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ABSTRACT

 This thesis examines the relationship between the theory of finite abelian groups and the 

theory of linear operators over finite-dimensional vector spaces. We introduce the basic notions 

of module theory which allows us to generalize many facts about abelian groups and vector 

spaces. After stating several fundamental results from group theory, we proceed to prove that 

there exist analogous results in the study of finite-dimensional vector spaces. We also 

demonstrate that many of the fundamental objects of study in linear algebra, such as the minimal 

and characteristic polynomial, play the same role as some group-theoretic object.
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1 Introduction

The theory of modules plays a fundamental role in the study of algebraic structures.
Modules allow us to generalize a lot of results about vector spaces and, as we will see, they also
allow us to generalize many facts from group theory. We will examine the manner in which
many important facts about vector spaces and abelian groups can be deduced by studying
their module structures. This will allow us to show that there is a striking duality between
linear algebra and group theory. In particular, many facts about linear operators on finite-
dimensional vector spaces have group-theoretic analogs. Likewise, we will see that many
of the fundamental objects of study in linear algebra, such as invariant subspaces and the
minimal and characteristic polynomials of an operator, have group-theoretic counterparts.
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2 Basic Notions

In the following, suppose R is a commutative ring and a, b 2 R.

We say that a divides b, written a | b, if there exists x 2 R such that b = ax. If d divides
both a and b and every common divisor of a and b divides d, then we say that d is a greatest

common divisor of a and b, written gcd(a, b) = d.
We call x 2 R irreducible if x = ab implies a or b is a unit, i.e. has a multiplicative

inverse. We say that x 2 R is prime if x | ab implies x | a or x | b. Note that these are a
straightforward generalization of the prime elements in Z.

We call the ring R an integral domain if the ring multiplication is commutative and
for all a, b 2 R: ab = 0 implies a = 0 or b = 0. Note that in an integral domain, every prime
element is irreducible, but the converse is not true. One special type of integral domain
in which the converse does hold is known as a Unique Factorization Domain (UFD),
which is an integral domain in which every non-zero element x can be written as a product
x = up1p2...pn where u is a unit and p1, p2, ..., pn are irreducible. Moreover, if x = wq1q2...qm
where w is a unit and q1, q2, ..., qm are irreducible, then we have n = m and, after permutation
of indices, p

i

= a
ij

q
j

for some unit a
ij

.
If I is a subset of a commutative ring R, then we say I is an ideal if ar 2 I 8a 2 I, r 2 R

and a+ x 2 I 8a, x 2 I. An ideal generated by a single element,

I = (x) = {ax : a 2 R}

is called principal.
UFDs in which every ideal is principal are known as Principal Ideal Domains (PIDs).

The ring of integers, Z, is an example of a PID. We can see this by noting that Z is an infinite
cyclic group so any ideal I ⇢ Z must be a cyclic subgroup and therefore generated by a single
element. Two ideals (a), (b) in a PID are called comaximal if gcd(a, b)=1. For example,
the ideals 2Z and 3Z are comaximal in Z.

A commutative ring is called a field if it has a multiplicative identity 1 6= 0 and every
non-zero element has a multiplicative inverse. Examples of fields include R,C, and Z

p

, the
ring of integers modulo a prime number p. Given a ring R, we may define the ring of

polynomials over R, denoted R[x], to be the set of all polynomials with coe�cients in R,
equipped with the operations of addition and multiplication of polynomials. An important
fact about polynomial rings is that there exists a polynomial division algorithm, similar to
the usual division algorithm in Z.

Lemma 2.1 : Given p(x), q(x) 2 F [x] with q(x) 6⌘ 0, there exist s(x), r(x) 2 F [x] such that
p(x) = s(x)q(x) + r(x) with deg(r(x)) < deg(q(x)).

Theorem 2.2 : If F is a field, then F [x] is a PID.

Proof: It’s clear that F [x] is an integral domain. Suppose I ⇢ F [x] is an ideal. If
I = (0), then I is principal. If I 6= (0), then let f(x) be a polynomial of minimal degree in
I. It is clear that (f(x)) ⇢ I. Let g(x) 2 I. By the polynomial division algorithm, there
exist s(x), r(x) 2 F [x] such that g(x) = f(x)s(x) + r(x) with deg(r(x)) < deg(f(x)). Thus,
r(x) = g(x) � f(x)s(x). Since I is an ideal, we get r(x) 2 I which implies r(x) = 0 since
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otherwise r(x) would be a polynomial in I of degree less than the degree of f(x). There-
fore g(x) = f(x)s(x) so g(x) 2 (f(x)). Hence I = (f(x)) so every ideal in F [x] is principal. ⌅

Note that the irreducible elements in F [x] are precisely the irreducible polynomials.

Our main focus here will be to demonstrate the interplay between finite dimensional
vector spaces equipped with a linear operator and finite abelian groups. This will be ac-
complished by studying the underlying module structure of both vectors spaces and abelian
groups. Given a commutative ring R, an R-module M is an abelian group (M,+) along
with an operation R ⇥M ! M , called scalar multiplication, such that for all r, s 2 R and
x, y 2 M :

i. r(x+ y) = rx+ ry
ii. (r + s)x = rx+ sx
iii. (rs)x = r(sx)

For example, every ideal I ⇢ R is an R-module, as is the Cartesian product Rn.

Given an R-module M , we say that the subset N ⇢ M is an R-submodule if N is
an additive subgroup of M and for all n 2 N, r 2 R, the product rn is in N . Given an
R-module M and submodule N , the quotient module M/N is the quotient group M/N
with addition and multiplication given by [a]+ [b] = [a+ b] and r · [a] = [r ·a] for all a, b 2 M
and r 2 R.

We call an R-module M finitely generated if there exist x1, x2, ..., xn

2 M such that
for every y 2 M , there exist a1, a2, ..., an 2 R with y = a1x1 + a2x2 + ... + a

n

x
n

. The
Cartesian product Rn is clearly a finitely generated R-module, but not all modules are
finitely generated. For instance, consider the ring R[x] of polynomials over R, which is not
finitely generated as an R-module.

Suppose M and N are R-modules. A map � : M ! N is called an R-module homo-

morphism if for all m,m0 2 M and r, s 2 R, we have �(rm+ sm0) = r�(m) + s�(m0). If �
is bijective, then it’s called an R-module isomorphism.

The image of an R-module homomorphism � : M ! N is the set

Im(�) := {n 2 N : n = �(m) for some m 2 M}

and the kernel is the set of all elements that get mapped to the zero element in N , i.e.

ker(�) := {m 2 M : �(m) = 0
N

}.

The following theorem implies that � is injective if and only if ker(�) = {0
M

}.

Theorem 2.3 : Suppose � : M ! N is an R-module homomorphism. Then:
1. ker(�) is a submodule of M .
2. Im(�) is a submodule of N .
3. M

�
ker(�) ⇠= Im(�).

Let R be a commutative ring, M be an R-module, and S be a subset of M . We define
the annihilator of S to be the set

Ann
R

(S) := {r 2 R : rs = 0 for all s 2 S}.
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It is easy to see that Ann
R

(S) satisfies the conditions to be an ideal in R. In particular, if
R is a PID, then Ann

R

(S) can be generated by a single element. If Ann
R

(S) = (z), then we
call z a minimal annihilator of S, and it is unique up to multiplication by a unit.

Suppose G is a group in which every element has finite order, known as a torsion group.
In particular, every finite group is a torsion group. We define the exponent of G to be the
minimal m 2 N such that gm = 0 for all g 2 G, i.e. the minimal annihilator of G as a
Z-module. Given a finite abelian group G, the fundamental theorem of finitely generated
abelian groups (which we’ll prove later) implies G ⇠= Z

�
a1Z � ... � Z

�
a
t

Z, from which it
easily follows that the exponent of G is lcm{a1, ..., at} and the order of G is a1 ⇥ ... ⇥ a

t

.
Another form of the fundamental theorem of finitely generated abelian groups implies that
G ⇠= Z

�
pk11 Z� ...� Z

�
pkt
t

Z for some prime numbers p1, ..., pt.
We will now prove two statements about finite abelian groups, which we’ll see correspond

to similar statements about the minimal and characteristic polynomials of linear operators.

Theorem 2.4 : A finite abelian group G is isomorphic to a direct sum of cyclic groups of
prime orders if and only if its exponent is a product of distinct primes.

Proof : If G ⇠= Z
�
p1Z � ... � Z

�
p
t

Z, where p1, ..., pt are prime, then the exponent is
lcm{p1, ..., pt}, which is the product of the distinct primes amongst p1, ..., pt.

Conversely, suppose G ⇠= Z
�
pk11 Z�...�Z

�
pkt
t

Z, where p1, ..., pt are prime and some k
i

� 2.

Without loss of generality, suppose k1 = 2. Then the exponent of G is lcm{p21, pk22 ..., pkt
t

}
which implies that p21 is a factor, so the exponent is not a product of distinct primes. ⌅

Another interesting fact about finite abelian groups is that for some small integer values,
the order and exponent of a finite abelian group uniquely determine the group, up to isomor-
phism. For instance, the only group of order 4 and exponent 4 is Z

�
4Z, and the only group

of order 4 and exponent 2 is Z
�
2Z�Z

�
2Z. On the other hand, if we consider the groups of

order 16 with exponent 4, then we have both Z
�
2Z� Z

�
2Z� Z

�
4Z and Z

�
4Z� Z

�
4Z.

Theorem 2.5 : Suppose G is a non-trivial finite group. Then G contains no proper, non-
trivial subgroups if and only if G has prime order.

Proof : Suppose G has prime order p and H ⇢ G is a subgroup. By Lagrange’s Theorem,
|H| divides p, so |H| = 1 or |H| = p. Therefore H = {e} or H = G, so G has no proper,
non-trivial subgroups.

Conversely, suppose G contains no proper, non-trivial subgroups. Since G is non-trivial,
there exists g 2 G such that g 6= e. Therefore, < g >= G. Let n = |g|. If n is not prime,
then n = pq for some p, q > 1, but then < gp > is a proper subgroup of order q. Hence, n
must be prime so G has prime order. ⌅

We call a finite abelian group decomposable if it can be written as the direct sum of
two proper subgroups.

Theorem 2.6 : Suppose G is a non-trivial finite abelian group. Then G is indecomposable
if and only if G is cyclic and its order is a power of a prime.
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Proof : First recall that Z
�
mnZ ⇠= Z

�
mZ � Z

�
nZ if and only if gcd(m,n) = 1. Now

suppose G is cyclic and has order pk for some prime p and positive integer k, so G ⇠=
Z
�
pkZ. We can see that G is not isomorphic to a direct sum of two non-trivial subgroups

by noting that, for any l < k, Z
�
pkZ � Z

�
plZ � Z

�
pk�lZ since gcd(pl, pk�l) 6= 1. Hence G

is indecomposable.
Now suppose the order of G is not a prime power, so |G| = mn for some positive inte-

gers m,n such that gcd(m,n) = 1. Then Z
�
mnZ ⇠= Z

�
mZ � Z

�
nZ so G is decomposable.

Likewise, if G is not cyclic then G � Z
�
mZ for any positive integer m and it follows that G

must be isomorphic to a direct sum of non-trivial subgroups. ⌅

For finite abelian groups, the converse to Lagrange’s Theorem also holds:

Theorem 2.7 : Let G be a finite abelian group of order n and suppose m | n. Then there
exists a subgroup of order m.

Proof : Suppose |G| = p1
n1⇥p2

n2⇥· · ·⇥p
k

nk . Then we must have m = p1
m1⇥p2

m2⇥· · ·⇥
p
k

mk where m
i

 n
i

for all i. It then follows from the fact that Z
�
p
i

niZ has a subgroup of
order Z

�
p
i

miZ that we can find a subgroup of order m. For instance, if |G| = 8 and we wish
to find a subgroup of order 4, then we have G ⇠= Z

�
2Z�Z

�
2Z�Z

�
2Z, G ⇠= Z

�
4Z�Z

�
2Z,

or G ⇠= Z
�
8Z. In the first case, we can take Z

�
2Z�Z

�
2Z� {0}. In the second case, we can

take Z
�
2Z� Z

�
2Z and in the final case we have Z

�
4Z. ⌅
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3 General Theory of Modules

From this point on, we will always assume that R is a PID. Let M be an R-module. We
call a subset N ⇢ M a spanning set of M if for every x 2 M , there exist n1, n2, ..., nk

2 N
and r1, r2, ..., rk 2 R such that x = r1n1 + r2n2 + ...+ r

k

n
k

.
Now suppose that m1,m2, ...,mk

2 M . If the only choice of scalars r1, r2, ..., rk 2 R
such that r1m1 + r2m2 + ... + r

k

m
k

= 0 is the trivial combination r1 = r2 = ... = r
k

= 0,
then we say that the elements m1,m2, ...,mk

are linearly independent. We call a linearly
independent spanning set of M a basis of M .

We say that M is a free R-module of rank n if it has a basis consisting of n elements.
Equivalently, M is a free R-module of rank n if it is isomorphic to Rn = R � R � ... � R
(n-times).

We begin our discussion of module theory by proving an important structure theorem
regarding modules over principal ideal domains.

Lemma 3.1 : If M is a free R-module of rank n and N ⇢ M is a submodule, then N is a free
R-module of rank m  n and there exists a basis {e1, ..., en} of M such that {a1e1, ..., amem}
is a basis of N with a1 | a2 | ... | am.

Theorem 3.2 : If M is a finitely generated R-module, then M ⇠= Rn�R
�
(a1)�...�R

�
(a

m

)
with n � 0 and a1 | a2 | ... | am.

Proof : Let {x1, ..., xn

} be a generating set for M and let {r1, ..., rn} be a basis for Rn.
Define � : Rn ! M by �(r

i

) = x
i

81  i  n. By Theorem 2.3, Rn

�
ker(�) ⇠= Im(�) ⇠= M

since {�(r1), ...,�(rn)} spans M . By Lemma 3.1, there exists a basis {y1, ..., yn} of Rn such
that {a1y1, ..., amym} is a basis of ker(�) with a1 | a2 | ... | am. Therefore M ⇠= Rn

�
ker(�) ⇠=

(Ry1 � ...�Ry
n

)
�
(Ra1y1 � ...�Ra

m

y
m

).
Now consider the R-module homomorphism  : Ry1 � ...�Ry

n

! R
�
(a1)� ...�R

�
(a

m

)�
Rn�m given by (b1y1, ..., bnyn) 7! (b1 mod a1, ..., bm mod a

m

, b
m+1, ..., bn). We have Im( ) =

R
�
(a1) � ... � R

�
(a

m

) � Rn�m and ker( ) = Ra1y1 � ... � Ra
m

y
m

. Hence M ⇠= R
�
(a1) �

...�R
�
(a

m

)�Rn�m by Theorem 2.3. ⌅

The ring elements a1 | a2 | ... | am in the proof of Theorem 3.2 are known as the invari-

ant factors of the module M .

Two isomorphic modules have the same list of invariant factors. Rather than proving this
rigorously, we will give an example to demonstrate the uniqueness of the invariant factors.
This example will also illustrate how Theorem 3.2 will allow us to gain some insight into the
study of finite abelian groups.

First, let (G,+) be an abelian group and consider the action of Z on G given by:

nx =

8
><

>:

x+ x+ ...+ x (n times) if n > 0

0 if n = 0

�x� x� ...� x (n times) if n < 0
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This action gives G a Z-module structure. Since every module is an abelian group by
definition, it follows that abelian groups and Z-modules are the same thing.

Now consider the finite abelian groups G = Z8 � Z4 and H = Z8 � Z2 � Z2. Clearly
these two groups have di↵erent invariant factors, and we see that they can not be isomorphic
by observing that G and H have a di↵erent number of elements of order 2. This argument
may be used to prove that any two isomorphic finite abelian groups must have the same list
of invariant factors. A similar argument shows the uniqueness of the invariant factors for a
general R-module.

We can now prove the following corollary to Theorem 3.2, known as the Fundamental
Theorem of Finitely Generated Abelian Groups:

Corollary 3.3 : Let G be a finitely generated abelian group. Then G ⇠= Zn � Z
m1 � Z

m2 �
... � Z

mt with n � 0,m
i

� 2 8i 2 {1, 2, ..., t} and m
i

| m
i+1 8i 2 {1, 2, ..., t � 1}, where

n,m1, ...,mt

are unique.

Proof: Since G is a finitely generated Z-module, we can apply the structure theorem to
get: G ⇠= Zn � Z

�
m1Z � ... � Z

�
m

t

Z with m1 | m2 | ... | m
t

. The uniqueness follows from
the uniqueness of the invariant factors of a Z-module. ⌅

Let’s now return to module theory and prove an alternative form of Theorem 3.2. We’ll
make use of the following ring-theoretic fact, known as the Chinese Remainder Theorem:

Lemma 3.4 : If I1, ..., Ik are pairwise comaximal ideals in R, then R
�
(I1 \ ... \ I

k

) ⇠=
R
�
I1 � ...�R

�
I
k

.

We say that an element m 2 M is a torsion element if there exists a non-zero r 2 R
such that rm = 0. If every element in M is a torsion element, then we say M is a torsion

module. Note that R is not a torsion module over itself since R is an integral domain, so
rx = 0 implies r = 0 or x = 0. Thus, if M is a torsion module, then in the decomposition
M ⇠= Rn�R

�
(a1)� ...�R

�
(a

m

), we must have n = 0. It should also be noted that a torsion
abelian group is necessarily a torsion module, but the converse does not hold.

Theorem 3.5 : If M is a finitely generated torsion R-module, then M ⇠= R
�
(p↵1

1 ) � ... �
R
�
(p↵r

r

) with ↵
i

� 0 81  i  r and p1, ..., pr irreducible elements in R.

Proof : Consider the invariant factors a1 | a2 | ... | am of M . Since R is a PID, it is also
a unique factorization domain so we can write a

i

= u
i

p
↵i1
i1

p
↵i2
i2

...p
↵it
it

81  i  m where u
i

is
a unit and p

i1 , ..., pit are irreducible and pairwise coprime. Since gcd(p
ij , pik) = 1 for j 6= k,

we have that the ideals (p
↵i1
i1

), ..., (p
↵it
it

) are pairwise comaximal. It follows by the Chinese
Remainder Theorem that:

R
�
(a

i

) ⇠= R
�
(p

↵i1
i1

)� ...�R
�
(p

↵it
it

) 81  i  m.

Hence we have

M ⇠= R
�
(a1)� ...�R

�
(a

m

) ⇠= R
�
(p↵1

1 )� ...�R
�
(p↵r

r

).
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⌅

The ring elements p↵1
1 , ..., p↵r

r

are called the elementary divisors of M . (Note that the
uniqueness of the elementary divisors follows from the uniqueness of the invariant factors.)
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4 Linear Algebra

We now turn our attention to linear algebra and once again apply Theorem 3.2 to deduce
a standard form for the object in question: this time canonical forms of a linear operator.

Now that we’ve seen some of the basics of module theory, we can easily define the fun-
damental notions of linear algebra, which is the study of abstract vector spaces and linear
maps defined on them.

A vector space is an F -module where F is a field. We call F the field of scalars. Now
suppose V and W are vector spaces. An F -module homomorphism T : V ! W is called
a linear transformation. A linear transformation from V to V is also called a linear

operator. A subset U ✓ V is called a subspace if U is an F -submodule of V . If V has a
basis consisting of n vectors, then we say that the dimension of V is n.

Let T : V ! W be a linear transformation and let U ✓ V . We say that U is T -invariant
if T (U) ✓ U , i.e. T (u) 2 U for all u 2 U . We call the space < v >:= span{v, Tv, T 2v, ...}
the cyclic subspace generated by v. The fact that < v > is T -invariant is clear from its
definition.

Now let V be a vector space over a field F and let T : V ! V be a linear operator. Define
an action of F [x] on V by p(x)·v = (a

n

T n+...+a1T+a0I)(v) where p(x) = a
n

xn+...+a1x+a0.
This action gives V an F [x]-module structure. If V is finite dimensional, then V is a torsion
F [x]-module. To see this, let V be an n-dimensional vector space over F and let T : V ! V
be a linear operator. Let v be an element of V and consider the set {v, Tv, ..., T nv}. Since we
have n+1 vectors in an n-dimensional space, there must exist a0, a1, ..., an, not all zero, such
that a0v+ a1Tv+ ...+ a

n

T nv = 0. Therefore f(x) · v = 0 where f(x) = a0+ a1x+ ...+ a
n

xn.
As V is also finitely generated, Theorem 3.2 implies that V is isomorphic to a direct

sum of cyclic modules, i.e. modules generated by a single element. Using the direct sum
decompositions given by Theorems 3.2 and 3.5, we can find canonical forms for the operator
T . If we use the invariant factors, we can obtain the rational canonical form of T . If we
instead use the elementary divisors, we can obtain the Jordan canonical form of T

By Theorem 3.2, we know V ⇠= F [x]
�
(a1(x))� ...�F [x]

�
(a

m

(x)) with a1(x) | ... | am(x).
Consider the cylic module F [x]

�
(a

i

(x)) and suppose a
i

(x) = xdi + a
di�1x

di�1+ ...+ a1x+ a0.
As a cyclic module, F [x]

�
(a

i

(x)) is generated by a single vector v, so that F [x]
�
(a

i

(x)) ⇠=
span{v, Tv, T 2v, ...} but T div = 0 so actually {1, x, ..., xdi�1} is linearly independent and
forms a basis for F [x]

�
(a

i

(x)). The action of T on this basis can easily be seen to give the
matrix:

2

66666664

0 0 0 . . . 0 �a0
1 0 0 . . . 0 �a1
0 1 0 . . . 0 �a2
...

...
. . . . . .

...
...

0 0 0
. . . 0 �a

di�2

0 0 0 . . . 1 �a
di�1

3

77777775

We call this the companion matrix for the polynomial xdi + a
di�1x

di�1 + ...+ a1x+ a0.



10

Since the action of T on the cyclic module F [x]
�
(a

i

(x)) is given by the companion matrix
above, it follows that the action of T on V is given by the direct sum of the companion
matrices for the polynomials a1(x), ..., am(x), i.e.

M(T ) =

2

6664

C
a1

C
a2

. . .
C

am

3

7775

where C
ai is the companion matrix for the polynomial a

i

(x) and there are zeros every-
where else. We call this matrix the direct sum of the matrices C

a1 , Ca2 , ..., Cam and denote
it C

a1 � ...� C
am .

Theorem 4.1 : Let T be a linear operator on a finite-dimensional vector space V . Then
there exists a unique list of polynomials a1(x), ..., am(x) with the property that there is a basis
for V such that the matrix for T is given by C

a1 � ... � C
am, where C

ai is the companion
matrix for a

i

(x). We call this the rational canonical form of T .

Now consider the decomposition given by Theorem 3.5: V ⇠= F [x]
�
(p1(x)r1) � ... �

F [x]
�
(p

m

(x)rm) where p1(x), ..., pm(x) are monic irreducible polynomials, namely the ele-
mentary divisors of T . Let’s look at the action of T on the cyclic module F [x]

�
(p(x)r) where

deg(p(x)) = n. It is easy to see that the minimal polynomial of this restriction is p(x)r. We
will show that the set

{1, x, x2, ..., xn�1, p(x), xp(x), x2p(x), ..., xn�1p(x), ..., p(x)r�1, xp(x)r�1, ..., xn�1p(x)r�1}

is a basis for this submodule. Suppose that there exist b0, b1, ..., bnr�1 such that

b0 + b1x+ b2x
2 + ...+ b

nr�1x
n�1p(x)r�1 = 0.

This gives us a polynomial of degree nr�1 that annihilates T , contradicting that the minimal
polynomial p(x)r has degree nr. Therefore this set is linearly independent, and thus gives
us a basis. With respect to this basis, the action of T is given by:

1 7! x
x 7! x2

...
xn�1 7! p(x)� a

n�1x
n�1 � . . .� a1x� a0

p(x) 7! xp(x)
xp(x) 7! x2p(x)

...
xn�1p(x) 7! p(x)2 � a

n�1x
n�1p(x)� . . .� a1xp(x)� a0p(x)

...
p(x)r�1 7! xp(x)r�1

xp(x)r�1 7! x2p(x)r�1

...
xn�1p(x)r�1 7! �a

n�1x
n�1p(x)r�1 � . . .� a1xp(x)r�1 � a0p(x)r�1
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Hence T is given by the following nr ⇥ nr matrix, where C is the companion matrix
for the polynomial p(x) and B is the matrix with a 1 in the upper right entry and zeros
everywhere else:

M(T ) =

2

666664

C
B C

B
. . .
. . . . . .

B C

3

777775

It is easy to see that the action of T on V ⇠= F [x]
�
(p1(x)r1)� ...�F [x]

�
(p

m

(x)rm) is then
the direct sum of the matrices of this form corresponding to each p

i

(x). We call the resulting
matrix the primary rational canonical form or generalized Jordan canonical form

of T .

Theorem 4.2 : If T be a linear operator on a finite-dimensional vector space V , then there
exists a basis for V such that T is in generalized Jordan canonical form.

If F contains all of the eigenvalues of T so its characteristic polynomial splits over F ,
then the elementary divisors are all powers of linear polynomials and we have:

M
�

(T |
F [x]/(x��)↵) =

2

66666664

� 0 0 . . . 0 0
1 � . . . 0 0
0 1 � . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . � 0
0 0 0 . . . 1 �

3

77777775

We call a matrix of this form a Jordan block. Since the matrix for T acting on
F [x]

�
(x��)↵ with respect to the basis � is the ↵⇥↵ Jordan block with eigenvalue � we see

that the matrix for T acting on V ⇠= F [x]
�
(x � �1)↵1 � ... � F [x]

�
(x � �

m

)↵m is the direct
sum of the Jordan blocks corresponding to each of the elementary divisors of V , i.e.

M(T ) =

2

6664

A1

A2

. . .
A

m

3

7775

whereA
i

is the ↵
i

⇥↵
i

Jordan block with eigenvalue �
i

. We call this the Jordan canonical form

of T . Since the elementary divisors are unique, as we already saw, it follows that the Jor-
dan canonical form is unique up to permutation of the Jordan blocks (which corresponds to
permutation of the cyclic modules in the direct sum decomposition of V ).

We say that two linear transformations (matrices) A and B are similar if there exists an
invertible linear transformation (matrix) C such that A = CBC�1. Similar matrices share
the same minimal and characteristic polynomials, among other properties.
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Proposition: Suppose A : V ! V and B : V ! V are similar n ⇥ n matrices. Then
(V,A) and (V,B) are isomorphic F [x]-modules.

Proof: Since A and B are similar, there exists an invertible matrix P such that B =
P�1AP . Further, x acts as the matrix A in (V,A) and as the matrix B in (V,B). Consider
the map from (V,A) to (V,B) given by �(v) = P�1v. This is clearly a bijection. Also,
�(x · v) = �(Av) = P�1Av = BP�1v = B · �(v) = x · �(v), so this is an F [x]-module
homomorphism. We conclude that (V,A) and (V,B) are isomorphic F [x]-modules. ⌅

Therein lies the importance of the Jordan canonical form: similarity defines an equiva-
lence relation on the set of all matrices and the Jordan canonical form provides us with a
canonical representative from each equivalence class.

Given a matrix A, we define the characteristic polynomial p
A

(x) to be the determi-
nant of the matrix xI � A and the minimal polynomial m

A

(x) to be the monic minimal
annihilator of (V,A) in F [x]. Therefore m

A

(x) is the polynomial f(x) of minimal degree
such that f(A) = 0. Likewise, if v 2 V , we let m

v

(x) denote the minimal annihilator of the
vector v in F [x].

Let’s take a look now at what interesting properties of T we can deduce simply by
examining its Jordan canonical form. In particular, let’s use this form to find the minimal
polynomial and characteristic polynomial of T . In order to do this, we’ll utilize a simple fact
from linear algebra which will also serve as an excellent example of a statement about linear
operators which is analogous to a statement about finite abelian groups. More specifically,
considering that the characteristic polynomial plays the same role as the order of a finite
abelian group, we can consider the following proposition to be a sort of Lagrange’s Theorem
for linear operators.

Lemma 4.3 : If U ⇢ V is T -invariant, then p
T |U (x) | pT (x).

Proof : Let {u1, u2, ..., uk

} be a basis for U and extend it to a basis � := {u1, ..., uk

, v1, ..., vn�k

}
for V . Then the matrix of T with respect to this basis is:

T =


T |

U

B
0 C

�
. Therefore p

T

(x) = det(x� T |
U

)⇥ det(x� C) = p
T |U (x)⇥ det(x� C). ⌅

Corollary 4.4 : m
v

(x) | p
T

(x) for all v 2 V .

Proof : Let v 2 V and consider the cyclic subspace generated by v: < v >= span{v, Tv, ...}.
It’s clear that < v > is T -invariant and its minimal polynomial is m

v

(x). It follows by the
previous theorem that m

v

(x) | p
T

(x). ⌅

Using the invariant factors of V , we have V ⇠= F [x]
�
(a1(x)) � ... � F [x]

�
(a

m

(x)). Since
every vector in F [x]

�
(a

i

(x)) is annihilated by a
i

(x), it follows that the minimal polynomial
of T is the least common multiple of {a1(x), ..., am(x)}, which is a

m

(x). Furthermore, it
follows from the fact that the characteristic polynomial of T |

F [x]/(a1(x)) is a
i

(x) that the
characteristic polynomial of T is a1(x)⇥ ...⇥ a

m

(x). (Note the similarity between this and
the fact that the exponent of the finite group Z

�
a1Z� ...�Z

�
a
t

Z is lcm{a1, ..., at} and the
order is a1 ⇥ ...⇥ a

t

.)
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We call a linear operator T : V ! V diagonalizable if there exists a basis such that the
matrix is diagonal with respect to this basis, i.e.

M(T ) = diag(�1,�2, ...,�m) =

2

6664

�1
�2

. . .
�
m

3

7775
.

Theorem 4.5 : A linear operator T : V ! V is diagonalizable if and only if its minimal
polynomial m(x) splits as a product of distinct linear factors.

Proof : Suppose T : V ! V is diagonalizable. Since similar matrices have the same
minimal polynomial, we may find m(x) using a basis such that T is diagonal. In this case,
it’s clear that the minimal polynomial is (x� �1)⇥ (x� �2)⇥ ...⇥ (x� �

k

), where �1, ...,�k
are the distinct eigenvalues on the main diagonal.

Conversely, suppose m(x) = (x� �1)(x� �2) · · · (x� �
k

) where �1,�2, ...,�k are distinct.
Then the elementary divisors are all linear polynomials. It follows that the Jordan canonical
form of T is a diagonal matrix. ⌅

Corollary 4.6 (Cayley-Hamilton): If T : V ! V is a linear operator with characteristic
polynomial p

T

(x), then p
T

(T ) = 0.

Proof : Follows immediately from the fact that the minimal polynomial m(x) =
lcm{a1(x), ..., am(x)} and the characteristic polynomial p

T

(T ) = a1(x) ⇥ ... ⇥ a
m

(x), so
m(x) | p

T

(x). ⌅

Our next result will show the correspondence between subgroups of a finite abelian group
and invariant subspaces of a vector space. Using this correspondence, we can then show that
a certain existence theorem for subgroups also holds for invariant subspaces.

Theorem 4.7 : Suppose T : V ! V is a linear operator. Then V contains no proper,
non-trivial T -invariant subspaces if and only if p

T

(x) is irreducible.

Proof : Suppose p
T

(x) is irreducible and let U 6= {0} be T -invariant. Since p
T |U (x) divides

p
T

(x) and p
T

(x) is irreducible, we must have p
T |U (x) = p

T

(x) which imples dim(U) =dim(V ).
Hence U=V .

Conversely, suppose V contains no proper, non-trivial T -invariant subspaces. Let v be
a non-zero vector in V and consider the cyclic subspace < v >:= span{v, Tv, ..., T nv, ...}.
< v > is T -invariant and non-empty so we must have < v >= V . Therefore p

T

(x) equals
the minimal polynomial m(x). Now, assume p

T

(x) is reducible. Then p
T

(x) = f(x)g(x)
for some f(x), g(x) 2 F [x] with 1  deg(f(x)), deg(g(x))  deg(p

T

(x)). By the Cayley-
Hamilton Theorem, we have f(T )g(T )w = p

T

(T )w = 0 for all w 2 V so either f(T ) or
g(T ) is not injective. Suppose f(T ) is not injective. v 2 ker(f(T )) =) f(T )v = 0 =)
f(T )Tv = T (f(T )v) = T (0) = 0 so ker(f(T )) is a non-trivial T -invariant subspace of V and
therefore ker(f(T )) = V . Thus f(T )v = 0 8v 2 V . However, since the minimal polynomial
m(x) = p

T

(x) divides every annihilating polynomial of V , we must have p
T

(x) | f(x), which
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is a contradiction since deg(f(x)) < deg(p
T

(x)). ⌅

We’ll now prove an analog of Theorem 2.7 for invariant subspaces:

Theorem 4.8 : Let T : V ! V be a linear operator and suppose q(x) | p
T

(x). Then there
exists an invariant subspace U ⇢ V such that p

T |U (x) = q(x).

Proof : Suppose p
T

(x) = p1(x)r1 ⇥p2(x)r2 ⇥ ...⇥p
k

(x)rk is the irreducible factor decompo-
sition of p

T

(x). Then, since q(x) | p
T

(x), we must have q(x) = p1(x)s1 ⇥p2(x)s2 ⇥ ...⇥p
k

(x)sk

where 0  s
i

 r
i

.
By the elementary divisor form of the structure theorem, we have V ⇠= F [x]

�
(p1(x)r1)�

...� F [x]
�
(p

k

(x)rk). We know from the proof of the generalized Jordan canonical form that
F [x]

�
(p(x)r) is isomorphic to:

span{v, Tv, ..., T n�1v, p(T )v, ..., T n�1p(T )v, ..., p(T )r�1v, Tp(T )r�1v, ..., T n�1p(T )r�1v}

We can see that p(T )r�sv spans a subspace isomorphic to F [x]
�
(p(x)s). Thus we can

find subspaces isomorphic to F [x]
�
(p1(x)s1), ..., F [x]

�
(p

k

(x)sk) so the direct sum of these
subspaces gives us a subspace F [x]

�
(p1(x)s1) � ... � F [x]

�
(p

k

(x)sk) and clearly the charac-
teristic polynomial of T restricted to this subspace is q(x). ⌅

Suppose V is a vector space and T : V ! V is a linear operator. We call the pair (V, T )
decomposable if there exist non-trivial invariant subspaces V1 and V2 such that V ⇠= V1�V2.
We can now prove an analog of Theorem 2.6 for linear operators:

Theorem 4.9 : Let T : V ! V be a linear operator. Then (V, T ) is indecomposable if and
only if V ⇠= F [x]

�
(p(x)n) with p(x) irreducible.

Proof : Suppose V � F [x]
�
(p(x)n) with p(x) irreducible. Then, without loss of generality,

we may assume V ⇠= F [x]
�
(p1(x)n1) � F [x]

�
(p2(x)n2). It follows immediately that V is

decomposable.
Now suppose V ⇠= F [x]

�
(p(x)n) with p(x) irreducible. It follows immediately from the

generalized Jordan canonical form that F [x]
�
(p(x)n) � F [x]

�
(p(x)l) � F [x]

�
(p(x)n�l) for

any l < n. Hence V is indecomposable. ⌅



15

5 Some Examples

In order to better understand our canonical forms, let’s look at some examples to see
how we can find the elementary divisors:

Consider the matrix A =


1 2
0 1

�
. We can find the elementary divisors of the F [x]-module

(F 2, A) by putting the matrix xI �A into Smith normal form. This is achieved by using

elementary row and column operations to obtain a matrix of the form


a1(x) 0
0 a2(x)

�
where

a1(x)⇥ a2(x) = p
T

(x). In this case, we get:

xI � A =


x� 1 2
0 x� 1

�
!


1 0
0 (x� 1)2

�
so the elementary divisors are 1 and (x� 1)2.

This implies that (F 2, A) may be written as (F 2, A) ⇠= F [x]
�
(x� 1)2.

It turns out that there is an algorithm which will always produce the elementary divisors.
Suppose

xI � A =

2

64
f11 · · · f1n
...

...
f
n1 · · · f

nn

3

75 .

Choose the non-zero entry of lowest degree, say f
ij

(x). By elementary row and column
operations, we can replace each entry in the ith row and jth column by its residue modulo
f
ij

(x). Now consider the following two cases:

Case 1: f
ij

(x) divides every entry in its row and column, so every residue is 0. We
can then switch the 1st and ith rows as well as the 1st and jth columns to get the following
matrix: 2

6664

f
ij

(x) 0 · · · 0
0 ⇤ · · · ⇤
...

...
...

0 ⇤ · · · ⇤

3

7775
.

Case 2: f
ij

(x) does not divide every entry in its row and column, so there is some non-
zero residue. Since every residue modulo f

ij

(x) has a degree strictly less than deg(f
ij

(x)), we
now have a matrix with a non-zero entry of minimal degree less than the minimal degree of
our original matrix. We can take this new non-zero entry of minimal degree and repeat the
same procedure. Since each step results in a matrix with a lower minimal degree than the
previous one, this process must terminate, i.e. it must eventually happen that our non-zero
entry of minimal degree divides every entry in its row and column, so we can proceed as in
the first case.
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Thus, in both cases we reduce our original matrix to one of the form:
2

6664

f(x) 0 · · · 0
0 ⇤ · · · ⇤
...

...
...

0 ⇤ · · · ⇤

3

7775
.

We then apply the same algorithm to the (n� 1)⇥ (n� 1) matrix formed by removing
the first row and column, and continue in this manner until we have obtained our diagonal
matrix.

Now consider the matrix

A =

2

66666666664

1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 �1
0 1 1 0 0 0 0 1
0 0 0 1 1 0 0 0
0 1 1 1 1 1 0 1
0 �1 �1 �1 �1 0 1 �1
0 0 0 0 0 0 0 0

3

77777777775

.

We find the elementary divisors as follows:

xI � A =

2

66666666664

x� 1 �1 �1 �1 �1 �1 �1 �1
0 x 0 0 0 0 0 �1
0 0 x 0 0 0 0 1
0 �1 �1 x 0 0 0 �1
0 0 0 �1 x� 1 0 0 0
0 �1 �1 �1 �1 x� 1 0 �1
0 1 1 1 1 0 x� 1 1
0 0 0 0 0 0 0 x

3

77777777775

. !

2

66666666664

0 0 0 0 0 0 0 �1
1� x x+ 1 1 1 1 1 1 �1
x� 1 �1 x� 1 �1 �1 �1 �1 1
1� x 0 0 x+ 1 1 1 1 �1
0 0 0 �1 x� 1 0 0 0

1� x 0 0 0 0 x 1 �1
x� 1 0 0 0 0 �1 x� 2 1

x(x� 1) �x �x �x �x �x �x x

3

77777777775

. !

2

66666666664

0 0 0 0 0 0 0 1
1� x x+ 1 1 1 1 1 1 0
x� 1 �1 x� 1 �1 �1 �1 �1 0
1� x 0 0 x+ 1 1 1 1 0
0 0 0 �1 x� 1 0 0 0

1� x 0 0 0 0 x 1 0
x� 1 0 0 0 0 �1 x� 2 0

x(x� 1) �x �x �x �x �x �x 0

3

77777777775

! · · · · · ·
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· · · · · · !

2

66666666664

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 (x� 1)2 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 x2 0 0
0 0 0 0 0 0 �x2 2x� 1
0 0 0 0 0 0 x2 �x2

3

77777777775

!

2

66666666664

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 (x� 1)2 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 x2 0 0
0 0 0 0 0 0 �x2 �(x� 1)2

0 0 0 0 0 0 x2 0

3

77777777775

!

2

66666666664

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 (x� 1)2 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 x2 0 0
0 0 0 0 0 0 (x� 1)2 0
0 0 0 0 0 0 0 x2

3

77777777775

!

We see that the elementary divisors are x2, x2, (x� 1)2, (x� 1)2. From this, we deduce that
(F 8, A) ⇠= F [x]

�
x2 � F [x]

�
x2 � F [x]

�
(x� 1)2 � F [x]

�
(x� 1)2

Now let’s look at a few examples to see what we can learn from the minimal and charac-
teristic polynomials of an operator:

Consider the operator on F 3 given by T =

2

4
1 0 0
0 1 0
0 0 1

3

5. Since m
T

(x) = (x � 1) and

p
T

(x) = (x� 1)3, we have that (F 3, T ) ⇠= F [x]
�
(x� 1)� F [x]

�
(x� 1)� F [x]

�
(x� 1).

Likewise, if we take the operator S =

2

4
1 1 0
0 1 0
0 0 1

3

5 on F 3, we see that m
S

(x) = (x � 1)2 and

p
S

(x) = (x� 1)3, so (F 3, S) ⇠= F [x]
�
(x� 1)� F [x]

�
(x� 1)2.}

Just as we showed that some small values of the exponent and order of a finite abelian
group uniquely determine the group, it is also true that we can determine the Jordan canon-
ical form of some operators just by knowing the characteristic polynomial and minimal
polynomial.

For instance, say we know that the characteristic polynomial of an operator T is p(x) =
(x� 1)2(x� 2)2 and the minimal polynomial is m(x) = (x� 1)(x� 2)2. The characteristic
polynomial tells us that the Jordan canonical form must be:
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2

664

2 a 0 0
0 2 0 0
0 0 1 b
0 0 0 1

3

775 where a, b 2 {0, 1}.

The minimal polynomial tells us we must have a = 1 and b = 0, since a = 0 would imply
(T � I)(T � 2I) = 0 and b = 1 would imply that (T � I)(T � 2I)2 6= 0, both contradicting
the fact that m(x) = (x� 1)(x� 2)2.

Now suppose m(x) = p(x) = (x � 1)2(x � 2)2. In this case, we must have a = b = 1,
since a = 0 would imply (T � I)2(T � 2I) = 0 and b = 0 would imply (T � I)(T � 2I)2 = 0,
contradicting the fact that m(x) = (x� 1)2(x� 2)2.



19

References

[1] Dummit, D.; Foote, R. Abstract Algebra: 3rd edition. John Wiley & Sons, Inc.: 2003.
[2] MacLane, S.; Birkho↵, G. Algebra: 3rd edition. Chelsea Publishing Co.: 1988.



ACADEMIC VITA

Benjamin Taylor

806 Logandale Drive
Altoona, PA 16601
benter_07@hotmail.com

________________________________________

Education:
The Pennsylvania State University, Spring 2013
B.S. in Mathematics
Honors in Mathematics
Thesis Title: Analogies in Linear Algebra and Group Theory
Thesis Supervisor: Mihran Papikian

Activities and Honors:
Member, Phi Beta Kappa Honors Society, 2011 - Present
Participant, Penn State University MASS Program, Fall 2011
Recipient, The President Sparks Award, 2010
Recipient, Diehl Endowed Science Scholarship, 2010
Recipient, Keiter Science Honors Scholarship, 2010
Recipient, Society of Distinguished Alumni Trustee Matching Scholarship, 2012


