data for our study of metallic systems. 

Concept of a Force Field (FF) 
A force field is a vector field, i.e. a function that produces a vector given a set of coordinates.  

For example, in a system of N particles, the force on the kth particle may be found by   

  
⃗⃗⃗⃗     

⃗⃗⃗⃗ (  ⃗⃗⃗     ⃗⃗  ⃗     ⃗⃗⃗⃗ )                                                     (7)     

 

Example 1.  Distribution of Point Charges 

A fundamental example of a force field for a system of n point charges is described by Coulomb’s law, 

where the force between each pair of point charges is given by 

 (   )    
|  ||  |

   
  .                    (8) 

To find the total force on point charge 1 of the system, the vector 

sum of all forces between point charge 1 and every other point 

charge in the system is needed.   That is, 

      
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗         ⃗⃗ ⃗⃗ ⃗⃗        ⃗⃗ ⃗⃗ ⃗⃗        ⃗⃗ ⃗⃗ ⃗⃗         ⃗⃗ ⃗⃗ ⃗⃗  ⃗   (9) 

This is called the “superposition principle.”  By separating the forces into their respective x-, y-, and z-

components, it is simple to find the sum of the forces in each direction. 

Figure 1: System of Point Charges 



- 5 - 
 

Consider, for instance, a two-dimensional system of three identical point charges as shown in figure 1. 

To find the force on electron c, we use Coulumb’s law to find the forces from b onto c and from a onto c.  

Then, using the superposition principle, the force on c is the sum of the forces from a and b.   

      
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗         ⃗⃗ ⃗⃗ ⃗⃗        

⃗⃗ ⃗⃗ ⃗⃗    

    
|  ||  |

   
 

    ̂     
|  ||  |

   
 

    ̂ 

          (
 

      
      

 

      
     ) 

          (                           ) 

          (         ̂          ̂           ̂) 

          (         ̂           ̂) 

          (            ) 

            

The force field may also be obtained by taking the gradient of the electric potential energy of the 

system.   

   (  ⃗⃗⃗     ⃗⃗  ⃗     ⃗⃗⃗⃗ )         
⃗⃗⃗⃗                                  (10) 

  In molecular dynamics, the forces in question are used in Newton’s second law of classical mechanics. 

                   
     

   
                 (11) 

Coulombic particles exhibit a pair potential 

 (   )    
|  ||  |

   
 .       (12) 

For a system of charged particles, the potential also obeys the superstition principle 

   (  ⃗⃗⃗     ⃗⃗  ⃗     ⃗⃗  ⃗)   ∑∑  (   ) 

 

   

 

 

             (  )                 
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where Vc is the pair potential for point charges, and      |  ⃗⃗    ⃗⃗ |. 

Therefore, for the example in Figure 1, 

   (  ⃗⃗⃗     ⃗⃗  ⃗     ⃗⃗  ⃗)   ∑ ∑   (   ) 
 
   

 
    (   )    (   )     (   )   

We will first solve for the force on particle c in the x-direction. 

   
⃗⃗ ⃗⃗  ⃗     

 

   
  (   )   

 

   
  (   )  
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   (   )

    

    
   

  
   (   )
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|  ||  |
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  (     )

  (     )
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)  ( 

|  ||  |
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)  

  ( 
          

           )(
      

     
 

     

     
) 

  (       )
 

 
       ( ̂) 

which is the same result that we obtained previously using superposition. 

In the same way, the force on particle c in the y-direction is 

   
⃗⃗⃗⃗  ⃗   ( 

|  ||  |

   
 )(

     
   

)  ( 
|  ||  |

   
 )(

     
   

) 

  (       )(
             

     
  ) 

      ( ̂)  

In polar coordinates, 
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  ⃗⃗  ⃗         ( ̂)      ( ̂)             

 

 

Example 2.  Distribution of Atoms 

Metallic particles, which are the objects of this study, are not point charges.  The clusters comprise 

atoms, which are more complex than point charges and do not satisfy the superposition principle for 

their pair potentials.  That is, 

   ∑ ∑   (   ) 
 
     

               (14) 

where VA = atomic pair potential.  

The reason that this equality does not hold is that every metallic atom possesses a nucleus and an 

electron cloud.  While the nucleus is by far the more massive of the two, most of an atom’s space is due 

to the electron cloud.  Because the electrons do not often have a strong allegiance to their own metallic 

nucleus, there are many interactions between the electrons of the different atoms of the system.   The 

effects of an atom’s electron cloud, as well as other nuclei and electrons in the system, are called many-

body effects.   Thus, we add a correcting term 

   ∑ ∑   (   ) 
 
   

 
   ∑   (  )

 
                                  (15) 

The correcting term is an energy functional that, in general, depends on the local electron density.  For 

bulk systems, the correction term is equal to the energy needed to embed an atom into a lattice.  

Potential energy functions of this form are therefore referred to as embedded-atom (EA) functions.  

Many-body effects are accounted for via the electron density, which depends on the geometry of the 

system.  Rather than using DFT electron density, we use 

    ∑  (   )                                                                  (16) 

and compute the pair potential  (   ) by fitting to the DFT data. 

Finding an accurate potential energy function (PEF) is vital to obtaining a reliable force field.  Therefore, 

this PEF must accurately predict the electronic potential energies of any arrangement of any number of 

metallic particles. 
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Form of the Force Field 

Potential Energy Function (PEF) 
The EA method that we use is the quantum Sutton-Chen (QSC) method, which is capable of 

providing accurate values for surface energies, vacancy energies, stacking fault, and cohesive energies in 

bulk limit [50].  The form is described by: 

   ∑ [
 

 
∑     (   )             

 

 ]                       (17) 

 (   )   (
   

   
)
   

                             (18) 

    ∑ (
   

   
)
   

                (19) 

Note that the term         

 

  in equation 18 corresponds to the correcting term in the more general form 

in equation 16.   

When computing the potential energy function, it is convenient to eliminate the van der Waals region 

(see figure 2).  This is due to the need to increase computational efficiency and the fact that our DFT 

calculations are expected to be inaccurate in the van der Waals region.  DFT, in principle, is capable of 

providing all ground-state properties including the long range van der Waals energies.  However, both 

the LDA and GGA exchange-correlation functions do not completely capture the correlated motion of 

electrons arising from Coulomb interactions between distant nonoverlapping electronic systems.  

Therefore, we simply eliminate the long-range part of the potential using the cutoff function 

  ( )   
 

 
[      (

 (      )

(          )
)] (20) 
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for interatomic 

distances greater than 

     and less than 

    .  It is important to 

note that this method 

will be most successful 

if values for rMIN and 

rMAX are chosen to be 

greater than typical 

bond lengths of the 

system.  For instance, 

the bond length for a 

diatomic Cu molecule 

is about 3.00 

angstroms.  By chosing rMIN and rMAX to be 3 and 5, respectively, we are able to capture the true 

minimum and maintain the approximate shape of the true potential while cutting off the Van der Waals 

region.  In this study, we allow      and      to be fixed values of 5 and 3 angstroms, respectively. 

The QSC potential uses five parameters          and  .  We have found [Legenski] that the variation 

among the metallic clusters in size and shape cannot be accounted for using constant values of these 

five parameters.  Therefore, we allow the five parameters to vary with the number of nearest neighbors 

by defining an effective coordination number 

    ∑   (   )
 
          (21) 

Here   (   ) is a local cutoff function which allows the model to disregard atoms that are far away from 

the atom in question.  In our work, we have assumed the local cutoff function to be the same as the one 

used to cutoff the van der Waals region (see Figure 2).  We then use the following scheme which allows 

the QSC parameters to linearly interpolate between small and large clusters: 

 (  )       (      )     (     )     (22) 

 (  )       (      )     (     )             (23) 

 (  )       (      )     (     )     (24) 

Figure 2: Van der Waals Cutoff 
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 (  )       (      )     (     )     (25) 

 (  )       (      )     (     )      (26) 

The constant parameters D0, c0, D1, c1, etc, are determined through training the model with the 

monatomic DFT data.  Equations 23 through 27 show how the parameters interpolate between the two 

extreme sets of parameters depending on how many atoms are in a particular locality. 

The dependence of the parameters on the coordination number Mi allows for smooth interpolation 

between small clusters and the bulk limit.  When Mi is small, D is close to D0.  But when Mi is large, as is 

the case with bulk structures, then D will be closer or equal to D1.  The same is true for the other 

parameters, such that they are always between their respective X0 and X1 parameter sets.   

The parametrization scheme for binary systems is similar to that of the single metallic systems. 

 (     )    (  )   (      )     (     )     (27) 

 (     )    (  )   (      )     (     )     (28) 

 (     )    (  )   (      )     (     )     (29) 

 (     )    (  )   (      )     (     )     (30) 

 (     )    (  )   (      )     (     )     (31) 

In this case, Mi is the number of atoms of the same type as atom i within the cutoff function and Ni is the 

number of atoms of a different type as atom i. In this case, there are two sets of X2 parameters: one for 

atom type i and one set for atom type j.  These parameters are determined using the EA method trained 

with DFT data for binary alloy systems. 

We then obtain the parameters necessary for equations 18 - 20 by using the following combination 

rules.   

     √ (     )   (     )   (32) 

     
 

 
[ (     )   (     )]   (33) 

     
 

 
[ (     )   (     )]  (34) 
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[ (     )   (     )]   (35) 

     
 

 
[ (     )   (     )]   (36) 

Equations 33 - 37 are satisfied by a binary system.  For monatomic systems, Ni and Nj are zero, and 

equations 33-37 are reduced to equations 23-27.   

Analytical Derivatives 
 Most recently, it has become an object of our study to find analytical derivatives to determine 

the force fields.  In the past, we used a finite differences method to approximate the derivatives of the 

PEF [50].  The finite differences method of approximating the derivative uses the limit definition of a 

derivative. 

  

  
       

 (   )  ( )

 
                  (37) 

which means for the ith particle, 

     
        

 (          )  (        )

 
        (38) 

and similarly for y and z- components.  In our codes, h is given a value of 1*10-6.  Because we have 

chosen a small value for h, the approximations are accurate.  However, we would like to find the 

derivatives analytically to increase the computational efficiency in calculating the force field.  While it is 

possible to find the necessary derivatives using mathematics software such as Maple or Mathematica, 

output from these codes could result in redundancies and inefficient algorithms for our application.  We 

therefore find the derivatives by hand.  While finding the derivatives of our PEF by hand requires little 

more than the knowledge from an introductory course in calculus, doing so is somewhat cumbersome. 

To simplify matters, we explored the possibility of reducing the number of variable parameters in our 

PEF, thereby reducing the number of significant derivatives.  In the past, we implemented an 

interpolation scheme to calculate five variable parameters.  We now explore the possibility of reducing 

the number of variable parameters to two.  That is, only the parameters D and c will be determined 

using the interpolation scheme, and the parameters α, p, and q will remain constant.    While the form 

of the PEF is maintained, equations 13 through 15 will be reduced to 

 (  )            (39) 
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 (  )           (40) 

 (  )            (41) 

After changing the number of parameters from 10 to 7, the PEF suffers slightly due to reduced flexibility 

(see chart).  However, the change is not very significant, and the computational efficiency and simplicity 

gained is enough to justify using this simplified model.  In addition to simplifying our model, it also 

simplifies the analytical derivatives.  To find our force field, we solve the following equations: 

 
  

   
    

   (42) 

 
  

   
    

  (43) 

 
  

   
       (44) 

It is easy to see that solving these derivatives is greatly simplified because equations 7 and 8 are reduced 

to the terms 

 (   )   (
 

   
)
 

                       (45)  

    ∑ (
 

   
)
 

            (46)  

These terms are dependent only upon atomic spacing, eliminating the need for logarithms in the 

derivatives. 

If we consider, for the ease of illustration, that all parameters are constant, then the PEF form for a 

system of three atoms is 

 (  ⃗⃗⃗     ⃗⃗  ⃗   ⃗⃗  ⃗)   ∑  [
 

 
∑  (   )       

 

    ] 
         (47) 
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   ]  

Ultimately, when we apply the derivatives for the variable parameters D and c, the PEF derivative 

becomes 

 
  

   
  

        

   
  

 

 
 (   )

 

   
(       )  

 

 
 (   )

 

   
(       )  

 

 
 (   )

 

   
(       )  
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where 
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and similarly for derivatives with respect to    and   .  The above analytic formulas easily generalize to 

more than 3 atoms and may be conveniently programmed. 

Training the Force Field 
We obtain the PEF using an embedded atom (EA) method.  An EA method produces good 

agreement with our benchmark data for large clusters of atoms.  Specifically, we use the Quantum 

Sutton-Chen model [45] to obtain our PEF.  Our benchmark data, which comprises thousands (see tables 

1 and 2) of energy structures, is obtained using density function theory (DFT) calculations.   

In order to see the improvement that may be achieved by our approach, we also consider a QSC PEF 

with constant parameters.  We refer to the force fields which use constant parameters as FF0, and the 

force fields which use PEF’s determined from equations 11-25 as FF1.  Figures 1 and 2 compare FF0 

(blue) and FF1 (red).  The results show that FF1 produces consistently less error than the FF0. 

We find that the clusters are too structurally different to adequately be represented using only one set 

of parameters.  This may be because the geometries of very small clusters are often planar while larger 

structures are three-dimensional.  The transitional trends from small to intermediate to large cluster 

sizes are best modeled by FF1.   

We train the model by solving the equation 

 ( )   
∑    |  

       
  |

  
 

  ∑   
  
 

   (49) 

and simultaneously minimizing the function 

   
∑   ( )

    
 

∑  
    
 

.   (50) 

f(N) is the average error in electron volts per atom between the energy of a particular structure as 

determined from our benchmark data and the energy value given from our potential energy function.  

We use a quasi-Newtonian algorithm minimization routine to minimize g, thereby minimizing f(N) [51].   

The weighting function ωm causes structures with lower energies to be weighted more heavily than non-

minima.  The weighting function   helps to ensure appropriate limits as cluster sizes reach the bulk size.  

A unique feature of our potential energy functions is found when we minimize g.  We include the 

energies from every cluster size, not each cluster size individually or exclusively bulk.  Instead, this 
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minimization provides a smooth extrapolation from small cluster sizes, to intermediate cluster sizes, to 

bulk structures.  This minimization weights the larger cluster sizes to provide the best results in the bulk 

cluster structures and reasonable, though less accurate, 

results for smaller cluster sizes. 

Structures that are included in the training data are stable 

and metastable structures for the given metal as well as other 

random structures.  The stable and metastable structures are 

equilibrium arrangements that have low energies.  Stable 

structures have lower energies than metastable structures, 

though both are equilibrium arrangements of atoms.  The 

training sets also have non-equilibrium structures.   

If the n-size corresponds to a “magic number” the structure may 

be icosahedral—that is, a spherical-like structure made of 

triangles.  Some examples of magic numbers are 13, 19, 25, and 

55.  These numbers are considered “magic” numbers because 

they represent the numbers of particles that will perfectly 

enclosed a spherical structure with equilateral triangles.  Clusters 

of magic-number sizes and similar sizes with near-icosahedral 

symmetry are included in the training set.  These structures have 

low surface energy.  However, the internal strain on the clusters precludes icosahedral structures from 

becoming very large.  

Instead, larger structures will become face-centered-cubic (fcc) 

in shape.  FCC is the crystalline structure that is found in which 

there are enough atoms to create long-range order (that is, an 

infinite number of unit cells in any direction).  The fcc structure is 

considered the bulk limit because there must be many atoms to 

obtain the long-range order it requires.  Although this structure 

has very low internal energies, the surface energy necessary to retain the cubic shape of the unit cell is 

too great to be maintained by only a few cells.   

 

Figure 3: Stable and Metastable Structures 

 

 
Figure 1. All the structures studied. 

 

 

 

 

 

Figure 5: Magic Number Structures 

 

  

Figure 4: Face-Center-Cubic (FCC) Structures 
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Optimization 
 After we obtain what we believe to be an accurate PEF, it is necessary to test how this model 

will perform.  To do this, we have developed an optimizer for the PEF.  Specifically, we use the 

optimization to stretch and compress the bond lengths to search for new minimum energy structures.  

That is, the optimizer will fine-tune the coordinates of the atoms in a structure to find an arrangement 

that results in the lowest total energy.  If the PEF and DFT are perfectly accurate, the minimum that the 

optimization indicates will be the same minimum that we received from DFT data.   

A good example of an accurate PEF resulting in a well-behaved optimization is observed in Figure 6.  The 

red line indicates energy values given by the PEF while the blue line shows the minimum energy values 

found by the optimizer.  Specifically, the agreement between the PEF and the DFT is very good.  

Additionally, the optimization using the PEF agrees with the minimum energy DFT structures.   

Inconsistencies between the PEF and 

the optimization can sometimes occur.  

It is possible that the PEF may be 

unconstrained in a region where the 

parametrization is too flexible.  If the 

form of the PEF has many parameters, 

an optimization can reveal minima much 

lower than what is physically correct. 

When the optimization finds lower 

energy structures, it may mean that the 

lowest energy structure was not 

represented in the DFT training set or 

that not enough structures with 

compressed or stretched bonds were 

not included in the training set.  In this case, we add the structure found by the optimization to our DFT 

data.  We then retrain with the new structures in the training set. 

Computer Algorithms 
 In this study, we write the necessary codes in Fortran, using a compiler for Linux-based systems.  

The basic algorithm for finding the parameters is solving for the error per atom, slightly changing the 

 

Figure 6: Optimization 
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parameters, and then adjusting the parameters via a minimization routine.  Because we are minimizing 

equation 27, this process is repeated hundreds of times, obtaining a smaller error each time. 

The parameters are changed in very small increments.  This process is necessary to avoid violent 

oscillations of all of the parameters.  Depending upon how much the error has changed in the 

immediately previous iterations, the changes in the parameters may be small.  The following excerpt of 

code is responsible for changing the parameters before they are adjusted: 

do i=1,2 

      do j=3,3 

      if(offset)then  

        e(i,j)=e(i,j)-exp(-5.d0) 

        c(i,j)=c(i,j)-exp(-5.d0) 

        a(i,j)=a(i,j)-exp(-5.d0) This set will reduce the current parameters by e
-5

. 

        p(i,j)=p(i,j)-exp(-5.d0) 

        q(i,j)=q(i,j)-exp(-5.d0) 

      else  

        e(i,j)=e(i,j)-exp(-4.d0) 

        c(i,j)=c(i,j)-exp(-4.d0) 

        a(i,j)=a(i,j)-exp(-4.d0)         This set will reduce the current parameters by e
-4

. 

        p(i,j)=p(i,j)-exp(-4.d0) 

        q(i,j)=q(i,j)-exp(-4.d0) 

      endif 

      end do 

      end do 

 

It is necessary to have two different step sizes for the parameters.  The Boolean value offset in the 

above code is determined by the change in the error of the previous iterations.  If the error does not 

improve after several successive iterations of the minimization, we assume that it has reached a 

minimum error.  However, not all minimal errors found in this way are “absolute”.  That is, a minimum 

error found in this way may not be the smallest error obtainable.  In order to determine if the error is, 

indeed, the most ideal, the code gives the parameters an extra “boost.”  That is, the parameters are 

reduced by e-4 rather than e-5.  This usually changes the parameters enough to find a lower, more ideal 

error.  If, however, the error does not change, and the parameters return to the same arrangement, we 

then assume them to be the best parameters.  

The binary force fields are determined in much the same way as the uniform atomic cases.  We use the 

parameters for each of the monatomic substances in the system and extrapolate the results to create a 

new potential energy function.  We then improve upon this model by constraining it with additional DFT 

data of binary clusters.  We use DFT data of clusters of varying mixing ratios between substance i and 
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substance j (see tables in appendix).  This method uses a linear dependence on the coordination 

numbers for each type of atom in the system performs well in the binary systems.   

Discussion of Results 
 It is important to note that there is no perfect or unique set of parameters for the force field 

application.  However, the parameters shown in Table 3 and Table 4 are the best that our training 

provides, and these parameters are used to derive the force fields.  The quality of our results is best 

demonstrated by the error of the PEF’s we develop.  The graphs in the appendix show the average error 

per atom for each cluster size.  The FF1 results are in red, and the FF0 results are in blue.   

An important quality for a PEF to have is its ability to extrapolate reasonable results for cluster sizes that 

have not been included in its training set.  For example, Figure 7 shows PEF error results for Au for 

cluster sizes between 2 and 147.  However, only cluster sizes from 2 to 100 were included in the training 

set for Au.  Even though data for cluster sizes 105 to 147 were not included, the error for these clusters 

is quite small and, in some respects, better than the results for the cluster sizes that are included in the 

training set.  Well-behaved extrapolation results ensure that the PEF will be useful for larger clusters.  

 At first thought, an interpolation procedure that creates a binary PEF exclusively from the monatomic 

parameters of the respective elements should be accurate without needing extra training from binary 

data.  Indeed, our first studies showed good results for Ag and Cu.  However, Au binary substances were 

not met with the same success.   

There are many unique synergy properties between Au and the other metals that cannot be properly 

modeled using the respective monatomic parameters.  That is, the binary systems have their own 

properties that require their own sets of parameters to accurately depict.  This observation attests to 

the unique characteristics specifically contributed to Au.   

Conclusions 
Force fields for simulating copper, silver, and gold clusters and nanoparticles were developed.  

Potential energy functions were obtained for both monatomic and binary metallic systems using an 

embedded atom method which uses an energy functional that depends on the local electron density at 

a given atomic site. Many cluster configurations of varying size and shape were used to constrain the 

parametrization for each system. Binding energies for these training clusters were computed using DFT. 

Figure 9: PEF results for Au 
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Extensive testing showed that the many-body potentials are able to reproduce the DFT energies for 

most of the structures that were included in the training set. The force fields were used to calculate 

surface energies, bulk structures, and thermodynamic properties [50]. The results were found to be in 

good agreement with the DFT values and consistent with the available experimental data. Our initial 

efforts used a somewhat complicated procedure which required a large set of parameters with limited 

transferability. Our subsequent work uses a single form for the PEF and a greatly reduced set of 

parameters which provides greater transferability and efficiency. The general procedure appears to be 

robust and ready for targeted applications, such as the following: 

 MD simulations in a canonical ensemble for clusters ranging from subnano to nano scales.  The focus 

would be to obtain global minima. The force field would be used to obtain refined cluster structures at 

the global minima and to simulate the structural evolution of the clusters.  

 

 Phase transitions. At an appropriate size under certain conditions (pressure/temperature), clusters may 

undergo a transition from one structure to another structure and eventually into bulk. This kind of 

structure transition is a common feature of structural evolution studies for clusters. However, to our 

knowledge, no direct investigations of the region near the transition have been performed. This is due 

to the large number of constituent atoms in nanoparticles that make ab initio quantum mechanical 

calculations prohibitively expensive to perform. Therefore, the only knowledge we have of these 

interesting transition regions comes from extrapolation or interpolation between limiting cases. Such 

indirect knowledge offers little insight into important material properties which ultimately limits efforts 

to understand the underlying mechanisms that control the formation of nanostructures. The current FF 

would allow a direct investigation of the behavior of large clusters near the transition region between 

cluster and bulk. 

 

 Reactivity. The novel force field may be utilized to study the chemical reactivity of metal clusters, alloys, 

and surfaces toward molecules, which is directly associated with many technologically important 

applications such as heterogeneous catalysis, hydrogen storage, and chemical corrosion. Due to the 

technological importance of hydrogen storage, it would be desirable to perform simulations of light 

metal hydrides in order to understand the interactions between hydrogen atoms and the metal 

elements. This would allow practical schemes to be developed for controlling the release of molecular 

hydrogen at a relatively low temperature using appropriately designed metal alloys. Extensions to other 
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important technological applications could also be pursued such as the development of low cost and 

highly efficient metal catalysts for hydrogen dissociative chemisorption.  

 

 Formation of metallic glasses. Metallic glasses are metal alloys with amorphous or glassy structures 

obtained from liquids of the constituent elements which do not crystallize during cooling. These 

materials exhibit novel physical properties that significantly differ from their corresponding crystalline 

forms. It is therefore important to understand their structures at atomistic detail and to quantify the 

structure-property relationship. The FF developed here would provide a unique opportunity to study 

such a relationship and would allow novel metallic glass materials to be designed with desired 

properties for specific applications. 

 

 Thermodynamic and mechanical properties of metal alloys. The FF developed here would enable 

thermodynamic and mechanical properties of metal alloys to be evaluated by performing lattice 

dynamics simulations and calculations of bulk modulus. These properties are critically important for 

design of novel materials for applications such as corrosion resistant alloys, and would otherwise be 

difficult to obtain due to the complexity of alloy compositions and structures. 

 

It is hoped that the work described in this thesis will be useful in such applications and provide a 

foundation for further investigations. 
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Figures, Charts, and Tables 
 

Table 1: Number of Training Binary Clusters 

System Number of Benchmark Clusters 

Cu + Ag 4,930 

Au + Ag 7,696 

Au + Cu 7,958 

 

 

 
Table 2: Number of training monatomic clusters 

System Number of Benchmark Clusters 

http://pubs.acs.org/doi/abs/10.1021/jp004368u
http://pubs.acs.org/doi/abs/10.1021/jp004368u
http://www3.interscience.wiley.com/cgi-bin/fulltext/122236977/HTMLSTART
http://pubs.acs.org/doi/abs/10.1021/jp004368u
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Cu 3,526 

Ag 7,240 

Au 12,383 

 

Table 3: FF1 Parameters 

 i Di(eV) ci αi(Å) pi qi 

Cu 0 0.13961 3.96788 2.68496 11.26408 10.24328 

Cu 1 0.82566 1.93253 2.22857 7.96061 3.15717 

Ag 0 0.25590 2.70378 2.86178 11.07230 10.42481 

Ag 1 1.02952 1.51273 2.46059 8.68235 3.84122 

Au 0 0.84105 1.67526 2.54055 12.74993 10.68084 

Au 1 1.88295 1.14705 2.43205 9.83923 4.84162 

Cu +Ag 2 0.72848 2.02081 2.28822 8.02453 2.48090 

Cu + Au 2 0.92499 2.01610 2.38057 7.96796 2.67050 

Ag + Cu 2 1.11780 1.57238 2.52451 8.00608 4.34362 

Ag + Au 2 1.09787 1.70548 2.73388 8.61485 3.48297 

Au + Cu 2 1.96652 1.29905 2.43940 9.35256 7.98669 

Au + Ag 2 2.07570 1.42034 2.36455 9.48098 10.61060 

 

Table 4: FF0 Parameters 

 Di(eV) ci αi(Å) pi qi 

Cu 0.97251 1.25718 2.03707 12.51465 2.54495 

Ag 0.52735 1.67790 2.47532 12.45291 1.80458 

Au 0.65415 1.82580 2.54173 12.31934 3.55212 
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Figure 7: PEF Gold Results 

These graphs show the error of our derived PEF when we compare it to our benchmark 

DFT data.  The blue results are from a PEF with no coordination number dependency, and 

the red results are from our PEF with all parameters dependent on the coordination 

number.   We observe that, with the exception of a few small clusters, a coordination 

number dependency greatly increases the accuracy of the PEF for Au systems.  
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Figure 8: PEF Silver Results 

These graphs show the error of our derived PEF when we compare it to our benchmark DFT 

data.  The blue results are from a PEF with no coordination number dependency, and the red 

results are from our PEF with all parameters dependent on the coordination number.   We 

observe that the coordination number dependence increases the accuracy of the PEF, 

especially for larger cluster sizes. 
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Figure 9: PEF Copper Results 

These graphs show the error of our derived PEF when we compare it to our benchmark DFT 

data.  The blue results are from a PEF with no coordination number dependency, and the red 

results are from our PEF with all parameters dependent on the coordination number.  We 

observe that the coordination number dependence increases the accuracy of the PEF, 

especially for larger cluster sizes. 
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Further Computational Algorithms 
Code that derives Force Fields 

 

c***************************************************************** 

c 

c  Compute forcefield (FF) for Au-Cu cluster 

c  nsize - size of cluster 

c  ndata - number of cluster configurations 

c  x,y,z - coordinates of atoms in the cluster 

c  energy - potential energy at (x,y,z) 

c  ffx,ffy,ffz - components of the FF  

c234567 

      implicit none 

      integer i,j,n,nsize,nmax,ndata 

      parameter (nmax=4000,ndata=1000) 

      integer ntype(nmax) 

      real*8 x(nmax),y(nmax),z(nmax),edft,energy, 

     #       ffx(nmax),ffy(nmax),ffz(nmax), 

     #       e(2,3),c(2,3),a(2,3),p(2,3),q(2,3), 

     #       rmin(2,3),rmax(2,3) 

      character*2 atom 

      common/params/e,c,a,p,q,rmin,rmax 

 

      open(10,file='parameters',status='old') 

      open(20,file='ffield.in',status='old') 

      open(30,file='ffield.out',status='unknown') 

      open(40,file='ffield.dump',status='unknown') 

 

      do i=1,2 

      read(10,*) 

      do j=1,3   

        read(10,'(7(f10.5))')e(i,j),c(i,j),a(i,j),p(i,j),q(i,j), 

     #                       rmin(i,j),rmax(i,j) 

      end do 

      end do 

 

      do 100 n=1,ndata 

 

      read(20,*)nsize 

      read(20,*)edft   !  DFT energy 

      if(nsize.gt.nmax)then 

        write(*,*)'increase nmax and try again' 

        stop 

      endif 

 

      do i=1,nsize 

        read(20,*)atom,x(i),y(i),z(i) 

      if(atom.eq.'Cu')then 
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        ntype(i)=1 

      elseif(atom.eq.'Au')then 

        ntype(i)=2 

      else 

        write(*,*)'error in atom type' 

        stop 

      endif 

      end do 

 

      call ffield1(nsize,ntype,x,y,z,energy,ffx,ffy,ffz)  ! numerical 

c     call ffield2(nsize,ntype,x,y,z,energy,ffx,ffy,ffz)  ! analytical 

 

      write(30,*)n,nsize,edft/nsize,energy 

      do i=1,nsize 

        write(40,'(6(e10.1,2x))')x(i),y(i),z(i),ffx(i),ffy(i),ffz(i) 

      end do 

 

 100  continue 

 

      stop 

      end 

 

c***************************************************************** 

c 

c  Code to evaluate the FF for a binary cluster 

c  Uses finite differences to approximate gradients 

c234567 

      subroutine ffield1(nsize,ntype,x,y,z,energy,ffx,ffy,ffz) 

      implicit none 

      integer i,nmax,nsize,ntype(nsize) 

      parameter (nmax=4000) 

      real*8 x(nsize),y(nsize),z(nsize),energy,ex,ey,ez, 

     #       ffx(nsize),ffy(nsize),ffz(nsize), 

     #       xp(nmax),yp(nmax),zp(nmax),eps 

      parameter (eps=1.d-6) 

 

      if(nsize.gt.nmax)write(*,*)'dimension error in ffield' 

 

      call pef(nsize,ntype,x,y,z,energy)    ← Calculates potential energy for coordinates x, y, and z 

      do i=1,nsize 

      xp(i)=x(i) 

      yp(i)=y(i) 

      zp(i)=z(i) 

      end do 

      do i=1,nsize              

      xp(i)=x(i)+eps            

      yp(i)=y(i)+eps            

      zp(i)=z(i)+eps             

      call pef(nsize,ntype,xp,y,z,ex)    ← Calculates potential energy for coordinates (x+eps), y, z 

      call pef(nsize,ntype,x,yp,z,ey)    ← Calculates potential energy for coordinates x, (y+eps), z 
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      call pef(nsize,ntype,x,y,zp,ez)    ← Calculates potential energy for coordinates x, y, (z+eps) 
      ffx(i)=-(ex-energy)/eps    ←Calculates the derivative of potential energy (FF) in x-direction 

      ffy(i)=-(ey-energy)/eps    ←Calculates the derivative of potential energy (FF) in y-direction 
      ffz(i)=-(ez-energy)/eps     ←Calculates the derivative of potential energy (FF) in z-direction 

      xp(i)=x(i) 

      yp(i)=y(i) 

      zp(i)=z(i) 

      end do 

 

      return 

      end 

 

c***************************************************************** 

c 

c  Code to evaluate the FF for a binary cluster 

c  Uses analytic formulas to evaluate gradients 

c234567 

      subroutine ffield2(nsize,ntype,x,y,z,energy,ffx,ffy,ffz) 

      implicit none 

      integer i,j,k,m,nmax,nsize,ntype(nsize) 

      parameter (nmax=4000) 

      real*8 x(nsize),y(nsize),z(nsize),energy,ex,ey,ez, 

     #       ffx(nsize),ffy(nsize),ffz(nsize),rho(nmax), 

     #       r(nmax,nmax),fc(nmax,nmax),gc(nmax,nmax), 

     #       rhigh,rsq,gcm(nmax,nmax),gcn(nmax,nmax), 

     #       mc(nmax),mcx(nmax),mcy(nmax),mcz(nmax), 

     #       nc(nmax),ncx(nmax),ncy(nmax),ncz(nmax), 

     #       etmp1(nmax),etmp2(nmax),ctmp1(nmax),ctmp2(nmax), 

     #       e(2,3),c(2,3),a(2,3),p(2,3),q(2,3),rmin(2,3), 

     #       rmax(2,3),rmin1,rmax1,rmin2,rmax2,rmin3,rmax3, 

     #       eii,cii,e0,c0,a0,p0,q0,rij,eij,cij,aij,pij,qij, 

     #       e1,c1,a1,p1,q1,e2,c2,a2,p2,q2,scale1,scale2, 

     #       ei,ci,ai,pi,qi,ej,cj,aj,pj,qj,xij,yij,zij, 

     #       sum,sum0,sum1,sum2,sum3,fcutoff,gcutoff, 

     #       vr,va,dvax,dvay,dvaz,dvrx,dvry,dvrz, 

     #       tmp1x,tmp1y,tmp1z,tmp2x,tmp2y,tmp2z,tmp, 

     #       tmpx(nmax,nmax),tmpy(nmax,nmax),tmpz(nmax,nmax), 

     #       vtmp1(nmax,nmax),vtmp2(nmax,nmax) 

      common/params/e,c,a,p,q,rmin,rmax 

 

      if(nsize.gt.nmax)write(*,*)'dimension error in ffield' 

 

      do i=1,nsize 

      mc(i)=0.d0 

      nc(i)=0.d0 

      mcx(i)=0.d0 

      mcy(i)=0.d0 

      mcz(i)=0.d0 

      ncx(i)=0.d0 

      ncy(i)=0.d0 
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      ncz(i)=0.d0 

      rmin1=rmin(ntype(i),1) 

      rmax1=rmax(ntype(i),1) 

      rmin2=rmin(ntype(i),2) 

      rmax2=rmax(ntype(i),2) 

      rmin3=rmin(ntype(i),3) 

      rmax3=rmax(ntype(i),3) 

      do j=1,nsize 

       rsq=(x(i)-x(j))**2+(y(i)-y(j))**2+(z(i)-z(j))**2 

       r(i,j)=sqrt(rsq) 

       rij=r(i,j) 

       fc(i,j)=0.d0 

       gc(i,j)=0.d0 

       gcm(i,j)=0.d0 

       gcn(i,j)=0.d0 

       if(j.ne.i .and. rij.lt.rmax1)then 

         fc(i,j)=fcutoff(rij,rmin1,rmax1) 

         gc(i,j)=gcutoff(rij,rmin1,rmax1) 

       endif 

       if(j.ne.i .and. rij.lt.rmax2 .and. ntype(i).eq.ntype(j))then 

         mc(i)=mc(i)+fcutoff(rij,rmin2,rmax2) 

         gcm(i,j)=gcutoff(rij,rmin2,rmax2) 

         xij=x(i)-x(j) 

         yij=y(i)-y(j) 

         zij=z(i)-z(j) 

         mcx(i)=mcx(i)+gcm(i,j)*xij/rij 

         mcy(i)=mcy(i)+gcm(i,j)*yij/rij 

         mcz(i)=mcz(i)+gcm(i,j)*zij/rij 

       endif 

       if(j.ne.i .and. rij.lt.rmax3 .and. ntype(i).ne.ntype(j))then 

         nc(i)=nc(i)+fcutoff(rij,rmin3,rmax3) 

         gcn(i,j)=gcutoff(rij,rmin3,rmax3) 

         xij=x(i)-x(j) 

         yij=y(i)-y(j) 

         zij=z(i)-z(j) 

         ncx(i)=ncx(i)+gcn(i,j)*xij/rij 

         ncy(i)=ncy(i)+gcn(i,j)*yij/rij 

         ncz(i)=ncz(i)+gcn(i,j)*zij/rij 

       endif 

      end do 

      end do 

 

      do i=1,nsize 

      sum=0.d0 

      ai=a(ntype(i),1) 

      qi=q(ntype(i),1) 

      do j=1,nsize 

        aj=a(ntype(j),1) 

        qj=q(ntype(j),1)  

        aij=(ai+aj)/2.d0 

        qij=(qi+qj)/2.d0 
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        rij=r(i,j) 

        if(j.ne.i)sum=sum+fc(i,j)*(aij/rij)**qij 

      end do 

      rho(i)=dsqrt(sum)  ! note change  

      end do 

 

      sum0=0.d0 

      do i=1,nsize 

      if(ntype(i).eq.1)rhigh=rmax(1,1) 

      if(ntype(i).eq.2)rhigh=rmax(2,1) 

 

      scale1=min(12,mc(i))/12.d0 

      scale2=min(12,nc(i))/12.d0 

 

      e0=e(ntype(i),1) 

      c0=c(ntype(i),1) 

      a0=a(ntype(i),1) 

      p0=p(ntype(i),1) 

      q0=q(ntype(i),1) 

      e1=e(ntype(i),2) 

      c1=c(ntype(i),2) 

      a1=a(ntype(i),2) 

      p1=p(ntype(i),2) 

      q1=q(ntype(i),2) 

      e2=e(ntype(i),3) 

      c2=c(ntype(i),3) 

      a2=a(ntype(i),3) 

      p2=p(ntype(i),3) 

      q2=q(ntype(i),3) 

      ei=e0+scale1*(e1-e0)+scale2*(e2-e0) 

      ci=c0+scale1*(c1-c0)+scale2*(c2-c0) 

      ai=a0 

      pi=p0 

      qi=q0 

 

      if(scale1.lt.1)then 

        etmp1(i)=(e1-e0)/12.d0 

        ctmp1(i)=(c1-c0)/12.d0 

      else 

        etmp1(i)=0.d0 

        ctmp1(i)=0.d0 

      endif 

 

      if(scale2.lt.1)then 

        etmp2(i)=(e2-e0)/12.d0 

        ctmp2(i)=(c2-c0)/12.d0 

      else 

        etmp2(i)=0.d0 

        ctmp2(i)=0.d0 

      endif 
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      vr=0.d0 

      va=0.d0 

      dvrx=0.d0 

      dvax=0.d0 

      dvry=0.d0 

      dvay=0.d0 

      dvrz=0.d0 

      dvaz=0.d0 

      do j=1,nsize 

      rij=r(i,j) 

      xij=x(i)-x(j) 

      yij=y(i)-y(j) 

      zij=z(i)-z(j) 

 

      if(j.ne.i .and. rij.lt.rhigh)then 

 

      scale1=min(12,mc(j))/12.d0 

      scale2=min(12,nc(j))/12.d0 

 

      e0=e(ntype(j),1) 

      c0=c(ntype(j),1) 

      a0=a(ntype(j),1) 

      p0=p(ntype(j),1) 

      q0=q(ntype(j),1)  

      e1=e(ntype(j),2)  

      c1=c(ntype(j),2) 

      a1=a(ntype(j),2) 

      p1=p(ntype(j),2)  

      q1=q(ntype(j),2) 

      e2=e(ntype(j),3) 

      c2=c(ntype(j),3) 

      a2=a(ntype(j),3) 

      p2=p(ntype(j),3) 

      q2=q(ntype(j),3) 

      ej=e0+scale1*(e1-e0)+scale2*(e2-e0) 

      cj=c0+scale1*(c1-c0)+scale2*(c2-c0) 

      aj=a0 

      pj=p0 

      qj=q0 

 

      if(scale1.lt.1)then 

        etmp1(j)=(e1-e0)/12.d0 

        ctmp1(j)=(c1-c0)/12.d0 

      else 

        etmp1(j)=0.d0 

        ctmp1(j)=0.d0 

      endif 

 

      if(scale2.lt.1)then 

        etmp2(j)=(e2-e0)/12.d0 

        ctmp2(j)=(c2-c0)/12.d0 
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      else 

        etmp2(j)=0.d0 

        ctmp2(j)=0.d0 

      endif 

 

      eij=sqrt(ei*ej) 

      cij=(ci+cj)/2.d0 

      aij=(ai+aj)/2.d0 

      pij=(pi+pj)/2.d0 

      qij=(qi+qj)/2.d0 

      cii=ci 

      eii=ei 

 

c compute FF for constant parameters 

 

      vr=vr+fc(i,j)*eij*(aij/rij)**pij 

      va=va+fc(i,j)*(cii*eii)**2*(aij/rij)**qij 

 

      tmp=fc(i,j)*eij*pij*aij**pij/rij**(pij+2) 

     #   -gc(i,j)*eij*aij**pij/rij**(pij+1) 

      dvrx=dvrx+tmp*xij 

      dvry=dvry+tmp*yij 

      dvrz=dvrz+tmp*zij                                                                                

 

      tmp=fc(i,j)*qij*aij**qij/rij**(qij+2)*ci*ei/rho(i)/2.d0 

     #   +fc(i,j)*qij*aij**qij/rij**(qij+2)*cj*ej/rho(j)/2.d0 

     #   -gc(i,j)*aij**qij/rij**(qij+1)*ci*ei/rho(i)/2.d0 

     #   -gc(i,j)*aij**qij/rij**(qij+1)*cj*ej/rho(j)/2.d0 

      dvax=dvax+tmp*xij 

      dvay=dvay+tmp*yij 

      dvaz=dvaz+tmp*zij 

 

c add contribution from parameter derivatives  

 

c attractive part 

 

      tmp=etmp1(i)*gcm(i,j)+etmp2(i)*gcn(i,j) 

      tmp1x=tmp*xij/rij 

      tmp1y=tmp*yij/rij 

      tmp1z=tmp*zij/rij 

 

      tmp=ctmp1(i)*gcm(i,j)+ctmp2(i)*gcn(i,j) 

      tmp2x=tmp*xij/rij 

      tmp2y=tmp*yij/rij 

      tmp2z=tmp*zij/rij 

 

      dvax=dvax-rho(i)*(ci*tmp1x+ei*tmp2x) 

      dvay=dvay-rho(i)*(ci*tmp1y+ei*tmp2y) 

      dvaz=dvaz-rho(i)*(ci*tmp1z+ei*tmp2z) 

 

      tmp=etmp1(j)*gcm(i,j)+etmp2(j)*gcn(i,j) 

Calculates the derivatives of potential 

for constant parameters  

Calculates derivatives for variable 

parameters that account for the 

attractive forces  
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      tmp1x=tmp*xij/rij 

      tmp1y=tmp*yij/rij 

      tmp1z=tmp*zij/rij 

 

      tmp=ctmp1(j)*gcm(i,j)+ctmp2(j)*gcn(i,j) 

      tmp2x=tmp*xij/rij 

      tmp2y=tmp*yij/rij 

      tmp2z=tmp*zij/rij 

 

      dvax=dvax-rho(j)*(cj*tmp1x+ej*tmp2x) 

      dvay=dvay-rho(j)*(cj*tmp1y+ej*tmp2y) 

      dvaz=dvaz-rho(j)*(cj*tmp1z+ej*tmp2z) 

 

      endif 

      end do 

      sum0=sum0+vr/2.d0-sqrt(va) 

      sum1=dvrx-dvax 

      sum2=dvry-dvay 

      sum3=dvrz-dvaz 

      energy=sum0/nsize 

      ffx(i)=sum1/nsize 

      ffy(i)=sum2/nsize 

      ffz(i)=sum3/nsize 

      end do 

 

 

      return 

      end 

 

c***************************************************************** 

c 

c  Code to evaluate the PEF for a binary cluster 

c 

c234567 

      subroutine pef(nm,ntype,x,y,z,energy) 

      implicit none 

      integer i,j,k,l,m,n,nmax,nm,ntype(*) 

      parameter (nmax=4000) 

      real*8 fcutoff,x(nm),y(nm),z(nm),r(nmax,nmax), 

     #       fc(nmax,nmax),mc(nmax),nc(nmax),oc(nmax), 

     #       vr,va,rsq,rij,eij,cij,aij,pij,qij,energy, 

     #       e(2,3),c(2,3),a(2,3),p(2,3),q(2,3),sum, 

     #       rmin(2,3),rmax(2,3),scale,rmin1,rmax1, 

     #       rmin2,rmax2,rhigh,eii,cii,e0,c0,a0,p0,q0, 

     #       e1,c1,a1,p1,q1,e2,c2,a2,p2,q2,scale1, 

     #       ei,ci,ai,pi,qi,ej,cj,aj,pj,qj,scale2 

      common/params/e,c,a,p,q,rmin,rmax 

 

      if(nm.gt.nmax)write(*,*)'dimension error in pef' 

 

      do i=1,nm 

Calculates derivatives for variable 

parameters that account for the 

attractive forces 

 

Combines derivatives due to attractive 

and repulsive forces 
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      mc(i)=0.d0 

      nc(i)=0.d0 

      if(ntype(i).eq.1)m=1 

      if(ntype(i).eq.2)m=2 

      rmin1=rmin(m,1) 

      rmax1=rmax(m,1) 

      rmin2=rmin(m,2) 

      rmax2=rmax(m,2) 

      do j=1,nm 

       rsq=(x(i)-x(j))**2+(y(i)-y(j))**2+(z(i)-z(j))**2 

       r(i,j)=sqrt(rsq) 

       rij=r(i,j) 

       if(j.ne.i .and. rij.lt.rmax1)fc(i,j)=fcutoff(rij,rmin1,rmax1) 

       if(j.ne.i .and. rij.lt.rmax2 .and. ntype(i).eq.ntype(j))then 

         mc(i)=mc(i)+fcutoff(rij,rmin2,rmax2)   

       endif 

       if(j.ne.i .and. rij.lt.rmax2 .and. ntype(i).ne.ntype(j))then 

         nc(i)=nc(i)+fcutoff(rij,rmin2,rmax2) 

       endif 

      end do 

      end do 

 

      sum=0.d0 

      do i=1,nm 

      if(ntype(i).eq.1)rhigh=rmax(1,1) 

      if(ntype(i).eq.2)rhigh=rmax(2,1) 

 

      scale1=min(12,mc(i))/12.d0 

      scale2=min(12,nc(i))/12.d0 

      e0=e(ntype(i),1) 

      c0=c(ntype(i),1) 

      a0=a(ntype(i),1) 

      p0=p(ntype(i),1) 

      q0=q(ntype(i),1) 

      e1=e(ntype(i),2) 

      c1=c(ntype(i),2) 

      a1=a(ntype(i),2) 

      p1=p(ntype(i),2) 

      q1=q(ntype(i),2) 

      e2=e(ntype(i),3) 

      c2=c(ntype(i),3) 

      a2=a(ntype(i),3) 

      p2=p(ntype(i),3) 

      q2=q(ntype(i),3) 

      ei=e0+scale1*(e1-e0)+scale2*(e2-e0) 

      ci=c0+scale1*(c1-c0)+scale2*(c2-c0) 

      ai=a0+scale1*(a1-a0)+scale2*(a2-a0) 

      pi=p0+scale1*(p1-p0)+scale2*(p2-p0) 

      qi=q0+scale1*(q1-q0)+scale2*(q2-q0) 

 

      vr=0.d0 
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      va=0.d0 

      do j=1,nm 

        rij=r(i,j) 

        if(j.ne.i .and. rij.lt.rhigh)then 

 

      scale1=min(12,mc(j))/12.d0 

      scale2=min(12,nc(j))/12.d0 

      e0=e(ntype(j),1) 

      c0=c(ntype(j),1) 

      a0=a(ntype(j),1) 

      p0=p(ntype(j),1) 

      q0=q(ntype(j),1) 

      e1=e(ntype(j),2) 

      c1=c(ntype(j),2) 

      a1=a(ntype(j),2) 

      p1=p(ntype(j),2) 

      q1=q(ntype(j),2) 

      e2=e(ntype(j),3) 

      c2=c(ntype(j),3) 

      a2=a(ntype(j),3) 

      p2=p(ntype(j),3) 

      q2=q(ntype(j),3) 

      ej=e0+scale1*(e1-e0)+scale2*(e2-e0) 

      cj=c0+scale1*(c1-c0)+scale2*(c2-c0) 

      aj=a0+scale1*(a1-a0)+scale2*(a2-a0) 

      pj=p0+scale1*(p1-p0)+scale2*(p2-p0) 

      qj=q0+scale1*(q1-q0)+scale2*(q2-q0) 

 

      eij=sqrt(ei*ej) 

      cij=(ci+cj)/2 

      aij=(ai+aj)/2 

      pij=(pi+pj)/2 

      qij=(qi+qj)/2 

      cii=ci 

      eii=ei 

 

          vr=vr+fc(i,j)*eij*(aij/rij)**pij 

          va=va+fc(i,j)*(cii*eii)**2*(aij/rij)**qij 

        endif 

      end do 

      sum=sum+vr/2.d0-sqrt(va) 

      end do 

 

      energy=sum/nm 

 

      return 

      end 

 

c************************************************************ 

c 

c234567 
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      real*8 function fcutoff(r,rminshift,rmaxshift) 

      implicit none 

      integer index 

      real*8 r,rmin,rmax,pi,arg,re,rminshift,rmaxshift 

 

      pi=dacos(-1.d0) 

 

      rmin=0.0d0+rminshift 

      rmax=0.0d0+rmaxshift 

 

      if(r.le.rmin)then 

        fcutoff=1.d0 

      elseif(r.gt.rmin .and. r.lt.rmax)then 

        arg=pi*(r-rmin)/(rmax-rmin) 

        fcutoff=(1.d0+cos(arg))/2.d0 

      else 

        fcutoff=0.d0 

      endif 

 

      return 

      end 

 

c************************************************************ 

c 

c234567 

      real*8 function gcutoff(r,rminshift,rmaxshift) 

      implicit none 

      integer index 

      real*8 r,rmin,rmax,pi,arg,re,rminshift,rmaxshift 

 

      pi=dacos(-1.d0) 

 

      rmin=0.0d0+rminshift 

      rmax=0.0d0+rmaxshift 

 

      if(r.le.rmin)then 

        gcutoff=0.d0 

      elseif(r.gt.rmin .and. r.lt.rmax)then 

        arg=pi*(r-rmin)/(rmax-rmin) 

        gcutoff=-pi/(rmax-rmin)*sin(arg)/2.d0 

      else 

        gcutoff=0.d0 

      endif 

 

      return 

      end 
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