
THE PENNSYLVANIA STATE UNIVERSITY

SCHREYER HONORS COLLEGE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LOCATION RECOMMENDATION FOR MOBILE USERS IN LOCATION-BASED SOCIAL

NETWORKS

GREGORY FERENCE

SPRING 2013

A thesis

submitted in partial fulfillment

of the requirements

for baccalaureate degrees

in Computer Science and in Mathematics

with honors in Computer Science

Reviewed and approved∗ by the following:

Wang-Chien Lee
Associate Professor of Computer Science and Engineering
Thesis Supervisor

John Hannan
Associate Professor of Computer Science and Engineering
Honors Adviser

Raj Acharya
Professor of Computer Science and Engineering
Head of the Department of Computer Science and Engineering

∗Signatures are on file in the Schreyer Honors College.

Abstract

Location-based services have become popular in the twenty-first century due to technological
advances, such as mobile and online social networking. One of its key features is location recom-
mendation, which encourages users to explore new locations. In this thesis, we propose methods
for recommending locations that are interesting for the user in terms of closeness in proximity
and spatial diversity in relation to the user’s current location.

First, most previous research on location recommendation services in location-based social
networks (LBSNs) makes recommendations without considering where the targeted user is cur-
rently located. Such services, as a result, may recommend to a user traveling out of town a
place close to her hometown. In this thesis, we study the issues in making location recom-
mendations for out-of-town users by taking into account user preference, social influence and
geographical proximity. Accordingly, we propose a collaborative recommendation framework,
called User Preference, Proximity and Social-Based Collaborative Filtering (UPS-CF), to make
location recommendation for mobile users in LBSNs. We validate our ideas by comprehensive ex-
periments using real datasets collected from Foursquare and Gowalla. By comparing two baseline
algorithms (i.e., popularity-based and distance-based approaches) and conventional collaborative
filtering approach (and its variants), we show that UPS-CF exhibits the best performance. Addi-
tionally, we find that when users are in town, preference derived from similar users is important
while social influence becomes more important as a user is out of town.

Second, studies have shown that users prefer diversity in their recommendation results, but
few works have considered spatial diversity in terms of recommending locations. In this thesis,
we investigate the k-nearest diverse neighbor problem, which chooses locations that are spatially
diverse as well as close in proximity to the user’s current location. By fixing deficiencies in a state-
of-the-art framework, we first propose the Modified Index-Based Diverse Browsing (Mod-IBDB)
framework. In addition, we propose the Distance-Based Diverse Browsing (DBDB) framework
that improves upon an initial solution to provide spatially diverse and nearby locations. We
develop two versions based upon selecting the initial framework: Distance-First DBDB and
Diversity-First DBDB. Using Foursquare and Gowalla datasets as well as synthetic datasets,
we show that Mod-IBDB improves upon the performance of its predecessor. In addition, we
show that DBDB methods outperform the mentioned state-of-the-art algorithms (as well as the
k-nearest neighbor baseline) in terms of proximity and spatial diversity while maintaining high
efficiency.

i

Table of Contents

List of Figures v

List of Tables vii

Acknowledgments viii

Chapter 1
Introduction 1
1.1 Research Questions and Approach . 7
1.2 Thesis Structure . 9

Chapter 2
Literature Review 10
2.1 Data Analysis . 10
2.2 Recommendation Techniques . 11

2.2.1 Content-Based vs. Collaborative Filtering 11
2.2.2 Location Recommendation . 12

2.3 Diversity . 13
2.3.1 Distance Diversity vs. Angular Diversity 13
2.3.2 Search and Query Diversity . 15
2.3.3 Recommendation Diversity . 16
2.3.4 K-Nearest Diverse Neighbor Query . 16

Chapter 3
Preliminaries 18
3.1 Terminology . 18
3.2 Problem Formulation . 20

3.2.1 Location Recommendation . 20
3.2.2 K-Nearest Diverse Neighbors . 20

3.3 Background . 21
3.3.1 Location-Based Social Network Data . 21

3.3.1.1 User-Location Relationship . 21
3.3.1.2 User-User Relationship . 22

3.3.2 User-Based Collaborative Filtering . 22
3.3.2.1 Algorithm . 23
3.3.2.2 Example Calculation . 23

3.3.3 Angular Diversity Metrics . 24

ii

3.3.4 R-Tree . 26
3.3.5 K-Nearest Neighbor Query . 27
3.3.6 Index-Based Diverse Browsing . 28

3.3.6.1 Algorithm . 29
3.3.6.2 Example Calculation . 31

Chapter 4
Data Analysis 36
4.1 Datasets . 36
4.2 Location Recommendation for Out-of-town Users 36
4.3 Mobility of Users . 39
4.4 Similar Users and Friends . 39

Chapter 5
Location Recommendation Algorithm 42
5.1 User Preference, Proximity and Social-Based Collaborative Filtering Framework 42
5.2 Example Calculation . 44

Chapter 6
K-Nearest Diverse Neighbor Algorithms 46
6.1 Modified Index-Based Diverse Browsing . 46

6.1.1 Remove Pruning . 46
6.1.2 Fix Incorrect Mindivdist Calculation . 47
6.1.3 Algorithm . 49
6.1.4 Example Calculation . 49

6.2 Distance-Based Diverse Browsing . 50
6.2.1 Distance-First Distance-Based Diverse Browsing 52
6.2.2 Diversity-First Distance-Based Diverse Browsing 52
6.2.3 Example Calculation . 53

Chapter 7
Performance Evaluation 56
7.1 Increasing Effectiveness . 56

7.1.1 Evaluation Process . 56
7.1.2 Parameter Tuning . 58
7.1.3 Effectiveness . 59
7.1.4 Cold Start Problem . 63

7.2 K-Nearest Diverse Neighbor . 67
7.2.1 Evaluation Process . 67
7.2.2 Evaluation Metrics . 68

7.2.2.1 Diversity-Relevance Metric . 68
7.2.2.2 Diversity Metric . 68
7.2.2.3 Relevance Metric . 74
7.2.2.4 Efficiency Metric . 74

7.2.3 Parameter Comparison . 75
7.2.4 Evaluation . 88

7.2.4.1 LBSN Datasets . 88
7.2.4.2 Synthetic Datasets . 93

Chapter 8
Conclusions and Future Work 95

iii

Bibliography 97

iv

List of Figures

1.1 User profile and location detail page for Foursquare mobile application 1
1.2 User profile and location detail page for Gowalla mobile application 2
1.3 Illustration of recommendation for a user traveling a long distance 4
1.4 Example of spatially non-diverse and diverse recommended locations 5
1.5 Comparison of distance diversity and angular diversity 6
1.6 Example of choosing closest two locations (blue), two locations with highest dis-

tance diversity (brown), and two locations with highest angular diversity (yellow) 6

2.1 Visualization of spatially non-diverse and diverse recommended locations 14
2.2 Example with varying diversity values . 14
2.3 Example of choosing closest two locations (blue), two locations with highest dis-

tance diversity (brown), and two locations with highest angular diversity (yellow) 15

3.1 Definition of angle and sector . 19
3.2 Graph representation of users and locations in a LBSN 21
3.3 Friend details page for Foursquare and Gowalla mobile applications 22
3.4 Angular diversity for two locations and three or more locations 25
3.5 Calculation of angular diversity for two or more locations 26
3.6 Spatially non-diverse and diverse normalized locations for mean calculation of

angular diversity . 26
3.7 R-Tree representation for 2D points . 27
3.8 K-nearest neighbor representation for 2D points 28
3.9 Pruning based off MinDivDist . 29
3.10 Example calculation for IBDB algorithm . 32
3.11 Pruning area for l8 and l7 . 33
3.12 Pruning area for l2 and l6 . 33

4.1 Probability distribution of users that have 50% of recommended locations within
distance of a visited location . 37

4.2 Probability distribution of users that have 80% of recommended locations within
distance of visited location . 37

4.3 Precision of user-based collaborative filtering . 38
4.4 Probability distribution of traveling distance of users from their home location in

the Foursquare dataset . 39
4.5 Percentage of friends and top users that share visited location of target user . . . 40

6.1 Example where pruning may is not optimal . 47
6.2 Example where mindivdist is incorrectly calculated for R-Tree Page in IBDB . . 48
6.3 Examples for modified mindivdist calculation . 50
6.4 Angle definition and visualization of choosing initial set of diverse locations . . . 52
6.5 Example for Distance-Based Diverse Browsing . 54

v

6.6 Choosing diverse initial set of locations . 54

7.1 Effectiveness of algorithms - Precision@5 . 59
7.2 Effectiveness of algorithms - Precision@10 . 60
7.3 Effectiveness of algorithms - Precision@20 . 61
7.4 Effectiveness of cold start users - Precision@5 . 64
7.5 Effectiveness of cold start users - Precision@10 65
7.6 Effectiveness of cold start users - Precision@20 66
7.7 Comparison of low, medium and high spatial diversity for angular diversity . . . 69
7.8 Visualization of the partition diversity metric and angle definition 70
7.9 DivRel score for changing θ . 78
7.10 Disk accesses for changing θ . 79
7.11 Diversity score for changing θ . 80
7.12 Relevance score for changing θ . 81
7.13 DivRel score for changing stop condition . 82
7.14 Disk accesses for changing stop condition . 83
7.15 Diversity score for changing stop condition . 84
7.16 Relevance score for changing stop condition . 85
7.17 Diversity score for changing the number of initial locations to consider for Div-DBDB 86
7.18 Disk accesses for changing the number of initial locations to consider for Div-DBDB 87
7.19 DivRel score for changing λ . 89
7.20 Disk accesses for changing λ . 90
7.21 Diversity score for changing λ . 91
7.22 Relevance score for changing λ . 92
7.23 DivRel and disk access for changing skew of synthetic dataset 94

vi

List of Tables

3.1 Example table of user check-ins . 24
3.2 Index-Based Diverse Browsing example . 34
3.3 Index-Based Diverse Browsing example (continued) 35

5.1 Example table of user check-ins . 44
5.2 Example table of social relationships . 44
5.3 Example table of location coordinates . 44

6.1 Distance-Based Diverse Browsing . 55

7.1 Optimal α for US and UPS . 58
7.2 Diversity calculations with different diversity metrics and examples 69
7.3 Diversity calculations with examples for the partition diversity metric 74

vii

Acknowledgments

I would like to thank many people for their support throughout my college career. First, I would
like to thank Dr. Wang-Chien Lee, who has served as my research advisor for the past several
years. His guidance and wisdom has helped me tremendously throughout my research career.
Through having him as my research advisor, I have learned a great deal that helped me complete
my degrees and will serve me well in the future. In addition, I would like to acknowledge Dr.
Lee’s Pervasive Data Access (PDA) group, which has given insightful input to help guide my
research. In particular, Dr. Mao Ye helped me tremendously while at Penn State, from the very
beginning of my research career to completing research projects. Also at Penn State, Dr. John
Hannan has served as an excellent thesis committee member and academic advisor throughout
my academic career, answering all the questions that I had. Furthermore, I would like to thank
my fellow colleagues at Penn State as well as my friends for their help and support throughout
my life at Penn State. Lastly, I would like to thank my family, who has supported and loved me
through my whole life and college career.

viii

Chapter 1
Introduction

Due to the rapid development of Web 2.0, social networking and mobile technologies, location-

based social networks (LBSNs), such as Foursquare, Facebook Places and Gowalla, have emerged

in recent years. They allow users to connect with friends, explore places (e.g., restaurants), share

their locations, and upload comments, photos and videos. Different from conventional social

networking services that connect people merely in the cyber world, LBSNs bring people together

via cyber connections and “physical” interactions with places, e.g., a user may “check-in” to a

location indicating she has visited the location.

(a) User Profile1 (b) Location Details1

Figure 1.1: User profile and location detail page for Foursquare mobile application

1Screenshots from https://foursquare.com/about/photos.

2

In addition, LBSNs include many features that keep users interested in checking into locations

as well as using their services. For example, Foursquare, as shown in Figure 1.1, allows users

to obtain badges for different achievements, such as visiting five different airports or over ten

check-ins within twelve hours. For users who visit the same location(s) frequently, they can

obtain mayor status for being the user who has checked into a location the most times in the

past 60 days. Some locations, such as a restaurant, give discounts to users who are the mayor

of the restaurant, which can further motivate users to visit locations and check in. Lastly, users

can leave tips for different locations, such as their favorite meal at a restaurant, which will allow

other users to view them when accessing that location.

(a) User Profile2 (b) Location Details3

Figure 1.2: User profile and location detail page for Gowalla mobile application

In another example, Gowalla4 (see Figure 1.2) allows users to check-in on their smartphones

to show they have visited a spot (i.e., location). In addition, users are allowed to link together

spots to create a trip, which others can view and complete by visiting all of the spots. To motivate

users to visit spots, a user receives a stamp (i.e., icon) in their profile and may receive an item,

which can be picked up or dropped at other spots for other users to pick up. Similar to badges in

Foursquare, Gowalla users receive pins for certain achievements, such as visiting ten coffeeshops

or creating ten spots.

To encourage mobile users to explore new locations, the location recommendation service is

an essential function to LBSNs (just like the item recommenders to many e-commerce services,

2Screenshot from http://www.leveltendesign.com/blog/colin/11-location-based-applications-your-

iphone.
3Screenshot from http://smokinapps.com/iphone-discover-interesting-facts-about-an-area-and-earn-

rewards/.
4Gowalla was purchased by Facebook in December 2011 and shut down in March 2012

3

such as netflix.com and amazon.com). The goal is to recommend a list of new locations that a

targeted user may be interested in visiting. The question that arises is: how do we recommended

locations for users to visit? Similarly, what factors are important to consider when making

location recommendations? Three factors that are important for location recommendation are:

1. Effectiveness: The recommended locations should be interesting for the user. Since users

with similar visiting histories tend to visit similar locations, a location that a similar user

has visited has a high probability of being interesting for the user. In addition, since users

tend to visit places that friends go, a location that friends have visited will more likely be

interesting for the user.

2. Close in Proximity: The recommended locations should be nearby the current coordinate

(query point) of the user. Since users tend to visit locations that are closer due to the time

and expenses of traveling long distances, the recommended locations should be closer to

the query point of the user.

3. Spatially Diverse: The recommended locations should be spatially diverse in relation to

the user’s query point (e.g., the locations should not be close to one another). Users would

prefer spatial diversity because they want more choices to make their decision for which

location to visit. If the locations are located in one area since the results are not spatially

diverse and the user does not want to travel there (e.g., it is a bad area of town, user wants

to explore different, new areas), the recommendation will not be satisfactory for the user.

This thesis considers these factors in two research works. In the first work, we emphasize

increasing the effectiveness of location recommendation results. In the second work, we con-

sider providing location recommendation results that are close in proximity to the user’s current

location as well as spatially diverse.

For increasing the effectiveness of location recommendation as well as recommending nearby

locations, some state-of-the-art research proposes to incorporate social and geographical influence

into collaborative filtering techniques when making location recommendations [66, 67]. However,

they do not consider the current location of a mobile user. Thus, regardless of where the user is

located, these systems will recommend the same locations, which could possibly be far away from

the user’s current standing location. For example, as illustrated in Fig. 1.3, consider a target

user that lives in State College, PA, USA. The user travels out of town to Los Angeles, CA (at

the other side of USA) for a vacation. Based on the core idea of collaborative filtering, similar

users of the target user (i.e., those who exhibit similar location visiting behaviors to the target

user) are chosen to provide clues for making recommendation. Due to the geographical locality

of human mobility, most of these similar users are likely to be living in the State College area

than other places because they may have visited many locations in the area where the target user

has also visited and thus exhibiting “similar” location visiting behaviors. As a recommendation

is made by considering locations visited by the similar users (and many of them may have never

visited Los Angeles), the recommended locations could be very far away and not reasonable.

4

Visited

Locations

Current

Location

Figure 1.3: Illustration of recommendation for a user traveling a long distance

Additionally, for the recommendation algorithms that do not consider geographical proximity,

they may recommend the same locations, no matter where the user is currently located. While

some systems do consider the current location of the user by either filtering far away locations or

adding a travel penalty for farther away locations [16, 38], they do not consider the social aspects

that influence a user in an LBSN. In this thesis, we aim to study the issues in making location

recommendations for out-of-town users by taking into account user preference, social connections

and geographical proximity.

To solve this problem, we propose a collaborative recommendation framework, called User

Preference, Proximity and Social-Based Collaborative Filtering (UPS-CF), to facilitate location

recommendation for mobile users in LBSNs. This framework, built upon collaborative filtering,

has two simple but important features: i) it filters locations that are too far away based on

the current proximity of the user; and ii) it integrates similar users (who have visited many

common places) and social connections (i.e., friends in LBSNs) into the collaborative filtering

algorithm. This framework also allows us to investigate the different roles of similar users and

social connections in location recommendation when the user is in town or out of town.

The contributions of the aforementioned research are summarized as follows.

• This work investigates the issues in employing collaborative filtering to make location rec-

ommendation for mobile users in LBSNs, with differentiation of in-town and out-of-town

users.

• We propose a new recommendation framework, namely, UPS-CF, that considers user pref-

erence, social connections and geographical proximity.

• Through extensive experimentation with real datasets, we validate our ideas and show that

UPS-CF outperforms other baseline algorithms and collaborative filtering variants.

5

• We show that friends play a more important role than similar users when the target user

is farther away from home.

(a) Not Diverse (b) Diverse

Figure 1.4: Example of spatially non-diverse and diverse recommended locations

For choosing locations that are close in proximity to the user’s query point as well as spatially

diverse, we look into solving the k-nearest diverse neighbor problem, which involves choosing loca-

tions that are nearby the query point (can be considered relevancy for location recommendation)

such that the recommended locations are diverse. Consider the example in Figure 1.4. The

locations in the left example are not diverse since the locations are nearby and in the same di-

rection in relation to the query point while the locations on the right example show spatially

diverse locations since pairwise locations are relatively far apart and the locations are in different

directions in relation to the query point. This problem of non-diverse results can occur in collab-

orative filtering (and other recommendation algorithms) since it tends to cluster recommended

locations nearby other visited locations [67]. With this, there are many motivating reasons to

consider spatial diversity in results. Having locations in one area makes the assumption that the

user wants to visit that specific area. This could be incorrect for several reasons, such as if the

user believes it is a bad area of town or has a pre-conceived notion for not visiting the area. For

a user that wants to tour the city/surrounding area, she will want recommendations in different

parts of the town instead of clustered in one area. Moreover, users may prefer to have a diverse

set of choices before they decide where to go. Lastly, recent research has shown that users prefer

diverse recommendation results, even if the effectiveness of the results is lower. Specifically for

spatial diversity, Tang et al. shows that for image search results with images having geographical

information, users would rather be recommended spatially diverse images [57].

For the k-nearest diverse neighbor problem, two different types of diversity can be considered:

distance diversity and angular diversity. Distance diversity, as shown in Figure 1.5a, compares

the distance between pairwise locations, so the farther apart the locations are, the larger the

diversity. Angular diversity, as shown in Figure 1.5b, compares the direction (e.g. north, south)

6

(a) Distance Diversity (b) Angular Diversity

Figure 1.5: Comparison of distance diversity and angular diversity

(a) Low Angular Diversity/High Distance Diversity

Figure 1.6: Example of choosing closest two locations (blue), two locations with highest distance
diversity (brown), and two locations with highest angular diversity (yellow)

of the locations in relation to the query point, with locations in varying directions having larger

diversity. Even though distance diversity is the most popular diversity metric, it does not work

well with the k-nearest diverse neighbor problem. Since distance diversity chooses locations that

are farther apart while choosing locations close in proximity requires choosing locations that are

close together around the query point, a contradiction occurs, which is visualized in Figure 1.6.

To our best knowledge, two frameworks exist to solve the k-nearest diverse neighbor problem.

The first framework uses distance diversity [24, 28], which suffers from the above mentioned

problem with choosing locations. The other state-of-the-art system is the Index-Based Diverse

Browsing (IBDB) which considers the k-nearest diverse neighbor problem with angular diversity

[34, 35], but their algorithm has several deficiencies that negatively impact the result of their

algorithm. In the second part of this thesis, we aim to develop alternative algorithms that provide

better results in terms of proximity to the query point and spatially diversity while still being

efficient.

For solving the k-nearest diverse neighbor problem, we first propose the Modified Index-Based

7

Diverse Browsing (Mod-IBDB) algorithm to fix deficiencies in the algorithm. In addition, we

develop the Distance-Based Diverse Browsing (DBDB) framework to solve the k-nearest diverse

neighbor problem. The idea of the DBDB framework is based upon search algorithms, which

start with an initial solution and then attempt to swap candidate locations into the solution

to improve the proximity to the query point and/or spatial diversity. We provide two methods

- Distance-First Distance-Based Diverse Browsing (Dist-DBDB) and Diversity-First Distance-

Based Diverse Browsing (Div-DBDB) - for choosing the initial set of locations. Dist-DBDB

chooses the closest k locations while Div-DBDB uses a heuristic to choose a diverse selection of

k locations.

The contributions related to the k-nearest diverse neighbor problem are below.

• We make modifications for performance improvements to the IBDB framework to create

the Mod-IBDB framework.

• We propose a new framework for k-nearest diverse neighbors, DBDB, that chooses an initial

solution and considers locations in increasing order from the query point for replacement

operations to improve the solution.

• We create the Partition Diversity Metric for angular spatial diversity, which calculates the

variance from “perfect” diversity (i.e., evenly spread around the query point).

• Confirming our intuition, the modifications for Mod-IBDB allow for it to outperform IBDB,

especially when proximity to the query point is more important than spatial diversity.

• Through extensive experimentation with Foursquare and Gowalla datasets as well as syn-

thetic datasets, we validate our ideas and the DBDB framework outperforms other k-nearest

diverse neighbor algorithms and baseline algorithm while still being efficient.

1.1 Research Questions and Approach

For this thesis, the main goal is to shed some light in answering the following main research

question:

How do we choose locations for mobile users in location-based social networks

such that the locations are interesting for the user, close in proximity to the query

point, and spatially diverse, no matter where the user is currently located?

To study this main question, we can break it into smaller sub-questions. Below are the

sub-questions along with the details of how/where the questions are answered.

1. What are the current state-of-the-art techniques that are used for recommendation?

8

Section 2.2 includes a literature review of the different state-of-the-art recommendation

techniques, including algorithms that are specific for recommending locations. In addition,

we detail an in-depth review of user-based collaborative filtering in Section 3.3.2.

2. How does the spatial nature of locations affect state-of-the-art recommendation techniques,

such as user-based collaborative filtering?

Experiments are included in Section 4.2 to show how the performance of user-based col-

laborative filtering degrades as the user moves away from her home region. In addition,

Section 4.3 discusses the mobility of users.

3. What factors can be considered to increase the effectiveness of a location recommendation

algorithm?

To show these factors, we perform a data analysis on Foursquare and Gowalla data in

Chapter 4. We show how the mobility of users as well as similar users and friends play

roles into which locations users visit.

4. How can we combine these factors into a new state-of-the-art location recommendation

algorithm?

In Chapter 5, we introduce the User Preference, Proximity and Social-Based Collaborative

Filtering framework. We show in detail how the algorithm employs similar users and friends

to find the top-k users for a target user as well as the proximity constraint to recommend

nearby locations. In addition, an example calculation is shown to further detail how the

algorithm performs.

5. How do we measure the effectiveness of previous state-of-the-art recommendation algorithms

versus our newly formulated location recommendation algorithm?

In Section 7.1.1, we explain the evaluation process for the experiments. Then, we use

precision in Sections 7.1.3 and 7.1.4 to compare the effectiveness of previous state-of-the-art

recommendation algorithms (and several baseline algorithms) against the User Preference,

Proximity and Social-Based Collaborative Filtering framework.

6. How do we recommend spatially diverse locations while still recommending locations that

are close in proximity to the user?

Chapter 6 details several additions for solving the k-nearest diverse neighbor problem. Due

to deficiencies in the Index-Based Diverse Browsing algorithm, we modify the algorithm

to increase its performance. In addition, we develop the Distance-Based Diverse Brows-

ing framework, which first chooses the k locations and performs replacement operations

with locations to increase an objective function based on diversity and proximity to the

query point. As a result of how we choose the initial selection of locations, we introduce

the Distance-First Distance-Based Diverse Browsing and Diversity-First Distance-Based

Diverse Browsing algorithms.

9

7. How do we measure spatial diversity of recommended locations as well as compare the

combination of spatial diversity and proximity to the query point?

We introduce the metrics used in our evaluation, including a new spatial diversity metric

for angular diversity that solves deficiencies of other metrics used in other papers, in Sec-

tion 7.2.2. Applying the evaluation process for experiments detailed in Section 7.2.1, we

compare various algorithms that solve the k-nearest diverse neighbor problem, including

the algorithms introduced in Chapter 6, in Section 7.2.4.

1.2 Thesis Structure

The remainder of this thesis is organized as follows. In Chapter 2, we perform a literature review

of relevant works. In Chapter 3, we introduce preliminary topics that are important for the

remainder of the paper. In Chapter 4, we show how social friends, similar users and geographical

proximity are important factors for location recommendation in LBSNs. In Chapter 5, we present

our location recommendation algorithm and in Chapter 6, we present our techniques for solving

the k-nearest diverse neighbor problem. In Chapter 7, we report our findings in an experimental

study to validate our algorithm designs for effectiveness as well as diversity using synthetic

datasets as well as datasets collected from Foursquare and Gowalla. Lastly, in Chapter 8, we

conclude this study and point out future directions.

Chapter 2
Literature Review

Here we review relevant research on social networks/LBSNs in three categories: i) data analysis

on social networks, ii) recommendation techniques, and iii) diversifying results.

2.1 Data Analysis

There exists many studies surrounding the analysis of data in social networks. Java et al. study

geographical and topological properties to answer the question of why people use microblogging

services, such as Twitter, which can allow microblogging services to tailor new features to retain

users [29]. In their findings, they show that people typically have one of a few intentions, such

as sharing information and conversation. Another study explores the social networking sites

YouTube, Orkut, Flickr, and LiveJournal in order to analyze the structure of the social network

[43]. The authors show interesting characteristics, such as the in-degree and out-degree of a

node (person) being equal, as well as confirm several properties of online social networks (i.e.

power-law and small-world). Kossinets et al. explore the evolution of social networks using a

dynamic social network based off e-mails sent at a large university [33]. They discover that the

organizational structure of the university as well as network topology affect network evolution.

In addition, the average properties of the social network tend to reach an equilibrium state even

while individual properties fluctuate. Also, the use of the co-authorship networks of scientists is

studied to discover the evolution and topology of the social network created [9]. Even though

these papers perform a data analysis on social networks, these works differ from our work since

they do not deal with the connections to locations that exist in an LBSN.

Recently, many research works on analyzing geographical properties of social networks have

been reported. Eagle et al. analyze call logs and geographic information of mobile phone users

to compare self-reported data versus data collected from the phones [19]. They perform experi-

ments that test whether recency (recent events are easier to remember) and salience (prominent

events are easier to remember) affect a user’s ability to report average behavior. Ludford et al.

11

investigate how different location types affect users who are sharing location information [41].

Among the experiments completed, they analyze what types of locations people tend to share,

what location-related information do people share, and how useful is the information for others.

For LBSNs, it becomes obvious that location is an essential part of social networks, especially

for mobile users. Cho et al. discuss how social relationships and periodic behavior shape user

movements by using a dataset collected from Gowalla [15]. Their experiments show that short-

ranged travel is more influenced by spatial and temporal properties while long-ranged travel

is more influenced by friends. Scellato et al. analyze the socio-spatial properties across three

popular LBSNs: Brightkite, Foursquare, and Gowalla [53]. The three LBSNs exhibit similar

spatial features and heterogeneity in socio-spatial behavior of users exists when considering the

distance between social ties and triangles. Li et al. provide a large-scale quantitative analysis of

user data in Brightkite [39]. The authors are able to classify users by mobility patterns (e.g. home

users and home-vacation users) and behavior groups (e.g. active and inactive). Lastly, Scellato

et al. analyze how users connect with friends and checked-in locations. The work shows that

distribution between friends and check-ins differ, which is likely because of the physical constraint

that exists on check-ins but not friends [52]. Our work is unique from all of the above papers

because our analysis aims to explore how factors may help in making location recommendations.

2.2 Recommendation Techniques

In this section, we review the main types of recommender systems as well as explain related work

in location recommender systems.

2.2.1 Content-Based vs. Collaborative Filtering

There are typically two types of recommendation systems (or recommender systems): content-

based and collaborative filtering [5]. Content-based recommendation systems recommend items

(e.g., movies, products, locations) that are similar to items that the user has preferred in the past

[5]. Similar items are typically determined based on the textual information of the items. For

example, a book recommender system will contain information about books such as title, author,

genre, and brief summary. If a user has previously read books that have the genre non-fiction or

the author Stephen King, the recommender system will recommend other books that have genre

non-fiction or author Stephen King. This method allows users to receive recommendation for

any item (no matter if the item has been preferred by a previous user), but suffers from several

problems, such as its inability to make a recommendation for a new user (cold-start problem)

and requirement of items having textual information.

Collaborative filtering recommendation systems make recommendations based upon similar

users’ preference [5, 8]. This uses the belief that similar users will tend to prefer similar products.

For our book recommender system, the history is saved for which books each user prefers. If we

are making a recommendation for user u and another user v has many commonly read books, a

12

book that v has read and u has not read will have a higher probability of being recommended. In

addition, collaborative filtering methods can be further broken down into two categories: memory-

based (use heuristics based on histories of preferences of users and items) and model-based (use

ratings to learn a model, which is then used for recommendation) [5]. Collaborative filtering

can generate recommendations without items needing textual information, but suffers from the

cold-start problem, data sparsity, and the fact that new items without any user ratings cannot

be recommended. Lastly, in addition to considering similar users, memory-based collaborative

filtering methods for social network have been introduced that also consider social friendship

in addition to similar users to make a recommendation [5, 8, 31, 51, 65]. However, the works

listed do not deal with location recommendation, (i.e., they do not consider geospatial features

of locations).

2.2.2 Location Recommendation

Recently, due to the growing popularity of mobile devices, the research momentum on location

recommendation has increased [11, 16, 26, 38, 56, 66, 67, 73, 74]. Horozov et al. study the use of

collaborative filtering to recommend restaurants for mobile users [26]. The authors modify the

collaborative filtering algorithm to have a scalable system that recommends a nearby restaurant

that is interesting for the user with low latency. In another paper, the modified collaborative

filtering algorithm recommends shopping sites based off visiting history, current GPS information,

and user’s typical shopping routes [56]. Zheng et al. use other users’ data and applies it to

collaborative filtering methods to provide a recommendation of locations to visit, even when

little information is known about the user [73]. In addition, another paper models users’ location

and activity history from GPS data to find location features and activity correlations that are

used as additional attributes in collaborative filtering [74]. However, the majority focuses on

GPS data or mobile environments [26, 56, 73, 74], without considering aspects of LBSNs, such

as social influences.

Only recently, a few research works have started to investigate location recommender systems

for LBSNs [11, 16, 38, 66, 67]. To our best knowledge, Ye et al. are the first ones to study location-

based recommendation algorithms for LBSNs [66]. Instead of considering all users for picking

the top-m users, the authors introduce friend-based collaborative filtering algorithms that only

consider friends or friends that satisfy certain geographic characteristics. Unlike our paper, its

emphasis is mainly on the efficiency of the algorithm. In addition, the study of the geographical

characteristics of users assumes that the user’s current coordinate is her home location. Also,

users are constantly moving and may not be near their home location when a recommendation

is made, which is not considered in this paper. An additional study proposes a collaborative

filtering algorithm for location recommendation in LBSNs [11] using matrix factorization [32],

which is a latent factor model. The authors perform experiments to show the feasibility of using

the method for location recommendation for Gowalla. However, the paper does not consider the

social aspects that are inherent in a LBSN or the current coordinate of the user when the user

13

makes a recommendation.

Chow et al. provide several location-based social networking services, including location

recommendation [16]. The paper creates a SQL query that filters locations that are farther

than a certain threshold from the query point of the user. For ranking the locations within the

distance threshold, the paper only states that a technique, such as collaborative filtering, can

be used, which does not use the social aspects in LBSNs. Levandoski et al. consider spatial

and non-spatial aspects of users, ratings, and items when making a recommendation [38]. Their

recommendation algorithm uses a partitioning technique of user’s locations for system scalability

and adds a travel penalty for spatial items (such as locations) for farther away locations. Again,

social aspects are not considered.

Ye et al. delve into location recommendations by analyzing the geographical influences among

locations and proposes a unified framework that combines user preference, social influence, and

geographical influence [67]. The geographical influence uses the phenomenon of geographical

clustering of a user’s visited locations to provide a better recommendation. However, nothing

proposed in the paper factors the current coordinate of the user into account. Thus, no mat-

ter where the target user is located, the algorithm will recommend the same locations to the

user. As stated in the Introduction section, our research work for increasing the effectiveness

for recommendation algorithms aims to study the issues in making location recommendations for

out-of-town users and investigate the roles of friends and similar users for in-town and out-of-town

scenarios.

2.3 Diversity

In this section, we first introduce the different types of diversity followed by related work in

search, queries and recommendation. Lastly, we review works that solve the k-nearest diverse

neighbor problem.

2.3.1 Distance Diversity vs. Angular Diversity

According to the Merriam-Webster dictionary [1], diversity is the “condition of having or being

composed of differing elements.” For example, a restaurant and a museum could be considered

diverse since these two types of locations vary while two restaurants could be considered non-

diverse since they are the same type of establishment. Looking more specifically into restaurants,

a Greek and an Italian restaurant could be considered diverse while two Italian restaurants could

be considered non-diverse. The diversity in these examples is based upon the description of the

locations. On the other hand, spatial diversity deals with diversity with the geographic details

of locations (i.e., geographical coordinate).

Figure 2.1 shows an example of visited locations of a user that are non-diverse and diverse

in relation to the query point. There are multiple interpretations as to why this is true. First,

a location in Figure 2.1a is typically close to other locations while a location in Figure 2.1b is

14

(a) Not Diverse (b) Diverse

Figure 2.1: Visualization of spatially non-diverse and diverse recommended locations

typically far away from other locations. This logic uses distance diversity, which tries to maximize

the physical distance between locations. Also, locations in Figure 2.1a are located in the same

direction (i.e. east or southeast) compared to the query point while locations in Figure 2.1b are

located in varying angles around the query point. This refers to angular diversity, which tries to

spread locations at different angles around the query point.

(a) Low Angular Diversity/High Distance Diversity (b) High Angular Diver-
sity/Low Distance Diver-
sity

Figure 2.2: Example with varying diversity values

Overall, distance and angular diversities are just two ways for quantifying diversity. In Figure

2.1, both diversity techniques would give 2.1a a low diversity score and 2.1b a high diversity

score. However, the two techniques can provide drastically different results. In Figure 2.2a, the

angular diversity would be low since the two locations (green) are at the same angle in relation

to the query point (red) while the distance diversity can be large if the distance between the two

locations is far apart. However in Figure 2.2b, the angular diversity is large since the locations

are on opposite sides of the query point while the distance diversity can be small because the

two locations are close together.

There are advantages and disadvantages to using each type of diversity. Angular diversity

requires the use of a query point, which makes it harder to use for indexing to make the calcula-

tions of diversity quicker. Since distance diversity is just based upon pairwise distance between

chosen locations, the query point is not necessary. Distance diversity prefers locations that are

as far away as possible because it maximizes the distances between pairwise locations. However,

15

(a) Low Angular Diversity/High Distance Diversity

Figure 2.3: Example of choosing closest two locations (blue), two locations with highest distance
diversity (brown), and two locations with highest angular diversity (yellow)

since the k-nearest diverse neighbor problem chooses locations that are closer to the user since

users do not want to travel far, this provides a contradiction. This phenomenon is shown in

Figure 2.3. With this last problem in mind, angular diversity will be used in the paper and all

future references to diversity refer to angular diversity, unless otherwise stated.

2.3.2 Search and Query Diversity

When a person uses a search engine, recommender system, etc. to obtain results, it may be

ambiguous for exactly what the user wants. For example, when the user searches for “pirates”

using a search engine, it is ambiguous whether the user wants information about people who

pillage ships, people who steal software, or the American baseball team. Instead of returning

results for one of the above definitions, the search engine can return results about all three

definitions of pirates, so the user will receive the necessary information, no matter which version

of “pirates” she is searching. This topic has widely been studied for search engines and queries

for non-spatial items [6, 7, 13, 14, 17, 18, 40, 46, 47, 50, 60, 61, 62, 63, 64, 72]. However, these

papers explore distance diversity and do not consider spatial aspects, such as choosing locations

that are diverse and close to a query point, as in the k-nearest diverse neighbor problem.

In addition, there have been a few works that have worked with diversifying results of spatial

objects [45, 57, 58, 59]. Van Kreveld et al. study the problem of ranking methods to provide

diversity to textually and spatially similar documents in geographic information retrieval [58, 59].

They explore various distance and angular diversity metrics in the paper. However, all of their

algorithms have to visit all n points in the dataset (the most efficient algorithm is O(n∗ log(n))),

which is not practical for online calculations. Paramita et al. propose different spatial diversity

algorithms that are used in image search result diversification [45]. The algorithms achieve high

diversity while not significantly affecting precision, but the algorithms focus on distance diversity

and do not consider the proximity to the query point. Lastly, Tang et al. add a user preference

study with Amazon Mechanical Turk to study spatial diversity in image search results [57].

The results show that images with higher spatial diversity have higher user preferences. This

motivates us to investigate increasing spatial diversity in our results. However, the paper does

16

not consider other spatial features, such as proximity to the query point, in its results.

2.3.3 Recommendation Diversity

For a recommender system, it may also be advantageous to recommend items that are diverse.

This is shown in the example of choosing different types of restaurants. In addition, we can

consider other characteristics when calculating diversity, such as price (non-spatial) and location

(spatial). The non-spatial form of diversity has been widely studied in recommendation frame-

works [2, 3, 4, 12, 21, 22, 27, 44, 55, 68, 70, 71, 75], but this is not applicable to us since we are

considering spatial diversity. Recently, a paper considers the spatial diversity for recommending

locations [20]. Their goal is to recommend locations that have high relevance (i.e., score from

another algorithm, such as collaborative filtering) and spatially diverse. Since the paper uses dis-

tance diversity, most diverse locations are farther away from the query point, which contradicts

the notion that people will not travel far to visit recommended locations.

2.3.4 K-Nearest Diverse Neighbor Query

Lastly, we look into the k-nearest diverse neighbor query, which attempts to find k locations

that are both close to a query point and “diverse.” The combination of proximity to the user

and angularly diverse in respect to the query point have been studied [24, 28, 34, 35, 36]. Lee

et al. introduce the problem of finding the nearest spatial objects that completely surround the

query point [36]. With this problem, they propose two methods to efficiently solve the problem.

However, the problem considers rectangles and other two-dimensional objects instead of points

and the algorithm may return more or less than k spatial objects, which conflicts with the

k-nearest diverse neighbor definition.

To our knowledge, Harista and Jain et al. are the first authors to consider the k-nearest

diverse neighbor problem [24, 28]. For diversity, the authors of these papers create a diversity

function that is similar to distance diversity, with the definition of distance between two locations

being modified based off the Gower coefficient. The first algorithm they give, called Intermediate

Greedy, accesses locations in increasing distance from the query point one at a time and adds the

location to the chosen set if it is diverse with respect to each other location already chosen. In

addition, the Buffered Greedy method executes the Intermediate Greedy method first, and then

makes swaps based upon a certain criteria. The results show that the Buffered Greedy algorithm

almost always chooses the optimal answer. However, since the diversity function uses a variation

of distance diversity, it differs from our paper.

Kucuktunc et al. explore the k-nearest diverse neighbor problem using angular similarity

[34, 35]. First, the authors introduce geometric diverse browsing methods based off Voronoi

diagrams and Delaunay triangulations to choose locations. These methods involve preprocessing

to create the necessary data structures, which does not work for locations in LBSNs since the

database is dynamic. In addition, they introduce the Index-Based Diverse Browsing method,

which works similar to distance browsing for k-nearest neighbor using an R-Tree (more detail of

17

the algorithm in Section 3.3.6). This method is more practical for a dynamic database since it

just uses an R-Tree, but it contains inefficiencies and an incorrect calculation that we plan to

investigate. Our research aims to improve upon the state-of-the-art by creating a better algorithm

in terms of effectiveness (locations close to query point and diverse) and efficiency (disk accesses).

Chapter 3
Preliminaries

In this section, we first introduce terminology that will be used throughout the thesis and for-

mulate the problems we are trying to solve. Then, we review user-based collaborative filtering,

which is the basic algorithm behind the recommendation algorithm we develop. Lastly, we review

angular spatial diversity metrics and techniques for adding spatial diversity into recommendation

results.

3.1 Terminology

To help understand, below is a list of terms that are used throughout the paper.

• Location - A location (also known as a place or point-of-interest) is an object in an LBSN

that can be visited. Locations are physically located somewhere over the map, i.e., they

are always associated with a coordinate, such as (latitude, longitude).

• Check-in - A check-in is a record in an LBSN that a user has visited a location. This can

also contain other information, such as a timestamp. A user is typically allowed to have

multiple check-ins for the same location.

• Location Recommendation System - A location recommendation system or location recom-

mender system is an algorithm that chooses locations for a user. It is advantageous for a

location recommendation system to recommend locations that a user would likely want to

visit in the future.

• Prediction Value - The prediction value for a user u and location l is a normalized score

that estimates the willingness for u to visit l in the future. This term is used in this

paper with the score that a collaborative filtering algorithm gives for location when making

a recommendation for a location. The higher the prediction value, the more likely the

collaborative filtering algorithm will recommend the location for the user.

19

• Target User - The target user is the user that a location recommendation system is providing

locations for.

• Candidate Location - A candidate location is a location that is being considered by a

location recommendation system.

• Similar User - A user v is considered similar to user u if u and v share some commonly

visited locations.

• Top-m Users - For a user u, the top-m users of u are the m users that are most similar to

u. This is utilized in the user-based collaborative filtering algorithm.

• Home Region - A home region for a user u is a physical region on a map that contains

many locations that u has checked into.

• Query Point - A query point for a location recommendation system (often shown as a red

circle in figures) or the current coordinate of the user is the user’s current position on a

map when she receives recommended locations.

• Proximity Constraint - The proximity constraint dp in a location recommendation system

is a number such that all locations that are farther than dp distance from the query point

are automatically pruned.

(a) Angle (b) Sector

Figure 3.1: Definition of angle and sector

• Angle - The angle (as shown in Figure 3.1a) between a query point q (red circle) and

another point or location p (blue purple or green circle) is the angle formed from a line that

extends from q in the positive x-axis direction to qp. For example, the angle between query

20

point q and a point directly east of q is 0, the angle between q and a point directly north

of q is π
2 , the angle between q and a point directly west of q is π, and the angle between q

and a point directly south of q is 3π
2 .

• Sector - A sector or circle sector (as shown in Figure 3.1b), defined as a tuple (q, θ, θdiff , dp)

is a portion of a circle (i.e., “piece of a pie”) centered at point q with radius dp that includes

the area within the circle between the angles of θ − θdiff and θ + θdiff .

3.2 Problem Formulation

Here, we introduce the location recommendation and k-nearest diverse neighbor problems, which

will be studied in detail throughout the paper.

3.2.1 Location Recommendation

Let L be the set of all locations in a location-based social network. Let u be the target user and

let Lu be the locations that u has previously visited. The goal of a location recommendation

algorithm is to choose a set of locations R, such that R ⊆ L \ Lu and |R| = k, where k is

the number of locations the algorithm should recommend. To appease users, the locations in R

should be interesting to u, and we also argue that the locations R should be spatially diverse.

3.2.2 K-Nearest Diverse Neighbors

Let L be the set of all points or locations in a dataset. Given a query point q, the goal is to choose

(or recommend) k locations such that the locations are close in proximity to q and “diverse” with

each other. More information on measuring the diversity of locations is located in Section 3.3.3

and the metric used to measure the diversity for our experiments is introduced in Section 7.2.2.2.

Since it is a common belief that users like to have location recommendation results that are close

in proximity to the current coordinate of the user (query point) and diverse, solving the k-nearest

diverse neighbor problem can provide good recommendation results.

Formally, let λ be a control parameter that represents the ratio between distance and diversity.

Our goal is to choose a set of locations R (with |R| = k) such that

max
R⊆L

λ ∗Div(q,R) + (1− λ) ∗ Rel(q,R). (3.1)

The Div function represents the spatial diversity score, with the larger score meaning the

chosen locations are more diverse. The Rel function represents the relevancy of the locations,

which is a measure of distance such that a larger score means the locations are closer in proximity

to the query point. The relevance and diversity metrics used in our evaluation are described in

Section 7.2.2.

21

Friendship

User

Check-in

Activity

Location
<Latitude, Longitude>

Map

Figure 3.2: Graph representation of users and locations in a LBSN

3.3 Background

This section explores the necessary background information for the thesis, including data in

LBSNs, user-based collaborative filtering, angular diversity metrics, R-Tree, k-nearest neighbor

query, and Index-Based Diverse Browsing.

3.3.1 Location-Based Social Network Data

There are two essential entities in a LBSN: users and locations. The interactions among users

and locations are illustrated in Figure 3.2, where users and locations are presented by nodes.

The edges connecting users show social connections among users in the LBSN while the edges

connecting users and locations present the check-in activities of users to the corresponding loca-

tions. In this section, we first describe the relationship between a user and a location and then

detail the relationship between users.

3.3.1.1 User-Location Relationship

The main function of LBSNs is that users check-in to locations to signify that they have visited

the location. This allows other users to see which location a particular user visited (as long as

privacy settings allow this), which may give ideas for locations to visit. The relationship between

users and locations can be defined by a bipartite graph G = (U
⋃
L,E), where U is the set of all

users and L is the set of all locations in a LBSN. An edge (u, l) for u ∈ U and l ∈ L is created if

u has checked into l. Some definitions allow for a weight to be placed on the edge that is equal

to the number of times u has visited l, but this is ignored in this thesis. Therefore, all the edges

that connect to a location are all the users that have visited that location, and all the edges

that connect to a user are all the locations a user has visited. It is interesting to investigate

the two-hops of a user u, which are the users that share at least one visited location with u.

Similarly, the two-hops of a location l are the locations that have been visited by the same users

that visited l. This can help us explore similar users to a user or similar locations to a location.

22

3.3.1.2 User-User Relationship

(a) Foursquare1 (b) Gowalla2

Figure 3.3: Friend details page for Foursquare and Gowalla mobile applications

In LBSNs, users are allowed to establish friendship relationships with other users that they

discover through the LBSN. Figure 3.3 shows details of check-ins that friends have completed for

Foursquare and Gowalla. This allows users to follow the actions and check-ins of their friends,

which can influence which locations a user may visit in the future.

The friendships can be represented in a graph as follows. Letting U be the set all users in

the LBSN, let Fu represent the friends (which are other users) of user u ∈ U . We can construct

a graph G = (V,E), where each vu ∈ V represents a u ∈ U . For each user u, we add an edge

(vu, vw) into E for every user vw ∈ Fu. If the LBSN requires friendships between users to be

mutual, (u, v) can be an undirected edge; otherwise, (u, v) should be a directed edge. Therefore,

all vertices that having an incoming edge from vu represent the friends of u.

3.3.2 User-Based Collaborative Filtering

This section covers the user-based collaborative filtering algorithm as well as an example calcu-

lation to show how the algorithm executes.

1Screenshot from https://foursquare.com/about/photos.
2Screenshot from http://smokinapps.com/iphone-discover-interesting-facts-about-an-area-and-earn-

rewards/.

23

3.3.2.1 Algorithm

User-based collaborative filtering is a well-received technique for item recommendations, which

can be adopted for location recommendations by treating locations as items. As a result, it

recommends locations for a target user in accordance with location visiting behaviors of “similar

users” (i.e., other users with similar visiting histories in terms of commonly visited locations).

Let U be the user set and L be the location set in an LBSN. The check-in activity for a user

u ∈ U and location l ∈ L is denoted as cu,l, where cu,l = 1 represents that u has a check-in at l

and cu,l = 0 otherwise. Using the user check-in activities of locations, user-based collaborative

filtering derives a user’s implicit preference over a specific location as a score (between 0 and 1),

denoted by pu,l, which ranks how likely a user u would like to visit a location l. It is defined

below

pu,l =

∑
v∈U ′ cv,lwu,v∑
v∈U ′ wu,v

(3.2)

where wu,v is the similarity weight between users u and v and U ′ ⊂ U is the top-m users of the

target user, i.e., the m users that have the highest similarity weight with the target user.

There are many ways of calculating the similarity weight, including cosine-based similarity,

correlation-based similarity, and adjusted cosine similarity [51]. For simplicity, cosine-based

similarity is used throughout this paper. The similarity weight between users u and v, denoted

as wu,v, is defined as follows.

wu,v =

∑
l∈L cu,lcv,l√∑

l∈L c
2
u,l

√∑
l∈L c

2
v,l

(3.3)

Algorithm 1 shows the user-based collaborative filtering algorithm.

Algorithm 1 User-Based Collaborative Filtering Algorithm

1: //Input: user u′, number of locations to recommend k
2: //Output: list of recommended locations R
3: for all u ∈ U and u 6= u′ do
4: Calculate wu′,u
5: end for
6: Save top-m users with largest similarity weight into U ′

7: for all l ∈ L do
8: Calculate pu′,l
9: end for

10: return List of k locations with highest prediction value

3.3.2.2 Example Calculation

Table 3.1 shows a toy example of 5 users and 6 locations, with an ‘x’ for ui and lj representing

that user i has visited location j or no ‘x’ representing that user i has not visited location j. Let

24

Table 3.1: Example table of user check-ins

l1 l2 l3 l4 l5 l6
u1 x x
u2 x x x
u3 x x
u4 x x x x
u5 x x x

us recommend k = 3 new locations for u1 to visit, with m = 2 top users. The first step is to find

two other users such that wu1,u is maximized. Below are the calculations.

wu1,u2 =
0√
2
√

3
= 0.000

wu1,u3
=

1√
2
√

2
= 0.500

wu1,u4 =
2√
2
√

4
= 0.707

wu1,u5
=

2√
2
√

3
= 0.816

Since wu1,u5 and wu1,u4 are the largest, u4 and u5 are the top-2 users. Next, we calculate the

prediction value for u1 and each location u1 has not already visited.

pu1,l3 =
0 ∗ 0.707 + 0 ∗ 0.816

0.707 + 0.816
= 0.000

pu1,l4 =
0 ∗ 0.707 + 1 ∗ 0.816

0.707 + 0.816
= 0.536

pu1,l5 =
1 ∗ 0.707 + 0 ∗ 0.816

0.707 + 0.816
= 0.464

pu1,l6 =
1 ∗ 0.707 + 0 ∗ 0.816

0.707 + 0.816
= 0.464

Since pu1,l4 , pu1,l5 and pu1,l6 are the largest prediction values, the user-based collaborative

filtering would recommend l4, l5 and l6 for u1.

3.3.3 Angular Diversity Metrics

Given a set of locations L and query point q, angular diversity can be considered as the average

pairwise angle between locations. If the angle is larger, the more diverse the locations are. Figure

3.4 shows angular diversity for two locations and three or more locations. Given a query point q

and two locations l1 and l2, one simple technique for calculating angular diversity is to compute

the angle and divide by a normalizing constant. Let φ(q, l1, l2) denote the angle in radians

between ql1 and ql2 (with φ(q, l1, l2) ≤ π), a simple calculation is as follows.

DivA(q, l1, l2) =
φ(q, l1, l2)

π
. (3.4)

25

(a) Two Locations (b) Three or More Locations

Figure 3.4: Angular diversity for two locations and three or more locations

It becomes difficult to extend for three or more locations, but there exists several techniques

to calculate the angular diversity of an arbitrary number of locations (greater than 1). The first

technique uses the belief that the diversity score depends only on the worst diversity for two

locations, which is shown below.

Divmin(q, L) =
|L| ∗minl1,l2∈L|l1 6=l2 φ(q, l1, l2)

π
(3.5)

Since the larger the angle is between two locations, the more diverse the locations are, the

next technique calculates the angle between every pair of locations and averages them. The

normalized equation is shown below.

Divpairwise(q, L) =
2 ∗

∑
l1,l2∈L|l1 6=l2 φ(q, l1, l2)

|L| ∗ (|L| − 1) ∗ π
(3.6)

Lastly, a more complicated technique was developed to calculate the angular diversity for two

or more locations [34, 35], which is shown in Figure 3.5. Let the green circles be the recommended

location L and let the circle be query point q. First, a unit circle is drawn such that q is in the

center (Figure 3.5a). Next, each recommended location li ∈ L is normalized to l′i ∈ L′ on the

unit circle such that its distance to the query point is 1 and all pairwise angles are equivalent

between L and L′ (Figure 3.5b). Lastly, the mean location of L′, denoted as lm is calculated

(Figure 3.5c). Thus, the final diversity score is 1 − Dist(q, lm). The angular diversity equation

using the above technique is below.

Divmean(q, L) = 1−
‖
∑
l∈L

ql

‖ql‖‖

|L|
(3.7)

26

(a) Locations with unit circle (b) Locations normal-
ized on unit circle

(c) Mean Location of
Normalized Locations

Figure 3.5: Calculation of angular diversity for two or more locations

(a) Not Diverse (b) Diverse

Figure 3.6: Spatially non-diverse and diverse normalized locations for mean calculation of angular
diversity

To show the difference between non-diverse and diverse for angular diversity, Figure 3.6 shows

normalized location with the mean location calculated. In Figure 3.6a, the locations are all above

the query point, which means that the corresponding mean location is far away from the query

point. However in Figure 3.6b, the locations are in different directions, which means that the

corresponding mean location is very close to the query point, with Dist(q, lm) = 0 in this example.

3.3.4 R-Tree

The R-Tree [23], with variants such as the R+-Tree [54] and R*-Tree [10], is a dynamic index

structure that stores spatial objects (e.g. points, rectangles, cubes). It can handle objects of

any dimensions, but this thesis focuses on one-dimensional points (locations) in two-dimensional

space. The main idea is that the children of a page in the tree are spatially nearby. An R-Tree

consists of two types of pages: leaf pages and index pages. A leaf page contains a set of points

and a minimum bounding rectangle, which is the smallest rectangle possible that contains all the

points stored in the page. Similarly, an index page contains a set of children pages (index or leaf

pages) and a minimum bounding rectangle that contains all of the minimum bounding rectangles

of its children pages. An example of points and a respective R-Tree are shown in Figure 3.7. We

27

(a) Points in 2D space with minimum bound-
ing rectangles

(b) R-Tree

Figure 3.7: R-Tree representation for 2D points

have a root node that points to two children, which are the pages of R1 and R2. R1 and R2

point to its children which are leaf pages, which means that they point to different points stored

in the structure.

Each page has a minimum and maximum number of children (or points) that it can contain.

During insertion and deletion, the R-Tree remains balanced, which means that the leaf pages are

on the same level of the tree. If a page overflows or underflows, the R-Tree will split pages or

merge pages to maintain the minimum and maximum number of children. For initially creating

an R-Tree with a set of points, bulk loading methods, such as Nearest-X [49], Hilbert Curve [30]

and Sort-Tile-Reverse [37], allow the R-Tree to be more efficiently loaded instead of inserting

each point individually.

The R-Tree allows for efficient implementations of popular spatial search queries, such as

point queries (e.g., find the points with a given coordinate), range queries (e.g., find all points

that are within 100 km of given coordinate), and nearest-neighbor queries (e.g., find the point

that is nearest to a given coordinate).

3.3.5 K-Nearest Neighbor Query

The goal of a k-nearest neighbor query is to find k points that are closest to a given query point.

Mathematically, given a set of points (or locations) P , query point q, and positive integer k, we

want to choose a set of point R ⊆ P such that |R| = k and ∀r ∈ R,∀q ∈ P \ R,Dist(q, r) ≤
Dist(q, p). This problem is illustrated in Figure 3.8, where the red circle is the query point,

the green circles are points, and the yellow circles are the closest neighbors (for k = 3). An

example of a k-nearest neighbor query is to find the five closest restaurants to the user’s current

coordinate. This can be practical when recommending locations that are close to a query point.

With brute force, an algorithm can solve the k-nearest neighbor query for query point q

by accessing every point p, calculating Dist(q, p), and choosing the k points with the smallest

distance calculation. The problem is that the algorithm would have to access every point from the

28

Figure 3.8: K-nearest neighbor representation for 2D points

Algorithm 2 K-Nearest Neighbor Query

1: //Input: query point q, Number of nearest neighbors k, R-Tree root page root
2: //Output: List sorted in increasing distance from q of nearest neighbors NN
3: Let NN be an empty list of locations
4: Let PQ be a min priority queue for mindist for R-Tree pages and locations
5: Enqueue PQ with root
6: while PQ is not empty and |R| < k do
7: Dequeue PQ and let obj be the spatial object that was dequeued
8: if obj is a location then
9: Append obj to NN

10: else
11: for all children (or locations) c of obj do
12: Enqueue PQ with c
13: end for
14: end if
15: end while

database, which would incur a large number of disk accesses if the number of points to choose from

is not limited. However, the query can be more efficiently implemented with searching for points

in an R-Tree. The key to the efficiency of the algorithm is searching for locations in increasing

order of Mindist(P), which is the minimum distance from q to any possible point in the minimum

bounding rectangle of P [48]. If there a set of k points such that Dist(q, p) ≤ Mindist(P) for

p being one of the k points, then the tree rooted at P will not be explored. This enables the

algorithm to perform efficiently. Using this, Algorithm 2 provides pseudocode for the k-nearest

search query, based off the algorithm for distance browsing [25].

3.3.6 Index-Based Diverse Browsing

A variant of the k-nearest neighbor problem is the k-nearest diverse neighbor problem, which is

to choose the k closest points/locations that are “diverse” [24, 28, 34, 35]. Below is the current

state-of-the-art algorithm for calculating the k-nearest diverse neighbor problem using angular

29

spatial diversity.

3.3.6.1 Algorithm

Kucuktunc et al. explore this problem for angular spatial diversity and created Index-Based

Diverse Browsing (IBDB), which modifies the k-nearest neighbor approach above to return diverse

locations [34, 35]. The algorithm works by choosing locations and adding them to a set of

recommended locations. If a location or R-Tree page is considered not diverse, it is pruned.

(a) Pruning a location (b) Pruning an R-Tree page

Figure 3.9: Pruning based off MinDivDist

Similar to mindist in the k-nearest neighbor algorithm, the authors defined mindivdist that

considers the linear combination (with control parameter λ) of mindist as well as diversity in

comparison to already chosen locations. Instead of choosing the k locations with the smallest

mindist, the intuition is to choose k locations with the smallest mindivdist score. Similar to

mindist, the access order of mindivdist is mainly based on distance, but the difference is that

the ranking of locations that are not diverse in mindivdist are penalized, in relation to locations

already chosen. Let R be the set of locations that have already been chosen and q be the query

point. If we want to calculate mindivdist for a location obj, we compare obj with each p ∈ R.

If obj is within a certain angle of any p ∈ R and nearby in distance, it is pruned. Intuitively,

for each already chosen location, we can draw a sector as shown in 3.9a such that all locations

in the sector will be pruned. Otherwise, we finish the calculation for mindivdist of obj, which

is maxp∈R λ ∗ simθ(q, obj, p) + (1− λ) ∗Dist(q, obj). The constant θ signifies the minimum angle

between two locations (in relation to a query point) that is considered diverse and the sim function

signifies how angularly similar two locations are, which is defined as follows.

simθ(q, obj, p) =

{
1− φ(q, obj, p) if φ(q, obj, p) < θ

0 otherwise
(3.8)

If obj is an R-Tree page (i.e. minimum bounding rectangle), we want to calculate the minimum

linear combination of mindist and diversity for a point in the page. Let C be the corners of the

30

Algorithm 3 MinDivDist

1: //Input: query point q, location or R-Tree page obj, set of points R, control parameter λ
2: //Output: score mindivdist
3: θs = 2π

k+ε
4: rs = 1 + λ
5: δ = mindist(q, obj)
6: if obj is a location then
7: maxs = 0
8: for all p ∈ R do
9: s = simθ(q, obj, p)

10: if s > 0 and δ < |qp| ∗ rs then
11: return Prune
12: end if
13: maxs = max(maxs, s)
14: end for
15: return λ ∗maxs + (1− λ) ∗ δ
16: else
17: mindivdist = 0
18: Let C be the set of corners of obj
19: for all p ∈ R do
20: s = minc∈C simθ(c, q, p)
21: Let C ′ ⊆ C be the points that are in sector (q,−→qp, θs, |qp| ∗ rs)
22: if |C ′| = |C| then
23: return Prune
24: else if |C ′| ≥ 1 then
25: δ = minc′∈C′(|qp| ∗ rs, |qc′|)
26: end if
27: mindivdist = max(mindivdist, λ ∗ s+ (1− λ) ∗ δ)
28: end for
29: return mindivdist
30: end if

minimum bounding rectangle. Similar to when obj is a location, the algorithm compares obj

with each p ∈ R. With p, the algorithm creates a sector S = (q,−→qp, 2π
k+ε , |qp| ∗ (1 + λ)) If all of

the corners are within S (i.e., all of the corners are not considered diverse in comparison to p),

the R-Tree page is pruned (shown in 3.9b). Otherwise, we calculate mindivdist of obj, which

maximizes (for each p ∈ R) the lowest possible combination of diversity and distance. More

details for mindivdist are shown in the pseudocode for Algorithm 3. One observation is that the

mindivdist calculation for an R-Tree page and a location depend on the set of already chosen

locations. Since the set increases when a new location is separate, the mindivdist calculation

needs to be redone.

Now that mindivdist has been discussed, we show how the IBDB algorithm works, which is

similar to k-nearest neighbor. The authors use a minimum priority queue (based off mindivdist)

to decide which object (either location or R-Tree page) to dequeue. If the object is a location,

then it is added to the recommended set. If the object is an R-Tree page, its children pages

(or it is a leaf page, its locations) are enqueued as long as the mindivdist calculation does not

31

Algorithm 4 Index-Based Diverse Browsing

1: //Input: query point q, number of locations to recommend k, R-Tree root page root, control
parameter λ

2: //Output: list of recommended locations R
3: Let R be an empty set of points
4: Let PQ be a min priority queue for mindivdist with tuples (spatial object – point or R-Tree

page, counter, mindivdist)
5: Enqueue PQ with (root, cts, 0)
6: while PQ is not empty and |R| < k do
7: while the top of PQ has count less than |R| do
8: Dequeue PQ and let obj be the spatial object that was dequeued
9: Enqueue PQ with (obj, cts,MinDivDist(q, obj, R, λ)) if Prune is not returned

10: end while
11: Dequeue PQ and let obj be the spatial object that was dequeued
12: if obj is a location then
13: Add obj to R
14: else
15: for all children child of obj do
16: Enqueue PQ with (obj, |R|,MinDivDist(q, child,R, λ)) if Prune is not returned
17: end for
18: end if
19: end while
20: return R

prune any pages or locations. To store extra information in the priority queue, each element of

the priority queue is a 3-tuple (obj, ctr,mdd), where obj is the spatial object, ctr is the counter

when the tuple was inserted into the priority queue, and mdd is the mindivdist value of obj.

The algorithm will continue this process of enqueuing and dequeuing until enough locations are

recommended. The problem with this simplistic algorithm is that when a new location is added

to the set of recommended locations, the mindivdist values for every spatial object may change.

Thus, the min priority queue keeps track of the number of recommended points when each object

was inserted into the priority queue. IBDB can dequeue the priority queue and if the counter

is not equal to the current number of recommended points, it recalculates mindivdist for the

object and enqueues it. Since the authors of the algorithm prove that mindivdist values get only

larger with the addition of the new recommended location, the first dequeued object with the

correct counter is guaranteed to have the lowest mindivdist in the priority queue [34, 35]. The

pseudocode for the IBDB algorithm is shown in Algorithm 4.

3.3.6.2 Example Calculation

To show how IBDB works, we will step through the example illustrated in Figure 3.10. In the

illustration, the red circle is the query point and the green circles are candidate locations. The

rectangles represent R-Tree pages, where R1 and R2 are children of root, R3 and R4 are children

of R1, and R5 and R6 are children of R2. In addition, the radius of the inner dotted circle

center upon the query point is 5 km while the radius of the outer dotted circle is 10 km. For

32

Figure 3.10: Example calculation for IBDB algorithm

our example, we will recommend five locations. For the constants in the algorithm, let λ = 0.5,

θ = π
10 = 18◦.

Tables 3.2 and 3.3 show step-by-step instructions how the IBDB algorithm executes for the

example in Figure 3.10. The first column represents the step number, the second column repre-

sents the current priority queue, the third column represents the already chosen locations, and

the fourth column gives a description of how the algorithm moves from the current step to the

next step. For the second column, each element in the priority queue is represented as a 3-tuple

(obj, ctr,mdd), where obj is the spatial object, ctr is the counter when the tuple was inserted

into the priority queue, and mdd is the mindivdist value of obj. Throughout the descriptions,

let MDD = MinDivDist.

33

(a) l8 (b) l7

Figure 3.11: Pruning area for l8 and l7

(a) l2 (b) l6

Figure 3.12: Pruning area for l2 and l6

34

Table 3.2: Index-Based Diverse Browsing example

Step # PQ R Description
1 (Root, 0, 0) empty Since Root is an R-Tree page, we add its children - R1

and R2 - to PQ. No locations are in R, so the simi-
larity calculation will always be 0. Since MDD(R1) =
0.5 ∗ 0 + 0.5 ∗ 0 < MDD(R2) = 0.5 ∗ 0 + 0.5 ∗ 4, R1 is
at the top of PQ.

2 (R1, 0, 0)
(R2, 0, 2)

empty Since R1 is an R-Tree page, we add its children - R3

and R4 - to PQ. Since MDD(R3) = 0.5 ∗ 0 + 0.5 ∗ 5 <
MDD(R4) = 0.5∗0+0.5∗6, R3 is before R4, but after
R2.

3 (R2, 0, 2)
(R3, 0, 2.5)
(R4, 0, 3)

empty Since R2 is an R-Tree page, we add its children - R5

and R6 - to PQ. With this, we have MDD(R5) =
0.5 ∗ 0 + 0.5 ∗ 4 and MDD(R6) = 0.5 ∗ 0 + 0.5 ∗ 6.

4 (R5, 0, 2)
(R3, 0, 2.5)
(R6, 0, 3)
(R4, 0, 3)

empty Since R5 is an R-Tree page, we add its locations -
l7 and l8 - to PQ. With this, we have MDD(l7) =
0.5 ∗ 0 + 0.5 ∗ 5 and MDD(l8) = 0.5 ∗ 0 + 0.5 ∗ 4.

5 (l8, 0, 2)
(l7, 0, 2.5)
(R3, 0, 2.5)
(R6, 0, 3)
(R4, 0, 3)

empty Since l8 is a location, it is added to R. Since the
counter of l7 in PQ is incorrect, we dequeue and
enqueue with the correct counter and MDD(l7) =
0.5 ∗ 0 + 0.5 ∗ 5. Since the angle between l7 and l8
is greater than θ (as shown being outside the sector in
Figure 3.11a), the smiilarity calculation for l7 is 0.

6 (l7, 1, 2.5)
(R3, 0, 2.5)
(R6, 0, 3)
(R4, 0, 3)

l8 Since l7 is a location, it is added to R. Since the
counter of R3 in PQ is incorrect, we dequeue and
enqueue with the correct counter and MDD(R3) =
0.5 ∗ 0 + 0.5 ∗ 5 with the similarity calculation being 0
because its angle with l7 and l8 is greater than θ.

7 (R3, 2, 2.5)
(R6, 0, 3)
(R4, 0, 3)

l8, l7 Since R3 is an R-Tree page, we add its locations - l1
and l2 - to PQ. Since both locations’ angle with l7 and
l8 is greater than θ, we have MDD(l1) = 0.5∗0+0.5∗5
and MDD(l2) = 0.5 ∗ 0 + 0.5 ∗ 10.

8 (l2, 2, 2.5)
(R6, 0, 3)
(R4, 0, 3)
(l1, 2, 5)

l8, l7 Since l2 is a location, it is added to R. Since the
counter of R6 in PQ is incorrect, we dequeue and
enqueue with the correct counter and MDD(R6) =
0.5 ∗ 0.9 + 0.5 ∗ 5 with the similarity score being large
because the angle between l7 and the top left corner
of R6 is small.

35

Table 3.3: Index-Based Diverse Browsing example (continued)

Step # PQ R Description
9 (R6, 3, 2.95)

(R4, 0, 3)
(l1, 2, 5)

l8, l7,
l2

Since R6 is an R-Tree page, we consider adding its
locations - l9 and l10 - to PQ. Since l10 is in the
sector of l8 (see Figure 3.11a) and l9 is in the sector
of l7 (see Figure 3.11b), both locations are pruned.
Since the counter of R4 is incorrect, we dequeue and
enqueue with the correct counter and MDD(R4) =
0.5 ∗ 0.0 + 0.5 ∗ 6.

10 (R4, 3, 3)
(l1, 2, 5)

l8, l7,
l2

Since R4 is an R-Tree page, we add its locations - l3,
l4, l5, and l6 - to PQ. Since all of these locations
have an angle greater than θ compared to the already
chosen locations, all similarity scores are 0. Therefore,
we have MDD(l3) = 0.5 ∗ 0 + 0.5 ∗ 9; MDD(l4) =
0.5 ∗ 0 + 0.5 ∗ 7; MDD(l5) = 0.5 ∗ 0 + 0.5 ∗ 6.5; and
MDD(l6) = 0.5 ∗ 0 + 0.5 ∗ 6.

11 (l6, 3, 3)
(l5, 3, 3.25)
(l4, 3, 3.5)
(l3, 3, 4.5)
(l1, 2, 5)

l8, l7,
l2

Since l6 is a location, it is added to R. Since the
counter of l5 in PQ is incorrect, we dequeue and re-
calculate MinDivDist. Since l5 is in the sector of l6
(see Figure 3.12a), l5 is pruned. The same process oc-
curs with l4, where it is pruned because of l6 as well.
Next is l3, which we dequeue and enqueue with the
correct counter and MDD(l3) = 0.5 ∗ 1.0 + 0.5 ∗ 9 with
the similarity score being one because the angle of l6
and l3 are equal.

12 (l3, 4, 5)
(l1, 2, 5)

l8, l7,
l2, l6

Since l3 is a location, it is added to R. Since five
locations have been chosen, R is returned.

13 (l1, 2, 5) l8, l7,
l2, l6,
l3

End of algorithm.

Chapter 4
Data Analysis

After introducing the datasets used in this paper, we look into experiments using user-based

collaborative filtering upon real datasets to discuss issues arising when making recommendations

for mobile users traveling out of town. Then, we perform experiments to explore the mobility of

users to see the distance users travel to visit locations as well as factors that are important in

recommendation.

4.1 Datasets

The Foursquare dataset includes 202, 932 users and 155, 321 locations while the Gowalla dataset

includes 116, 889 users and 1, 070, 338 locations. With the check-in data, the user check-in matrix

density for Foursquare is 2.42 × 10−5 while the user check-in matrix density for Gowalla is

4.09×10−5. This means that each user has an average of 3.76 and 43.81 check-ins for Foursquare

and Gowalla, respectively. In addition, there is a total of 1, 713, 965 social connections (or

called friend) pairs in the Foursquare dataset (note that friendship is mutual, so user u being

a friend with user v and v being a friend with u count as 1 pair) and 267, 505 friendship pairs

in the Gowalla dataset. Therefore, the average user has 8.45 and 2.29 friends and the user-user

friendship matrix density is 8.32×10−5 and 1.95×10−5 for the Foursquare and Gowalla datasets,

respectively. Lastly, the Foursquare dataset contains the home location of each user, which is

self-reported by each user.

4.2 Location Recommendation for Out-of-town Users

We aim to support location recommendation for both in-town and out-of-town scenarios. Thus,

we first conduct experiments using user-based collaborative filtering upon two real datasets col-

lected from Foursquare and Gowalla. Our goal is to observe how effective user-based collaborative

filtering performs when making recommendations to users located at different distances from their

37

home regions (i.e., the region where the majority of their check-in activities occur). Particularly,

we are interested in studying the phenomenon when users visit locations far away from their

home regions.

0 100 200 300 400 500

Distance (km)
0.75

0.80

0.85

0.90

0.95

1.00

C
D

F

(a) Foursquare

0 100 200 300 400 500

Distance (km)
0.75

0.80

0.85

0.90

0.95

1.00

C
D

F
(b) Gowalla

Figure 4.1: Probability distribution of users that have 50% of recommended locations within
distance of a visited location

0 100 200 300 400 500

Distance (km)
0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F

(a) Foursquare

0 100 200 300 400 500

Distance (km)
0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F

(b) Gowalla

Figure 4.2: Probability distribution of users that have 80% of recommended locations within
distance of visited location

First, we evaluate how far the user-based collaborative filtering algorithm recommends from

previously visited locations for target users. For each user, we recommend 20 locations and

calculate the distance between each recommended location and the closest visited location. The

cumulative distribution function shows the probability distribution of users that have 50% or

80% of visited locations within the distance on the x-axis in Fig. 4.1 and 4.2, respectively. As

shown, many users’ recommended locations are near previously visited locations, with 95.3% and

38

92.7% of users in Foursquare and Gowalla having 50% or more of their locations within 50 km

and 84.8% and 81.3% of users in Foursquare and Gowalla having 80% or more of their locations

within 50 km. Thus, if a user travels away from her visited locations, the user-based collaborative

filtering algorithm may recommend locations far away from the current coordinate of the user,

which provides an inferior recommendation.

0 200 400 600 800 1000

Distance (km)
0.00

0.05

0.10

0.15

0.20

0.25

P
re

ci
si

o
n
@

N

Precision@5

Precision@10

Precision@20

(a) Foursquare

0 200 400 600 800 1000

Distance (km)
0.00

0.02

0.04

0.06

0.08

0.10

0.12

P
re

ci
si

o
n
@

N

Precision@5

Precision@10

Precision@20

(b) Gowalla

Figure 4.3: Precision of user-based collaborative filtering

To confirm our beliefs, we evaluate the user-based collaborative filtering algorithm using

the check-ins as ground truth. By marking off certain randomly selected locations within dis-

tance ranges under examination as “not-visited”, we measure how well the recommendations

recover these marked-off locations (the detailed evaluation process will be elaborated later in

Section 7.1.1). By varying the distance from the home region, Fig. 4.3 plots the precision@N

for different distance ranges (e.g., 0-20 km, 20-40 km, ..., up to 1000 km). As shown, when

the marked-off locations are close to home regions of users, the user-based collaborative filtering

method performs reasonably well. However, as soon as the marked-off locations are 20-40 km

away from the home regions of users, the precision degrades. This phenomenon appears in both

the Foursquare and Gowalla datasets consistently, acknowledging our concerns that collaborative

filtering may not work well when a user is out of town. We argue that this degradation is due

to: (a) the recommended locations derived from candidate locations previously visited by the

top similar users of the target user are likely to be close to her home region and thus too far

away from her current region; and (b) some of the most similar users may not have visited loca-

tions near the target user’s current region. To address (a), an idea is to incorporate a proximity

constraint to filter locations far away from the user’s current region. To address (b), we need

to extend the base of similar users from which the candidate locations are derived. As prior

studies have shown that friends tend to exhibit similar behaviors (and we assume that includes

far-away cities or scenic places traveled), we provide data analysis into the mobility of users and

similar users/friendship in the following sections and then propose to incorporate friends into our

39

0 100 200 300 400 500

Distance (km)
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
C

D
F

(a) 50% of Locations

0 100 200 300 400 500

Distance (km)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
D

F

(b) 80% of Locations

Figure 4.4: Probability distribution of traveling distance of users from their home location in the
Foursquare dataset

collaborative recommendation framework.

4.3 Mobility of Users

For the mobility of users, we explore how far users tend to travel to visit locations. For this

experiment, we use the Foursquare dataset since it contains home locations that users report on

their user profile. Analyzing users that have visited at least 10 locations, we examine how close

50% and 80% of the user’s visited locations are to their home location to show how far users

typically travel. The probability distribution to display how far users travel from their home

location to visit locations is shown in Fig. 4.4, where a data point on the graph represents the

percentage of users that have at least a certain percentage of locations (50% or 80%) within the

given distance on the x-axis. The figure shows that many users visit locations nearby their home

location, with 83.7% of users visiting 50% of their locations and 63.3% of users visiting 80% of

their locations within 100 km of their home location. Therefore, we see that many users visit a

large majority of their locations near their home location. This confirms our intuition that users

tend to visit nearby places. Thus, location recommender systems should recommend places to

users that are a short distance away from the current standing point of the user.

4.4 Similar Users and Friends

When users are far away from their other visited locations, we would like to know how this

distance affects how similar users and friends influence the decision to visit locations. We examine

how many friends have visited the far away location. Requiring that each user has at least 5

friends and visited 10 locations, we find all the user location pairs (u, l) (where user u has visited

40

0 200 400 600 800 1000

Distance (km)
0.0

0.1

0.2

0.3

0.4

0.5

0.6
P
e
rc

e
n
ta

g
e
 o

f
S
h
a
re

d
V

is
it

e
d
 L

o
ca

ti
o
n
s

Friends

Top Users

Random

(a) Foursquare

0 200 400 600 800 1000

Distance (km)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
e
rc

e
n
ta

g
e
 o

f
S
h
a
re

d
V

is
it

e
d
 L

o
ca

ti
o
n
s

Friends

Top Users

Random

(b) Gowalla

Figure 4.5: Percentage of friends and top users that share visited location of target user

location l) such that l is at least 1,000 km away from the other visited locations of u. We

observe that 28.9% and 12.7% of the users also have a friend visit the far away location for the

Foursquare and the Gowalla dataset respectively. In addition, for each location that a person

visits that is far away from her home region, how often does at least one of the top-m users (from

the user-based collaborative filtering algorithm) also visit the location? Requiring that each user

visited at least 10 locations and the distance threshold being 1000 km, 74.8% and 54.6% of top-50

users as well as 47.8% and 29.3% of top-10 users have also visited the far away locations for the

Foursquare dataset and Gowalla dataset, respectively. When we lower the distance threshold to

500 km, the percentage of top-10 users drops to 34.8% in the Foursquare dataset and 25.3% in the

Gowalla dataset. This shows that when users are far away from their home region, top-10 users

and friends have a high probability to share these visited locations. If we apply collaborative

filtering algorithm to complete location recommendation, the top similar users and friends are

good references for the targeting users.

To further examine this, we want to observe how important friends and top-10 users are as a

user is farther away from her home region. To do this, we found user location pairs (user u and

location l) for different ranges (e.g., 0-20 km, 20-40 km) from her home regions such that each

user had at least 10 friends and 10 visited locations. For each user location pair (u, l), we identify

whether a friend or a top-10 user of u has visited l. In addition, we choose random users (with

quantity equal to the number of friends of the user) and identify whether these random users

have visited l. Lastly, the results are aggregated for the different distances from home ranges by

calculating the percentage of time a friend or a top-10 user of u has visited l. Figure 4.5 shows

how often friends, top-10 users, and random users share at least one visited location with a target

user.

Both friends and top users of u had a larger percentage (42.0% and 58.7% respectively for

the Foursquare dataset and 37.1% and 50.2% respectively for the Gowalla dataset) when the

41

distance equaled 0-20 km, and then the percentage immediately dropped. After the initial high

percentages, both friends and top users’ percentages stay mostly level, hovering at around 25%

and 45% for the Foursquare dataset and 15% and 25% for the Gowalla dataset. This shows that

both friends and top-10 users of a target user behave similarly to the target user, with top-10

users having more similarity. In addition, we observe that both friends and top users always

perform significantly better than just randomly choosing users. Thus, no matter how far the

target user is from her home region, both a friend and top-10 user of a target user are more likely

to visit a location of the target user than a random user.

Chapter 5
Location Recommendation

Algorithm

In this chapter, we introduce the User Preference, Proximity and Social-Based Collaborative

Filtering framework, which adds social relationships and a proximity constraint to provide a

superior algorithm. Then, we show an example calculation.

5.1 User Preference, Proximity and Social-Based Collab-

orative Filtering Framework

Based on the previous observations, we propose the User Preference, Proximity and Social-Based

Collaborative Filtering (UPS-CF) recommendation framework.

The basic idea of UPS-CF follows the user-based collaborative filtering algorithm to explore

the implicit preferences of top similar users in making location recommendation. However, due

to the constraint of human mobility, locations that are far away from the current location of

the target user should be excluded from consideration. Thus, UPS-CF adopts a proximity con-

straint, denoted as dp, to filter candidate locations which are located outside the circle of radius

dp, rooted at the current position of the target user. Notice that dp can be adapted based on

application requirements. For example, for a mobile map application on an LBSN, the location

recommendation should be tailored based on the displayed region on the map. Thus, the recom-

mendation engine may set the proximity constraint accordingly to filter candidate locations of

no interests.

Additionally, most similar users, who share many commonly visited locations with the target

user, may not be the best source to decide candidate locations because those similar users may

not have visited the current region of the target user. Thus, UPS-CF incorporates friends (i.e.,

socially connected users) in order to broaden the selection base. The idea of adopting friends in

43

recommender systems is reasonable as the homophily and social influence phenomenon among

friends indicate that friends tend to have similar behaviors. Therefore, we aim to incorporate

this factor and investigate its roles (in comparison with similar users) in UPS-CF under in-town

and out-of-town scenarios.

Algorithm 5 User Preference, Proximity and Social-Based Collaborative Filtering Algorithm

1: //Input: user u′, query point q, number of locations to recommend k
2: //Output: list of recommended locations R
3: for all users u 6= u′ do
4: Calculate wu,u′ = (1− α) ∗ wFu,u′ + α ∗ wEu,u′
5: end for
6: Save top-m users with largest similarity weight into U ′

7: Let L′ be all locations that satisfy the proximity constraint dp from q
8: for all locations l ∈ L′ do
9: Calculate prediction value pu′,l

10: end for
11: return List of N locations with highest prediction value

The processing flow of UPS-CF is described in Algorithm 5, where U ′ ⊂ U is the set of top-m

users, cu,l = 1 represents user u has a check-in at location l, and cu,l = 0 represents user u has

no record of a check-in at location l. As shown, UPS-CF incorporates the notion of a proximity

constraint by filtering out candidate locations that are farther away from the current standing

location of the target user. Similar to the user-based collaborative filtering algorithm, UPS-CF

defines a ranking score as the probability of a user u visiting location l, denoted pu,l

pu,l =

∑
v∈U ′ cv,lwu,v∑
v∈U ′ wu,v

(5.1)

where wu,v indicates the importance (i.e., weight) of a user v contributing to a recommendation

targeting on user u.

Notice that the similarity weight wu,v used in Eq. (5.1) is different from that in Eq. (3.3).

The weight wu,v here is used to combine the roles of a similar user and a friend the user v may

play for the target user u. Thus, we use a control parameter α (where 0 ≤ α ≤ 1) to balance the

weight wEu,v for the role of a similar user and the weight wFu,v for the role of a friend and define

wu,v as follows.

wu,v = (1− α) ∗ wFu,v + α ∗ wEu,v

Accordingly, UPS-CF is able to take advantage of similar behavior between close social friends

in a social network as well as user preference between similar users. Notice that user preference

among similar users is derived based on the widely-known belief that similar users tend to visit

similar places. This is the main belief that the user-based collaborative filtering employs to

decide its top-m users [5, 8, 31, 51]. Let L be the location set and let cu,l be a boolean value

that represents whether user u has a record of a check-in with location l. The similarity weight

between users u and v, in terms of their common experiences in check-ins, is defined as follows.

44

wEu,v =

∑
l∈L cu,lcv,l√∑

l∈L c
2
u,l

√∑
l∈L c

2
v,l

(5.2)

On the other hand, we believe that users are more likely to go to places that friends have

previously visited [69]. This is based on the tendency for people to be similar to their friends,

due to homophily and social influences among friends, which has been shown to exist in social

networks [42]. The friendship between users u and v is denoted as fu,v, where fu,v = 1 represents

that u is friends with v and fu,v = 0 represents no record that u is friends with v. Therefore, the

similarity weight of social influence between users u and v is defined as follows.

wFu,v = fu,v (5.3)

5.2 Example Calculation

To show how the algorithm works, we execute an example problem based off the example in

3.3.2.

Table 5.1: Example table of user check-ins

l1 l2 l3 l4 l5 l6
u1 x x
u2 x x x
u3 x x
u4 x x x x
u5 x x x

Table 5.2: Example table of social relationships

u1 u2 u3 u4 u5
u1 x x x
u2 x x x
u3 x x x
u4 x x
u5 x x x

Table 5.3: Example table of location coordinates

Latitude Longitude
l1 0 0
l2 1 1
l3 1 -1
l4 1 1
l5 -2 1
l6 2 2

45

For our example, Table 5.1 shows which users have visited which locations, Table 5.2 shows

which users are friends with other users, and Table 5.3 shows the coordinates of the locations.

Let us recommend k = 2 new locations for u1 to visit, with m = 2 top users. In addition, we

set the user’s current coordinate (query point) to be q = (0, 0) as well as α = 0.7 and dp = 3.5.

Lastly, Manhattan distance is used to measure the distance between a location and a query point.

As with user-based collaborative filtering, the first step is to calculate the top-2 users, which

is shown below.

wu1,u2
= 0.3 ∗ 1 + 0.7 ∗ 0√

2
√

3
= 0.300

wu1,u3 = 0.3 ∗ 1 + 0.7 ∗ 1√
2
√

2
= 0.650

wu1,u4
= 0.3 ∗ 0 + 0.7 ∗ 2√

2
√

4
= 0.495

wu1,u5 = 0.3 ∗ 1 + 0.7 ∗ 2√
2
√

3
= 0.872

Thus, u3 and u5 are the top-2 users. Next, we calculate the distance from the query point to

each location that u1 has not visited yet to see if any location needs to be filtered.

Dist(q, l3) = Dist((0, 0), (1,−1)) = 2 < 3.5

Dist(q, l4) = Dist((0, 0), (1, 1)) = 2 < 3.5

Dist(q, l5) = Dist((0, 0), (−2, 1)) = 3 < 3.5

Dist(q, l6) = Dist((0, 0), (2, 2)) = 4 6< 3.5

Since l6 is outside the proximity constraint, it is removed from consideration. Lastly, we cal-

culate the prediction value for each location using the same technique as user-based collaborative

filtering to determine which locations are recommended.

pu1,l3 =
0 ∗ 0.650 + 0 ∗ 0.872

0.650 + 0.872
= 0.000

pu1,l4 =
0 ∗ 0.650 + 1 ∗ 0.872

0.650 + 0.872
= 0.573

pu1,l5 =
1 ∗ 0.650 + 0 ∗ 0.872

0.650 + 0.872
= 0.427

Therefore, l4 and l5 are recommended.

Chapter 6
K-Nearest Diverse Neighbor

Algorithms

In this chapter, we introduce several algorithms that solve the k-nearest diverse neighbor problem

using angular spatial diversity. First we explain deficiencies in the Index-Based Diverse Brows-

ing algorithm and propose a modified version. Next, we introduce the Distance-Based Diverse

Browsing framework, which uses an initial solution and replacement operations to improve the

solution. With this framework, we explore two approaches for choosing the initial selection of

locations: Distance-First Distance-Based Diverse Browsing and Diversity-First Distance-Based

Diverse Browsing

6.1 Modified Index-Based Diverse Browsing

As explained in Section 3.3.6, IBDB is a state-of-the-art algorithm for solving the k-nearest diverse

neighbor problem with angular spatial diversity. However, there are deficiencies that either lower

performance, in terms of lower quality results, or increase the number of disk accesses. In the

following subsections, we introduce Modified Index-Based Diverse Browsing (Mod-IBDB) that

makes two improvements: 1) we remove the pruning that occurs in themindivdist calculation and

2) fix the mindivdist calculation for R-Tree page to give a more accurate bound for mindivdist.

6.1.1 Remove Pruning

The intuition behind the algorithm is to choose k locations that have the smallest mindivdist

score. However, by pruning locations/R-Tree pages, it may remove locations that would have

otherwise been chosen. For example, let us look at choosing two locations in Figure 6.1, where

the two locations to the left of the query point (l1 and l2) are at the same angle and nearby (i.e.,

1 and 1.01 km, respectively) while the location on the far right (l3) is farther away (i.e., 20 km).

47

Figure 6.1: Example where pruning may is not optimal

The algorithm will first choose l1 since it is the closest location. Even though l2 most likely now

has the lowest mindivdist score, it is pruned because it is at the same angle as l1 and about

the same distance away. Thus, the chosen locations are l1 and l3. Depending on the diversity

and distance metrics, this may not be the optimal answer, especially if distance is weighted more

importantly than diversity. If we removed pruning from the algorithm, the decision between

l2 and l3 would depend on which location has the lowest mindivdist score, which follows the

intuition of the algorithm. Therefore, pruning may lead to less optimal answers.

One argument for pruning is that it will decrease the number of disk accesses. When an

R-Tree page is pruned, the algorithm will no longer explore the subtree rooted with the removed

page, which saves disk accesses. If the page does not have a low mindivdist score, the algorithm

will typically not explore the page since other spatial objects will be considered first, which does

not increase the number of disk accesses. If the mindivdist score is low, it is worthwhile exploiting

the tradeoff of adding disk accesses to find locations that may be better choices to recommend.

Also, pruning locations does not save disk accesses since the locations have already been read

from disk. In actuality, pruning locations can increase disk accesses because the algorithm will

have to complete more searching if it prunes locations it would have otherwise chose. This can

involve investigating more R-Tree pages for candidate locations, which will increase the number

of disk accesses.

6.1.2 Fix Incorrect Mindivdist Calculation

Similar to mindist being the minimum distance between any point in the R-Tree page and

the query point, the intuition for mindivdist of an R-Tree page is that it should be equal to

the minimum mindivdist value of any point in the R-Tree page. Since the algorithm accesses

locations from smallest to largest mindivdist, it may access the locations out of order if the above

is not true. For example, if the mindivdist score for an R-Tree page is 2.0 and the mindivdist

score for a location is 1.5, the algorithm will access all spatial objects (including locations)

that have a mindivdist score lower than 2.0 before visiting the location with score 1.5. If this

occurs, the algorithm will not correctly choose the k locations with the lowest mindivdist score.

Unfortunately, this occurs in IBDB.

Let us explore calculating mindivdist for the R-Tree page in Figure 6.2, where the center red

circle is the query point q, l1 is the already chosen location (1 km away and angle 3π
4 from q), and

l2, l3, and l4 in the rectangle are locations in the minimum bounding rectangle of the R-Tree page.

In addition, the dotted circle represents 1 km away from the query point. The sector represents

48

Figure 6.2: Example where mindivdist is incorrectly calculated for R-Tree Page in IBDB

the pruning area of l1, where the width of the sector is 2 ∗ θ. Lastly, let λ = 0.5. For calculating

mindivdist using the IBDB method, the similarity calculation is s = minc∈C simθ(c, q, p), where

C is the corners of the minimum bounding rectangle. Since the right corners are outside the θ

threshold, s = 0. For the distance calculation, since the bottom left corner of the rectangle c is

located in the sector, the calculation for the distance portion of mindivdist (i.e., δ) is as follows.

δ = min(|ql1| ∗ (1 + λ), |qc|) = min(1 ∗ 1.5,
√

2) =
√

2

Thus, the calculation of mindivdist for the R-Tree page is 0.5 ∗ 0 + 0.5 ∗
√

2 =
√
2
2 . However,

let us calculate mindivdist for l3. Since it is outside the θ threshold of l1, s = 0. In addition, its

distance to the query point is δ = 1.0. Thus, l2’s mindivdist score is 0.5∗0+0.5∗1.0 = 0.5 <
√
2
2 .

Thus, IBDB has the problem of having a location in an R-Tree page with a lower mindivdist

value.

The problem occurs because it assumes that the lowest mindivdist score for a location in

the R-Tree page is at the corner. However, the example above shows that this is not necessarily

true. To fix this problem, we have to calculate the lowest possible mindivdist. Let rect be

the minimum bounding rectangle of the R-Tree page. Our goal is to find the smallest possible

similarity calculation value for any point (does not have to be a specific location) in the rectangle,

which is s = minp′∈rect maxp∈R simθ(p
′, obj, p), where R is the set of already chosen locations. In

addition, the minimum distance calculation is δ = mindist(q, rect). Therefore, the mindivdist

calculation for an R-Tree page is as follows.

49

MinDivDist(q, rect, R, λ)) = λ ∗ min
p′∈rect

max
p∈R

simθ(p
′, obj, p) + (1− λ) ∗mindist(q, rect) (6.1)

By giving the smallest distance and the smallest diversity calculation, this calculation of

mindivdist is definitely a lower bound for any point inside the rectangle. However, there is no

guarantee that this is a tight lower bound.

6.1.3 Algorithm

Algorithm 6 MinDivDist-Mod

1: //Input: query point q, location or R-Tree page obj, set of points R, control parameter λ
2: //Output: score mindivdist
3: δ = mindist(q, obj)
4: if obj is a location then
5: s = maxp∈R simθ(q, obj, p)
6: else
7: Let rect be the minimum bounding rectangle of obj
8: s = minp′∈rect maxp∈R simθ(p

′, obj, p)
9: end if

10: return λ ∗ s+ (1− λ) ∗ δ

Putting together the new calculation of mindivdist as well as removing pruning, Algorithm 6

shows the new mindivdist calculation algorithm for Mod-IBDB method. Other than the above

modifications, Mod-IBDB uses the same algorithm as IBDB to choose k locations.

6.1.4 Example Calculation

To show the differences in calculating mindivdist, Figure 6.3 illustrates two examples. Similar

to the previous subsection, we have the center red circle as the query point q; l1 as the already

chosen location; l2, l3, and l4 as candidate locations; the dotted circle representing 1 km away

from the query point; λ = 0.5; and the sector as the pruning area of l1, with the width of the

sector being 2 ∗ θ. For the left example of calculating the mindivdist value for l2, the original

method would prune l2 since it is inside the pruning sector of l1. For the modified version, this

will not occur since pruning is removed. Since l1 and l2 have the same angle in relation to q,

s = simθ(q, l1, l2) = 1. Since l2 intersects with the dotted circle, δ = 1 km. Therefore, the

modified mindivdist value is 0.5 ∗ 1 + 0.5 ∗ 1 = 1.

As calculated in the previous subsection, the mindivdist of the R-Tree page for the right

example is
√
2
2 even though l3’s mindivdist value is smaller (0.5). For the modified version,

since there exists points of the rectangle outside the angles of the sector, s = 0. In addition,

the mindist value for the R-Tree page is δ = 1 km since its closest point intersects with the

dotted circle. Therefore, the modified mindivdist value is 0.5 ∗ 0 + 0.5 ∗ 1.0 = 0.5. Unlike the

50

Figure 6.3: Examples for modified mindivdist calculation

original calculation, the modified mindivdist value for the R-Tree page is not larger than l3,

which correctly follows the intuition of the Index-Based Diverse Browsing algorithm.

6.2 Distance-Based Diverse Browsing

We propose the Distance-Based Diverse Browsing (DBDB) framework to choose k locations that

are close to the query point and spatially diverse. The algorithm works by starting with an

initial solution of k locations and improving the solution by replacing a candidate location with a

location already chosen. The intuition of the framework is based upon search algorithms, which

find an initial solution in a hierarchal data structure (i.e., tree) and use backtracking and pruning

to improve the solution until a stopping condition has been met or there is no more items to

examine. Algorithm 7 shows the framework in detail. After choosing an initial solution with k

locations, the algorithm visits locations in increasing order of distance to the query point, in a

similar fashion to the distance browsing method for the k-nearest neighbor query. When location

l is considered by the algorithm, it is considered to be added to the current solution R if l 6∈ R.

If this is true, the algorithm adds l to R and considers which location r ∈ R should be removed

from the solution evaluating the objective function λ ∗ Div(q,R \ r) + (1− λ) ∗ Rel(q,R \ r) for

each r ∈ R. For the objective function, Div and Rel are diversity and relevance (closeness of

locations to query point) metrics, which are detailed in Section 7.2.2, and λ is control parameter

for determining the importance of diversity and relevance, where a larger λ means more weight on

diversity. The algorithm continues until the stopping condition has been met. For our algorithm,

the stopping condition is based upon the consecutive times that a location l is considered but

not kept in the solution (i.e., no replacement occurred). In other words, for stopping condition

number stoppingCondition, if the algorithm attempts replacing stoppingCondition consecutive

51

locations unsuccessfully, the algorithm terminates and returns the current solution.

Algorithm 7 Distance-Based Diverse Browsing

1: //Input: query point q, number of locations to recommend k, R-Tree root page root, control
parameter λ

2: //Output: list of recommended locations R
3: Let R be an initial solution with k locations
4: Let PQ be a min priority queue for mindist for R-Tree pages and locations
5: Enqueue PQ with root
6: counter = 0
7: while PQ is not empty and counter < stoppingCondition do
8: Dequeue PQ and let obj be the spatial object that was dequeued
9: if obj is a location then

10: if obj 6∈ R then
11: R = R

⋃
obj

12: Find r such that maxr∈R λ ∗Div(q,R \ r) + (1− λ) ∗ Rel(q,R \ r)
13: R = R \ r
14: if r equals obj then
15: counter = counter + 1
16: else
17: counter = 0
18: end if
19: end if
20: else
21: for all children (or locations) c of obj do
22: Enqueue PQ with c
23: end for
24: end if
25: end while
26: return R

One important question remains: how do we choose an initial set of locations? The Distance-

Based Diverse Browsing algorithm is similar to other search algorithms/problems, where we

traverse a hierarchal data structure (i.e. tree) till we reach a leaf node, create a solution, and

then backtrack to find better solutions. The better the initial solution, the more pruning and less

backtracking required to find a good solution, which is better for efficiency. Therefore, choosing

k random locations would not provide an adequate solution. We could brute-force search for

an initial solution, but this would be a very inefficient operation. Therefore, we would want to

choose k locations that would provide a good initial solution of being close to the query point

as well as spatially diverse, without incurring a large number of disk accesses. With this, we

develop two heuristics based on the two metrics for k-nearest diverse neighbor. First, there is

the Distance-First Distance-Based Diverse Browsing algorithm, which initially chooses locations

close to the query point. Similarly, we develop the Diversity-First Distance-Based Diverse Brows-

ing algorithm, which initially chooses a set of locations that are spatially diverse.

52

6.2.1 Distance-First Distance-Based Diverse Browsing

Algorithm 8 Choose Initial Locations: Distance-First

1: //Input: query point q, number of locations to recommend k, R-Tree root page root
2: //Output: initial solution set of recommended locations R
3: return kNearestNeighbors(q, k, root)

The Distance-First Distance-Based Diverse Browsing (Dist-DBDB) uses the heuristic of choos-

ing an initial set of locations that are close in proximity to the user. By choosing the closest k

locations to the query point, we can maximize the relevance metric in the objective function of

DBDB. This operation can be performed via distance browsing, which is explained in Section

3.3.5.

6.2.2 Diversity-First Distance-Based Diverse Browsing

On the other hand, the Diversity-First Distance-Based Diverse Browsing (Div-DBDB) uses a

mostly opposite approach to finding the initial set of locations. It chooses k locations that are

spatially diverse, which allows for the diversity in the objective function of DBDB to receive

a large score. Unlike Dist-DBDB, finding the optimal k locations to maximize the metric for

angular diversity is a much harder problem. The k-most diverse locations can be calculated

via brute-force search, but this becomes very inefficient, even for relatively small datasets. We

develop an algorithm that calculates k angles that are diverse and chooses a location near each

angle, which is shown in Algorithm 9.

(a) Angle Definition (b) Choosing Diverse Locations

Figure 6.4: Angle definition and visualization of choosing initial set of diverse locations

Instead of choosing k locations from all possible locations, we constrain the search to the

n-nearest neighbors to the query point, where n ≥ k. With these locations, we sort them by

increasing angle in relation to the query point (Figure 6.4a shows a visualization of calculating

53

Algorithm 9 Choose Initial Locations: Diversity-First

1: //Input: query point q, number of locations to recommend k, R-Tree root page root, number
of candidate locations n

2: //Output: initial solution set of recommended locations R
3: NN = kNearestNeighbors(q, n, root)
4: Sort NN in increasing angle in relation to q
5: Let θstart be the angle of NN [0] in relation to q
6: Add NN [0] to R
7: for i = 1 to k − 1 do
8: Let θ = (θstart + i∗2π

k) mod 2π
9: Use binary search to choose location l ∈ NN that has angle closest to θ in relation to q

10: Add l to R
11: end for
12: return R

angle for three different points). To choose a first location, we select the first location in the

array (smallest angle) and insert it into the chosen set. Then, we create k angles such that they

are evenly spread (i.e. each angle is separated by 2π
k) with one of the angles being the angle of

the first selected location. Lastly, we select a location that is closest to each angle, and these

k locations are the initial set of locations. Choosing one location can be completed in O(log n)

using binary search on the sorted array. Since we choose locations that are near the spread

angles, the chosen locations will also be spread, which would allow for higher spatial diversity.

Figure 6.4b illustrates an example of executing the algorithm for choosing four locations. Since

the location with the smallest angle is at about π
4 , we can draw four evenly spaced vectors around

the query point. The algorithm will choose the location that is closest to each vector.

If there are no locations on one side of the query point, there is a chance that a location may

be closest to two angles/vectors. In the following case, we will select that location and another

random location. Since the objective is to efficiently find a diverse solution, we do not want to

spend much effort finding an additional location.

6.2.3 Example Calculation

To show how DBDB works, we perform an example problem shown in Figure 6.5. The larger,

red circle towards the center is the query point while the other circles represent locations and

the rectangles represent R-Tree pages. We will use Div-DBDB to choose four locations that

are diverse. In addition, let the stopping condition in DBDB equal three and let n = 10 in

Div-DBDB.

The first step is to choose four locations out of the ten shown in Figure 6.5. After sorting

the locations in increasing order of angle in relation to the query point, l7 is the first location

chosen since it has the smallest angles. Using this angle, we create three other angles that are

evenly spread (separated by π
2), which are denoted by the red dotted lines in Figure 6.6. Since

l3 is closest to the northern line, l2 is closest to the western line, and l9 is closest the southern

line, the initial solution is {l7, l3, l2, l9}. Next, we use DBDB to consider locations to swap in

54

Figure 6.5: Example for Distance-Based Diverse Browsing

Figure 6.6: Choosing diverse initial set of locations

increasing order of distance from the query point, which is shown in Table 6.1. The table shows

the step number, current solution, counter, location to be considered (candidate location), and

a description for advancing to the next step. Since the distance and diversity metrics for the

objective function have yet to be introduced, we will intuitively explain whether a location should

be replaced.

55

Table 6.1: Distance-Based Diverse Browsing

Step # Solution Counter Cand. Location Description
1 l7, l3, l2, l9 0 l8 Due to the fact that choosing l8 would

lessen the diversity score and replac-
ing it with l9 or l7 would not bring a
large change for the distance metric,
we do not perform the replacement
operation, so the counter is increased
by 1.

2 l7, l3, l2, l9 1 l6 Since l6 is close in proximity to the
query point and its angle is close to l3,
replacing l6 for l3 would increase the
objective function, so we change the
initial solution and reset the counter
to 0.

3 l7, l6, l2, l9 0 l9 l9 is already in the current solution,
so it is skipped.

4 l7, l6, l2, l9 0 l7 l7 is already in the current solution,
so it is skipped.

5 l7, l6, l2, l9 0 l5 Since l5 would not increase the objec-
tive function due to its similar angle
to l6 and farther distance, the replace-
ment operation is not performed, and
the counter is incremented to 1.

6 l7, l6, l2, l9 1 l2 l2 is already in the current solution,
so it is skipped.

7 l7, l6, l2, l9 1 l4 Since l4 would not increase the objec-
tive function due to its similar angle
to l6 and farther distance, the replace-
ment operation is not performed, and
the counter is incremented to 2.

8 l7, l6, l2, l9 2 l10 Since l10 would not increase the ob-
jective function due to its similar an-
gle to l9 and farther distance, the
replacement operation is not per-
formed, and the counter is incre-
mented to 3. Since this is the thresh-
old for the stopping condition, the al-
gorithm terminates and {l7, l6, l2, l9}
is returned.

9 l7, l6, l2, l9 3 – End of algorithm.

Chapter 7
Performance Evaluation

In this chapter, we conduct comprehensive experiments with real datasets from Foursquare and

Gowalla as well as synthetic datasets to validate our ideas and evaluate our proposed algorithms.

In the first part, we detail the experiments of increasing the effectiveness of the location recom-

mendation algorithm. For the second part, we show results related to choosing locations that

are close in proximity to the user’s current coordinate and spatially diverse.

7.1 Increasing Effectiveness

For increasing the effectiveness of location recommendation algorithms, our experiments are

designed to achieve the following goals. (1) We want to study the optimal setting of the parameter

α for UPS-CF under different distance ranges from home regions. This will allow us to see how

similar users and social friends play a role in location recommendations under different distance

ranges from home regions. (2) We want to compare UPS-CF against several collaborative filtering

variants and baseline algorithms (i.e., distance-based and popularity-based), especially with their

performance under different distance ranges from home regions. (3) We want to test how well

the different algorithms perform for the cold start problem for users who have very few existing

check-ins, which is a well-known problem for collaborative filtering algorithms.

7.1.1 Evaluation Process

For evaluating the recommendation algorithms, we adopt a widely used approach for data mining

and machine learning research. Given the check-ins in the collected Foursquare and Gowalla

datasets, the general idea is to mark off some data points in the datasets (e.g., a user u has

visited a location l). Using the fact that u has a check-in at l as the ground truth, we evaluate

how well the recommendation algorithms are able to recover the mark-off l in their location

recommendations. Therefore, we can compare UPS-CF with other algorithms to see which ones

provide better recommendations. The process for evaluation is as follows:

57

1. Randomly remove some check-in records that a user u has visited a location l (i.e., mark-off

location l from u’s check-in lists).

2. Randomly select a query location coordinate q (current standing location of u) that is

distance dql away from location l. This allows our application scenario to be more realistic

because u will most likely not be at the same geo-coordinate as l.

3. For each recommendation algorithm, recommend N locations for u to visit.

4. Track each recommendation algorithm to see if l was one of the N recommended locations.

When this process is complete, we calculate precision@N for each algorithm, i.e., the per-

centage that the removed locations were recovered when N locations are recommended. For our

evaluation, we choose N to be 5, 10, and 20 and alternate dql between 5, 10, 20, 50, and 100

km. Notice that the predetermined pool of dql has a bias towards short distances (i.e., 5, 10 and

20 km). Intuitively, users will not travel long distances from their current standing location to a

recommended location. For example, if a user is looking to eat at a restaurant, she will almost

never travel hundreds of kilometers to go to a restaurant that far away; instead, she will almost

always choose to eat at a place within a small driving distance. Thus, we do not set dql to be a

very long distance.

In our evaluation, we compare two baseline algorithms and four variants of the collaborative

filtering method.

1. Most Visited (MV): Based on popularity, the algorithm recommends the most visited

locations.

2. Closest Locations (CL): Based on distance to travel, the algorithm recommends the

closest locations to the user’s current standing point.

3. User-Based CF (U): The user-based collaborative filtering algorithm (as explained in

Section 3.3.2).

4. User and Proximity-Based CF (UP): The user-based collaborative filtering algorithm

with the proximity constraint, i.e., it filters out locations outside the radius dp of the current

standing location of the target user.

5. User and Social-Based CF (US): The UPS-CF method (see below) without the prox-

imity constraint.

6. User, Proximity and Social-Based CF (UPS): The proposed new collaborative frame-

work (as explained in Section 5.1).

When we evaluate the algorithm, the user location pairs (u, l) are divided into short distance

(0-20 km), medium distance (20-200 km), and long distance (200-1000 km) in accordance with

the distance of a location l from the home region of user u. This will allow us to see not only

58

Table 7.1: Optimal α for US and UPS

Short Distance Medium Distance Long Distance

Foursquare
US 0.8 0.1 0.1

UPS 0.8 0.1 0.1

Gowalla
US 0.9 0.6 0.1

UPS 0.9 0.1 0.1

how the algorithms compare overall, but also how well the algorithms perform as the distance

from their home region increases, i.e., from in-town scenario to out-of-town scenario. When

we evaluate the algorithms, four-fold cross validation is performed, where 3
4 of the data is the

training data (to optimize parameters for US and UPS, as explained in Section 7.1.2), and 1
4 is

the testing data. After finding the optimal parameters, we iterate through each user location

pair in the testing data as stated above to evaluate the different algorithms.

7.1.2 Parameter Tuning

Before we can evaluate the collaborative filtering algorithms, we need to tune some parameters

to optimize the effectiveness of the algorithms. In UP and UPS, we need to set the proximity

constraint dp for filtering out locations that are too far away. We set dp to be 100 km so a

reasonable number of candidate locations remain for recommendations while still being a realistic

distance for a user traveling this distance to visit the location. On the other hand, for US and

UPS, we empirically tune α to obtain its optimal settings for different distance ranges from the

user’s current location to her home location. Notice that α is the weight for the role of a similar

user and 1− α is the weight for the role of a friend.

We use the average of precision@5, precision@10 and precision@20 as the overall perfor-

mance metric to tune α for US and UPS. In the experiments, we divide the Foursquare and

Gowalla datasets based on distance ranges from home into three categories, i.e., short (0-20 km),

medium (20-200 km) and long (200-1000 km) distance. Table 7.1 shows the optimal settings for

average precision of US and UPS under each category. Notice that a large α means the role of

similar users are important while a small α means friends are important. For both US and UPS

algorithms, the optimal α is large (0.8 for Foursquare and 0.9 for Gowalla) for the short distance

category (i.e., users are in town). Nevertheless, the optimal α is small (0.1 for Foursquare and

Gowalla) when users are farther away from other visited locations (i.e., users are out of town). In

other words, when users are in town, similar users contribute more to effective recommendations

while social friends play a more important role when users are out of town. The wide discrepancy

between the in-town α and the out-of-town α shows that users have a different decision process

for in-town and out-of-town scenarios. One possible explanation for a small α in out-of-town sce-

narios is that users may travel to various places to visit friends. Therefore, friends are important

in this scenario.

59

7.1.3 Effectiveness

0 100 200 300 400 500

Distance (km)
0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
re

ci
si

o
n
@

5

MV

CL

U

UP

US

UPS

(a) Foursquare

0 100 200 300 400 500

Distance (km)
0.00

0.02

0.04

0.06

0.08

0.10

P
re

ci
si

o
n
@

5

MV

CL

U

UP

US

UPS

(b) Gowalla

Figure 7.1: Effectiveness of algorithms - Precision@5

60

0 100 200 300 400 500

Distance (km)
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

P
re

ci
si

o
n
@

1
0

MV

CL

U

UP

US

UPS

(a) Foursquare

0 100 200 300 400 500

Distance (km)
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

P
re

ci
si

o
n
@

1
0

MV

CL

U

UP

US

UPS

(b) Gowalla

Figure 7.2: Effectiveness of algorithms - Precision@10

61

0 100 200 300 400 500

Distance (km)
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P
re

ci
si

o
n
@

2
0

MV

CL

U

UP

US

UPS

(a) Foursquare

0 100 200 300 400 500

Distance (km)
0.00

0.05

0.10

0.15

0.20

P
re

ci
si

o
n
@

2
0

MV

CL

U

UP

US

UPS

(b) Gowalla

Figure 7.3: Effectiveness of algorithms - Precision@20

62

Next, we evaluate the recommendation performance of UPS by comparing it with other

approaches (i.e., US, UP, U, CL, and MV). The results are shown in Figures 7.1, 7.2 and 7.3,

where each data point represents the average precision for corresponding distance ranges (e.g.,

0-20 km, 20-40 km) from home. When the user is in the 0-20 km range (in town), UPS performs

the best in both datasets, followed by US, UP, U, CL, and MV in the Foursquare dataset and UP,

US, U, CL, and MV in the Gowalla dataset. Since UP performs better than U and UPS performs

better than US, we conclude that removing locations farther away (i.e., the effect of proximity

constraint) improves recommendation performance. In addition, UPS performs better than UP

and US performs better than U, which means friends (i.e., the effect of social connections) also

help for recommendations.

When we approach the 40-80 km range, we see that all of the collaborative filtering recommen-

dation algorithms degrade in precision in both datasets. This can be explained by the observation

that a collaborative filtering recommendation algorithm typically recommends locations near the

home region of the target user. Since users typically check in to many places near their home

location, the top-m users (those who visit many common locations as the target user) may likely

live close to the home region of the target user and thus a large portion of the candidate loca-

tions to recommend will likely be near the home region. Since the visited locations are most

likely within the 100 km radius, the proximity constraint will not remove these locations from

consideration, i.e., all collaborative filtering recommendation algorithms will perform poorly in

this experiment. Since CL and MV do not use user preference for recommendation, they do not

have the sharp decrease in precision, which causes CL to perform well in the 20-200 km range.

When we get to a larger distance range (i.e., > 80, out of town), we see that the precision

of UPS and UP strengthens while the precision of US and U degrades in both datasets, which

shows that filtering by proximity constraint is very important in these scenarios. US and U do

not perform well because some of the recommended locations may be too far away. Thus, if a

user is on vacation or moving to a new location far away from his previous home region, US and

U will give unsatisfactory recommendations. However, UPS and UP filter farther away locations

and recommend only locations near the current location of the user. In addition, we see that

UPS outperforms UP and US outperforms U, which means that social friends are important

for recommendation. Since geographical proximity is important, CL performs average for larger

distance range, but it does not take advantage of the similar users and social friends like UPS.

Again, MV performs poorly, having at most one percent precision.

Therefore both filtering based on proximity constraint and social connections help to improve

collaborative filtering (which exploits the power of implicit preferences among similar users). We

observe that the difference between UP and UPS as well as U and US stays relatively constant

while the difference between U and UP as well as US and UPS increases for larger distance range

from home. This shows that the social factor affects the algorithms at a constant rate with the

increase in distance from home while filtering based on radius provides a greater positive effect

with the increase in distance from home. Therefore, unlike U and US, UPS’s effectiveness does

not deteriorate as the distance from home increases. In addition, we see that CL can sometimes

63

perform well since it takes advantage of the geographical proximity of locations, but it does

not include user preference and social factor, which negatively affects its ability to recommend

locations. Lastly, MV always performs extremely poorly for every distance range, with precision

never increasing above one percent.

Between the Foursquare and Gowalla datasets, we observe a similar phenomenon when com-

paring the different algorithms. However, it is interesting that the precision of the algorithms in

Foursquare is higher than the precision of the algorithms in Gowalla. Since the Gowalla dataset

has over 6 times as many locations as the Foursquare dataset, the algorithms have more locations

to choose from in the Gowalla dataset, which could cause a decrease in precision. In addition, the

Gowalla dataset has 72.9% less friends per user than the Foursquare dataset, which could cause

US and UPS to perform not as well. More experimentation is needed to give a more definitive

answer for the decrease in precision between the Foursquare and Gowalla datasets.

7.1.4 Cold Start Problem

Finally, we look into the effectiveness of the different recommendation algorithms for cold start

users. Cold start is a problem in collaborative filtering algorithms that exists when a user has not

yet visited a location or has visited only a few locations. Due to the lack of information about

the users, recommendations could perform poorly. To see how our algorithms perform, we use

the same training and testing sets as before, except that we keep at most 2 locations visited for

each user in the testing sets. Figures 7.4, 7.5, and 7.6 show the results of the experiment, with

each bar representing the percentage decrease between the regular and cold start effectiveness

experiments for a recommendation algorithm for a certain distance range from home. With MV

and CL, the precision stays relatively constant for most scenarios. This occurs because both of

these algorithms do not use history to make recommendations, so a lack of history in the cold

start problem has minimal effect. For the collaborative methods, we see a drop in precision, with

the lowest percentage drop in almost all cases being UPS.

We can see a few interesting trends in the results for both the Foursquare and Gowalla

datasets. First, we see that U has a consistently larger percentage drop than UP in addition to

US having a consistently larger percentage drop than UPS. This shows that filtering by radius

leads to a lower percentage decrease. Since filtering by radius removes locations that are too far

away from the user, UP and UPS will have fewer incorrect candidate locations, even though the

cold start situation has very little history. In addition, as the distance from home increases, US

has a lower percentage decrease than U while UPS has a lower percentage decrease than UP. This

occurs because the UPS and US algorithms also use social connections to help recommendations.

Even though little history exists for which locations users visited, the social factor helps give a

better recommendation. Lastly, we see that the combination of filtering based on the proximity

constraint as well as using combined strengths of similar users and social friends helps UPS have

the lowest percentage decrease among all collaborative filtering methods for medium and long

distances.

64

0-20 20-200 200-1000

Distance (km)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
e
rc

e
n
ta

g
e
 D

e
cr

e
a
se

MV

CL

U

UP

US

UPS

(a) Foursquare

0-20 20-200 200-1000

Distance (km)
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P
e
rc

e
n
ta

g
e
 D

e
cr

e
a
se

MV

CL

U

UP

US

UPS

(b) Gowalla

Figure 7.4: Effectiveness of cold start users - Precision@5

65

0-20 20-200 200-1000

Distance (km)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
e
rc

e
n
ta

g
e
 D

e
cr

e
a
se

MV

CL

U

UP

US

UPS

(a) Foursquare

0-20 20-200 200-1000

Distance (km)
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

P
e
rc

e
n
ta

g
e
 D

e
cr

e
a
se

MV

CL

U

UP

US

UPS

(b) Gowalla

Figure 7.5: Effectiveness of cold start users - Precision@10

66

0-20 20-200 200-1000

Distance (km)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
e
rc

e
n
ta

g
e
 D

e
cr

e
a
se

MV

CL

U

UP

US

UPS

(a) Foursquare

0-20 20-200 200-1000

Distance (km)
0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
e
rc

e
n
ta

g
e
 D

e
cr

e
a
se

MV

CL

U

UP

US

UPS

(b) Gowalla

Figure 7.6: Effectiveness of cold start users - Precision@20

67

7.2 K-Nearest Diverse Neighbor

For choosing locations close to the query point that are spatially diverse, we perform experiments

using Foursquare, Gowalla and synthetic datasets. First, we explore the θ parameter in IBDB

and Mod-IBDB, the stoppingCondition parameter in Dist-DBDB and Div-DBDB, and the size

of locations n to choose an initial solution from in Div-DBDB. After we have chosen the opti-

mal parameters, we compare the following algorithms and a baseline algorithm (i.e., k-nearest

neighbor) with different λ to show which algorithms perform best.

7.2.1 Evaluation Process

For evaluating the k-nearest diverse neighbor algorithms, we implemented an R-Tree [23] for

spatial data, which is explained in Section 3.3.4. In addition, the R-Tree is created using STR

bulk loading [37]. With our own implementation, this allows us to have finer control of disk pages

pages as well as to accurately keep track of disk accesses of the algorithm.

When executing experiments, we use the following process.

1. Choose control parameter λ to decide the importance of proximity to the query point versus

spatial diversity. The larger the λ means that spatial diversity is more important.

2. Randomly choose a coordinate to be the query point of the user.

3. For each algorithm, choose k locations that are close in proximity to the query point and

spatially diverse.

At the completion of the evaluation process, we will compare the results using different

evaluation metrics explained in Section 7.2.2.

Our evaluation compares a baseline algorithm as well as four other algorithms for solving the

k-nearest diverse neighbor problem.

1. K-Nearest Neighbor (KNN): The K-Nearest Neighbor algorithm, as explained in Sec-

tion 3.3.5.

2. Index-Based Diverse Browsing (IBDB): The Index-Based Diverse Browsing algo-

rithm, as explained in Section 3.3.6.

3. Modified Index-Based Diverse Browsing (Mod-IBDB): The proposed Modified

Index-Based Diverse Browsing algorithm, as explained in Section 6.1.

4. Distance-First Distance-Based Diverse Browsing (Dist-DBDB): The proposed

Distance-First Distance-Based Diverse Browsing framework, as explained in Section 6.2.1.

5. Diversity-First Distance-Based Diverse Browsing (Div-DBDB): The proposed

Diversity-First Distance-Based Diverse Browsing framework, as explained in Section 6.2.2.

68

To complete the experiments, we have to choose optimal parameters, such as θ in IBDB

and Mod-IBDB as well as stoppingCondition in Dist-DBDB and Div-DBDB. Using standard

machine learning and data mining methods, we perform four-fold cross validation to optimize

the parameters.

7.2.2 Evaluation Metrics

This subsection introduces the different evaluation metrics that are used to compare the different

algorithms. First, we explain the diversity-relevance metric in Section 7.2.2.1. Next we introduce

a new spatial diversity metric in Section 7.2.2.2, which fixes the deficiencies in other versions of

the metric. Lastly, we explain the relevance and efficiency metrics in Section 7.2.2.3 and Section

7.2.2.4, respectively.

7.2.2.1 Diversity-Relevance Metric

The diversity-relevance metric (DivRel) is used to compare the linear combination of diversity as

well as relevancy (proximity of locations to the query point) using control parameter λ. Letting

R be the set of chosen locations, the diversity-relevance metric is defined as follows

DivRel(q,R) = λ ∗Div(q,R) + (1− λ) ∗ Rel(q,R) (7.1)

where Div is the diversity metric and Rel is the relevance metric. The diversity-relevance

metric is equivalent to the objective function that we attempt to maximize for the k-nearest

diverse neighbor problem. Therefore, the algorithm with the largest value for this metric is the

algorithm with the best performance.

7.2.2.2 Diversity Metric

To evaluate the angular spatial diversity of chosen locations, we need a spatial diversity metric.

From Section 3.3.3, there are three potential diversity metrics: Divmin, Divpair, and Divmean.

Unfortunately, all of these diversity metrics have deficiencies that show that they are not adequate

for our use.

Figure 7.7 shows three examples of four chosen locations (larger green circle - l1, brown

diamond - l2, blue square - l3, and smaller purple circle l4) that are normalized (distance to

query point is 1 km) around the query point (red circle). In the left example, the four locations

are located at the same angle (π2) in relation to the query point, which is the worst possible

diversity for four locations. In the right example, the four locations are evenly spread (angles 0,
π
2 , π, and 3π

2) in relation to the query point. Intuitively, this would be the best possible diversity

for four locations since all locations are perfectly spread. In the middle example, there are two

groups of two locations: two above the query point (angle is π
2) and two below the query point

(angle is 3π
2). Since the two groups are angularly far apart from each other, the example should

have higher diversity, but each group has two locations at the same angle. Therefore, it should

69

(a) Low Spatial Diversity (b) Medium Spatial Diversity (c) High Spatial Diversity

Figure 7.7: Comparison of low, medium and high spatial diversity for angular diversity

Table 7.2: Diversity calculations with different diversity metrics and examples

Divmin Divpair Divmean

Left Example 4 ∗ 0

2π
= 0

0 ∗ 6

4 ∗ 3 ∗ π
= 0 1− 4

4
= 0

Center Example 4 ∗ 0

2π
= 0

0 ∗ 2 + π ∗ 4

4 ∗ 3 ∗ π
=

1

3
1− 0

4
= 1

Right Example 4 ∗ π/2
2π

= 1
π
2 ∗ 4 + π ∗ 2

4 ∗ 3 ∗ π
=

1

3
1− 0

4
= 1

have a diversity score larger than the left example but smaller than the right example. Let us

calculate the diversity scores of each example using each of the three diversity scores, shown

Table 7.2.

For Divmin, the left and center examples have the same diversity score since both examples

have two locations with the same angle. The average angle for both the center and right examples

is π
3 , which causes Divpair to return the same value. Lastly, for Divmean, the center and right

examples have equal diversity because the mean of the four locations is at the same point, which

is where the query point is located. These answers go against the intuition of the left example

having the least diversity, followed by the center example, followed by the right example. This

provides the motivation to develop a new diversity metric.

We introduce the partition diversity metric Divpart. The intuition, as shown in Figure 7.8a,

is to partition the unit circle into sectors, where each line connects a normalized location to

the query point. For choosing k locations, the average angle will always be 2π
k since there are

n angles and the angles sum to 2π. Therefore, the idea of the partition diversity metric is to

70

(a) Partition Diversity Metric (b) Angle Definition

Figure 7.8: Visualization of the partition diversity metric and angle definition

calculate the variance of the angles. The larger the variance between the angles, the smaller the

diversity. When the locations are evenly spread around the unit circle, their angles tend to be

near 2π
k , which has small variance. However, when the locations are not diverse (i.e. locations

group together into one area), there exists small and large angles, which causes the variance to

be large.

To formally define the partition diversity metric, φcc(q, li, lj) denotes the angle between qli

and moving counter-clockwise to qlj , as shown in Figure 7.8b (this differs with φ(q, li, lj) such

that φ is the minimal angle created between qli and qlj , which means it is always less than or

equal to π). In addition, when we consider locations l1, l2, · · · , lk, let φcc(q, l0, l1) = φcc(q, lk, l1).

Property 7.2.1. Let l1, l2, · · · , lk be sorted in increasing angle in relation to the query point

(Angle(q, l) as defined in Section 3.1). The following holds:

k∑
i=1

φcc(q, li−1, li) = 2π (7.2)

The property intuitively makes sense because completing one full trip around the circle is 2π.

Assuming that the locations are sorted in increasing angle in relation to the query point (which

will hold throughout the rest of the thesis), we can define the variances of the angles as follows.

Varpart(q, l1, l2, · · · , lk) =

∑k
i=1(2π

k − φcc(q, li−1, li))
2

k
(7.3)

As mentioned before, the larger the variance of the angles means the smaller the diversity.

Therefore, our goal for choosing k diverse locations is to minimize the variance. One other

approach for choosing k locations is to minimize the square of each φcc(q, li−1, li). If one of the

angles between two consecutive locations is very large, it will provide a very large increase in the

71

score, which means that the locations are not as diverse. In actuality, these two approaches are

equivalent.

Theorem 7.2.1. For l1, l2, · · · , lk ∈ L, Varpart(q, l1, l2, · · · , lk) is directly proportional to∑k
i=1 φcc(q, li−1, li))

2.

Proof. Starting with Varpart(q, l1, l2, · · · , lk) and squaring the summed term, we get:

∑k
i=1(2π

k − φcc(q, li−1, li))
2

k
=

∑k
i=1((2π

k)2 − 4πφcc(q,li−1,li)
k + φcc(q, li−1, li)

2)

k

Since (2π
k)2 is a constant, we can move the factor outside of the summation. This yields:

∑k
i=1((2π

k)2 − 4πφcc(q,li−1,li)
k + φcc(q, li−1, li)

2)

k
=

4π2

k +
∑k
i=1(− 4πφcc(q,li−1,li)

k + φcc(q, li−1, li)
2)

k

Rewriting the equation to move the division by k to each term, we get:

4π2

k +
∑k
i=1(− 4πφcc(q,li−1,li)

k + φcc(q, li−1, li)
2)

k
=

4π2

k2
+

k∑
i=1

(−4πφcc(q, li−1, li)

k2
+
φcc(q, li−1, li)

2

k
)

Next, we split the two terms being summed and move constants outside of the summations,

which yields:

4π2

k2
+

k∑
i=1

(−4πφcc(q, li−1, li)

k2
+
φcc(q, li−1, li)

2

k
) =

4π2

k2
− 4π

k2

k∑
i=1

φcc(q, li−1, li)+

k∑
i=1

φcc(q, li−1, li)
2

k

Using Property 7.2.1, we replace
∑k
i=1 φcc(q, li−1, li) with 2π. Therefore, we get:

4π2

k2
− 4π

k2

k∑
i=1

φcc(q, li−1, li) +
k∑
i=1

φcc(q, li−1, li)
2

k
=

4π2

k2
− 8π2

k2
+

k∑
i=1

φcc(q, li−1, li)
2

k

After combining the constant terms and moving 1
k to the outside of the summation, we get

final result:

4π2

k2
− 8π2

k2
+

k∑
i=1

φcc(q, li−1, li)
2

k
=
−4π2

k2
+

1

k

k∑
i=1

φcc(q, li−1, li)
2 ∝

k∑
i=1

φcc(q, li−1, li)
2

Therefore, minimizing the variance of the angles is equivalent to minimizing the squares of

each φcc(q, li−1, li).

72

Using this intuition that the smaller variance means larger diversity, we can define a normal-

ized partition diversity metric as follows

Divpart(q, l1, l2, · · · , lk) = 1− Varpart(q, l1, l2, · · · , lk)−Varpart−min(k)

Varpart−max(k)−Varpart−min(k)
(7.4)

where Varpart−min(k) is the minimum possible variance of any k locations and Varpart−max(k)

is the maximum possible variance of any k locations. The only questions that remain are what are

the minimum and maximum possible variance values for k locations. We will prove the minimum

and maximum bound below.

Theorem 7.2.2. For recommending k locations, the minimum variance (Varpart−min(k)) is 0.

Proof. Since each term in the numerator of Equation 7.3 is squared and the denominator is

a positive number, Varpart(q, l1, l2, · · · , lk) cannot be a negative number. Let us consider the

solution where Angle(q, li) = (i−1)∗2π
k for i = 1, 2, · · · , k. Therefore, φcc(q, li−1, li) = 2π

k for

i = 1, 2, · · · , k. Inserting the values into the variance equation, we get the following.

Varpart(q, l1, l2, · · · , lk) =

∑k
i=1(2π

k − φcc(q, li−1, li))
2

k
=

∑k
i=1(2π

k −
2π
k)2

k
=

0

k
= 0

Since there exists a solution with variance equaling 0 and no possible solution with negative

variance, the minimum variance is 0.

To prove the maximum possible variance for n locations, we need to prove the following

lemmas first.

Lemma 7.2.3. The solution xi = 2π, x1 = x2 = · · · = xi−1 = xi+1 = · · · = xk = 0 is a globally

optimal solution for the quadratic programming problem:
max x21 + x22 + · · ·+ x2k

s.t. x1 + x2 + · · ·+ xk = 2π

x1, x2, . . . , xk ≥ 0

Proof. Let us assume by contradiction that xi = 2π, x1 = x2 = · · · = xi−1 = xi+1 = · · · = xk = 0

is not a globally optimal solution. Since no other feasible solution exists with one or less xi > 0,

let there exist a globally optimal solution S with x1, · · · , xk; xi, xj > 0; and i 6= j. Consider

another distinct, feasible solution S′ with x′i = xi + xj ; x
′
j = 0; and x′k = xk for k 6= i, j.

Evaluating S′ with the objective function, we get:

x
′2
1 + x

′2
2 + · · ·+ x

′2
i + · · ·+ x

′2
j + · · ·+ x

′2
k

Replacing x′i and x′j as well as expanding results yield:

x21 +x22 + · · ·+ (xi+xj)
2 + · · ·+ 02 + · · ·+x2k = x21 +x22 + · · ·+x2i + 2xixj +x2j + · · ·+ 0 + · · ·+x2k

73

Since xi, xj > 0, we know that 2xixj > 0. Therefore, we have:

x21 + x22 + · · ·+ x2i + 2xixj + x2j + · · ·+ 0 + · · ·+ x2k > x21 + x22 + · · ·+ x2i + · · ·+ x2j + · · ·+ x2k

The equation x21 + x22 + · · · + x2i + · · · + x2j + · · · + x2k is precisely the objective function for

S. Therefore, the objective function for optimal solution S is smaller than the objective function

for S′, which is a contradiction because S is supposed to be optimal. Thus, the optimal solution

cannot have two or more xi greater than 0. The only feasible solution that satisfies this constraint

is xi = 2π, x1 = x2 = · · · = xi−1 = xi+1 = · · · = xk = 0, which means it is a globally optimal

solution.

Lemma 7.2.4. For recommending k locations, the maximum possible variance is achieved when

φcc(q, lk, l1) = 2π and φcc(q, li−1, li) = 0 for i = 2, 3, · · · k.

Proof. Since the variance of k locations is directly proportional to the squaring of the an-

gles (as shown in Theorem 7.2.1), this problem is equivalent to maximizing φcc(q, li−1, li)
2.

The constraints for φcc(q, li−1, li) for i = 1, 2, · · · , k are that
∑k
i=1 φcc(q, li−1, li) = 2π and

φcc(q, li−1, li) ≥ 0. Letting xi = φcc(q, li−1, li), maximizing Varpart(q, l1, l2, · · · , lk) is equiva-

lent to solving the quadratic programming problem in Lemma 7.2.3. Since a solution for the

quadratic programming problem is xi = 2π, x1 = x2 = · · · = xi−1 = xi+1 = · · · = xk = 0, the

solution φcc(q, lk, l1) = 2π and φcc(q, l1, l2) = φcc(q, l2, l3) = · · · = φcc(q, ln−1, lk) = 0 maximizes

Varpart(q, l1, l2, · · · , lk).

Theorem 7.2.5. For recommending k locations, the maximum variance (Varpart−min(k)) is:

4π2(k − 1)

k2

Proof. From Lemma 7.2.4, the solution to maximizing variance for k locations is φcc(q, lk, l1) = 2π

and φcc(q, li−1, li) = 0 for i = 2, 3, · · · k. When calculating Varpart(q, l1, l2, · · · , lk), we get:

Varpart(q, l1, l2, · · · , lk) =

∑k
i=1(2π

k − φcc(q, li−1, li))
2

k
=

(2π
k − 2π)2 +

∑k
i=2(2π

k − 0)2

k
=

(2π
k − 2π)2 + (k − 1) ∗ (2π

k − 0)2

k
=

(2π
k − 2π)2 + (k − 1) ∗ (2π

k)2

k
=

4π2

k2 −
8π2

k + 4π2 + 4π2

k −
4π2

k2

k
=

4π2(1− 1
k)

k
=

4π2(k − 1)

k2

Using Theorems 7.2.2 and 7.2.5 we can rewrite the definition of Divpart in Equation 7.4 as

follows.

Divpart(q, l1, ..., lk) = 1− Varpart(q, l1, ..., lk)
4π2(k−1)

k2

= 1− k2 ∗Varpart(q, l1, ..., lk)

4π2(k − 1)
(7.5)

74

Table 7.3: Diversity calculations with examples for the partition diversity metric

Divpart

Left Example 1−
16 ∗ 1

4 ((2π
4 − 2π)2 + 3(2π

4 − 0)2)

12π2
= 1−

4(9π2

4 + 3π2

4)

12π2
= 1− 1 = 0

Center Example 1−
16 ∗ 1

4 (2(2π
4 − 0)2 + 2(2π

4 − π)2)

12π2
= 1−

4(π
2

2 + π2

2)

12π2
= 1− 1

3
=

2

3

Right Example 1−
16 ∗ 1

4 ∗ 4(2π
4 −

π
2)2

12π2
= 1− 0 = 1

To compare the partition diversity metric against the other metrics, Table 7.3 shows the

calculation of the partition diversity metric for the three examples in Figure 7.7. Unlike the

other metrics, the results for Divpart agree with the logic that the left example has the smallest

diversity, the right example has the highest diversity, and the middle example is in between. In

addition, the metric is correctly normalized since the smallest possible diversity has score 0, and

the largest possible diversity has score 1 for four locations. Therefore, the following experiments

will use Divpart. All future references to the diversity metric are equivalent to the partition

diversity metric.

7.2.2.3 Relevance Metric

The relevance metric for the k-nearest diverse neighbor problem measures how close in proximity

the locations are to the query point. The metric should be normalized so that choosing the

k-nearest neighbors to q gives a score of 1 and the farther away the locations are, the smaller

the score. We adopt the relevance metric used in previous papers [34, 35]. Letting K be the

k-nearest neighbors of query point q, the relevance of the set of locations R (where |R| = k) is

as follows.

Rel(q,R) =

∑
l∈K Dist(q, l)∑
l∈R Dist(q, l)

(7.6)

7.2.2.4 Efficiency Metric

Since the bottleneck operation in database systems is accessing the disk, the efficiency metric

used in this thesis is the number of disk pages accessed per query. Since we created our own

R-Tree, we can easily count the number of disk accesses, without worrying about the database

management system performing background operations that can incur more disk I/O. Like the

other metrics, this efficiency metric is system independent, which means that executing the same

75

experiments on different systems will provide the same solution. This is different than other

efficiency metrics, such as execution time.

7.2.3 Parameter Comparison

Before we compare the algorithms for solving the k-nearest diverse neighbor problem, we need to

tune parameters that are used in the algorithms. For IBDB and Mod-IBDB, we need to set the

θ parameter for determining the threshold for a pair of locations to be diverse. In Div-DBDB

and Dist-DBDB, we need to tune the stoppingCondition parameter for deciding how long the

algorithms should execute before they terminate. Lastly, we need to set the number of locations to

consider for selecting the initial solution for Div-DBDB. Using the training data in the evaluation,

we aim to empirically tune these parameters based on maximizing the diversity-relevance metric,

which is the objective function for the k-nearest diverse neighbor problem.

For the IBDB and Mod-IBDB algorithms, we change the θ parameter to decide the threshold

for a pair of locations to be relatively diverse. Figures 7.9, 7.10, 7.11 and 7.12 show the results

for changing θ for λ = 0.5 for diversity-relevance, disk accesses, diversity, and relevance, respec-

tively. Generally, the performance and efficiency of IBDB and Mod-IBDB are similar when θ is

small (i.e., 0.1), but as θ increases, the performance and efficiency of IBDB degrades while the

performance of Mod-IBDB either stays constant or slightly improves. For performance, this phe-

nomenon can be explained because IBDB performs the extra pruning operation. Even though

a location may have a small mindivdist since it is close in proximity to the query point, it

may be pruned because the location is nearby an already chosen location. This explains why

the relevance metric for IBDB has a large decrease for an increasing θ. Since the pruning was

added to IBDB to choose more diverse results, the diversity metric increases more for IBDB than

Mod-IBDB, but the increase in diversity for IBDB does not match its decrease in relevance. For

efficiency, both algorithms show an increase in disk accesses with the increase in the threshold of

diversity since locations are considered less diverse, which means more pages will be accessed to

search for locations that are diverse. IBDB has a steeper increase in disk accesses, which can be

contributed to pruning locations (versus pruning R-Tree pages) that already have been accessed

from disk and otherwise would have been selected in the final solution.

Next, we analyze changing the stopping condition parameter for the Dist-DBDB and Div-

DBDB algorithms. For Div-DBDB, we kept the number of initial locations to consider to be 50.

The results are shown in Figures 7.13, 7.14, 7.15 and 7.16 for diversity-relevance, disk accesses,

diversity, and relevance, respectively, using λ = 0.5. In the performance metrics, Dist-DBDB and

Div-DBDB converge to about the same value, which occurs since the same swapping operations

are attempted in both operations. Since Dist-DBDB has an initial solution with high relevance,

it starts with a higher relevance score and vice versa for Div-DBDB with the diversity metric.

Lastly, since it takes more disk accesses to find an initial diverse solution, Div-DBDB originally

uses more disk accesses, but Div-DBDB will eventually attempt replacement operations with all

the locations that Dist-DBDB considered for its initial solution, so they will eventually obtain

76

the same number of disk accesses for equal stopping conditions.

Even though both Dist-DBDB and Div-DBDB merge to solutions that provide very similar

results, the advantage of having two different algorithms is the quickness in merging for solutions

that have high relevancy or diversity. If the user wants a solution that emphasizes relevance

over diversity (small λ), Dist-DBDB already chooses an initial solution with high relevancy, so

it should quickly converge to a good solution. Even if the user wants to quickly choose the k-

nearest diverse neighbor (i.e. before the algorithms converge), Dist-DBDB should have the better

solution. Similarly, if the user wants a solution that emphasizes diversity (large λ), Div-DBDB

should quickly converge to a good solution since its initial solution has high diversity. To compare

the initial solutions, we calculate the average DivRel for λ = 0.1 (diversity not too important)

and λ = 0.9 (diversity important) with Foursquare and Gowalla datasets. For λ = 0.1, the

DivRel for the initial solution for Dist-DBDB is 0.958 and 0.960 while the DivRel for the initial

solution for Div-DBDB is 0.464 and 0.493 for the Foursquare and Gowalla datasets, respectively.

On the other hand, for λ = 0.9, the values for Div-DBDB are 0.854 and 0.862 while the values

for Dist-DBDB are 0.621 and 0.639. This shows how the initial solution for Dist-DBDB has high

relevance but low diversity while the initial solution for Div-DBDB has high diversity and low

relevance.

Lastly, we analyze the initial size of candidate locations for choosing a diverse set of locations

for Div-DBDB, keeping the stopping condition constant at 50. Figures 7.17 and 7.18 show the

diversity and number disk accesses for calculating the initial set of diverse locations. As expected,

the larger the size of candidate locations, the more diverse the result as well as the more disk

accesses. However, the diversity tends to level off while the number of disk accesses increases

linearly. Therefore, at some point, increasing the size will not give a much better solution while

incurring more disk accesses.

For tuning the parameters of the algorithms for the following experiments, we use four-fold

cross validation (a standard in machine learning and data mining). For θ for IBDB and Mod-

IBDB, we perform k-nearest neighbor queries with uniform λ for each θ value on the training

data. The θ that maximizes the DivRel metric is chosen for the experiments. With the DBDB

approaches, we need to choose the stopping condition number, but a problem occurs in choosing

the optimal value since a larger stopping condition will always provide the same or better results.

In addition, for a small λ the stopping condition can be small because nearby locations are

emphasized more and the DBDB algorithms explore locations in increasing distance from the

query point. When there is a large λ, the stopping condition needs to be larger to search for

locations that increase the diversity of the solution. To tune the stopping condition parameter, we

first find the value of the DivRel metric for λ = 1.0 (importance with diversity) for a sufficiently

large stopping condition. Then, we perform queries for λ = 1.0 to find the smallest stopping

condition smallestStopCond that is within 99% of the value for the large stopping condition.

Lastly, we dynamically set the stopping condition stopCond for experiments using the function

stopCond(λ) = smallestStopCond ∗ λ2 to increase the stopping condition as λ increases. Lastly,

we have to tune initial size of candidate locations for choosing a diverse set of locations for

77

Div-DBDB. As with the stopping condition, the initial size should be smaller for smaller λ since

choosing diverse locations is not as important. Similarly to the stopping condition, we choose an

initial size smallestInit for queries when λ = 1.0. Then, we dynamically set the initial size init

with the function init(λ) = smallestInit ∗ λ2.

Since there are two variables (stopping condition and size of candidate locations for initial

solution) for Div-DBDB to tune, we set each variable assuming that the other is constant due to

the quadratic increase in the number of possible parameter combinations.

78

0.0 0.5 1.0 1.5 2.0

θ
0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84
D

iv
R

e
l

IBDB

Mod-IBDB

(a) 5 Locations - Foursquare

0.0 0.5 1.0 1.5 2.0

θ
0.72

0.74

0.76

0.78

0.80

0.82

0.84

D
iv

R
e
l

IBDB

Mod-IBDB

(b) 5 Locations - Gowalla

0.0 0.5 1.0 1.5 2.0

θ
0.60

0.65

0.70

0.75

0.80

0.85

0.90

D
iv

R
e
l

IBDB

Mod-IBDB

(c) 10 Locations - Foursquare

0.0 0.5 1.0 1.5 2.0

θ
0.60

0.65

0.70

0.75

0.80

0.85

0.90

D
iv

R
e
l

IBDB

Mod-IBDB

(d) 10 Locations - Gowalla

0.0 0.5 1.0 1.5 2.0

θ
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

D
iv

R
e
l

IBDB

Mod-IBDB

(e) 20 Locations - Foursquare

0.0 0.5 1.0 1.5 2.0

θ
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

D
iv

R
e
l

IBDB

Mod-IBDB

(f) 20 Locations - Gowalla

Figure 7.9: DivRel score for changing θ

79

0.0 0.5 1.0 1.5 2.0

θ
6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5
D

is
k

A
cc

e
ss

e
s

IBDB

Mod-IBDB

(a) 5 Locations - Foursquare

0.0 0.5 1.0 1.5 2.0

θ
9

10

11

12

13

14

15

16

17

D
is

k
A

cc
e
ss

e
s

IBDB

Mod-IBDB

(b) 5 Locations - Gowalla

0.0 0.5 1.0 1.5 2.0

θ
5

10

15

20

25

30

D
is

k
A

cc
e
ss

e
s

IBDB

Mod-IBDB

(c) 10 Locations - Foursquare

0.0 0.5 1.0 1.5 2.0

θ
10

15

20

25

30

35

40

45

D
is

k
A

cc
e
ss

e
s

IBDB

Mod-IBDB

(d) 10 Locations - Gowalla

0.0 0.5 1.0 1.5 2.0

θ
0

50

100

150

200

D
is

k
A

cc
e
ss

e
s

IBDB

Mod-IBDB

(e) 20 Locations - Foursquare

0.0 0.5 1.0 1.5 2.0

θ
0

50

100

150

200

250

300

350

400

D
is

k
A

cc
e
ss

e
s

IBDB

Mod-IBDB

(f) 20 Locations - Gowalla

Figure 7.10: Disk accesses for changing θ

80

0.0 0.5 1.0 1.5 2.0

θ
0.65

0.70

0.75

0.80

0.85

0.90
D

iv
e
rs

it
y

IBDB

Mod-IBDB

(a) 5 Locations - Foursquare

0.0 0.5 1.0 1.5 2.0

θ
0.65

0.70

0.75

0.80

0.85

0.90

D
iv

e
rs

it
y

IBDB

Mod-IBDB

(b) 5 Locations - Gowalla

0.0 0.5 1.0 1.5 2.0

θ
0.70

0.75

0.80

0.85

0.90

0.95

D
iv

e
rs

it
y

IBDB

Mod-IBDB

(c) 10 Locations - Foursquare

0.0 0.5 1.0 1.5 2.0

θ
0.75

0.80

0.85

0.90

0.95

D
iv

e
rs

it
y

IBDB

Mod-IBDB

(d) 10 Locations - Gowalla

0.0 0.5 1.0 1.5 2.0

θ
0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

D
iv

e
rs

it
y

IBDB

Mod-IBDB

(e) 20 Locations - Foursquare

0.0 0.5 1.0 1.5 2.0

θ
0.75

0.80

0.85

0.90

0.95

1.00

D
iv

e
rs

it
y

IBDB

Mod-IBDB

(f) 20 Locations - Gowalla

Figure 7.11: Diversity score for changing θ

81

0.0 0.5 1.0 1.5 2.0

θ
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
R

e
le

v
a
n
ce

IBDB

Mod-IBDB

(a) 5 Locations - Foursquare

0.0 0.5 1.0 1.5 2.0

θ
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
e
le

v
a
n
ce

IBDB

Mod-IBDB

(b) 5 Locations - Gowalla

0.0 0.5 1.0 1.5 2.0

θ
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
le

v
a
n
ce

IBDB

Mod-IBDB

(c) 10 Locations - Foursquare

0.0 0.5 1.0 1.5 2.0

θ
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
le

v
a
n
ce

IBDB

Mod-IBDB

(d) 10 Locations - Gowalla

0.0 0.5 1.0 1.5 2.0

θ
0.0

0.2

0.4

0.6

0.8

1.0

R
e
le

v
a
n
ce

IBDB

Mod-IBDB

(e) 20 Locations - Foursquare

0.0 0.5 1.0 1.5 2.0

θ
0.0

0.2

0.4

0.6

0.8

1.0

R
e
le

v
a
n
ce

IBDB

Mod-IBDB

(f) 20 Locations - Gowalla

Figure 7.12: Relevance score for changing θ

82

0 50 100 150 200

Stopping Condition
0.60

0.65

0.70

0.75

0.80

0.85

0.90
D

iv
R

e
l

Dist-DBDB

Div-DBDB

(a) 5 Locations - Foursquare

0 50 100 150 200

Stopping Condition
0.60

0.65

0.70

0.75

0.80

0.85

0.90

D
iv

R
e
l

Dist-DBDB

Div-DBDB

(b) 5 Locations - Gowalla

0 50 100 150 200

Stopping Condition
0.65

0.70

0.75

0.80

0.85

0.90

D
iv

R
e
l

Dist-DBDB

Div-DBDB

(c) 10 Locations - Foursquare

0 50 100 150 200

Stopping Condition
0.65

0.70

0.75

0.80

0.85

0.90

D
iv

R
e
l

Dist-DBDB

Div-DBDB

(d) 10 Locations - Gowalla

0 50 100 150 200

Stopping Condition
0.70

0.75

0.80

0.85

0.90

0.95

D
iv

R
e
l

Dist-DBDB

Div-DBDB

(e) 20 Locations - Foursquare

0 50 100 150 200

Stopping Condition
0.70

0.75

0.80

0.85

0.90

0.95

D
iv

R
e
l

Dist-DBDB

Div-DBDB

(f) 20 Locations - Gowalla

Figure 7.13: DivRel score for changing stop condition

83

0 50 100 150 200

Stopping Condition
6

8

10

12

14

16

18

20

D
is

k
A

cc
e
ss

e
s

Dist-DBDB

Div-DBDB

(a) 5 Locations - Foursquare

0 50 100 150 200

Stopping Condition
8

10

12

14

16

18

20

22

24

26

D
is

k
A

cc
e
ss

e
s

Dist-DBDB

Div-DBDB

(b) 5 Locations - Gowalla

0 50 100 150 200

Stopping Condition
6

8

10

12

14

16

18

20

D
is

k
A

cc
e
ss

e
s

Dist-DBDB

Div-DBDB

(c) 10 Locations - Foursquare

0 50 100 150 200

Stopping Condition
10

12

14

16

18

20

22

24

26

D
is

k
A

cc
e
ss

e
s

Dist-DBDB

Div-DBDB

(d) 10 Locations - Gowalla

0 50 100 150 200

Stopping Condition
8

10

12

14

16

18

20

22

D
is

k
A

cc
e
ss

e
s

Dist-DBDB

Div-DBDB

(e) 20 Locations - Foursquare

0 50 100 150 200

Stopping Condition
10

12

14

16

18

20

22

24

26

28

D
is

k
A

cc
e
ss

e
s

Dist-DBDB

Div-DBDB

(f) 20 Locations - Gowalla

Figure 7.14: Disk accesses for changing stop condition

84

0 50 100 150 200

Stopping Condition
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95
D

iv
e
rs

it
y

Dist-DBDB

Div-DBDB

(a) 5 Locations - Foursquare

0 50 100 150 200

Stopping Condition
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

D
iv

e
rs

it
y

Dist-DBDB

Div-DBDB

(b) 5 Locations - Gowalla

0 50 100 150 200

Stopping Condition
0.65

0.70

0.75

0.80

0.85

0.90

0.95

D
iv

e
rs

it
y

Dist-DBDB

Div-DBDB

(c) 10 Locations - Foursquare

0 50 100 150 200

Stopping Condition
0.65

0.70

0.75

0.80

0.85

0.90

0.95

D
iv

e
rs

it
y

Dist-DBDB

Div-DBDB

(d) 10 Locations - Gowalla

0 50 100 150 200

Stopping Condition
0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

D
iv

e
rs

it
y

Dist-DBDB

Div-DBDB

(e) 20 Locations - Foursquare

0 50 100 150 200

Stopping Condition
0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

D
iv

e
rs

it
y

Dist-DBDB

Div-DBDB

(f) 20 Locations - Gowalla

Figure 7.15: Diversity score for changing stop condition

85

0 50 100 150 200

Stopping Condition
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
R

e
le

v
a
n
ce

Dist-DBDB

Div-DBDB

(a) 5 Locations - Foursquare

0 50 100 150 200

Stopping Condition
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
le

v
a
n
ce

Dist-DBDB

Div-DBDB

(b) 5 Locations - Gowalla

0 50 100 150 200

Stopping Condition
0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
le

v
a
n
ce

Dist-DBDB

Div-DBDB

(c) 10 Locations - Foursquare

0 50 100 150 200

Stopping Condition
0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
le

v
a
n
ce

Dist-DBDB

Div-DBDB

(d) 10 Locations - Gowalla

0 50 100 150 200

Stopping Condition
0.5

0.6

0.7

0.8

0.9

1.0

1.1

R
e
le

v
a
n
ce

Dist-DBDB

Div-DBDB

(e) 20 Locations - Foursquare

0 50 100 150 200

Stopping Condition
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
e
le

v
a
n
ce

Dist-DBDB

Div-DBDB

(f) 20 Locations - Gowalla

Figure 7.16: Relevance score for changing stop condition

86

0 50 100 150 200 250 300

Initial Locations to Consider
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
D

iv
e
rs

it
y

(a) 5 Locations - Foursquare

0 50 100 150 200 250 300

Initial Locations to Consider
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
iv

e
rs

it
y

(b) 5 Locations - Gowalla

0 50 100 150 200 250 300

Initial Locations to Consider
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
iv

e
rs

it
y

(c) 10 Locations - Foursquare

0 50 100 150 200 250 300

Initial Locations to Consider
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
iv

e
rs

it
y

(d) 10 Locations - Gowalla

0 50 100 150 200 250 300

Initial Locations to Consider
0.75

0.80

0.85

0.90

0.95

D
iv

e
rs

it
y

(e) 20 Locations - Foursquare

0 50 100 150 200 250 300

Initial Locations to Consider
0.75

0.80

0.85

0.90

0.95

1.00

D
iv

e
rs

it
y

(f) 20 Locations - Gowalla

Figure 7.17: Diversity score for changing the number of initial locations to consider for Div-DBDB

87

0 50 100 150 200 250 300

Initial Locations to Consider
6

8

10

12

14

16

18

20

22

24

D
is

k
A

cc
e
ss

e
s

(a) 5 Locations - Foursquare

0 50 100 150 200 250 300

Initial Locations to Consider
5

10

15

20

25

30

D
is

k
A

cc
e
ss

e
s

(b) 5 Locations - Gowalla

0 50 100 150 200 250 300

Initial Locations to Consider
6

8

10

12

14

16

18

20

22

24

D
is

k
A

cc
e
ss

e
s

(c) 10 Locations - Foursquare

0 50 100 150 200 250 300

Initial Locations to Consider
10

15

20

25

30

D
is

k
A

cc
e
ss

e
s

(d) 10 Locations - Gowalla

0 50 100 150 200 250 300

Initial Locations to Consider
8

10

12

14

16

18

20

22

24

D
is

k
A

cc
e
ss

e
s

(e) 20 Locations - Foursquare

0 50 100 150 200 250 300

Initial Locations to Consider
10

15

20

25

30

D
is

k
A

cc
e
ss

e
s

(f) 20 Locations - Gowalla

Figure 7.18: Disk accesses for changing the number of initial locations to consider for Div-DBDB

88

7.2.4 Evaluation

First, we explore the performance and efficiency of the k-nearest diverse neighbor algorithms

with the Foursquare and Gowalla datasets followed by using synthetically-generated datasets.

7.2.4.1 LBSN Datasets

Using the optimal values of parameters, we compare the performance and efficiency of the different

approaches (i.e., IBDB, Mod-IBDB, Dist-DBDB, Div-DBDB, and KNN) for the k-nearest diverse

neighbor problem. The results are shown in Figures 7.19, 7.20, 7.21 and 7.22 for diversity-

relevance, disk accesses, diversity, and relevance, respectively. With the exception of λ = 1.0,

Dist-DBDB and Div-DBDB have a larger or equal value for the DivRel metric than the other

algorithms, which shows the superiority of these methods. Since all methods return the k-nearest

neighbors when λ = 0.0, they are both equal. For smaller λ (proximity to query point is more

important), we see that IBDB performs worse than all other methods, with the performance

degrading with more locations recommended. Since the IBDB method will prune locations

nearby to already chosen locations, the pruned locations would most likely be better choices since

they are closer to the query point and λ is smaller. When diversity becomes more important,

KNN starts performing poorly since it does not consider diversity. In addition, Dist-DBDB and

Div-DBDB perform the best, with Mod-IBDB consistently performing well and IBDB rarely

performing better than Mod-IBDB. Overall, IBDB never performs better than Dist-DBDB and

Div-DBDB and only sometimes performs better than Mod-IBDB when λ is larger. In general,

Dist-DBDB and Div-DBDB show superior performance with the DivDist metric.

When comparing the diversity and relevance metrics, we see that for smaller λ, IBDB has

the largest diversity but the smallest relevance score. Since relevance is the more important

metric for smaller λ, this causes IBDB to not perform well. This problem can occur because of it

pruning. As λ increases, the diversity results tend to increase linearly with the DBDB methods

while IBDB does not increase greatly. For increasing λ for the diversity metric, IBDB tends to

increase at a lesser rate for most λ. Comparing the two metrics, the relevance metric tends to

decrease exponentially while the diversity metric tends to increase linearly, which means that

results with medium-size λ can still obtain great relevance results while obtaining diverse results.

For efficiency, all algorithms reduce to the distance browsing algorithm for the k-nearest

neighbor problem for λ = 0, so they have the same number of average disk accesses. When λ

is smaller, the algorithms have similar number of disk accesses, with Div-DBDB occasionally

having larger disk accesses due to the efficiency of choosing the initial set of locations. When

λ becomes larger, Dist-DBDB and Div-DBDB tend to have a larger number of disk accesses

because a larger stopping condition is needed to support choosing a better solution, though the

increase is not prohibitively large. Lastly, when λ = 1.0, all algorithms typically become less

efficient (with the exception of KNN) since only the diversity aspect is considered and the R-Tree

index stores location based on proximity. In some cases, IBDB and Mod-IBDB performs very

poorly, with Mod-IBDB’s efficiency being prohibitively large.

89

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
iv

R
e
l

(a) 5 Locations - Foursquare

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
iv

R
e
l

(b) 5 Locations - Gowalla

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
iv

R
e
l

(c) 10 Locations - Foursquare

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
iv

R
e
l

(d) 10 Locations - Gowalla

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.75

0.80

0.85

0.90

0.95

1.00

D
iv

R
e
l

(e) 20 Locations - Foursquare

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.75

0.80

0.85

0.90

0.95

1.00

D
iv

R
e
l

(f) 20 Locations - Gowalla

(g) Legend

Figure 7.19: DivRel score for changing λ

90

0.0 0.2 0.4 0.6 0.8 1.0
λ

0

10

20

30

40

50

60

D
is

k
A

cc
e
ss

e
s

1958.23

(a) 5 Locations - Foursquare

0.0 0.2 0.4 0.6 0.8 1.0
λ

0

10

20

30

40

50

60

D
is

k
A

cc
e
ss

e
s

13541.84

(b) 5 Locations - Gowalla

0.0 0.2 0.4 0.6 0.8 1.0
λ

0

10

20

30

40

50

60

D
is

k
A

cc
e
ss

e
s

1897.89

(c) 10 Locations - Foursquare

0.0 0.2 0.4 0.6 0.8 1.0
λ

10

20

30

40

50

60

D
is

k
A

cc
e
ss

e
s

18701.25

(d) 10 Locations - Gowalla

0.0 0.2 0.4 0.6 0.8 1.0
λ

0

10

20

30

40

50

60

D
is

k
A

cc
e
ss

e
s

251.90

(e) 20 Locations - Foursquare

0.0 0.2 0.4 0.6 0.8 1.0
λ

10

20

30

40

50

60

D
is

k
A

cc
e
ss

e
s

23366.63

12616.33

(f) 20 Locations - Gowalla

(g) Legend

Figure 7.20: Disk accesses for changing λ

91

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
D

iv
e
rs

it
y

(a) 5 Locations - Foursquare

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
iv

e
rs

it
y

(b) 5 Locations - Gowalla

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
iv

e
rs

it
y

(c) 10 Locations - Foursquare

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
iv

e
rs

it
y

(d) 10 Locations - Gowalla

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.75

0.80

0.85

0.90

0.95

1.00

D
iv

e
rs

it
y

(e) 20 Locations - Foursquare

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.75

0.80

0.85

0.90

0.95

1.00

D
iv

e
rs

it
y

(f) 20 Locations - Gowalla

(g) Legend

Figure 7.21: Diversity score for changing λ

92

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.0

0.2

0.4

0.6

0.8

1.0

R
e
le

v
a
n
ce

(a) 5 Locations - Foursquare

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.0

0.2

0.4

0.6

0.8

1.0

R
e
le

v
a
n
ce

(b) 5 Locations - Gowalla

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.0

0.2

0.4

0.6

0.8

1.0

R
e
le

v
a
n
ce

(c) 10 Locations - Foursquare

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.0

0.2

0.4

0.6

0.8

1.0

R
e
le

v
a
n
ce

(d) 10 Locations - Gowalla

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.0

0.2

0.4

0.6

0.8

1.0

R
e
le

v
a
n
ce

(e) 20 Locations - Foursquare

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.0

0.2

0.4

0.6

0.8

1.0

R
e
le

v
a
n
ce

(f) 20 Locations - Gowalla

(g) Legend

Figure 7.22: Relevance score for changing λ

93

7.2.4.2 Synthetic Datasets

In addition, we compare the k-nearest diverse neighbor algorithms using synthetic datasets based

from the Zipf distribution [76]. With this distribution, we can control the skewness of the

locations in the dataset with a control parameter, such that 0 represents a uniform distribution

while 1 represents high skewness of the data. We create ten datasets each for skewness parameters

0.0, 0.2, 0.4, 0.6, 0.8, 1.0 to test how the k-nearest diverse neighbor algorithms perform for different

types of data. Using the same process for deciding parameters as with the LBSN datasets, we

evaluate the different algorithms choosing a uniform λ (λ = 0.0, 1.0 is considered outliers for

considering diversity and relevance, so they are not used in the synthetic experiments) for each

k-nearest diverse neighbor query and average the results for each dataset with equal skewness.

Figure 7.23 shows the results for DivRel and disk accesses using synthetic datasets for choos-

ing 5, 10, and 20 locations. In all experiments, Dist-DBDB and Div-DBDB outperform all

algorithms for DivRel for all skewness. The difference between the DBDB algorithms and the

other algorithms is largest when the number of locations is smaller. Since we choose the stopping

condition for the DBDB algorithms to achieve high performance, both algorithms converge to

similar results. IBDB performs poorly and shows inferior performance in most cases in compari-

son to all other algorithms, including the baseline KNN algorithm. Since IBDB performed worse

than KNN for smaller λ, the result for the synthetic dataset is logical. In addition, Mod-IBDB

always outperforms IBDB which shows that the modifications improved the algorithms, and its

results typically outperform the KNN algorithm, with a few exceptions for a higher skew value.

For disk accesses, the order from most efficient to least efficient is KNN, Mod-IBDB, IBDB,

Dist-DBDB, Div-DBDB, with the only exception being the mostly equivalent disk access of IBDB

and DBDB methods for 20 locations. Even though DBDB shows the worst efficiency, its disk

accesses on average are within three of the most efficient algorithm, which shows reasonable

efficiency. Mod-IBDB is always more efficient than IBDB, which shows its superiority to IBDB

in terms of performance and efficiency. In all algorithms, the increase in skewness means an

increase in the number of disk accesses. When the locations are uniformly distributed along

a two-dimensional map, the k-nearest neighbors of a query point tend to be spread around

the query point. Therefore, quality candidates for the k-nearest diverse neighbors are nearby

the query point, which allows for the algorithms to obtain results without incurring many disk

accesses. When the locations are more skewed, the k-nearest neighbors tend to be in the same

area, which means that the locations are not diverse. Thus, it takes more extensive searching of

the R-Tree to find k locations that are nearby as well as diverse.

Overall, the DBDB algorithms show superior performance with the DivRel metric while

achieving reasonable efficiency.

94

0.0 0.2 0.4 0.6 0.8 1.0

Skew
0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

D
iv

R
e
l

(a) 5 Locations - DivRel

0.0 0.2 0.4 0.6 0.8 1.0

Skew
2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

D
is

k
A

cc
e
ss

e
s

(b) 5 Locations - Disk Accesses

0.0 0.2 0.4 0.6 0.8 1.0

Skew
0.68

0.70

0.72

0.74

0.76

0.78

0.80

D
iv

R
e
l

(c) 10 Locations - DivRel

0.0 0.2 0.4 0.6 0.8 1.0

Skew
2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

D
is

k
A

cc
e
ss

e
s

(d) 10 Locations - Disk Accesses

0.0 0.2 0.4 0.6 0.8 1.0

Skew
0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

D
iv

R
e
l

(e) 20 Locations - DivRel

0.0 0.2 0.4 0.6 0.8 1.0

Skew
3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

D
is

k
A

cc
e
ss

e
s

(f) 20 Locations - Disk Accesses

(g) Legend

Figure 7.23: DivRel and disk access for changing skew of synthetic dataset

Chapter 8
Conclusions and Future Work

In this thesis, we investigate location recommendation services for mobile users in LBSNs. The

goal is to provide recommendation results that are interesting for the user (effectiveness), close

in proximity to the user’s current location, and spatially diverse in relation to the user’s current

location.

First, we introduce a location recommendation service that considers both in-town and out-

of-town scenarios for increasing effectiveness of the service. We propose a new collaborative

recommendation framework, namely, User Preference, Proximity and Social-Based Collaborative

Filtering (UPS-CF), which incorporates user preference, social connections, and geographical

proximity to give location recommendations for mobile users. Using datasets from Foursquare

and Gowalla, we conduct extensive experiments to evaluate our proposal and compare with

collaborative filtering variants as well as baseline algorithms. We show that UPS-CF outperforms

all other comparing algorithms and the effectiveness does not degrade for out-of-town users. In

addition, we find that for in-town users, similar users are important while social friends become

more important for out-of-town users. Knowing this, our proposed solution can provide location

recommendations for users whether they are in town or out of town by adjusting a weight

parameter between similar users and friends.

Next, we explore the k-nearest diverse neighbor problem to recommend results that are both

close in proximity to the user’s current location as well as spatially diverse. We introduce the

Modified Index-Based Diverse Browsing framework (Mod-IBDB), which fixes deficiencies that

exist in the Index-Based Diverse Browsing framework. In addition, we propose the Distance-

Based Diverse Browsing framework (DBDB), which uses the intuition of search algorithms to

improve an initial solution by considering swapping locations into the solution in increasing or-

der of distance. For the initial set of locations, we create the Distance-First Distance-Based

Diverse Browsing framework that chooses the closest locations as the initial solution for DBDB

and the Diversity-First Distance-Based Diverse Browsing framework that uses a heuristic to se-

lect a diverse set of locations. Through extensive experimentation, we show that Mod-IBDB

96

performance increases when proximity to the query point is emphasized more than spatial di-

versity. In addition, we show that the DBDB algorithms outperform the other state-of-the-art

algorithms in terms of performance.

For future work, we plan to investigate the efficiency problems for online location recommen-

dation algorithms detailed in this paper. Also, we could enhance the proposed recommendation

techniques by using location semantic tags (e.g., “restaurant” or “museum”). Since this infor-

mation about locations gives insight into the types of locations a user visits, we could use this

information to facilitate location recommendations and provide additional diversity in location

recommendation results. Lastly, we could investigate different techniques for choosing the initial

diverse solution for the Diversity-First Distance-Based Diverse Browsing framework.

Bibliography

[1] Diversity. http://www.merriam-webster.com/dictionary/diversity, Jan. 2013.

[2] P. Adamopoulos and A. Tuzhilin. On unexpectedness in recommender systems: Or how to
expect the unexpected. In Proceedings of Workshop on Novelty and Diversity in Recom-
mender Systems, RecSys ’11, pages 11–18. ACM, 2011.

[3] G. Adomavicius and Y. Kwon. Maximizing aggregate recommendation diversity: A graph-
theoretic approach. In Proceedings of Workshop on Novelty and Diversity in Recommender
Systems, RecSys ’11, pages 3–10. ACM, 2011.

[4] G. Adomavicius and Y. Kwon. Improving aggregate recommendation diversity using
ranking-based techniques. Knowledge and Data Engineering, IEEE Transactions on,
24(5):896–911, 2012.

[5] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A
survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and
Data Engineering, 17(6):734–749, June 2005.

[6] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversifying search results. In
Proceedings of the Second ACM International Conference on Web Search and Data Mining,
WSDM ’09, pages 5–14, New York, NY, USA, 2009. ACM.

[7] A. Angel and N. Koudas. Efficient diversity-aware search. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data, SIGMOD ’11, pages 781–792,
New York, NY, USA, 2011. ACM.

[8] J. Bao, Y. Zheng, and M. F. Mokbel. Recommendations in location-based social networks:
A survey. ACM.

[9] A. L. Barabsi, H. Jeong, Z. Neda, E. Ravasz, A. Schubert, and T. Vicsek. Evolution of
the social network of scientific collaborations. Physica A, 311(cond-mat/0104162):3–4. 14 p,
Apr 2001.

[10] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The r*-tree: an efficient and
robust access method for points and rectangles. In Proceedings of the 1990 ACM SIGMOD
international conference on Management of data, SIGMOD ’90, pages 322–331, New York,
NY, USA, 1990. ACM.

[11] B. Berjani and T. Strufe. A recommendation system for spots in location-based online social
networks. In Proceedings of the 4th Workshop on Social Network Systems, SNS ’11, pages
4:1–4:6, New York, NY, USA, 2011. ACM.

98

[12] K. Bradley and B. Smyth. Improving recommendation diversity. pages 85–94, 2001.

[13] G. Capannini, F. M. Nardini, R. Perego, and F. Silvestri. Efficient diversification of web
search results. Proc. VLDB Endow., 4(7):451–459, April 2011.

[14] Z. Chen and T. Li. Addressing diverse user preferences in sql-query-result navigation. In
Proceedings of the 2007 ACM SIGMOD international conference on Management of data,
SIGMOD ’07, pages 641–652, New York, NY, USA, 2007. ACM.

[15] E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: user movement in location-
based social networks. In Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 1082–1090, New York, NY, USA, 2011. ACM.

[16] C.-Y. Chow, J. Bao, and M. Mokbel. Towards location-based social networking services. In
The 2nd ACM SIGSPATIAL International Workshop on Location Based Social Networks,
2010.

[17] C. L. Clarke, M. Kolla, G. V. Cormack, O. Vechtomova, A. Ashkan, S. Büttcher, and
I. MacKinnon. Novelty and diversity in information retrieval evaluation. In Proceedings
of the 31st annual international ACM SIGIR conference on Research and development in
information retrieval, SIGIR ’08, pages 659–666, New York, NY, USA, 2008. ACM.

[18] P. Clough, M. Sanderson, M. Abouammoh, S. Navarro, and M. Paramita. Multiple ap-
proaches to analysing query diversity. In Proceedings of the 32nd international ACM SIGIR
conference on Research and development in information retrieval, SIGIR ’09, pages 734–735,
New York, NY, USA, 2009. ACM.

[19] N. Eagle, A. S. Pentland, and D. Lazer. Inferring friendship network structure by using
mobile phone data. Proceedings of the National Academy of Sciences of the United States
of America, 106:15274–15278, 2009.

[20] P. Fraternali, D. Martinenghi, and M. Tagliasacchi. Top-k bounded diversification. In
Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’12, pages 421–432, New York, NY, USA, 2012. ACM.

[21] J. Golbeck and D. Hansen. A framework for recommending collections. In Proceedings of
Workshop on Novelty and Diversity in Recommender Systems, RecSys ’11, pages 35–42.
ACM, 2011.

[22] S. Gollapudi and A. Sharma. An axiomatic approach for result diversification. In Proceedings
of the 18th international conference on World wide web, WWW ’09, pages 381–390, New
York, NY, USA, 2009. ACM.

[23] A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedings
of the 1984 ACM SIGMOD International Conference on Management of Data, Boston,
Massachusetts, June 18-21 1984.

[24] J. R. Haritsa. The kndn problem: A quest for unity in diversity. IEEE Data Eng. Bull.,
32(4):15–22, 2009.

[25] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases. ACM Trans. Database
Syst., 24(2):265–318, June 1999.

[26] T. Horozov, N. Narasimhan, and V. Vasudevan. Using location for personalized poi recom-
mendations in mobile environments. In SAINT, pages 124–129, 2006.

99

[27] R. Hu and P. Pu. Helping users perceive recommendation diversity. In Proceedings of
Workshop on Novelty and Diversity in Recommender Systems, RecSys ’11, pages 43–50.
ACM, 2011.

[28] A. Jain, P. Sarda, and J. R. Haritsa. Providing diversity in k-nearest neighbor query results.
CoRR, cs.DB/0310028, 2003.

[29] A. Java, X. Song, T. Finin, and B. Tseng. Why we twitter: understanding microblogging us-
age and communities. In Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop
on Web mining and social network analysis, WebKDD/SNA-KDD ’07, 2007.

[30] I. Kamel and C. Faloutsos. On packing r-trees. In Proceedings of the second international
conference on Information and knowledge management, CIKM ’93, pages 490–499, New
York, NY, USA, 1993. ACM.

[31] I. Konstas, V. Stathopoulos, and J. M. Jose. On social networks and collaborative recom-
mendation. In Proceedings of the 32nd International ACM SIGIR Conference on Research
and Development in Information Retrieval, Boston, Massachusetts, July 19-23 2009.

[32] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender sys-
tems. Computer, 42(8):30–37, Aug. 2009.

[33] G. Kossinets and D. Watts. Empirical analysis of an evolving social network. Science,
311(5757):88–90, 2006.

[34] O. Kucuktunc and H. Ferhatosmanoglu. Diverse browsing for spatial data. Technical report,
Ohio State University, February 2011.

[35] O. Kucuktunc and H. Ferhatosmanoglu. Lambda-diverse nearest neighbors browsing for
multi-dimensional data. IEEE Transactions on Knowledge and Data Engineering, PP(99),
2011.

[36] K. C. K. Lee, W.-C. Lee, and H. V. Leong. Nearest surrounder queries. IEEE Trans. Knowl.
Data Eng., 22(10):1444–1458, 2010.

[37] S. Leutenegger, M. Lopez, and J. Edgington. Str: a simple and efficient algorithm for r-tree
packing. In Data Engineering, 1997. Proceedings. 13th International Conference on, pages
497–506, Apr. 1997.

[38] J. J. Levandoski, M. Sarwat, A. Eldawy, and M. F. Mokbel. Lars: A location-aware recom-
mender system. In Proceedings of the ICDE conference. ACM, 2012.

[39] N. Li and G. Chen. Analysis of a location-based social network. In Proceedings of the 2009
International Conference on Computational Science and Engineering - Volume 04, pages
263–270, Washington, DC, USA, 2009. IEEE Computer Society.

[40] B. Liu and H. V. Jagadish. Using trees to depict a forest. Proc. VLDB Endow., 2(1):133–144,
August 2009.

[41] P. J. Ludford, R. Priedhorsky, K. Reily, and L. Terveen. Capturing, sharing, and using local
place information. In Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 1235–1244, New York, NY, USA, 2007. ACM.

[42] M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a feather: Homophily in social
networks. Annual Review of Sociology, 27:415–444, August 2001.

100

[43] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee. Measurement
and analysis of online social networks. In Proceedings of the 7th ACM SIGCOMM conference
on Internet measurement, IMC ’07, pages 29–42, New York, NY, USA, 2007. ACM.

[44] K. Oku and F. Hattori. Fusion-based recommender system for improving serendipity. In
Proceedings of Workshop on Novelty and Diversity in Recommender Systems, RecSys ’11,
pages 19–26. ACM, 2011.

[45] M. L. Paramita, J. Tang, and M. Sanderson. Generic and spatial approaches to image search
results diversification. In Proceedings of the 31th European Conference on IR Research on
Advances in Information Retrieval, ECIR ’09, pages 603–610, Berlin, Heidelberg, 2009.
Springer-Verlag.

[46] O. Pivert, A. Hadjali, and G. Smits. Searching for a compromise between satisfaction and
diversity in database fuzzy querying. In Proceedings of the 6th Conference of the European
Society of Fuzzy Systems and Technology, EUSFLAT’11, 2011.

[47] F. Radlinski and S. Dumais. Improving personalized web search using result diversification.
In Proceedings of the 29th annual international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’06, pages 691–692, New York, NY, USA, 2006.
ACM.

[48] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. SIGMOD Rec.,
24(2):71–79, May 1995.

[49] N. Roussopoulos and D. Leifker. Direct spatial search on pictorial databases using packed
r-trees. In Proceedings of the 1985 ACM SIGMOD international conference on Management
of data, SIGMOD ’85, pages 17–31, New York, NY, USA, 1985. ACM.

[50] S. Santini and P. Castells. An evaluation of novelty and diversity based on fuzzy logic. In
Proceedings of Workshop on Novelty and Diversity in Recommender Systems, RecSys ’11,
pages 51–58. ACM, 2011.

[51] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-based collaborative filtering recom-
mendation algorithms. In Proceedings of the 10th International Conference on World Wide
Web, Hong Kong, Hong Kong, May 2001.

[52] S. Scellato and C. Mascolo. Measuring user activity on an online location-based social
network. In Proceedings of Third International Workshop on Network Science for Commu-
nication Networks, April 2011.

[53] S. Scellato, A. Noulas, R. Lambiotte, and C. Mascolo. Socio-spatial properties of online
location-based social networks. In ICWSM, 2011.

[54] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The r+-tree: A dynamic index for multi-
dimensional objects. In Proceedings of the 13th International Conference on Very Large
Data Bases, VLDB ’87, pages 507–518, San Francisco, CA, USA, 1987. Morgan Kaufmann
Publishers Inc.

[55] S. Sheth, J. Bell, N. Arora, and G. Kaiser. Towards diversity in recommendations using
social networks.

[56] Y. Takeuchi and M. Sugimoto. Cityvoyager: An outdoor recommendation system based on
user location history. Ubiquitous Intelligence and Computing, pages 625–636, 2006.

101

[57] J. Tang and M. Sanderson. Evaluation and user preference study on spatial diversity. In Pro-
ceedings of the 32nd European conference on Advances in Information Retrieval, ECIR’2010,
pages 179–190, Berlin, Heidelberg, 2010. Springer-Verlag.

[58] M. Van Kreveld, I. Reinbacher, A. Arampatzis, and R. Van Zwol. Distributed ranking
methods for geographic information retrieva. In Developments in Spatial Data Handling
(11th International Symposium on Spatial Data Handling), pages 231–243, Berlin, 2004.
Springer.

[59] M. Van Kreveld, I. Reinbacher, A. Arampatzis, and R. Van Zwol. Multi-dimensional scat-
tered ranking methods for geographic information retrieval*. Geoinformatica, 9(1):61–84,
March 2005.

[60] R. H. van Leuken, L. Garcia, X. Olivares, and R. van Zwol. Visual diversification of image
search results. In Proceedings of the 18th international conference on World wide web, WWW
’09, pages 341–350, New York, NY, USA, 2009. ACM.

[61] E. Vee, U. Srivastava, J. Shanmugasundaram, P. Bhat, and S. A. Yahia. Efficient computa-
tion of diverse query results. In Proceedings of the 2008 IEEE 24th International Conference
on Data Engineering, ICDE ’08, pages 228–236, Washington, DC, USA, 2008. IEEE Com-
puter Society.

[62] M. R. Vieira, H. L. Razente, M. C. N. Barioni, M. Hadjieleftheriou, D. Srivastava, C. T.
Jr., and V. J. Tsotras. Divdb: A system for diversifying query results. PVLDB, pages
1395–1398, 2011.

[63] M. R. Vieira, H. L. Razente, M. C. N. Barioni, M. Hadjieleftheriou, D. Srivastava, C. Traina,
and V. J. Tsotras. On query result diversification. In Proceedings of the 2011 IEEE 27th
International Conference on Data Engineering, ICDE ’11, pages 1163–1174, Washington,
DC, USA, 2011. IEEE Computer Society.

[64] M. J. Welch, J. Cho, and C. Olston. Search result diversity for informational queries. In
Proceedings of the 20th international conference on World wide web, WWW ’11, pages 237–
246, New York, NY, USA, 2011. ACM.

[65] M. Ye, X. Liu, and W.-C. Lee. Exploring social influence for recommendation - a probabilistic
generative model approach. SIGIR, August 12-16 2012.

[66] M. Ye, P. Yin, and W.-C. Lee. Location recommendation for location-based social net-
works. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in
Geographic Information Systems, San Jose, California, November 02-05 2010.

[67] M. Ye, P. Yin, W.-C. Lee, and D.-L. Lee. Exploiting geographical influence for collaborative
point-of-interest recommendation. In Proceedings of the 34th International ACM SIGIR
Conference on Research and Development in Information Retrieval, Beijing, China, July
24-28 2011.

[68] C. Yu, L. Lakshmanan, and S. Amer-Yahia. It takes variety to make a world: diversification
in recommender systems. In Proceedings of the 12th International Conference on Extending
Database Technology: Advances in Database Technology, EDBT ’09, pages 368–378, New
York, NY, USA, 2009. ACM.

[69] Q. Yuan, S. Zhao, L. Chen, S. Ding, X. Zhang, and W. Zheng. Augmenting collaborative
recommender by fusing explicit social relationships. In ACM RecSys-Workshop, pages 49–56,
2009.

102

[70] M. Zhang and N. Hurley. Avoiding monotony: improving the diversity of recommendation
lists. In Proceedings of the 2008 ACM conference on Recommender systems, RecSys ’08,
pages 123–130, New York, NY, USA, 2008. ACM.

[71] M. Zhang and N. Hurley. Statistical modeling of diversity in top-n recommender systems.
Web Intelligence and Intelligent Agent Technology, IEEE/WIC/ACM International Confer-
ence on, 1:490–497, 2009.

[72] F. Zhao, X. Zhang, A. K. H. Tung, and G. Chen. Broad: Diversified keyword search in
databases. PVLDB, pages 1355–1358, 2011.

[73] V. Zheng, B. Cao, Y. Zheng, X. Xie, and Q. Yang. Collaborative filtering meets mobile
recommendation. In Proceedings of the 24th AAAI Conference on Artificial Intelligence,
pages 236–241, 2010.

[74] V. Zheng, Y. Zheng, X. Xie, and Q. Yang. Collaborative location and activity recommenda-
tions with gps history data. In Proceedings of the 19th International Conference on World
Wide Web, pages 1029–1038, 2010.

[75] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving recommendation lists
through topic diversification. In Proceedings of the 14th international conference on World
Wide Web, WWW ’05, pages 22–32, New York, NY, USA, 2005. ACM.

[76] G. Zipf. Human behaviour and the principle of least-effort. Addison-Wesley, Cambridge,
MA, 1949.

ACADEMIC VITA: GREGORY DAVID FERENCE

205 Greenbriar Drive • Cranberry Township, Pennsylvania 16066 • (724) 316-6413 • gdference@gmail.com

EDUCATION

The Pennsylvania State University AUGUST 2008 – SPRING 2013
Schreyer Honors College University Park, PA

Master of Science in Computer Science and Engineering
Bachelor of Science in Computer Science (with honors)
Bachelor of Science in Mathematics

RESEARCH

GRADUATE RESEARCHER SPRING 2010 – SPRING 2013
The Pennsylvania State University University Park, PA
• Developed next-generation location recommendation services by incorporating social networks, spatial

databases, data mining, information retrieval, and mobile computing techniques

RELEVANT EMPLOYMENT

SOFTWARE ENGINEERING INTERN SUMMER 2012
Google Inc. Pittsburgh, PA
• Implemented components of client/server software and an Android application using Java
• Improved usability of Android application by changing user interface of preference pages
• Designed and implemented web pages using Google Web Toolkit

SOFTWARE ENGINEERING INTERN SUMMER 2011
Cisco Systems, Inc. Research Triangle Park, NC
• Created software that collects and displays performance statistic information for networks
• Developed features using Java, JavaScript and JSP in a Linux environment
• Enhanced user interface by replacing and modifying new graphing package
• Created reports that polled data from devices and displayed data in graphs, tables and CSV files

SOFTWARE ENGINEERING INTERN SUMMER 2010
Westinghouse Electric Company Cranberry Township, PA
• Programmed software for the safety system of a nuclear power plant using the C programming language
• Built shell scripts to control multiple software applications on a UNIX platform
• Designed and implemented custom screens to allow users to retrieve safety-related information
• Collaborated with coworkers to design and develop large, technically complex software

SOFTWARE ENGINEERING INTERN SUMMER 2009
Compunetix, Inc. Monroeville, PA
• Performed system analysis and software development with video conferencing software
• Developed software in Java using techniques such as multithreading and hash tables
• Accomplished many steps in the software engineering lifecycle, from requirement analysis to

implementing, testing and documenting

SCHOLARSHIPS AND AWARDS

• Schreyer Honors College Academic Excellence Scholarship
• George and Terry Selembo Trustee Scholarship in the Schreyer Honors College
• Chris Mader Memorial Scholarship, Penn State Department of Computer Science and Engineering
• Evan Johnson Memorial Award, Penn State Department of Mathematics
• O. Richard Bundy, Jr. Blue Band Endowed Scholarship

• Ruth Varner Otto Memorial Scholarship
• Evan Pugh Scholar Award (Senior)
• Evan Pugh Scholar Award (Junior)

VOLUNTEER AND EXTRACURRICULAR ACTIVITIES

• Association for Computing Machinery (2009 – 2012)
• Robotics Club (2009 – 2010)
• Marching Blue Band (2008 – 2012)

 Guide (2011 – 2012)
 Squad Leader (2010 – 2012)

• Pride of the Lions Basketball Pep Band (2009 – 2011)
• Concert Band (2009 – 2013)
• Penn State IFC/Panhellenic Dance Marathon (2009 – 2010)

