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Abstract

The flow-induced crystallization (FIC) of polyolefins is an important part of many indus-

trial processes such as injection molding. Injection molding is used to make a variety of com-

mercial products ranging from piping for chemical plants to everyday goods like water bottles and

children’s toys. It is well-documented experimentally that FIC can accelerate the rate of crystal-

lization for isotactic polypropylene by a factor of one hundred (changing the crystallization time

scale from a matter of hours to seconds), and also greatly affects the material properties of the

crystallized product. Yet, the underlying physics of FIC are poorly understood. Some hypothesize

that FIC occurs because flow reduces the melt state entropy, and thus eases the transition from melt

to crystal. In order to test this hypothesis, it is necessary to understand (1) how crystals form in

commercial melts, and (2) how flow might affect the entropy of the melt. Here we present two

important steps towards understanding this phenomenon: a model for quiescent crystal nucleation

in commercial melts, and a method for simulating dilute polymer solutions in flow. Ultimately,

these may be combined with data from melt rheology of entropy reduction due to flow to predict

the effects of FIC in commercial processes.
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CHAPTER 1

Introduction

It is hard to imagine a world without polyolefins. Plastic polymers are used to make ev-

erything from the piping in chemical plants to the water bottles we drink from. Production of

polyethylene and polypropylene alone combines to over 130 million tonnes per year. In a typical

industrial process for making plastic products, such as injection molding, molten polymer is sub-

jected to intense stress as it is flowed through production equipment before it is supercooled into a

semicrystalline product.

The final product is greatly affected by flow. At low flow rates, the product has large

spherulites. As the flow rate increases, isotactic polypropylene forms many nuclei faster, and

crystallizes up to one hundred times faster than it does without flow.1 The increased nucleation

rate leads to the formation of smaller spherulites, making the final product stronger. If enough

stress is applied, the crystal structure changes entirely from strong spherulites to weak rod-like

“shish-kebabs” in the areas of fastest flow.

Although this empirical understanding of flow-induced crystallization is sufficient for many

industrial applications, there is a distinct lack of mechanistic understanding of how flow affects

the crystallization process. Such a theory would be useful for predicting material properties and

designing industrial processes. More broadly, flow can be used to induce orientation prior to

crystallization in organic photovoltaic cells and to align silver nanotubes for electronics. An un-

derstanding of how flow affects crystallization in a simple polyolefin system could be extended

to design better processes in these areas that will become increasingly important in the future as

energy and precision technology demands grow.

It is theorized that flow enhances the nucleation rate by ordering the melt state of the poly-

mer, which decreases the melt entropy and eases the transition from melt to crystal (lowers the

critical nucleation barrier). However, a complete theoretical description of flow-induced crys-

tallization in an industrial melt is complicated by both melt polydispersity and the presence of

impurities (Fig. 1.1). It has been observed experimentally that the addition of a small fraction of

1



1. INTRODUCTION

Figure 1.1: Cartoon of commercial polymer melt crystallizing. Red indicates long polymer chains,
while orange indicates shorter chains due to the polydispersity of the melt. Circles represent
spherulites. Gray lines represent impurities, on which heterogeneous nuclei may form and grow.
Blue arrows show shear flow profile.

“long chains” (polymer with high Mw) to polypropylene greatly enhances the rate of flow-induced

crystallization, and promotes the formation of the anisotropic shish-kebab morphology.2

To test if flow especially enhances the nucleation rate near these long chains, it is necessary

to quantify the effect of flow on the chain entropy. However, this is not a trivial theoretical task.

Dilute polymers in shear flow are not well represented by simple average quantities because of

their “molecular individualism”.3 It is easiest to explore the behavior of these chains by direct

simulation. Unfortunately, the typical approach to simulating such systems is surprisingly unstable

and inefficient.

Melt impurities present another challenge to developing a theory of flow-induced crystal-

lization. Crystal nuclei may form homogeneously (within the melt itself), or heterogeneously (for

example, against the surface of an impurity, as shown in Figure 1.1). It is well-known that heteroge-

neous nucleation occurs more readily than homogeneous nucleation for quiescent melts at typical

crystallization temperatures. Since bulk commercial samples of polypropylene are not carefully

purified, it is expected that they would contain a large number of heterogeneities, causing hetero-

geneous nucleation to dominate the crystallization process. It would seem that the same nucleation

mechanism should be dominant for both quiescent (no flow) and flow-induced crystallization.

However, there is a distinct lack of theory for heterogeneous nucleation of polymers, even

2



1. INTRODUCTION

in the quiescent case. Since flow-induced crystallization is hypothesized to increase the nucleation

rate, it is important to have a sound theoretical understanding of the nucleation mechanism. Ul-

timately, a model of nucleation in bulk commercials samples of polypropylene can be combined

with calculations from melt rheology or simulation to calculate the entropy reduction due to flow

and estimate the increase in crystallization kinetics due to flow.

A major step towards understanding flow-induced crystallization is to address the issues of

modeling quiescent heterogeneous nucleation, and of developing stable and efficient methods for

simulating polymers in flow. To this end, I have explored three distinct areas of research:

1. Numerical methods. Efficient solution of nonlinear stochastic differential equations, such as

the modified Rouse model in shear flow.

2. Classical nucleation theory. Modeling and theory of heterogeneous nucleation, analysis of

quiescent crystallization in bulk samples of polypropylene.

3. Molecular scale modeling. Atomic level calculation of interfacial tensions of polypropylene

crystal to validate the heterogeneous nucleation model.

Common to these research areas are classical elements of chemical engineering: mathematics,

modeling, and computation. However, each area required mastery of a separate body of literature

and set of techniques to build on these skills. Stochastic differential equations require different

mathematics for solution and analysis than those needed for the deterministic equations that engi-

neers typically encounter. Classical nucleation theory is an entirely different field from numerical

analysis, with its basis in statistical mechanics, and has an extensive body of previous work tracing

back to as early as 1938.4 Molecular scale modeling and simulation are considerably newer fields;

however, they necessitate a careful approach to computing, and attention to the details of the model

or simulation.

During the course of conducting this research, I learned the need for careful appraisal of

scientific literature, and perhaps even more valuably, the importance of perseverance even in the

3



1. INTRODUCTION

face of negative results. In a field like classical nucleation theory, which has a considerable body of

established research, I learned that there will often be disagreement between experts on theory and

interpretation. Some experiments may even have worrisome results. At first, this was incredibly

frustrating. However, from this experience I learned that it is the scientist’s job to carefully read

and evaluate the literature, interpret and learn from past results, and report an honest and balanced

opinion in new findings based on what is known at present.

In Chapter 2, a form of operator splitting is developed and applied to the nonlinear Rouse

model in shear flow (a stochastic partial differential equation). This method for simulating dilute

polymer solutions is a vast improvement on the numerical method typically implemented to evolve

the Rouse model in time, reducing the total computational time by at least a factor of four. Splitting

is generally applicable to a broad class of problems in stochastic dynamics in which noise competes

with ordering and flow to determine steady-state parameter structures.

Chapter 3 proposes a model for heterogeneous nucleation of isotactic polypropylene in

terms of a “cylindrical cap” with the critical size and barrier set by a contact angle. Quiescent

crystallization data for bulk samples of polypropylene are analyzed to extract a contact angle in

the range of 40� to 70� with a mean value of 56�, which corresponds to a factor six decrease in the

critical barrier from the homogeneous case. This significant difference suggests that crystalliza-

tion data for bulk samples should be analyzed in terms of heterogeneous (and not homogeneous)

nucleation.

Finally, Chapter 4 describes a method for determining the surface tensions of crystalline

polypropylene with vacuum and with a featureless Hamaker constant matched surface by all-atom

calculations including contributions from phonons treated quantum-mechanically, and analytical

“tail corrections” for long-ranged dispersion forces. The relative magnitudes of quantum effects,

tail corrections, and finite system size effects on the surface tension are assessed. The surface

tensions are extrapolated to finite temperature, and applied to the cylindrical cap model for hetero-

geneous nucleation to determine a contact angle of 54± 11�. This is in excellent agreement with

4



1. INTRODUCTION

the result of Chapter 3, and lends supports to the cylindrical cap model for heterogeneous nucle-

ation. Although the flow-induced crystallization problem is very complex, the results presented

here may ultimately be combined with other data to make theoretical predictions about how flow

affects crystallization in commercial samples.

5
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CHAPTER 2

Stochastic splitting methods for Rouse chains in flow

The Rouse model underlies a great many simulations of polymer dynamics. It is used in

slip-link models, and to represent dilute polymer solutions (neglecting hydrodynamic interactions),

as well as unentangled polymer melts and concentrated solutions. In the Rouse model, a polymer

is represented as a sequence of monomer beads bonded by springs. Each monomer feels a spring

force from its neighbors, a drag force with respect to the surrounding fluid, and a stochastic force

representing the effect of thermal fluctuations.

The Rouse model in shear flow is of interest because the resulting chain motion is complex

and unsteady. Individual chains stretch in flow, and tumble over themselves when the leading end

of the chain dips below the trailing end.

This unsteady motion leads generally to a varied ensemble of molecular configurations,

which for some purposes are not well represented by simple average quantities such as chain

average orientation or stretch. This variety of molecular configurations for sheared dilute polymers

has been termed “molecular individualism”,1 and is most easily explored by direct simulation. For

the case of dilute and semidilute DNA solutions, such simulations have been compared to direct

imaging studies carried out with fluorescently labeled DNA.2, 3

Numerical simulations of the Rouse model are also a central feature of sliplink simulations,

which have been extensively used as a stochastic counterpart to tube-based constitutive theories of

monodisperse and polydisperse linear chains.4–7 In all of these simulations, a Rouse chain is

somehow confined to a piecewise linear tube defined by a sequence of entanglement points called

sliplinks, which are typically advected affinely with the mean flow.

The Rouse motion of the chain within the tube naturally imparts to the sliplink model the

physics of contour fluctuations, constraint release, and stress relaxation via reptation. However,

most of the CPU time in such simulations is spent on the Rouse motion; furthermore, the numerical

method most often used is the simple but rather inaccurate and unstable explicit Euler method,

which necessitates a very short timestep.

7



2. STOCHASTIC SPLITTING METHODS FOR ROUSE CHAINS IN FLOW

In many applications, the Rouse model is augmented with additional terms and interac-

tions, which are typically nonlinear but deterministic. For example, the harmonic springs of the

Rouse model can be upgraded to finitely extensible nonlinear elastic (FENE) springs, to limit the

fully extended length of the chain.8 Or, for simulations of dilute chains in a solution, various

approximate hydrodynamic interactions may be added.9 In either case, the random forces in the

model are unaltered, and remain the chief reason for using simple explicit methods like Euler and

thus short timesteps, which result in uncomfortable limitations on the lengths of chains that can be

simulated.9

In short, most polymer dynamics simulations require time-evolution of the Rouse equation

in some form. Much of the computational power in such simulations is spent numerically integrat-

ing the Rouse equation. This can become a rate-limiting computational step for large or lengthy

simulations. However, if there were an exact solution to the Rouse equation, the time-evolution of

the Rouse equation for any forward timestep could be done in one quick step, greatly speeding up

the simulation.

2.1 Exact solution

The Rouse equation takes the form

z
✓

∂R(s, t)
∂ t

�v(R(s, t))
◆

= K
∂ 2R(s, t)

∂ s2 + f(s, t) (2.1)

where R(s, t) is the chain position at arclength s and time t, v(r) is the imposed flow field, z is the

monomeric drag coefficient, K is the stiffness of the spring between neighboring beads, and f(s, t)

is the random force.

The noise f(s, t) is taken to be delta-correlated in time and space, and Gaussian distributed

8



2. STOCHASTIC SPLITTING METHODS FOR ROUSE CHAINS IN FLOW

with zero mean, with variance given by

hfi(s, t)f j(s0, t 0)i =
2z
b

di jd (s� s0)d (t � t 0) (2.2)

where b = 1/(kT ). The noise amplitude 2z/b is determined by requiring that the chain diffusion

constant D satisfies the Stokes-Einstein relation D = kT/(Nz ).

2.1.1 Rouse modes

The Rouse equation is a system of linear constant-coefficient PDEs with a linear stochastic

driving force, which is analytically solvable with Fourier analysis. Each position vector R(s, t) can

be represented as a linear combination of the Rouse modes Xp(t) as

R(s, t) · x̂ = Rx(s, t) =
•

Â
p=1

Xp(t)cos
✓

pps
n

◆
(2.3)

where n is the arclength of the chain. Cosine expansion is chosen in order to impose tension-free

ends on the chain. The p = 0 mode is omitted here because it is only responsible for translational

motion. Analogous equations relate y and z coordinates Ry(s, t) and Rz(s, t) to mode amplitudes

Yp(t) and Zp(t).

The inverse relation between the Rouse modes and the chain conformation is

Xp(t) =
2
n

Z n

0
Rx(s, t)cos

✓
pps
n

◆
ds (2.4)

and analogously for Yp(t) and Ry(s, t).

The mode noise xp is obtained by Fourier cosine transform of the real space noises fx(s, t) =

f(s, t) · x̂ with Eq. 2.4. The mode noise has variance

hxp(t)xq(t 0)i =
4z
bn

dpqd (t � t 0) (2.5)

9



2. STOCHASTIC SPLITTING METHODS FOR ROUSE CHAINS IN FLOW

A simple shear flow field takes the form

v(r) = ġyx̂ (2.6)

with the shear rate ġ , the velocity direction taken as x̂, and the gradient direction taken as ŷ. Since

simple shear flow is a linear function of position, the Fourier transform can usefully be applied to

it as well in Eq. 2.1.

For a shear flow like Eq. 2.6, only the Rx component in Eq. 2.1 is coupled to the flow. Ry

and Rz are each independent of the other components. The equation of motion for Rx has a source

term ġRy from the flow, but is completely decoupled from Rz. Thus, solving for Rz is trivial and

analogous to solving for Ry, and we neglect it for simplicity.

Since the Rouse modes are only time dependent, Eq. 2.1 reduces to a system of linear

ordinary differential equations (ODEs). Substituting the modes and rearranging gives

z X 0
p = ġYp �KpXp + xp (2.7a)

zY 0
p = �KpYp + yp (2.7b)

where p is a positive integer, Kp = p2 p2K/n2, and xp and yp are the mode noises.

Solution for the Rouse modes Yp (solving Eq. 2.7b) for a finite Dt = t1 � t0 is a simple

integrating factor problem. Let wp = Kp/z . Then,

Yp(t1) = e�wpDtYp(t0)+
1
z

Z t1

t0
ewp(t�t1)yp(t)dt

= e�wpDtYp(t0)+DYp (2.8)

Yp has a fading memory of its current value (the exponential term), plus a change due to stochastic

noise (DYp). For sufficiently long times, the new mode value will “forget” its initial value and

depend on only its noise history.

10



2. STOCHASTIC SPLITTING METHODS FOR ROUSE CHAINS IN FLOW

The governing equation for the modes Xp (Eq. 2.7a) depends not only on Xp but also on Yp

(because of the shear flow force). Substituting Eq. 2.8 into Eq. 2.7a, and solving with integrating

factors over the same time range gives

Xp(t1) = e�wpDt
✓

Xp(t0)+
ġDt
z

Yp(t0)
◆

+
1
z

Z t1

t0
ewp(t�t1)xp(t)dt

+
ġ

z 2

Z t1

t0
(t1 � t)ewp(t�t1)yp(t)dt

= e�wpDt
✓

Xp(t0)+
ġDt
z

Yp(t0)
◆

+DX (x)
p +

ġ
z

DX (y)
p (2.9)

Like Yp, Xp has a fading memory of its current value, and a stochastic forcing (DX (x)
p ). It also has

a fading memory of the flow force at its current value, and an additional stochastic forcing that

depends on yp. Because of this dependence, Xp is correlated to Yp.

The integrals DYp, DX (x)
p , and DX (y)

p can be thought of as summations of the mode noises

(weighted by the exponential) over the given time range. Since the mode noises are Gaussian

random variables with zero mean, any linear combination of these variables is also a Gaussian

random variable with zero mean. Thus, DYp, DX (x)
p , and DX (y)

p are all Gaussian random variables

with zero mean, and their variances can be computed as functions of Dt since the variances of the

mode noises are known (see Appendix A).

hDY 2
p i = hDX (x)

p
2
i =

4
z bn

v0(2wpDt)
2wp

(2.10a)

hDX (y)
p

2
i =

4
z bn

v1(2wpDt)
8w3

p
(2.10b)

where v0(x) = 1� exp(�x) and v1(x) = 2� (2+2x+ x2)exp(�x).

Frequently, the Rouse model is evolved forward in time to generate “snapshots” of a chain

in a given flow. In order to do this numerically, the time period of interest Dt is usually divided

into m fundamental steps, and the chain is evolved over a noise history with m different noise

pairs (integrating over the noise). However, since the noise integrals DYp, DX (x)
p , and DX (y)

p are

11



2. STOCHASTIC SPLITTING METHODS FOR ROUSE CHAINS IN FLOW

themselves Gaussian random variables with known variance, it is sufficient to generate appropriate

representative values for each over the total timestep Dt. Thus, only one triplet of Gaussian random

variables needs to be generated for each Dt.

2.1.2 Mixed flows

The formal solution to the Rouse model generalizes to flow fields of mixed shear and ex-

tensional flows

v(r) = ġ(yx̂+bxŷ) (2.11)

where ġ is the shear rate, and 0 < b  1 is the “extensional character”. If b = 0, v is the shear flow

profile, and the solution of Section 2.1.1 applies. If b = 1, v is pure extensional flow along y = x.

Flow fields with b between zero and unity are of mixed type, with a character between shear and

extensional.

The profile for a mixture of shear and extensional flow is still linear, so the solution pro-

ceeds through the Rouse modes as before

z X 0
p = ġYp �KpXp + xp (2.12a)

zY 0
p = ġbXp �KpYp + yp (2.12b)

In matrix form

0

@X 0
p

Y 0
p

1

A=
1
z

0

@�Kp ġ

ġb �Kp

1

A

0

@Xp

Yp

1

A+
1
z

0

@xp

yp

1

A⌘ M

0

@Xp

Yp

1

A+
1
z

0

@xp

yp

1

A (2.13)

M has basis of eigenvectors (1,
p

b ) and (1,�
p

b ). If b 6= 0 (non-shear flow), M has a complete

basis of eigenvectors, and is diagonalizable.

12



2. STOCHASTIC SPLITTING METHODS FOR ROUSE CHAINS IN FLOW

If l1 and l2 are the corresponding eigenvalues for M, Eq. 2.13 takes the form

X̃ 0
p = l1X̃p +

1
z

x̃p (2.14a)

Ỹ 0
p = l2Ỹp +

1
z

ỹp (2.14b)

where X̃p, Ỹp and the noise terms are in the basis of the eigenspace. Note that the solution to the

mixed flow case is actually simpler than the shear flow solution because the modes are decoupled

in the eigenspace. The solution to Eq. 2.14 then proceeds as in Section 2.1.1 (see Appendix C).

2.1.3 Finite extensibility

The Rouse model assumes that the bonds of a chain are harmonic springs, which exert a

force proportional to the stretch, F = �KDx. The change in spring force (or, the “stiffness” of

the spring) ∂F/∂x is the spring constant K. However, in reality, the stiffness of the spring is not

constant at all.

There are several models for such “anharmonic” (finitely extensible) springs. Although

these models vary in form, they are fundamentally the same – the stiffness of the spring ∂F/∂x

increases with stretch. In most such models, ∂F/∂x diverges at a certain stretch, which represents

the spring becoming too stiff and “breaking”. Simulating such springs in a stochastic equation is

inconvenient because it can require integration near the singularity.

A quartic spring is a suitable model for a spring that stiffens without the spring force di-

verging. The stretching energy for a quartic spring is

U =
Z 1

2
K
✓

∂R
∂ s

◆2
+

a
2

✓
∂R
∂ s

◆4�
ds (2.15)

This amounts to replacing the spring constant in the Rouse equation with a value that depends on

13



2. STOCHASTIC SPLITTING METHODS FOR ROUSE CHAINS IN FLOW

local stretch, given by

K ! K0


1+a

✓
∂R
∂ s

◆2�
(2.16)

Here a is a parameter that determines the stiffness of the springs. The value of a is chosen so that

the spring becomes k times stiffer than K0 at a given stretch b2 = (∂sR)2, so that

a =
k�1

b2 (2.17)

In our simulations, we chose a = 0.1 so that the spring constant would double at a squared bead-

to-bead distance of 10.

2.1.4 Simulations

It is computationally simple to collect data on the behavior of chains in shear flow with

an explicit update formula for the Rouse modes. A valid starting conformation is defined in real

space, transformed to Fourier space and evolved for a desired Dt, and then transformed back to

real space for analysis. This data can be used to generate averages and probability distributions for

chain properties, like end-to-end distance or inclination angle.

One measure of interest to nucleation theory is the squared distance between adjacent

beads. Figure 2.1a shows this property for a chain with harmonic springs in increasing shear.

As expected, the distributions broaden as ġtR increases (more flow stress). However, these distri-

butions also demonstrate the physical simplifications of the Rouse model. Although probability

distributions of the distance between adjacent beads are expected to broaden with increasing shear,

they should not broaden indefinitely. The bonds of the chain should stretch to a point, but then

become stiffer and more resistant to change. Otherwise, a chain could stretch to arbitrary length.

Figure 2.1b shows more realistic chain behavior after the quartic spring term is introduced.

The distributions become narrower and steeper. This effect is most noticeable at high shear rates

(where the harmonic springs would ordinarily become very stretched). For ġtR = 8, the distribution

14
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(a) Harmonic Spring
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Figure 2.1: Probability distributions for adjacent bead-to-bead distance squared for shear rates
ġtR = 0,4,8; n = 15 bonds, a = 0.1 for nonlinearity. Distance given in units of the average
relaxed distance between adjacent beads, so b2

g = (∂sR)2 for a given shear rate, and b2
0 = h(∂sR)2i

for a chain in zero shear with a linear spring.

completely changes shape, becoming concave down. The effect of the quartic spring is most

significant at high shear rates because the nonlinear term a(∂sR)2 is negligible at small stretches

(where the spring behaves mostly harmonically), and dominates at large stretches.

Although the anharmonic spring is a better model for the physical behavior of a chain in

flow, it has unfortunate consequences for the formal solution to the Rouse equation. The Rouse

equation (Eq. 2.1) is solvable because it is linear, and can be diagonalized with a Fourier cosine

transform. The nonlinear term “breaks” the solution because the Rouse equation is no longer

diagonalizable. Any modification to the Rouse model that introduces a nonlinear term would have

this effect. Some type of numerical method is required to evolve the modified Rouse equation.

2.2 Operator splitting

The typical approach to solving the nonlinear Rouse equation is to integrate over a discrete

noise history with very small timesteps, using a stochastic numerical integrator. Although such
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methods solve deterministic differential equations reasonably well, they are not as effective at solv-

ing stochastic equations. Such numerical integrators march across the integration interval based

on local values of the derivative at each integration step. If an equation is sufficiently “smooth”

(several times differentiable), such methods work well because the value of the derivative changes

smoothly and predictably.

Since deterministic equations are usually smooth, reasonably large integration steps can be

taken, and these methods are efficient and accurate. However, stochastic equations are not smooth

because of the noise, so small integration step sizes are required. A new noise term needs to be

generated at each integration step. Since simulations of chain behavior typically require fairly large

cumulative time scales, this process becomes computationally intensive.

Even though the modified Rouse equation is no longer linear, it is tempting to capitalize

on the exact solution to the linear Rouse equation in designing a numerical solution method. The

modified Rouse equation can be expressed as the sum of a linear part L and a nonlinear part

N,where L represents the linear Rouse equation, and N represents the nonlinearity introduced by

the quartic spring.

∂R
∂ t

= v(R)+
1
z


K0 +K0a

✓
∂R
∂ s

◆2�∂ 2R
∂ s2 +

1
z

f

=

✓
v(R)+

K0

z
∂ 2R
∂ s2 +

1
z

f
◆

+


K0a

z

✓
∂R
∂ s

◆2�∂ 2R
∂ s2 (2.18a)

= L+N (2.18b)

Although it would be difficult to solve this equation since it is nonlinear and stochastic, it is easy to

solve either L or N independently. L can be evolved over the entire Dt in one step because it has an

exact solution. N is integrable numerically with reasonably large timesteps since it is deterministic

and smooth.

Operator splitting provides a general and effective way to solve equations like Eq. 2.18b,

in which the time evolution operator is the sum of pieces that can each be solved separately, but
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not easily at the same time. One first evolves L exactly, and then evolves N numerically. If these

evolutions are done quickly enough (by swapping between operators over short time scales Dtswap),

then Eq. 2.18b is solved exactly in the limit of Dtswap ! 0. Error propagates as the swap times

become “greedy” (too large). This method applies not only to the quartic spring, but also to any

separable nonlinear operator.

Since L is solved in Fourier space, and numerical integration of N is done in real space,

each swapping step requires one forward Fourier transform, and one inverse Fourier transform.

Fast Fourier transforms (FFTs) can be applied if the solution is discrete in space. The Rouse model

is discretized along arclength s into monomeric beads, with s = 1,2, ...,N. FFTs are O(N logN)

operations, so the conversion between Fourier space and real space can be done quickly.

Operator splitting is commonly employed for ordinary deterministic differential equations,

as described in Ref. 10. Splitting was introduced by Ottinger in the context of stochastic dynamics

of continuous fields.11 The convergence properties of Ottinger’s algorithm were analyzed by Pe-

tersen.12 More recently, stochastic splitting was applied by Lennon et al. to improve efficiency of

complex Langevin simulations.13

Ideally, a numerical method has error that quickly decreases as the computational timestep

h is taken smaller, and remains stable as large steps are taken. Numerical methods are compared in

terms of the rate at which error becomes small, and the range of timesteps over which the methods

are stable.

Convergence measures how quickly error decreases as the computational step size de-

creases. For deterministic equations of motion, convergence is straightforward to describe. A

method is “of order a” if the difference between the approximate solution ya and the true solution

y for a single step h is

y(h,y0)� ya(h,y0) = O(ha+1) (2.19)

Across a finite time interval Dt, Dt/h steps are taken, and the cumulative error for an order a
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method is

y(Dt,y0)� ya(Dt,y0) = O(ha) (2.20)

If y is a vector, it is convenient to compute the error as the average of the sum of the squares of the

differences between the components of ya and y (the mean-square error). The mean-square error

for a finite time interval will be O(h2a).

Stochastic differential equations can be thought of as deterministic equations with a partic-

ular time-dependent random driving force. As for deterministic equations, “strong” convergence

measures the fidelity of the approximate solution to the true solution for a given noise history. For

the Rouse model, the entire chain conformation R is taken as y, and the solution error is the mean-

square error in the bead positions. Finally, to eliminate sensitivity to the particular noise history,

the solution error is averaged over many noise histories.

Frequently in simulations of polymer dynamics, the statistical properties for a chain are of

greater interest than the actual solution for a particular noise history. These properties are repre-

sented by distribution functions P[R(s, t)], the probability for a given trajectory to be generated

from a starting condition R(s,0). The approximate distribution functions should approach the true

distribution functions as the step size h becomes small.

Weak convergence describes how quickly the error between distributions decreases as h

becomes small. If the distribution functions of possible trajectories match, then all correlation

functions will also match. Here we briefly reprise the basic concepts related to weak convergence

of numerical methods for stochastic differential equations, which are treated extensively in the

monograph of Kloeden and Platen,14 and can be adapted to the present problem.

A method has weak convergence “of order b” if

hg[y(t)]i�hg[ya(t)]i = O(hb ) (2.21)

where g is any functional of the solution y(t) over some time interval Dt, and the average is taken
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over both noise and initial conditions. Here, g[y(t)] can be any correlation function, such as the au-

tocorrelation function y(t)y(t 0). Note that any correlation function can be expressed in terms of the

distribution P[y(t)], so convergence of the approximate distribution P[ya(t)] to the true distribution

P[y(t)] ensures the validity of Eq. 2.21.

Although Eq. 2.21 provides a formal definition for weak convergence, it is not useful for

verifying the convergence order of a numerical method. It is impossible to confirm explicitly that

Eq. 2.21 holds for all possible correlation functions. It would be more convenient to have Eq. 2.21

in a form where the convergence of only a small set of quantities needs to be checked.

Consider the evolution of the distribution over a short time interval Dt from a well-defined

initial configuration corresponding to a very narrow initial distribution function P(y0). If the time

interval is short enough, the distribution does not have time to change very much. If a numerical

scheme is accurate, then the small changes in the approximate distribution P(ya) should also match

the change in the true distribution P(y). Since both the true and approximate distributions remain

narrow after the short time Dt, it suffices to compare them by comparing the low-order moments

of each distribution.

To verify weak convergence, the error between true and approximate moments of the dis-

tribution is compared in the limit of small time intervals. A useful theorem gives this criterion for

weak convergence: the difference in the k-th moments for a single step h is14

hDyk(h)i�hDyk
a(h)i = O(hb+1) (2.22)

where k = 1,2, ...,2b + 1. The corresponding cumulative error for the moments evaluated after a

finite interval Dt is

hDyk(Dt)i�hDyk
a(Dt)i = O(hb ) (2.23)

However, note that if y is a vector, it becomes increasingly cumbersome to compute the

successive moments, which are tensors of increasing rank. This is certainly the case for the Rouse
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model for a chain of N beads, for which there are 2N degrees of freedom. Therefore in the present

work, instead of explicitly verifying numerically the weak convergence criterion Eq. 2.23, we con-

tent ourselves with exemplifying weak convergence Eq. 2.21 for a particular property of interest,

namely the mean squared distance between adjacent beads, (1/n)Â(∂sR)2.

2.2.1 Convergence properties

It is easier to understand the significance of convergence properties for some numerical

method of interest by comparing it to a baseline numerical method. A suitable point of comparison

is the explicit Euler method because it is a typical solution method for stochastic equations. The

explicit Euler method is ordinarily not a good numerical method for solving deterministic equations

because it is order a = 1 and has a narrow range of stability (see Section 2.2.2). However, the

explicit Euler method is commonly used to solve stochastic equations because it only relies on the

noise at the initial conditions to evolve the equation, and thus is simple to implement.

Operator splitting can be applied symmetrically or asymmetrically, yielding different con-

vergence properties. Asymmetric splitting proceeds as described before, with alternation between

L and N for equal times. In symmetric splitting, N is first evolved for half of the swap time, then L

is evolved for the full swap time, and finally N is evolved for the remainder of the swap time. In the

limit of infinite time evolution, symmetric and asymmetric splitting are indistinguishable. When

evolved over finite time scales, symmetric splitting has better convergence properties, with only

one additional FFT. For the purposes of this paper, operator splitting is taken to mean symmetric

splitting.

The “true” dynamic for each method must be defined in order to compare error as the

computational step size is varied. For the explicit Euler method, the true dynamics is defined as the

solution for a stepsize h = dt. For operator splitting, the true dynamics is defined as the solution for

a fundamental stepsize dt 0 when L and N are evolved on the swap time Dtswap = 2dt 0 (the shortest

possible discrete symmetric swap time). We define the true evolution under the nonlinear operator
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N to be the solution obtained using an accurate numerical integrator. In this way we can focus on

the error introduced only by operator splitting.

Approximations are computed for the explicit Euler method by taking h = 2kdt, and for

operator splitting by taking Dtswap = 2kdt 0 for k = 1,2, ...,kmax. For each method, the approxima-

tions and true dynamic are evolved over the same short time period so that solutions change on

equal time scales. The difference between the approximations and the true dynamic will be the

cumulative error (of order a or b ).

Since all dynamics are compared over the same time period, the overall time explored Dt

must be at a minimum Dt = 2kmaxdt. However, the convergence theorems are only true for short

stepsizes h. Thus, the fundamental steps dt and dt 0 must be very short times. Additionally, the

explicit Euler method requires very small steps so that the solution does not explode over the total

Dt.

To exemplify convergence orders with numerical results, the size of dt and dt 0 must be

determined by trial-and-error for each method and convergence type. They must be chosen short

enough that the distribution function does not have time to change very much, long enough that the

distribution function does change, and also long enough that computational underflow is avoided.

In general, good choices for dt and dt 0 to exhibit convergence properties are fractions of the shortest

Rouse time tR/n2, and dt for the explicit Euler method is much shorter than dt 0 for operator

splitting.

Analysis shows that both the explicit Euler method and operator splitting exhibit strong

convergence of order a = 1 (see Appendix E). In order to verify strong convergence, the approxi-

mate and true dynamics for each method are evolved over a particular noise history. For the explicit

Euler method, this simply requires computing a noise history at the start of each step, and applying

an appropriate number of terms based on the size of h. For operator splitting, the exact solution

to L must be adapted from continuous time to discrete time in order to apply the integrals over the

noise as a summation of a noise history (see Appendix B).
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Figure 2.2: Log-log plots of mean-square error for bead positions. ġtR = 4, n = 15 bonds, a = 0.1.
For explicit Euler, dt = (1/256)(tR/n2) and maximum step size = 64 dt. For operator splitting,
dt 0 = (1/16)(tR/n2) and maximum swap time = 64 dt 0.

Since the mean-square error is O(h2a), log-log plots of the error versus step (swap) size

should appear linear with slope 2a (Fig. 2.2). Both operator splitting and explicit Euler have

approximately a slope of two, verifying that operator splitting and explicit Euler are strong order

a = 1.

In contrast to strong convergence, the explicit Euler method only has weak convergence

order b = 1 while operator splitting has order b = 2 (see Appendix E). The change in the sum

of squared distances between adjacent beads is computed using the explicit Euler method and

operator splitting by averaging over initial configurations and noise. The error is log-log plotted

versus the step (swap) size (Fig. 2.3).

Operator splitting has the same strong order as the explicit Euler method, but a better weak

convergence order, which is often of greater interest. Note that in Figure 2.2 and Figure 2.3 the

timesteps explored with operator splitting are considerably larger than those explored with explicit

Euler. The timesteps for the explicit Euler method have to be taken shorter than operator splitting,

or else the error in the solution diverges. This is a result of the most important advantage of

operator splitting over the explicit Euler method: stability.
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Figure 2.3: Log-log plots of the absolute averaged error in the mean-square distance between
adjacent beads. ġtR = 4, n = 15 bonds, a = 0.1. For explicit Euler method, dt = (1/256)(tR/n2)
and maximum step size = 64 dt. For operator splitting, dt 0 = (1/16)(tR/n2) and maximum swap
time = 64 dt 0.

2.2.2 Stability

While convergence describes the behavior of the method as the time step becomes small,

stability describes behavior as the time step becomes large. Stability is generally of more interest

to running a simulation because one wants to take large timesteps to minimize the computational

work.

Stability analysis studies how small error perturbations propagate as a numerical method

marches forward. These errors may either die out, diverge, or maintain an approximately constant

amplitude. The radius of stability describes how large of a step h can be taken without the method

becoming unstable (causing the solution to diverge). Implicit numerical methods are typically more

stable than explicit methods. Additionally, methods that are faithful at higher order derivatives tend

to be stable.

The explicit Euler method is notoriously unstable. In the case of the nonlinear Rouse model,

we observe that fundamental step sizes larger than dt = 2tR/n2 cause the method to become un-
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stable for n = 15 bonds. This is why such small step sizes were required to verify the convergence

orders (see Figs. 2.2 and 2.3).

Although the radius of stability can be investigated analytically, we have not carried out

this analysis for operator splitting because of the complexities introduced by the nonlinear term.

Instead, we have analyzed stability numerically by examining the steady-state error in the Rouse

modes (Fig. 2.4). Let the error in the p-th mode ep be defined as

ep =
h(Xp �X (a)

p )2i
hX2

pi
(2.24)

where Xp is the true mode and X (a)
p is the approximate mode.
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Figure 2.4: Steady-state errors for the odd-number Rouse modes. ġtR = 4, n = 15 bonds, a = 0.1,
dt 0 = tR/n2. Chains were allowed to evolve for 4tR to reach steady state.

Figure 2.4 shows that as the swap time increases, the error in the Rouse modes increases.

The higher modes are error-sensitive, so ep ! 1 faster. The higher modes are more sensitive

because changes occur on a shorter time scale than in the lower modes, so large swapping steps

“skip” these dynamics. In contrast, the error in the lowest Rouse mode (p = 1) is only about 10%

if the swap time is approximately half the Rouse time. Further, the error for each mode at a given
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swap time saturates to a steady-state value. Cumulatively, this implies unconditional stability for

operator splitting.

Error in the high Rouse modes is not as important as error in the low Rouse modes for

representing the polymer conformation. The low Rouse modes give the general orientation and

shape of the conformation, while the high Rouse modes provide the “definition” to the conforma-

tion – the contours, sharp twists, and turns. As error is introduced to the high Rouse modes, chains

become smoother (Fig. 2.5). However, the low Rouse modes are mostly faithful, so the chains

remain synchronized to the true chain.

Figure 2.5: Sample conformations computed over a particular noise history with different swap
rates. The conformation with the largest wiggles is the “true” dynamics. The progressively
smoother conformations were run with swap times Dtswap = 4dt 0 and Dtswap = 8dt 0.

One can impose an error tolerance on the modes (say, 10% in the highest mode), and select

the corresponding swap time. Error will enter the solution almost immediately after the simulation

begins, but it will not increase. The swap time can then be chosen depending on the required

fidelity at a given mode.
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2.2.3 Computational benchmarking

The computational efficiency of operator splitting was compared to the explicit Euler method.

Operator splitting was implemented using FFTW v.3.3b for FFTs,15 and the fifth order adaptive

step size Cash-Karp Runge-Kutta method and driver from Numerical Recipes in C for numerical

integration.16 The time required for a single step was averaged over ten million steps, each with a

different initial condition and noise.

It was observed that, as expected, explicit Euler had a constant computational time indepen-

dent of step size. However, operator splitting had a variable time on a single step, due to the amount

of work done by the numerical integrator, which depended on the starting chain configuration and

step size.

It is worth noting that the amount of work required for operator splitting is dependent on

the strength of the flow. Under strong shear flow, the chain becomes more stretched during the

linear step than under weak or no flow. The stretched configuration makes the system stiffer for

the numerical integrator in the nonlinear step, which necessitates shorter steps and thus more work.

For our benchmarking tests, we have applied a fairly strong shear rate of ġtR = 4. If we were to

simulate diffusion (no flow), it is likely that the added computational cost for operator splitting

would be somewhat reduced.

A plot of the relative amount of computational time required on a single step (tOS/tE) for

operator splitting and explicit Euler versus step size (Fig. 2.6) shows that splitting initially requires

about five times more computational work for single short steps. However, when large steps are

taken, the increase in work is significantly less than the increase in step size.

This means that operator splitting can significantly reduce the amount of work required in

standard practice. We previously noted that explicit Euler certainly became unstable near 2tR/n2

when n = 15. A safer step size to guarantee stability is (1/4)tR/n2, as we have used as a maximum

in our convergence tests. If we enforce a modest error of no more than ⇡ 30% (square error

0.1) in the highest three Rouse modes when n = 15, we find from Figure 2.4 that we can take a
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step of approximately 10tR/n2 with operator splitting. From an interpolation of Figure 2.6, this

corresponds to approximately a ten fold increase in work. However, we were able to increase the

step size forty fold, so this corresponds to a factor of four speed up using operator splitting.

At very large timesteps, splitting is not faithful to the dynamics of the highest modes, even

if it is faithful to the lowest modes. However, the highest modes still take on random values with the

correct equilibrium statistics because they are regenerated at each step from a random noise with

fading memory of the previous value. This is ultimately what leads to the stability of splitting, and

prevents the error in the modes from blowing up. It is thus reasonable to take very large timesteps,

with considerably higher error in the highest Rouse modes than 30%. It is ultimately this stability

property that gives operator splitting the computational edge over explicit Euler.
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Figure 2.6: Relative computational time required for operator splitting compared to explicit Euler
method, ġtR = 4, n = 15 bonds, a = 0.1. The computational time for explicit Euler was evaluated
at dt = (1/16)tR/n2.

2.3 Conclusions

Although ideally a numerical method has high order convergence and good stability prop-

erties, it is difficult to devise a method with weak convergence higher than order b = 2 because
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non-Gaussian random variables are required. Thus, operator splitting is a very useful numerical

method because it has weak convergence b = 2 and seemingly unconditional stability.

Operator splitting was successfully implemented to evolve the nonlinear Rouse equation in

shear flow in order to generate probability distributions for the distance between adjacent beads.

Strong convergence order a = 1 and weak convergence order b = 2 were verified numerically.

The stability of operator splitting was explored numerically, and shown to be almost uncondi-

tionally stable. The exact solution to the linear Rouse equation was also extended to mixed flow,

demonstrating the generalizability of the method.

An implementation of operator splitting requires

1. “Splittable” equation. The differential equation must be separable into an exactly solved

part, and a numerically solvable part.

2. Faithful numerical integrator. A high order numerical integrator is required to minimize

error in the numerical solution, so that error is introduced mostly by operator splitting.

3. Fast Fourier transforms. Frequently, the exact solution is treated in Fourier space and the

numerical solution in real space. Fast Fourier transform allows for cheap conversion between

the two at each swapping step.

Although implementing operator splitting may seem inconvenient compared to a simple

implementation of the explicit Euler method, the higher order weak convergence and stability

properties of operator splitting are worth the effort. In particular, large stepsizes may be taken so

that evolutions which would be computationally intensive with explicit Euler can be done consid-

erably more quickly.

Operator splitting can be applied to a variety of problems in the stochastic dynamics of

continuous-field order parameters, for which the evolution equations are of the same essential

form as the nonlinear Rouse model, i.e., conforming to the three conditions listed above. Examples

include mixed binary fluids in flow, block copolymer order-disorder transitions in flow, and flow
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alignment of ordered fluids such as smectic or nematic liquid crystals. Flow effects in these systems

are often treated as initial value problems with noise effects neglected, but clearly for each case

there is a regime where noise effects compete with flow and ordering in determining the steady-

state structure, for which the present splitting approach should prove useful.
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CHAPTER 3

Cylindrical cap model for heterogeneous nucleation

The flow-induced crystallization of polymers is of considerable interest because of its rel-

evance to industrial processes such as injection molding, extrusion, and fiber spinning. In such

processes, molten polymer is subjected to intense stress from flow before it is supercooled into

a semicrystalline product. It is well documented that the properties of the material are strongly

dependent on the processing conditions, and in particular much research has gone into studying

the effect of flow on crystallization kinetics.1–4

In a typical experiment, a sample of molten polymer is subjected to a brief interval of shear

flow, and its crystallinity is monitored over time. Shear flow causes isotactic polypropylene to

crystallize one hundred times faster than it would in the absence of flow.1 The flow-induced crys-

tallization of isotactic polypropylene has been frequently studied in the literature, in part because

of its ubiquitous industrial and commercial presence. Isotactic polypropylene is also particularly

useful for flow studies because it crystallizes on a time scale that is not so fast that crystallization

is hard to observe, but also not so slow that experiments become prohibitively long.

Crystallization is a nucleated process. Nuclei may be homogeneous (formed within the

melt itself) or heterogeneous (formed on a surface such as an interface or a colloidal solid like dust

or catalytic debris). Heterogeneous nucleation occurs more readily than homogeneous nucleation

at higher temperatures. For isotactic polypropylene, heterogeneous nucleation tends to dominate

in a temperature range of approximately 115�C�150�C, while homogeneous nucleation does not

become significant until 80�C� 85�C.5 As a result, homogeneous nucleation is quite difficult to

observe in bulk samples, such as the commercial polymers used in flow-induced crystallization

experiments.

However, homogeneous quiescent crystallization has been investigated for polyolefins through

heroic efforts to form isolated micron sized droplets of exquisitely clean sample, free of hetero-

geneities.6–10 These experiments provide estimates of the homogeneous nucleation barrier. Homo-

geneous nucleation parameters for polyethylene have also been calculated with reasonable success,
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but such calculations do not exist for isotactic polypropylene.11

Some have theorized that flow accelerates the rate of crystallization by increasing the rate

of homogeneous nucleation. It stands to reason that quiescent crystallization of the same sam-

ple should also be controlled by the same mechanism. However, we shall show that quiescent

crystallization data for bulk samples is inconsistent with this idea. Indeed, analysis of quiescent

crystallization data for bulk polypropylene gives a nucleation barrier that is much smaller than

the value obtained from careful homogeneous nucleation experiments. This suggests that hetero-

geneous nucleation is the relevant mechanism at typical experimental conditions in flow-induced

crystallization experiments. Although substantial theory has been developed for homogeneous

nucleation, there is a lack of theory for heterogeneous nucleation of polymers.

3.1 Background

Heterogeneous nucleation presents somewhat of a challenge to the theorist. Although it

is well known that a polyolefin nucleus can be modeled as a cylinder with high energy end caps

(due to chain folding), and a low energy lateral face, it is not readily apparent how to model the

various heterogeneities that could be present in the melt. Not all heterogeneities are equal; there

is no reasonable way to know what shape they have, how favorable they are as a substrate, or in

what concentration they are present in any given sample. However, with reasonable assumptions,

a simple model can be constructed.

The heterogeneities in a melt should be quite large compared to the size of a critical nucleus,

which is on the order of a few nanometers. Locally, the overall shape of a heterogeneous particle is

inconsequential; the surface appears to be flat. Further, we note that typical nucleating agents added

to polyolefins to promote nucleation are insoluble crystals with exposed hydrocarbon groups.12

Such a surface would not be specially templated to match the crystal structure on the Ångström

scale – and yet it promotes nucleation. Thus it is reasonable to model the nucleating substrate as a

flat, featureless surface. Finally, we expect that dispersed heterogeneous particles must be roughly

33



3. CYLINDRICAL CAP MODEL FOR HETEROGENEOUS NUCLEATION

Hamaker constant matched with the crystal so that the heterogeneities do not aggregate due to van

der Waals attraction.

Extensive theory on the kinetics of crystallization has long been established by Turnbull,

Hoffman, Lauritzen, and others.13–16 Nuclei are either considered to form instantaneously (all at

once) or sporadically (constant rate). Binsbergen has proposed a mechanism for heterogeneous

nucleation in which all nuclei are preformed instantaneously in the melt.17–19 However, given that

the observed nucleation density has a strong temperature dependence, it seems more plausible that

nucleation is occurring sporadically at a rate that may simply be so fast that it appears instantaneous

at high supercoolings. Classical nucleation theory gives an expression for the nucleation rate I (per

volume per time) as outlined in Refs. 13 and 20

I = I0 exp

"
� U⇤

R(T �T •
g )

#
exp

�DG⇤

kT

�
(3.1)

The first factor of the WLF form accounts for the temperature dependence of local motions that

govern the attempt frequency for nucleating I0, controlled by proximity to the glass transition.21

As Hoffman has discussed, empirically T •
g is about 50�C below the glass transition, and U⇤ has a

value of about 1500 cal/mole for polyethylene.22 Although some have assumed slightly different

values U⇤,8 we assume a value of 1500 cal/mole is also reasonable for polypropylene. The second

factor is the Boltzmann weight for forming the critical nucleus with DG⇤ the critical free energy

barrier. The critical quiescent homogeneous nucleation barrier DG⇤
hom for a cylindrical bundle is

DG⇤
hom =

8ps2
s se

(DSDT )2 (3.2)

where ss and se are the lateral and end cap interfacial tensions, DS is the volumetric entropy of

transition, and DT is the undercooling.23, 24

The simplest physical model for heterogeneous nucleation is a “spherical cap” nucleus

against a flat surface.25–28 Unfortunately, the spherical cap model does not apply to polymeric
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crystallization where the nucleus is better modeled as a cylinder. For polymers, heterogeneous

nucleation should be modeled as a cylinder against a surface. This cylinder could be situated one

of two ways on the surface: with either the end cap of a cylinder or the lateral face of a “cylindrical

cap” parallel to the surface. However, it is difficult to see how the end cap chain folds could arrange

in a favorable way if they abutted a flat interface. It seems that the natural choice is to model the

nucleus as a cylindrical cap situated lengthwise on a flat surface, as shown in Figure 3.1.

�s

�e

�0 �00
✓

H*

R*

Figure 3.1: Diagram of a cylindrical cap nucleus forming on a flat featureless surface. Shading
indicates actual nucleus formed, dashed line visualizes the full cylinder of which the nucleus is a
cap.

✓
�00�0

�s

Figure 3.2: Cross section of cylindrical cap nucleus.

The geometry of the cylindrical cap is controlled by a contact angle, as shown in Figure 3.2.

The contact angle arises from a balance between the lateral interfacial tension, and two additional

interfacial tensions: the nucleus-surface tension s 0 and the melt-surface tension s 00. If values for
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the interfacial tension are known, the contact angle may be approximated from Young’s equation

s 0 +ss cosq = s 00 (3.3)

In this geometry, it can be shown that the heterogeneous nucleation barrier DG⇤
het is

DG⇤
het =

8ps2
s se

(DSDT )2

✓
q � sin(2q)/2

p

◆

= DG⇤
homv(q) (3.4)

where q ranges from zero to p . Details of this derivation are included in Appendix F.

It is worth noting a few important features of Eq. 3.4, which are also true of the spherical

cap model. The critical radius R⇤ and critical height H⇤ do not depend on the contact angle. We

can interpret v(q) as the volume fraction of the homogeneous nucleus that must be formed. As the

contact angle approaches zero (a perfectly wetting surface), the nucleation barrier disappears. In

this limit, the nucleus is essentially already part of the solid, so there is no barrier to formation.

As the contact angle approaches 180� (perfectly nonwetting surface), the original homogeneous

barrier is recovered, since the nucleus and the surface are essentially non-interacting, and there is

no advantage to having a surface present.

A common crystallization experiment is to observe the crystallinity of a bulk sample by

turbidity or differential scanning calorimetry (DSC). The temperature dependent nucleation rate

can be extracted and compared to Eq. 3.1 to obtain the nucleation barrier. Because the bulk

samples are not exquisitely clean, heterogeneous nucleation dominates the crystallization. By

applying homogeneous nucleation parameters and comparing the observed barrier to Eq. 3.4, the

contact angle parameter can be extracted from v(q). The contact angle should be in a “reasonable”

range of values if our model is correct; that is, the contact angle should neither be so acute that the

nucleus is unreasonably small nor be so obtuse that the effect of the heterogeneity is insignificant.

Further support for our model can be provided by estimating a value for the contact angle from
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molecular-level theory, and comparing to the experimental value. These calculations are treated in

a companion publication.

3.2 Analysis

We assume that nucleation is random in space, occurring at a constant rate I, and that there

is no site saturation effect. Site saturation occurs if the number of heterogeneities is limited. How-

ever, we would expect that a typical bulk commercial melt should have no shortage of impurities,

and that these impurities should be well-dispersed in the sample so that nuclei can form at random.

From Eq. 3.1, we expect that nucleation will occur at a constant rate at a constant undercooling.

Given these conditions and a constant spherical crystal growth rate u the relative crystalline volume

fraction X is

� ln(1�X) =
pu3

3
t4I (3.5)

which is the Avrami equation in the case of three dimensional sporadic growth.29–31

An expression for I can by written by combining Eqs. 3.1 and 3.4

I = I0 exp

"
� U⇤

R(T �T •
g )

#
exp

� 8s2

s se

kT DT 2DS2

✓
q � 1

2
sin2q

◆�
(3.6)

= I0 exp

"
� U⇤

R(T �T •
g )

#
exp

� A(q)

T DT 2

�
(3.7)

In the above, A(q) is a grouping of temperature independent constants

A(q) =
8s2

s se

kDS2

✓
q � 1

2
sin2q

◆
(3.8)

At the characteristic crystallization time t1/2, the sample is approximately half crystallized.

Substituting Eq. 3.7 into Eq. 3.5 and rearranging to put all terms which are a function of tempera-
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ture on the left hand side gives

4 ln t1/2 +3lnu(T )� U⇤

R(T �T •
g )

= A(q)

✓
1

T DT 2

◆
+ ln

✓
3ln2
pI0

◆
(3.9)

The value of the contact angle q and attempt frequency I0 can be extracted from the slope and

intercept of a plot of the left hand side of Eq. 3.9 versus 1/T DT 2 if values for the temperature

dependent growth rate u(T ) and the nucleation parameters in A(q) other than the contact angle are

known.

3.2.1 Growth rate

Over the temperature range of the data collected, the linear growth rate of the crystal u

varies considerably with temperature, so it may not be taken as a constant. The crystal growth rate

is controlled by the crystallization temperature relative to the glass transition and the melting point.

Hoffman has proposed a form similar to the form of the nucleation rate32, 33

u ⇠ exp

"
� U⇤

R(T �T •
g )

#
exp

� B

T DT

�
(3.10)

The constants U⇤ and T •
g have the same meaning as in Eq. 3.1. Van Krevelen and Mandelkern

et al have argued that the WLF form may not accurately model the slow down in chain mobil-

ity for semi-crystalline melts, and that this term is better represented as an Arrhenius activated

process.20, 34 Theory predicts that B takes the value of

B =
4b0sse

kDS
(3.11)

with b0 the thickness of the chain molecules, and s and se the interfacial tensions associated with

growing a small rectangular patch of crystal.35 The constant B typically has a value of about 265

K times the melting point.20
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For many polymers it has been found that Eq. 3.10 describes the data quite well, and fitting

parameters are used to correct for small discrepancies. Indeed, for a class of “normal” polymers

(including polyethylene and isotactic polystyrene) the crystal growth rate can be well-represented

by a simple model, and (for some polymers) collapsed onto a single master curve, as has been

shown by Gandica and Magill.20, 33, 36

Unfortunately, polypropylene does not belong to this privileged class of “normal” poly-

mers. Ratajski and Janeschitz-Kriegl have shown that at times experimentally determined growth

rates deviate from theory by as much as a full decade.37 Some theorize that this discrepancy is

due to the different growth regimes of the a phase.33 For our purposes, the crystal growth of

polypropylene has been shown experimentally to be log-linear in the temperature range of inter-

est, so we need only fit the experimental points, such as those given by Wunderlich and plotted in

Figure 3.3.38
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Figure 3.3: Isotactic polypropylene spherulite linear growth rate u versus temperature. Data taken
from Ref. 38, Tables VI.9 and VI.10 (100% isotacticity).

3.2.2 Nucleation parameters

In order to extract a contact angle from A(q), values for the surface tensions and transition

properties for polypropylene are needed. It is not obvious which parameter values should be used.

Some polyolefins, such as polyethylene, are theorized to crystallize via a metastable rotator phase;
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however, it is unclear whether polypropylene crystallizes in this manner.11 Although experimental

data is available for a few of the parameters for the crystal phase, only sparse data is available

for the rotator phase. Here, we will estimate values for all the crystal and rotator phase parame-

ters for polypropylene based on experiment when available, and on the corresponding values for

polyethylene otherwise.

Taking a linear approximation of free energy differences (X denotes crystal, R denotes

rotator, L denotes liquid)

DFXR = DFXL �DFRL = (T �TXL)DSXL � (T �TRL)DSRL (3.12)

and requiring that DFXR = 0 at equilibrium gives the rotator transition temperature T •
RL

T •
RL = T •

XR �
DSXL

DSRL
(T •

XR �T •
XL) (3.13)

where T •
XR and T •

XL are determined from extrapolation of the melting and crystallization lines for

polypropylene of Iijima and Strobl to infinite lamellar thickness,39, 40 DSXL is taken from the liter-

ature,41 and DSRL has been estimated by assuming that DSRL is in the same proportion to DSXL for

polypropylene as for polyethylene.11 The values of these properties are summarized in Table 3.1.

Table 3.1: Literature and derived values of important physical properties of polyethylene (PE) and
isotactic polypropylene (iPP). Transition temperatures were calculated from Refs. 39 and 40. DSRL
for iPP is an estimated value (see text for discussion).

r (g/cm3) DHf (kJ/mol) DSXL (J/g-K) DSRL (J/g-K) T •
XL T •

XR T •
RL

PE 0.78442 4.1±0.241 0.71810 0.48510 145�C 158�C 139�C
iPP 0.85341 8.7±1.641 0.449±0.08341 0.303±0.055 188�C 193�C 185�C

The crystal end cap interfacial tension sXL
e can be determined experimentally from the

Gibbs-Thomspon relation and the slope of the melting line of Iijima and Strobl39

Tm(d) = T •
m � 2sXL

e
DS

1
d

(3.14)
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where d is the lamellar thickness.

Experimental values for the lateral surface tension ss are not available. Likewise, although

ss has been calculated for polyethylene, such calculations have not been carried out for polypropy-

lene.11 Instead, we estimate the crystal lateral interfacial tension by assuming that it is proportional

to the calculated polyethylene lateral tension by volumetric heat of fusion. The polypropylene rota-

tor tensions are assumed proportional to the crystal tensions by the same ratios as their polyethylene

counterparts. These values are summarized in Table 3.2, and a barrier plot is shown in Figure 3.4.

Table 3.2: Interfacial tensions for polyethylene (PE) and isotactic polypropylene (iPP). Values for
PE were obtained from Ref. 11. All tensions given in erg/cm2.

sXL
E sXL

S sRL
E sRL

S
PE 57.1 24.5 33.1 16.4
iPP 46.5±8.6 15.9±3.0 27.0±5.0 10.7±2.0
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Figure 3.4: Estimated homogeneous nucleation barrier plot for crystal and rotator phases of iso-
tactic polypropylene. See main text for discussion of assumptions.

3.2.3 Droplet experiments

Reliable homogeneous nucleation experimental data can be collected by a carefully de-

signed droplet experiment, such as those by Cormia, Price, and Turnbull (CPT);6, 7 Koutsky, Wal-

ton, and Baer (KWB);8 Ross and Frolen (RF),9 or Kraack, Deutsche, and Sirota (KDS).10 In the
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method of KWB, droplets of polymer solution were sprayed by atomizers onto slides and stabilized

in silicone oil. CPT and RF achieved a droplet suspension by dispersing highly purified crystals

into a viscous nonionic surfactant. KDS followed a similar method by dispersing into a solution of

viscous surfactant and water to allow for pumped filtration of the solution.

Each individual droplet constitutes an individual nucleation “experiment” isolated from the

others. The droplets which contain heterogeneities crystallize quickly, but homogeneous nucle-

ation can then be observed in the remaining population of heterogeneity-free droplets. In all such

experiments, it is necessary to create exquisitely clean samples so that most of the droplet pop-

ulation is free of heterogeneities. If these droplets are uniform in size, homogeneous nucleation

parameters can be calculated by observing the number of homogeneous droplets that nucleate over

time under a known thermal profile (e.g. isothermal or constant cooling).

We have reanalyzed the isothermal droplet experimental data of KWB to determine A(180�),

the lumping of temperature independent constants for homogeneous nucleation. Although KWB

report values for the interfacial tensions, we have reanalyzed their data ourselves to avoid esti-

mating parameters or reverse engineering their calculations. To briefly summarize this procedure,

details of which are well documented elsewhere,9 the fraction of equal volume droplets crystallized

is monitored over time for multiple undercoolings. The temperature dependent nucleation barrier

I(T ) at each undercooling is determined from the slope of a log-linear plot of this data. Then,

A(180�) can be determined from the slope of a plot of ln I(T ) versus 1/T DT 2. If we assume the

crystal melting point T •
XL, we recover a value of 5.6⇥107 K3 for A(180�). We note that the choice

of melting point temperature (crystal versus rotator) has a negligible effect since the two differ

by only a few degrees, and the typical homogeneous crystallization temperatures are far from the

melting point.
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3.2.4 Experimental data

Quiescent crystallization data (crystallization time t1/2 versus temperature) for polypropy-

lene is available from multiple experiments, and is reproduced in Figure 3.5. Kumaraswamy et

al measured the crystallization time with a mixture of turbidity and DSC,2 whereas Silvestre et

al and Sajkiewicz measured only with DSC.43, 44 The data of Silvestre et al and Sacjkiewicz are

in good agreement. It is unclear why the data of Kumaraswamy et al shows a softer temperature

dependence. All experiments used some commercially available polymer with Mw approximately

3-5⇥105 g/mol and with comparable polydispersity (Mw/Mn ⇡ 6�8).
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Figure 3.5: Quiescent crystallization times t1/2 for bulk isotactic polypropylene versus tempera-
ture. Circles (Ref. 2) were determined with calorimetry for the first two data points and turbidity
for the third. Crosses (Ref. 43) and triangles (Ref. 44) were both determined by DSC.

3.3 Results and Discussion

Plotting according to Eq. 3.9 gives reasonably linear data, as shown in Figure 3.6. For each

set of data, the contact angle and attempt frequencies were calculated using the estimated crystal

(XL) and rotator (RL) parameters. The contact angle was also determined for each data set using

the homogeneous A(180�) obtained by the isothermal droplet experiments of KWB. These results

are summarized in Table 3.3. Note that again the choice of melting point had a negligible effect on
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Figure 3.6: Linearized crystallization data, replotted from Figure 3.5.

Table 3.3: Contact angles and attempt frequencies. XL and RL indicate the assumption of nucle-
ation via crystal (X) or rotator (R) nuclei. Attempt frequencies I0 have units of cm�3s�1. qKWB is
the contact angle obtained using nucleation data from Ref. 8.

qXL log10 IXL
0 qRL log10 IRL

0 qKWB
Ref. 2 42�± 6� 9.1±0.4 49�±8� 8.9±0.7 39�±1�

Ref. 43 63�±11� 18.2±1.2 75�±14� 17.6±1.1 58�±2�
Ref. 44 57�±10� 16.8±2.0 68�±13� 16.4±1.9 53�±5�

The values found for the attempt frequency were surprisingly low compared to the values

typically reported for homogeneous nucleation. Typical values for I0 for homogeneous nucleation

are of the order of 1025 � 1035 cm�3s�1.8, 45 However, if the atypical data set of Kumaraswamy

et al is disregarded, the determined attempt frequencies are roughly of the order of 1018 cm�3s�1,

which is seven decades smaller than the lowest “typical” value reported for homogeneous nucle-

ation. This may be partially accounted for by two factors: an extremely small “privileged” volume

fraction of polymer in the neighborhood of a surface that may attempt to form a nucleus, and an

even smaller fraction of this surface that presents a highly favorable substrate for nucleation. We

may also partially attribute this discrepancy to the difficulty of determining an accurate value for I0

due to the high sensitivity of I0 to the quality of data and the fitting procedure, since it is determined

by exponentiating the intercept of a linear fit.

44



3. CYLINDRICAL CAP MODEL FOR HETEROGENEOUS NUCLEATION

The calculated contact angles ranged from roughly 40� to 70� depending on parameter

choice and data set, with a mean value of 56�. The contact angles calculated with the estimated

crystal parameters were in excellent agreement with the angles calculated using the barrier of

KWB. This may suggest that isotactic polypropylene does not crystallize via a rotator phase. How-

ever, regardless of parameter choice, the contact angles all lie in roughly the same range, and such

a conclusion is not definitive.

It is worth noting that the standard error reported for the contact angles calculated by the

estimated parameters is rather large. This is due to the large uncertainty in the heat of fusion

of polypropylene, which propagates through our calculations. Bu, Cheng, and Wunderlich have

discussed the difficulty in pinning down a reliable value for the heat of fusion.46 However, in light

of the approximations made in these calculations, we find these error bars acceptable.

The extracted contact angles were in a “reasonable” range of values. As previously dis-

cussed, it would be physically unreasonable to have a contact angle that is extremely acute or

obtuse. If the contact angle were too acute, the size of the cylinder would become very small, to

the point that the small number of chains may no longer be accurately modeled. In contrast, a very

obtuse contact angle would suggest that the presence of the surface had only a negligible effect on

the nucleation barrier, and the assumption of heterogeneous nucleation (instead of homogeneous

nucleation) would become tenuous. We would expect that the contact angle should be somewhere

in between these extremes. The fact that the contact angle is slightly acute is in agreement with

Binsbergen’s experiments that have shown that good nucleating agents have exposed hydrocar-

bon groups.12 These hydrocarbons would be expected to have a favorable interaction with the

hydrocarbon nucleus, which should decrease the contact angle.

In a complementary approach in Chapter 4, we have reinforced our model by calculating a

contact angle from a molecular scale description of the crystal and its interface. Our calculations

give a value of 54�±11� for the contact angle, which is in excellent agreement with the extracted

values. This suggests that the cylindrical cap model for heterogeneous nucleation is correct.
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3.4 Conclusion

Given the extracted values for the contact angle and attempt frequency, it can be concluded

that the cylindrical cap model for heterogeneous nucleation of polypropylene is a reasonable rep-

resentation of crystallization in bulk commercial samples. Typical values for the contact angle

correspond to an approximate factor of six decrease in the nucleation barrier predicted by homo-

geneous nucleation theory. Given this significant difference, crystallization in bulk samples (both

quiescent and flow induced) should be analyzed as a heterogeneous nucleation event, and not a

homogeneous one. This model may ultimately be combined with calculations from melt rheology

of entropy reduction due to flow to estimate the heterogeneous nucleation barrier reduction due to

flow, and hence the increase in crystallization rate.
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CHAPTER 4

Atomistic calculation of interfacial tensions

In typical polymer crystallization processes, bulk melts are quenched below the melting

point where the polymer can nucleate and crystallize. Homogeneous nuclei form within the melt,

while heterogeneous nuclei form on surfaces and interfaces. The presence of these interfaces re-

duces the barrier to heterogeneous nucleation as compared to the homogeneous barrier, and hence

softens the temperature dependence of the nucleation rate compared to purely homogeneous nucle-

ation. At typical quench temperatures for isotactic polypropylene (120�C�140�C), heterogeneous

nucleation tends to dominate.1

In Chapter 3, we have proposed a simple “cylindrical cap” model for heterogeneous nucle-

ation of isotactic polypropylene. The key controlling parameter in this model is the contact angle

of the cap with a featureless Hamaker constant matched surface. As shown in Figure 4.1, ss is the

interfacial tension of the lateral face of the nucleus with the melt, s 00 is the interfacial tension of

the melt with the substrate, and s 0 is the interfacial tension of the crystal with the substrate.

We have extracted a value for the contact angle of roughly 56� from experimental data. One

way to validate our model is to calculate a value for the contact angle from theory, and compare it

to the experimental value. Although it is possible to estimate values for ss and s 00, such an estimate

for s 0 is difficult to make. A more convenient way to calculate s 0 is by an all-atom calculation

of the interfacial tension of the crystal against a model surface. With all three interfacial tensions

known, Young’s equation can be applied to determine the contact angle.

✓
�00�0

�s

Figure 4.1: Cross section of cylindrical cap nucleus with featureless surface. Nucleus extends into
the page.
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4. ATOMISTIC CALCULATION OF INTERFACIAL TENSIONS

Lacks and Rutledge have developed a method for computing thermodynamic properties

from an atomistic Hamiltonian, including the effects of thermal fluctuations. In their method, the

total free energy of a small system of atoms is minimized at finite temperature by assuming all

chains in the unit cell are identical, and adjusting their relative position and orientation, as well as

the lattice parameters. Quantum vibrational free energy is included by assuming a quasi-harmonic

model, followed by construction of and numerical integration over the Brillouin zone on a mesh

of wave vectors. Analytical derivatives are used to compute forces, and Ewald summation is used

to treat “long-ranged” dispersion interactions (crystal cohesive energy). Lacks and Rutledge have

computed the temperature dependence of mechanical properties of bulk crystalline polyethylene

and isotactic polypropylene, including thermal expansion coefficients and elastic moduli.2, 3 The

quasi-harmonic approximation was found to be valid up to roughly one-half to two-thirds of the

melting point, at which point anharmonic coupling effects were found to cause significant deviation

from the harmonic approximation.4

Using this approach, Wilhelmi and Rutledge have computed the surface tension of polyethy-

lene crystal at finite temperature.5 They obtained the surface tension by comparing the free energy

of a slab and a bulk crystal, again adjusting parameters to minimize the total free energy of the

systems. Because of the limitation of system size to small numbers of atoms, they studied a system

that was several unit cells wide in the slab dimension (roughly 50 Å), but only one unit cell wide

in the other dimensions (a few Ångströms). They were unable to use Ewald summation methods

for the dispersion interactions because of the two dimensional slab geometry, and instead applied

a very large cutoff radius of 25 Å (it is unclear how they implemented such a cutoff radius given

the narrow periodic boundaries of their system). They found the somewhat worrisome result that

the surface tension increased at finite temperature, which is opposite of the behavior typically

observed for virtually all liquids and polymer melts.6, 7 We note that Ross and Frolen long ago

empirically fitted a very weak temperature dependence of the same sign for the lateral surface

tension of polyethylene in analyzing homogeneous nucleation experiments.8 However, this fitting
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procedure is sensitive, the temperature range is narrow, and the effect is weak.

In this work, we employ a simplified version of the Rutledge procedure. At present, it

is our goal only to estimate a contact angle for the critical polypropylene nucleus by estimating

the surface tension s 0 in order to validate our nucleation model, and not to obtain precise values

for properties at finite temperature. For this reason, we will carry out all calculations at 0 K and

extrapolate to higher temperatures. We will also assume that quantum effects have a negligible

effect on the optimum lattice parameters at 0 K as observed in Ref. 2, and so the potential mini-

mum is roughly the free energy minimum. These approximations greatly simplify the process of

optimizing the crystal structure.

We expand on the Rutledge method in two important ways: (1) the inclusion of an index

matched substrate for the crystal and (2) the inclusion of tail corrections and finite thickness correc-

tions rather than increased cutoff radius to simulate “infinite” systems. We are unaware of others

that have simulated the interfacial tension of a crystal against a surface towards an understanding

of polymer nucleation.

Furthermore, with the advantage of modern computing power, we have undertaken to sim-

ulate a considerably larger system than was accessible to Wilhelmi and Rutledge. Although larger

systems can more closely approximate the infinite system, they present new difficulties. Analytical

derivatives and large cutoff radii are impractical for large systems. Instead, we can use analytical

“tail corrections” unique to the slab geometry to calculate potential energies for infinite crystals

and semi-infinite slabs from results obtained with finite cutoffs. We also introduce continuum cor-

rections to account for the finite thickness of the slab system, which was noted to be a significant

issue for the results of Ref. 5.

In this work we consider the surface tensions of two systems: a crystal-vacuum interface

and a crystal-surface interface. For the crystal-vacuum interface, we estimate the surface tension

of the crystal, and assess the relative contributions of quantum effects, tail corrections, and finite

system sizes. For the crystal-surface interface, we again calculate the interfacial tension, and
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combine it with other estimated parameters to calculate a value for the contact angle.

4.1 Computational methods

Interfacial tensions arise due to differences in free energy between bulk systems and slab

systems with interfaces. The free energy has a potential energy contribution from bonded and

nonbonded interactions, as well as an entropic contribution due to vibrations. Intuitively, it is

expected that the potential energy of the crystal against the surface should be higher compared to

the bulk crystal due to missing Lennard-Jones contacts, but the vibrational free energy should be

slightly lowered due to the increased vibrational freedom of atoms near the surface. The surface

tension is then given by the difference in free energy per area of interface

s 0 =
∂F
∂A

=
Fslab �Fxtal

2A
(4.1)

where Fslab and Fxtal are the Helmholtz free energies of the crystal against the surface and the bulk

crystal respectively, and A is the cross sectional area of the interface (the factor of two accounts for

the two faces of the slab).

4.1.1 Normal mode analysis

The quasi-harmonic oscillator approximation is a reasonable model for the vibrational free

energy.2 We assume that the crystal free energy is approximately at a minimum when the potential

energy is at a minimum. The Hamiltonian is expanded to quadratic order in displacement from

the minimum energy positions. This expansion has a set of normal eigenmodes with frequency wi,

which decouple the vibrations to a set of independent harmonic oscillators. It is important to treat

these normal modes quantum mechanically because many have energy much larger than kT . The
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vibrational free energy Fv is then

Fv =
3N�3

Â
i

h̄wi

2
+

1
b

3N�3

Â
i

ln
⇣

1� e�b h̄wi
⌘

(4.2)

where b = 1/kT and sums are taken over all normal mode angular frequencies wi, neglecting

the first three zero-modes which correspond to bulk translation of the 3D periodic system. For a

system that has only 2D periodic boundary conditions, there will instead be 3N �2 normal modes

because one direction of periodicity is lost. The total free energy F is given by adding the potential

minimum U0 to the vibrational energy Fv.

In practice, normal modes are computed for an atomistic-level model by thorough energy

minimization followed by the construction and diagonalization of the mass-weighted Hessian ma-

trix of the potential. The eigenvalues of the Hessian can then be converted to normal mode fre-

quencies. We use the OPLS-aa force field for our molecular Hamiltonian, and capabilities of the

GROMACS simulation package for energy minimization, Hessian construction, and diagonaliza-

tion.9, 10

4.1.2 Tail corrections

Intermolecular van der Waals forces dominate the attractive forces in a crystal. Since these

forces are relatively short-ranged (decaying as r�6), the typical approach in calculations with atom-

istic classical Hamiltonians (as in molecular dynamics simulations) is to enforce a cutoff on the

order of a nanometer in order to improve efficiency. The resulting truncation errors in the force on

a given atom are typically quite small. However, in quantities such as the potential energy, missing

weak attractions from many distant atoms can add up to a significant difference.

The truncation effect is important when comparing the free energy of a bulk crystal to the

free energy of a crystal slab. Although both the bulk crystal and the slab are missing cohesive

energy beyond the cutoff, the slab is not missing as much energy because part of the space beyond

the cutoff is vacuum. This means that the apparent potential energy of the bulk crystal is much
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higher than its true value, while the apparent potential energy of the slab is only somewhat higher.

This artificially reduces the difference in potential energy between the slab and bulk, which favors

the formation of interfaces and causes the apparent surface tension to be lower than its true value.

To remedy this, we introduce analytical tail corrections for the van der Waals interactions,

in which missing attractive energy beyond the cutoff is added back, approximating the missing

atoms as a featureless continuum with the same density as the system. The Lennard-Jones 12-6

potential is

U(r) = 4ei j

 
s12

i j

r12 �
s6

i j

r6

!
(4.3)

where r is the interatomic distance, and ei j and si j have their usual meanings. A typical cutoff ra-

dius is approximately 2.5si j. Beyond this distance, the fully periodic system can be approximated

as a structureless continuum.11 Integrating beyond the cutoff sphere gives the “missing” potential

energy Usph of an atom of type i interacting with a density of type j in the fully periodic crystal

(Figure 4.2a)

Usph(rc) =
r j

2

Z •

rc
U(r)4pr2dr = 8pr jei j

"
s12

i j

9r9
c
�

s6
i j

3r3
c

#
(4.4)

where rc is the cutoff radius and r j is the number density of the j-th interaction type. The full tail

correction is given by summing over all atoms interacting with all possible density types.

This method applies well to the full crystal, which has fully periodic boundary conditions

in all directions (i.e. uniform composition). However, it fails when an atom is not surrounded by

a repeating structure with the same composition (for example, if there is a gap or surface in one

direction as is the case for a crystal slab). The correction in Eq. 4.4 would artificially “credit”

missing interactions in the void where no atoms exist.

Instead, the missing energy between an atom of type i and a density of type j must be found

by integrating over only the volume of the slab beyond the cutoff radius (V 0
c), which is infinite in
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two dimensions and finite in a third

DUi j =
r j

2

Z

V 0
c

U(ri j)dr (4.5)

where ri j represents the distance between the atom and the density. This integral is not trivial to

compute directly, but can instead be conveniently evaluated by manipulating simpler integrals. The

general correction scheme is to add back the energy missing from the slab beyond the cutoff (as for

the bulk crystal), but then subtract the energy that was artificially credited to the gapped dimension

(where there is no crystal).

The tail correction for an atom of type i that is a distance h1 and h2 (h1  h2) from the finite

edges of slab of thickness 2d with cutoff radius rc ( d) is

DUi j =

8
>>><

>>>:

Usph(rc)�Uhalf(h1)�Uhalf(h2) h1 � rc

Usph(rc)�Uhalf(h1)�Uhalf(h2)+Ucap(rc,h1) h1 < rc

Usph(rc)/2�Uhalf(2d) h1 = 0

(4.6)

where j indicates the type of density with which an atom of type i interacts. The full tail correction

to the simulated potential is computed by summing over all atoms (each with a specific type i and

edge distances) and then summing over all j atom types in the continuum.

i

rc

(a) Usph(rc)

h
i j

(b) Uhalf(h)

h
i j

rc

(c) Ucap(rc,h)

Figure 4.2: Schematic of integrals for tail corrections.

In Eq. 4.6, Uhalf is the potential energy of an atom of type i interacting with a semi-infinite
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half plane with density type j a distance h away (Figure 4.2b)

Uhalf(h) = 2pr jei j

"
s12

i j

45h9 �
s6

i j

6h3

#
(4.7)

Ucap is the potential energy of an atom of type i interacting with a spherical cap with density

type j, defined by a sphere of radius rc with nearest distance h (Figure 4.2c)

Ucap(rc,h) = 4pr jei j

" 
s6

i j

3r3
c
�

s12
i j

9r9
c

!
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i j
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i j
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(4.8)

where hr = h/rc. Details are included as in Appendix G.

4.1.3 Finite thickness corrections

Although ideally we would analyzed systems of infinite size, the number of atoms that

can be simulated is restricted by the time and memory required to compute and diagonalize the

Hessian matrix during the normal modes analysis. This is not problematic for the fully periodic

crystal, since only a sufficiently large system and tail corrections are required to guarantee that the

infinite crystal is well represented. However, we would like to compare the energy of the infinite

crystal to the energy of an “infinite” slab (that is, a slab where each surface is unaware that the

other exists). If the slab is not sufficiently thick, the slab “misses” cohesive energy from its middle,

which artificially raises the surface tension. However, if the original slab is sufficiently large, we

can again correct this in the continuum.

The finite thickness correction to the surface tension Ds 0
i j for atoms of type i in the slab of

thickness 2d interacting with a missing density of type j is

Ds 0
i j =

p
2

rir jei j

"
s12

i j

90

✓
1
d8 �

1
(2d)8

◆
�

s6
i j

3

✓
1
d2 �

1
(2d)2

◆#
(4.9)

where ri is the number density of atoms of type i in the slab. Combining our simulation results with
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tail corrections and finite thickness corrections, we arrive at the final expression for the interfacial

tension of the crystal against the surface from Eq. 4.1

s 0 =
DU0 +DFv

2A
+

Âslab
i, j DUi j �Âxtal

i, j Usph(rc)

2A
+

types

Â
i, j

Ds 0
i j (4.10)

The corrected surface tension contains three groupings of terms: the “basic” surface tension

resulting directly from simulation, the tail correction, and the slab finite thickness correction. DU0

is the difference in the simulated potential energies, and DFv is the difference in vibrational free

energy between the slab and crystal systems computed from Eq. 4.2. Both the bulk crystal and

the slab system have the same number of atoms. Tail corrections are taken by summing over all i

atoms and all j density atom types interacting with the slab or crystal. Both sums on Ds 0
i j are taken

over all possible atom types. Details of this derivation are included in Appendix H.

4.1.4 Crystal structure

We have simulated the monoclinic a1 (Cc) phase of isotactic polypropylene, as described

by Natta and Corradini.12 The a1 phase has a unit cell consisting of four 31 helices with alternating

handedness and all methyl groups pointing in the same upward or direction, as shown in Figure

4.3.

The a phase of polypropylene is polymorphic. It has been shown computationally that the

a2 (P21/c) phase is slightly more stable than the a1 phase.13 In the a2 phase, chains with two

neighboring methyl groups have their methyls oriented in the same z direction, while chains with

only one neighboring methyl group point in the opposite z direction (for example, the middle two

chains in Figure 4.3 would point upward if the outer two chains pointed downward). However,

simulations by Ferro et al and Corradini et al have shown that the difference in potential energy of

the a1 and a2 phases is marginal at best.14, 15 Since the two phases have only minor differences in

crystal structure and potential energy, the choice between a1 and a2 should have minimal effect on
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Figure 4.3: Projection of the a1 phase of isotactic polypropylene into the asinb �b plane. White
circles represent backbone carbons, while black circles represent methyl groups. Arrows indicate
handedness of chain. All methyl groups point in the same z direction. Fractional labels indicate
vertical offset of methyl group in terms of fractions of one helical repeat. Dashed line indicates
cleaved surface.

the calculated surface tension. For simplicity of system construction, we have chosen to simulate

the a1 phase.

In order to simulate surfaces, it is necessary to choose a plane upon which to cleave the

crystal. There are many different ways to cleave the polypropylene unit cell. We are interested

in simulating the face that will have the lowest surface free energy, since it is expected that a

nucleating crystal would naturally seek to minimize its surface energy. Wilhelmi and Rutledge

found this to be the (100) facet for polyethylene in vacuum,5 and a similar result might be expected

for the analogous (010) facet for polypropylene in vacuum.

It is natural to ask if the same facet will also minimize the free energy of the crystal with

a surface. By assumption, the surface in our model is featureless and has no corrugation or tem-

plating to match the crystal. We can then reasonably conclude that the surface with the lowest free

energy will be a “smooth” face, which again corresponds to a smooth lateral surface. We have

chosen to cleave the crystal at the (010) facet as indicated by the dashed line in Figure 4.3.
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4.1.5 Solid-state “simulations”

All calculations were conducted using the GROMACS simulation package with the OPLS-

aa force field and double precision methods for a system with 7,776 atoms.9, 10 This system size

corresponds to a supercell consisting of six unit cells in the a direction, two unit cells in the b

direction, and six helical repeats, for a roughly cubic box in Cartesian coordinates.

Periodic boundary conditions and periodic covalent bonding were employed to represent

an infinite system. Since chains were periodically bonded, an orthorhombic simulation box with

chains appropriately shifted was used for simplicity. The crystal slab against vacuum was repre-

sented by adding a 10.0 nm gap to the crystal in fully periodic boundary conditions to isolate the

slab in the gap dimension. The crystal against a Hamaker constant matched surface was modeled

with two Lennard-Jones 9-3 walls (2D periodic boundary conditions) with parameters chosen to

match the number density and Lennard-Jones parameters of the crystal (Figure 4.4). Details of

choosing the wall parameters are included in Appendix I.

periodic 
boundary

periodic 
boundary

periodic 
connection

1.6 Å

Figure 4.4: Simulation box for crystal slab against Hamaker-matched surface. As in Figure 4.3,
white atoms indicate backbone carbons while black atoms indicate methyl carbons (hydrogen
atoms not depicted). Carbon atoms are 75% space filling. Triangles outline four chains in a unit
cell.

A switched 12-6 Lennard-Jones potential for van der Waals interactions (cutoff from 1.0
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nm, switched from 0.8 nm) and Particle-Mesh-Ewald (PME) method for Coulomb electrostatics

(short range cutoff of 1.3 nm, dielectric constant e = 2.3) were employed for the normal modes

analysis for the bulk crystal and crystal against vacuum.16 Coulomb interactions with reaction

field zero (cutoff from 1.0 nm, er f = •) were used instead of PME for electrostatics for the crystal

against the index matched surface, because PME is ill-suited for 2D periodic systems when the

aperiodic dimension is not roughly three times the size of the periodic dimensions.9 A neighbor

list radius of 1.3 nm was used to ensure good energy conservation.

The box dimensions were manually adjusted to minimize the potential energy. The po-

tential energy was then further minimized to a tolerance of 10�4 kJ/mol-nm with the L-BFGS

minimization algorithm, and the normal modes were computed. GROMACS returns the eigenval-

ues of the mass-weighted Hessian (li) in units of kJ/mol-nm2-amu. The normal mode frequencies

wi are then
p

li ⇥1012 s�1.

The system potential energy was then recalculated using a cutoff Lennard-Jones potential

with the largest possible cutoff radius for both the Lennard-Jones and electrostatic interactions (1.9

nm). This cutoff also corresponds to half the slab thickness for the systems with interfaces, so the

tail correction formula developed previously applies. Tail corrections and finite size corrections

were then applied to this energy, and the interfacial tension was computed according to Eq. 4.10.

Short NPT simulations were also conducted to check that the OPLS force field can rea-

sonably reproduce experimental lattice parameters. NPT simulation starting from the energy mini-

mized structure was conducted at 1 atm and 300 K for 50 ps until the density equilibrated. Switched

Lennard-Jones and PME electrostatics (with the same parameters used for the normal modes anal-

ysis) were used with a velocity rescaling thermostat (t = 0.1 ps) and a Parrinello-Rahman barostat

with anisostropic pressure coupling (t = 1.0 ps, k = 4.5⇥ 10�5 bar�1).17 We found that at 300

K the average simulated lattice parameters were in excellent agreement with the experimental pa-

rameters also determined at room temperature, with a maximum error of 2.4% in the b parameter

(see Table 4.1). Based on this, we can be reasonably confident that the OPLS forcefield reasonably
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represents the real polypropylene crystal.

Table 4.1: Lattice parameters of a isotactic polypropylene from experiment and our simulations at
0 K and 300 K (all lengths in Å).

Experiment OPLS 0 K OPLS 300 K
a 6.65±0.05 6.57 6.63
b 20.96±0.15 19.40 20.46
c 6.50±0.05 6.47 6.60
b 99�200±1� 99�360 99�320

4.2 Results and Discussion

4.2.1 Crystal-Vacuum Interface

The surface tension of polypropylene against vacuum was found to be 80.0 erg/cm2 at

0 K. Inclusion of the normal modes in the free energy had a significant effect on the surface

tension. The normal modes contribute both a temperature independent zero-point vibrational free

energy term (the first term in Eq. 4.2), and a temperature dependent term. The difference in

zero-point vibrational free energy lowers the surface tension by 8.9 erg/cm2 at 0 K. Differences

in the temperature dependent vibrational free energy of the bulk and the slab furthur lowers the

surface tension at higher temperatures. Figure 4.5 shows the surface tension extrapolated to typical

crystallization temperatures by neglecting the thermal expansion of the crystal. We will discuss the

validity of this extrapolation in more detail later.

The vibrational free energy significantly lowers the surface tension (especially at finite

temperature) because of a “softening” of vibrations near the surface of the slab crystal compared

to the vibrations in the bulk. Intuitively, modes near the surface have lower frequency because

atoms near the surface have fewer neighbors and hence more freedom to vibrate than atoms in the

bulk. These softer surface modes contribute more to the entropy. One way to visualize the soft

surface modes is to examine the associated eigenvectors as a function of position in the slab. The
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Figure 4.5: Surface tension of a1 isotactic polypropylene with vacuum extrapolated from 0 K.

eigenvectors give the direction and magnitude of atom displacements in that mode. Figure 4.6

shows the magnitude of these eigenvectors versus the distance to the nearest edge averaged over

the first two thousand normal modes (ordered by increasing frequency). The “nearest edge” for

the bulk crystal (which is fully periodic and has no real “edge”) was defined as the edge of the

simulation box in the same dimension as the slab.

As expected, the average magnitude of vibrations in the bulk crystal has essentially no

spatial dependence. However, the magnitudes of vibrations within 10 percent of the nearest edge

(roughly 4 Å) for the slab are considerably higher than those in the center of the slab. For higher

frequency modes (not included in the average), the magnitudes show essentially no spatial depen-

dence, just as for the bulk crystal. It it thus apparent that the vibrational free energy is lowered for

the slab system due to modification of low frequency vibrations near the surface.

The tail corrections made a significant contribution to the surface tension. When the cutoff

radius was increased from 1.0 nm for the normal modes analysis to 1.9 nm (the maximum cutoff

radius in our periodic box), the surface tension increased by approximately 10.8 erg/cm2. Con-

tinuum corrections beyond this cutoff added an additional 3.1 erg/cm2 to the surface tension for

a total correction of 13.9 erg/cm2. This agrees with our expectations; increasing the cutoff radius

and including tail corrections increases the total cohesive energy of the bulk system more than in
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Figure 4.6: Average magnitude of the first two thousand mode eigenvectors versus nearest edge
distance for crystal-vacuum and bulk crystal systems. For the bulk crystal, the “edge” was defined
as the simulation box in the gap dimension.

the slab system since the tail corrections make atoms in the middle of the slab system “aware” that

they are missing interactions that would be present in the bulk. Evidently, it is important to apply

tail corrections when calculating surface tensions in systems like organic crystals, where cohesive

intermolecular attractions dominate.

The significant contribution of tail corrections to the potential invites the question: are the

normal modes, which are obtained from the Hessian of the potential, similarly sensitive to the

missing tail energies? It would be unfortunate if the Hessian were significantly affected by cutoff

effects, since further increasing the cutoff radius is impractical for numerical reasons. A cutoff

radius of 1.0 nm is sufficiently large that (1) all important short-ranged interactions are treated

discretely and (2) all atoms are close to their “true” minimum energy positions. Then, we can

analyze the effect of tail corrections on the normal modes by analyzing the magnitude of second

derivatives of the tail corrections (see Appendix J).

In the bulk system, the tail correction is a constant term that has no position dependence,

so no correction to the Hessian is required. For the slab system, the tail corrections do depend on

position, in the direction of the slab normal. Since the tail corrections are independent for each

atom, this amounts to correcting only one-third of the diagonal elements of the Hessian. It can
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then be shown that the relative magnitude of these corrections compared to the Lennard-Jones

contribution to the Hessian is of order (s/rc)5 ⌧ 1. Thus, we can be reasonably confident that the

normal modes are accurate.

The finite thickness corrections to the slab had only a small effect on the surface tension

(-0.4 erg/cm2). This makes sense given that the simulated slab was already roughly 3.8 nm wide.

The slab was sufficiently thick that it was not “missing” a sizable amount of cohesive energy.

Based on the small size of this correction, we can be reasonably confident that the normal modes

in the slab system are representative of two isolated surfaces, and are not artificially softened by

missing cohesive energy in the bulk of the slab.

4.2.2 Crystal-Surface Interface

The surface tension of the crystal against the Hamaker-matched surface was found to be

13.7 erg/cm2 at 0 K and 2.2 erg/cm2 at 400 K (Figure 4.7). As expected, the surface tension

was considerably lower for the crystal-surface system than the crystal-vacuum system, because the

surface provided some cohesive interactions for the slab that the vacuum did not. The slab had a

preferred distance from the surface of about 1.6 Å, which is in agreement with the rule of thumb

of Israelachvili.18 Once again, the vibrational free energy was lower for the crystal-surface system

than for the bulk crystal.

Surface vibrations for the slab with the Hamaker-matched substrate were not softened as

much as for the slab with vacuum. This is evident in Figure 4.8, which visualizes this difference

in the normal modes of the bulk and slab systems. The main figure shows the discrete cumulative

fraction of normal modes F(T ) below an energy level with temperature T . Three distinct bands

are observed: a low temperature band corresponding to lattice vibrations, a medium temperature

band corresponding to the motion of the CH2 groups, and a high temperature band corresponding

to C�H bond stretching. The inset shows a close-up view of the low temperature modes for all

three systems. The slab-vacuum curve is shifted to the left, which corresponds to having “softer”
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Figure 4.7: Surface tension of a1 isotactic polypropylene with featureless Hamaker-matched sur-
face extrapolated from 0 K.

modes (modes with lower energy). The slab-surface system is also shifted left from the bulk

crystal, but not by as much as the vacuum. At higher temperatures, the curves are not significantly

shifted from one another, suggesting that the free energy is lowered mainly by the low frequency

lattice modes. Although all modes contribute in principle to the zero-point vibrational free energy,

only these low temperature lattice modes are “switched on” in the range of temperatures relevant

to crystallization. Thus, it is the differences in these low temperature modes that dominate the

reduction in the vibrational free energy of the slab systems versus the bulk crystal.
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Figure 4.8: Cumulative fraction of normal modes below energy level with temperature T . Inset
shows a closeup of the 0 K to 200 K temperature range, where the phonons for the slab systems
are shifted to be “softer”.
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We have made two key approximations in our calculations of the crystal-surface interfacial

tension: (1) the surface is non-vibrating, and (2) the free energy may be extrapolated from 0 K to

finite temperature. We would physically expect that the presence of the crystal against the substrate

should increase the vibrational free energy of the substrate since its entropy is reduced by surface

adsorption. Treating this in simulation would be quite difficult, since it requires exact knowledge of

the structure of the substrate. However, in light of our idealization of the substrate as a featureless

surface, it is reasonable to approximate the surface as non-vibrating.

Extrapolation of the free energy from the zero-point to finite temperature is a more sen-

sitive issue. As discussed previously, the quasi-harmonic oscillator approximation is reasonably

accurate to roughly one-half to two-thirds of the melting point (or about 200 K – 300 K), so some

error is introduced at typical crystallization temperatures (400 K) by anharmonic effects. The

polypropylene crystal undergoes highly anisotropic thermal expansion at finite temperature, which

weakens the cohesive energy and modifies the normal mode frequencies, since they are obtained

by Taylor expanding around the potential minimum. A procedure in which the lattice parameters

are optimized with respect to the total free energy including vibrations, such as been attempted by

Wilhelmi and Rutledge, could remedy this issue. Our present goal is to estimate the contact angle

of the crystal nucleus against a surface, and not to obtain precise values for the interfacial tension

at finite temperature. We contend that the extrapolation is roughly valid for this purpose.

Moreover, we expect that the zero-point surface tension gives an upper bound, and that

the surface tension should in fact decrease with increasing temperature. Although Ross and Frolen

fitted a very weak positive temperature dependence of the surface tension, this dependence was ob-

tained by a sensitive fitting procedure with data taken over only a very narrow temperature range,8

and Hoffman has noted that there is no reason to be particularly confident that this temperature

dependence is correct.19 In fact Hoffman et al originally predicted a decreasing lateral surface

tension.20

Qualitatively, increasing the temperature has two effects: thermal expansion of the crystal
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and an “unfreezing” of high frequency modes. It is well known that materials generally expand

on heating, which weakens intermolecular attractions. Both the slab and the bulk crystal should

expand, causing both of their potentials to increase. However, on expansion, the missing cohesive

energy in the slab should become less “noticeable” to the atoms in the middle, so the difference

in potential energy should decrease, lowering the surface tension. Increasing the temperature also

causes more vibrations to become significant, which lowers the free energy due to the second term

in Eq. 4.2. Vibrations become active once the energy of the quantum oscillator is of order kT . The

slab system has consistently “softer” normal modes (more modes at lower energy). This means

that at finite temperature the slab should have more active modes, and thus a lower vibrational free

energy. One would expect that the slab would still have softer modes than the bulk even at finite

temperature. It can thus be reasonably concluded that the surface tension should decrease with

increasing temperature.

4.2.3 Contact Angle

With an estimate for the value of s 0 at typical crystallization temperatures, we may make an

estimate for the contact angle of the crystal nucleus against the Hamaker constant matched surface.

From Young’s equation and Figure 4.1

q = cos�1
✓

s 00 �s 0

ss

◆
(4.11)

where s 00 is the interfacial tension between the melt and the surface and ss is the interfacial tension

of the lateral face of the nucleus. We have previously estimated the value of ss to be 15.9± 3.6

erg/cm2. The interfacial tension s 00 between melt and substrate can be estimated theoretically

by a lattice-based analytical calculation; here we briefly summarize the approach and quote the

numerical result.

Both the melt and the underlying substrate are approximately structureless, Hamaker-

matched, and hence nearly enthalpically identical (the small density mismatch contributes roughly
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1 erg/cm2 to the interfacial tension). Likewise, the contributions from surface phonons to this in-

terfacial free energy are expected to be small, as they were indeed for the crystal against a surface.

Unlike the case of a crystal against vacuum, the surface acts to restrain the motion of atoms in

the surface layers nearly as much as a continuation of the crystal would have done. The domi-

nant contribution to this interfacial tension is the reduction in entropy of flexible chains near an

impenetrable wall.

Roughly speaking, we may say that polymer chains in a bulk melt adopt ideal random-walk

configurations; whereas, every monomer in the surface layer adjacent to an uncrossable surface

(whether a solid substrate, or an interface with vacuum) must turn back, rather than cross into the

forbidden half-space.

To estimate the resulting entropy loss relative to the bulk melt, we consider flexible chains

on a cubic lattice. Of the monomers in the surface layer, 5/6 are constrained to step in the plane,

while 1/6 are constrained to step into the adjacent melt half-space. (This 1/6 represents the number

of walks that on average “arrive from below” in a bulk melt, so that the adjacent melt may adopt

ideal random walk statistics.) Thus the entropic cost per unit area is

s =
kT
A0

(�(5/6) ln(4/6)� (1/6) ln(1/6)) = 0.636
kT
A0

(4.12)

where A0 is the placquet area.

We place polypropylene on a cubic lattice by filling each cell with one monomer at melt

density; this sets the placquet volume, and hence A0 = 19.9 Å2. At this scale, polypropylene is

semiflexible — one monomer can execute a 90-degree turn (with two successive gauche bonds), but

with an energy cost. However, it turns out that an analytical approximation to the interfacial tension

of semiflexible polymers on a lattice can also be constructed. The bending energy is adjusted so

that the end-to-end distance of chains on the lattice matches experiment. For polypropylene, the

result is

s = 0.367
kT
A0

⇡ 10.5 erg/cm2 (4.13)
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The value is smaller than the flexible result, which is sensible since a stiffer chain tends to run

parallel to the interface with less entropic penalty than a flexible chain would suffer. Combining

this result with the enthalpic penalty, we estimate a value for s 00 of roughly 11.5 erg/cm2.

Based on these estimates, we can conclude that at 400 K, the contact angle is roughly

54�±11�. At the zero-point, the contact angle is slightly obtuse (s 0 > s 00); however, as previously

argued, we reasonably expect that at finite temperature s 0 should significantly decrease, and the

contact angle should be acute. The estimated value for q is in excellent agreement with the values

for the contact angle extracted from experimental data, which ranged from 40� to 70� with a mean

of 56�. At the very least, we have shown that the simulated contact angle should be acute, as we

have consistently found in our analysis of experimental data.

In our original analysis of experimental data, we assumed that the contact angle was in-

dependent of temperature. We obviously expect that the interfacial tensions (and thus the contact

angle) should have a temperature dependence. However, over the narrow range of temperatures

explored in crystallization experiments, our simulations show that the contact angle is roughly

constant, and our approximation is justified.

4.3 Conclusion

We have successfully calculated surface tensions of isotactic polypropylene. As Lacks and

Rutledge found previously, quantum vibrational free energy contributed significantly due to modi-

fication of low frequency modes near the surface. Tail corrections make a significant contribution

to the surface tension, but do not much affect the Hessian matrix (and thus vibrational energy)

and so can be treated separately from the finite cutoff calculations. We were able to simulate

sufficiently large systems that finite slab size effects were not significant.

Modeling of the crystal slab against a Hamaker constant matched surface predicted a con-

tact angle of 54± 11�, which is in excellent agreement with the value previously extracted from

experimental data. This provides evidence that the cylindrical cap model for heterogeneous nucle-
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ation is valid. In future work, the surface tension at finite temperature for different crystal faces

may be treated more carefully to assess if the extrapolation from the 0 K structure was justified,

and predict more accurate values for the contact angle.
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APPENDIX A

Shear flow solution to Rouse model

From Eq. 2.7, the Rouse equations are

zY 0
p = �KpYp + yp (A.1a)

z X 0
p = �KpXp + xp + ġYp (A.1b)

Rearranging and letting wp = Kp/z gives a coupled system of ODEs

Y 0
p = �wpYp +

1
z

yp (A.2a)

X 0
p = �wpXp +

1
z

xp +
ġ
z

Yp (A.2b)

Note that Xp is coupled to Yp, but Yp is independent.

The solution for Yp over the finite time interval Dt = t1 � t0 is a simple integrating factor

problem, with µ = exp(wpt)

Yp(t1) = Yp(t0)e�wpDt +
1
z

Z t1

t0
ewp(t�t1)yp(t)dt (A.3)

= e�wpDtYp(t0)+DYp (A.4)

Since DYp is the integral over Gaussian random variables with zero mean, it is itself a Gaussian

random variable with zero mean.

Solution for Xp begins with the same integrating factor to give

Xp(t1) = Xp(t0)e�wpDt +
1
z

Z t1

t0
ewp(t�t1)xp(t)dt +

ġ
z

Z t1

t0
ewp(t�t1)Yp(t)dt (A.5)

This solution is similar to Eq. A.3, except for the coupled integral over Yp. Considering only this
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term, and substituting Eq. A.3 gives

ġ
z

Z t1

t0
ewp(t�t1)


Yp(t0)ewp(t0�t) +

1
z

Z t

t0
ewp(t 0�t)yp(t 0)dt 0

�
dt (A.6)

Simplifying the integrals and exponentials

ġ
z

ewp(t0�t1)Yp(t0)
Z t1

t0
dt +

ġ
z 2

Z t1

t0
ewp(t�t1)

Z t

t0
ewp(t 0�t)yp(t 0)dt 0dt (A.7)

=
ġDt
z

e�wpDtYp(t0)+
ġ

z 2

Z t1

t0

Z t

t0
ewp(t 0�t1)yp(t 0)dt 0dt (A.8)

The twice-repeated integral can be simplified with the Cauchy formula with n = 2

ġDt
z

e�wpDtYp(t0)+
ġ

z 2
1

(2�1)!

Z t1

t0
(t1 � t)2�1ewp(t�t1)yp(t)dt (A.9)

The final update formula for Xp is given as

Xp(t1) = Xp(t0)e�wpDt +
1
z

Z t1

t0
ewp(t�t1)xp(t)dt

+
ġDt
z

e�wpDtYp(t0)+
ġ

z 2

Z t1

t0
(t1 � t)ewp(t�t1)yp(t)dt (A.10)

= e�wpDt
✓

Xp(t0)+
ġDt
z

Yp(t0)
◆

+DX (x)
p +

ġ
z

DX (y)
p (A.11)

It is apparent that DX (x)
p is an independent Gaussian variable with variance analogous to

DYp. However, DYp and DX (y)
p are correlated Gaussian variables since they both depend on yp(t).

Thus, hDY 2
p i = hDX (x)

p
2
i, hDX (y)

p
2
i, and hDYpDX (y)

p i must be computed to generate appropriate

representative Gaussian variables for the integrals.

Starting with hDY 2
p i,

hDY 2
p i =

1
z 2

Z t1

t0

Z t1

t0
e�2wp(t�t1)hyp(t)yp(t)idtdt (A.12)
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We can substitute Eq. 2.5 for hyp(t)yp(t)i to obtain

hDY 2
p i =

1
z 2

Z t1

t0
e2wp(t�t1)

Z t1

t0


4z
bn

dpqd (t � t 0)
�

dtdt (A.13)

=
1

z 2

Z t1

t0
e2wp(t�t1)

✓
4z
bn

◆
dt (A.14)

=
4

z bn
v0(2wpDt)

2wp
(A.15)

where v0(x) = 1� exp(�x). This result applies analogously to hDX (x)
p

2
i.

Proceeding as in Eq. A.12 for hDX (y)
p

2
i

hDX (y)
p

2
i =

1
z 2

Z t1

t0

Z t1

t0
(t1 � t)2e2wp(t�t1)hyp(t)yp(t)idtdt (A.16)

which may be simplified as before with Eq. 2.5 to give

hDX (y)
p

2
i =

4
z bn

Z t1

t0
(t1 � t)2e2wp(t�t1)dt (A.17)

=
4

z bn
v1(2wpDt)

8w3
p

(A.18)

where v1(x) = 2� (2+2x+ x2)exp(�x).

Finally, the correlation term is computed

hDYpDX (y)
p i =

1
z 2

Z t1

t0

Z t1

t0
(t1 � t)e2wp(t�t1)hyp(t)yp(t)idtdt (A.19)

which simplifies as before

hDYpDX (y)
p i =

4
z bn

Z t1

t0
(t1 � t)e2wp(t�t1)dt (A.20)

=
4

z bn
v2(2wpDt)

4w2
p

(A.21)
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where v2(x) = 1� (1+ x)exp(�x).
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APPENDIX B

Discretization of shear flow solution

Discretize the operators forward in time, and with a central-difference with respect to space.

Then, R(s, t) is discretized into Rs,t for integer values of s and t. We take the discrete Fourier

transform as

Xs =
2
N

N

Â
r=1

Rr cos
⇣p

N
(r�1/2)(s�1)

⌘
(B.1)

where Xs = hXs,Ysi, and r and s range from 1 to N. The inverse of this transform is given as

Rs =
X1

2
+

N

Â
r=2

Xr cos
⇣p

N
(r�1)(s�1/2)

⌘
(B.2)

Given this transform, it can be shown that the eigenvalues become

ls = 4sin2
⇣ p

2N
(s�1)

⌘
(B.3)

The center of mass of the chain can be fixed at the origin by forcing X1 = 0.

We choose this form of the FFT because Eq. B.1 and Eq. B.2 are the discrete analogs of

Eq. 2.4 and Eq. 2.3, respectively. Given this convention for the FFT, the discrete noise variance is

hxp(ti)xq(t j)i =
4z
b

di j

D
dpq

n
(B.4)

with D the fundamental step. This is the discrete analog of Eq. 2.5.

Letting ws = (K/z )ls, the discrete update formula for Ys becomes

Ys(t + kD) = (1�wsD)k Ys(t)+
D
z

k

Â
i=1

(1�wsD)i�1 yp(t +(k� i)D) (B.5)

where D is the fundamental time step, and yp(t +(k� i)D) is an entry in the noise history. Likewise,
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B. DISCRETIZATION OF SHEAR FLOW SOLUTION

it can be shown that the update formula for Xs is

Xs(t + kD) = (1�wsD)k Xs(t)+
ġD
z 2 (1�wsD)k�1Yp(t)

+
D
z

k

Â
i=1

(1�wsD)i�1 xp(t +(k� i)D)

+
ġD2

z 2

k

Â
i=2

(i�1)(1�wsD)i�1 yp(t +(k� i)D) (B.6)
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APPENDIX C

Mixed flow solution to Rouse model

From Eq. 2.13 in Section 2.1.2 and letting wp = Kp/z ,

0

@Ẋp

Ẏp

1

A=

0

@�wp ġ/z

ġb/z �wp

1

A

0

@Xp

Yp

1

A+
1
z

0

@xp

yp

1

A

⌘ M

0

@Xp

Yp

1

A+
1
z

0

@xp

yp

1

A (C.1)

The eigenvalues of the matrix M are

l1,2 = �wp ±
ġ
p

b
z

(C.2)

It is apparent that l2 is always negative, and that l1 may be negative, positive, or zero depend-

ing on the relative magnitudes of wp, ġ,b , and z . The corresponding eigenvectors are (1,
p

b )

and (1,�
p

b ). For non-shear flow (b 6= 0), the eigenvectors are linearly independent, and M is

diagonalizable.

Let L be the diagonal matrix of eigenvalues, and T = [e1,e2] the matrix with corresponding

eigenvectors as its columns. Diagonalizing Eq. C.1 gives

S̃0 = LS̃+
1
z

B̃ (C.3)

where

S̃ =

0

@X̃p

Ỹp

1

A= T�1

0

@Xp

Yp

1

A (C.4)

and

B̃ =

0

@x̃p

ỹp

1

A= T�1

0

@xp

yp

1

A (C.5)
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C. MIXED FLOW SOLUTION TO ROUSE MODEL

Then, we readily arrive at Eq. 2.14 from Section 2.1.2

X̃ 0
p = l1X̃p +

1
z

x̃p (C.6a)

Ỹ 0
p = l2Ỹp +

1
z

ỹp (C.6b)

which is easily solved over the finite interval Dt = t1� t0 by an integrating factor µ = exp(�l t) to

give

X̃p(t1) = el1Dt X̃p(t0)+
1
z

Z t1

t0
e�l1(t�t1)x̃p(t)dt (C.7)

= el1Dt X̃p(t0)+DX̃p (C.8)

and likewise for Ỹp

Ỹp(t1) = el2DtỸp(t0)+
1
z

Z t1

t0
e�l2(t�t1)ỹp(t)dt (C.9)

= el2DtỸp(t0)+DỸp (C.10)

Observe that since x̃p and ỹp are linear combinations of Gaussian random variables xp and

yp, DX̃p and DỸp are correlated Gaussian random variables. We must then compute the variances

hDỸ 2
p i, hDX̃2

pi, and hDX̃pDỸpi.

Proceeding for hDỸ 2
p i as in Appendix A, we obtain

hDỸ 2
p i =

1
z 2

Z t1

t0

Z t1

t0
e�2l2(t�t1)hỹp(t)ỹp(t)idtdt (C.11)
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From Eq. C.5 we know that ỹp(t) = (1/2)(xp(t)� yp(t)/
p

b ), so Eq. C.11 becomes

hDỸ 2
p i =

1
z 2

Z t1

t0
e�2l2(t�t1)

Z t1

t0

*
1
4

 
xp(t)�

yp(t)p
b

!2+
dtdt (C.12)

=
1

z 2

Z t1

t0
e�2l2(t�t1)

Z t1

t0

*
1
4

 
xp(t)2 � 2p

b
xp(t)yp(t)+

yp(t)2

b

!+
dtdt (C.13)

Since xp(t) and yp(t) are uncorrelated, the cross term can be eliminated from the average. Substi-

tuting from Eq. 2.5, and integrating twice gives the variance expression

hDỸ 2
p i =

b +1
2nb0z bl2

(e2l2Dt �1) (C.14)

where b0 is 1/(kT ).

Solution for hDX̃2
pi proceeds similarly, with x̃p(t) = (1/2)(xp(t)+ yp(t)/

p
b ), to give

hDX̃2
pi =

b +1
2nb0z bl1

(e2l1Dt �1) (C.15)

when l1 6= 0. If l1 = 0, the solution simplifies to

hDX̃2
pi =

b +1
nb0z b

Dt (C.16)

Finally, computing hDX̃pDỸpi gives

hDX̃pDỸpi =
1

z 2

Z t1

t0

Z t1

t0
e�(l1+l2)(t�t1)hx̃p(t)ỹp(t)idtdt (C.17)

The product x̃p(t)ỹp(t) is a difference of squares, simplifying to

hDX̃pDỸpi =
1

z 2

Z t1

t0
e�(l1+l2)(t�t1)

Z t1

t0

⌧
1
4

✓
xp(t)2 �

yp(t)2

b

◆�
dtdt (C.18)
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which may be reduced with Eq. 2.5 and twice integrated as before to give

hDX̃pDỸpi =
b �1

nb0z b (l1 +l2)
(e(l1+l2)Dt �1) (C.19)

This may be further simplified by observing that l1 and l2 are conjugates

hDX̃pDỸpi =
b �1

2nb0z bwp
(e�2wpDt �1) (C.20)

It should be noted that DX̃p and DỸp become totally uncorrelated if b = 1, the case of pure exten-

sional flow.
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APPENDIX D

Correlated random values

We need to generate two correlated Gaussian random variables x and y with zero mean. We

want these variables to have a covariance matrix M such that

M =

0

@s2
xx s2

xy

s2
yx s2

yy

1

A (D.1)

where s2
xx = hx2i, s2

yy = hy2i, and s2
xy = s2

yx = hxyi.

The covariance matrix has a generating function

Z µ
Z

exp
✓
�1

2
vT ·M�1 ·v+hT ·v

◆
dv µ exp

✓
1
2

hT ·M ·h
◆

(D.2)

where v is the vector of correlated variables, and h is a conjugate variable.

Since it is our objective to obtain v, and M�1 is not diagonal, we need to make a change of

variables to v that allows us to generate independent Gaussian random variables with appropriate

variances, and correlate them as a linear combination.

Since the matrix M is symmetric positive definite, M�1 has a complete basis of eigenvec-

tors. Thus, M�1 is diagonalizable, and

M�1 ·T = L ·T (D.3)

where L is the diagonal matrix of eigenvalues, and T is the matrix of eigenvectors, [e1,e2]. We can

then expand v in the eigenvector basis as

v = T ·a (D.4)

Since M�1 is a symmetric positive definite matrix, its eigenvectors are orthonormal such that
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D. CORRELATED RANDOM VALUES

TT ·T = I. Combining this result with Eq. D.3 and Eq. D.4, we obtain

vT ·M�1 ·v = aT ·L ·a (D.5)

where a is a vector of independent Gaussian random variables with zero mean, and with variances

such that ha2
i i = 1/Li.

The vector of correlated Gaussian random variables may be recovered by generating a

representative vector a of independent Gaussian random variables, and then taking v = T ·a.
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APPENDIX E

Convergence order analysis

Although a treatment of weak convergence for stochastic differential equations as applied

to operator splitting can be found in Ref. 1 (with essential background materials in Ref. 2), as a

convenience to the reader we briefly summarize in this appendix the basic elements of this analysis.

The starting point for developing methods for stochastic DEs is the Ito equation, which in

differential form (for additive noise) is

dX = a(X)dt +bdW (E.1)

and in integral form is

X(t) = X0 +
Z t

0
dt 0 a(X(t 0))+b

Z t

0
dW (t 0) (E.2)

In the above, W (t) is a Wiener process, i.e., dW (t) is delta-correlated white noise. The noise

integral W (t) =
R t

0 dW (t 0) executes a Gaussian random walk, with hW (t)i = 0 and hW 2(t)i = t.

Eq. E.1 is quite general: X can denote a single variable or a vector of values, a(X) can be any

function (linear or nonlinear) of X .

To resolve ambiguities involving averages over the noise dW (t), it is helpful to regard the

time t as discrete, with timestep Dt:

Xi+1 = Xi +a(Xi)Dt +bDWi (E.3)

with noise DWi a sequence of uncorrelated random steps, of magnitude ±
p

Dt. The discretized

equation is causal, since X at the “next” time Xi+1 depends only on the “present” Xi and noise DWi.

Also, it is straightforward to average over such discretized noise.

Suppose we have some function g(X(t), t) of our stochastic process X(t), and want to know

how g itself varies over some short time interval dt. The Ito formula, essentially the chain rule for
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stochastic processes, expands g about its value at time t as

dg =
∂g
∂ t

dt +
∂g
∂X

(a(X)dt +bdW )+
1
2

∂ 2g
∂X2 b2dt (E.4)

In integral form, the relation reads

g(X(t)) = g(X(0))+
Z t

0
dt 0
�
a(X(t 0))g0(X(t 0))+(1/2)b2g00(X(t 0))

�
+b

Z t

0
dW (t 0) (E.5)

in which g0 denotes ∂g/∂X , and for simplicity we have dropped explicit time-dependence (i.e.,

∂g/∂ t = 0).

The formal solution Eq. E.2 can be expanded by repeatedly replacing a(X(t 0)) and its

derivatives using Eq. E.5, to obtain the Ito-Taylor expansion,

X(t) = X(0)+aI(0) +bI(1) +

✓
a0a+

1
2

a00b2
◆

I(0,0) +a0bI(1,0) +a00b2I(1,1,0) + . . . (E.6)

in which a and its derivatives are all evaluated at the initial condition X = X0. Also, I(i, j,k,...) with

i, j,k, . . . = 0 or 1 denote various integrals over the noise,

I(i1,i2,...,in) =
Z t

0
dW in(sn)

Z sn

0
dW in�1(sn�1)

Z sn�1

0
. . .
Z s2

0
dW i1(s1) (E.7)

Dropping the noise (b = 0) gives the Taylor expansion of the deterministic equation dX = a(X)dt.

It is useful to assign to each of the various noise integrals I(i, j,k,...) a scaling power of the

time interval D. Each integral with a dW implies a factor D1/2 (since the variance of
R

dW is of

order D) and each integral without a dW a factor D. Terms I(0) and I(0,0) are deterministic, given by

I(0) = D and I(0,0) = D2/2 respectively. In what follows, we scale the noise integrals by appropriate

factors of D to make power-counting explicit.

We are interested in the weak and strong convergence properties of two approximate meth-

ods, explicit Euler and operator splitting. The integral form of the Euler method over the time
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interval from t = 0 to t = D is

X1 = X0 +Da(X0)+b
Z D

0
dW (t 0) (E.8)

in which X0 is the initial condition X(0) and X1 the final value X(D).

Symmetric stochastic splitting is defined (see main text) by alternating between exact solu-

tions with one of two partial time evolution operators a1(X) and a2(X):

X1 = X0 +
Z D/2

0
a2(X1(t 0))dt 0

X2 = X1 +
Z D

0
a1(X2(t 0))dt 0 +b

Z D

0
dW (t 0)

X3 = X2 +
Z D/2

0
a2(X3(t 0))dt 0 (E.9)

in which X3 is the final value X(D).

To determine strong convergence order, we simply compare the Ito-Taylor expansions of

the approximate solutions to the true expansion, Eq. E.6. The Ito-Taylor expansion for the Euler

method is obvious from Eq. E.8,

X(t +D) = X(t)+Da(X(t))+bD1/2I(1) (E.10)

and agrees with Eq. E.6 through terms of order O(D), hence we say the method is of strong order

1.0.

The Ito-Taylor expansion for the operator splitting method is obtained by using the full

Taylor expansion (with a = a2) to describe the “outer” deterministic steps, and the full Ito-Taylor

expansion (with a = a1) to describe “inner” stochastic step. The result of each step serves as the
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initial condition for the next, so the expansions are nested, with the final result

X(t +D) = X(t)+D(a1 +a2)+bD3/2I(1) +bD3/2 �a01I(1,0) + (1/2)a02I(1)

�

+ (1/4)D2 �2(a1 +a2)(a01 +a02)+b2a001 +4b2a001I(1,1,0) +b2a02I(1)

�
+ . . . (E.11)

The above agrees with Eq. E.6 only through order O(D), so is of strong order 1.0 as well.

We now sketch a proof of the criterion for weak convergence, defined as follows. (See Ref.

2 p. 474, Theorem 14.5.2, Eq. 5.12 for details.) Suppose we have some smooth function g(X) that

we want to average over trajectories, given a definite starting point X0 at time t0. Weak convergence

means the average computed with approximate dynamics approaches the true average, as the time

difference D becomes small:

hg(X(t))|X0itrue �hg(X(t))|X0iapprox = O(Db+1) (E.12)

where b is the weak order of convergence.

Note that if we have a finite time difference tmax � t0, then the number of small timesteps D

needed is n = (tmax�t0)/D. Since error accumulates on each timestep, the total error in the average

is of order O(Db ).

The “weak order b” notation is consistent with nomenclature for strong convergence, for

which a “strong order a” method means agreement of the Ito-Taylor expansions of the true and

approximate dynamics through order O(Da) for a single step, and therefore an error for a finite

timestep tmax � t0 of order O(Da).

Since the timestep D is small, X(t) does not stray very far from X0. This motivates us to

expand g(X(t)) as

g(X(t)) = g(X0)+g0(X0)(X(t)�X0)+(1/2)g00(X0)(X(t)�X0)
2 + . . . (E.13)
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Evaluating the averages in Eq. E.12 then reduces to evaluating the averages of moments of

the true and approximate evolution of X(t), defined as

Mk(Dt) = h(X(Dt)�X0)
ki (E.14)

for the exact and approximate evolutions.

How high a moment must we examine, to verify Eq. E.12 for some given b? Note that the

Ito-Taylor expansion for X(t) begins

X(t)�X0 = a(X0)D+b
Z t

0
dW (t 0)+ . . . (E.15)

To find the largest contribution to h(X(t)� X0)ki, we take as many powers of noise as

possible, since the noise scales as D1/2. (We need an even number of factors of the noise, so that

the average does not vanish.)

As we consider higher moments, eventually even the lowest order contribution will be

higher order than Db+1. Evidently, k = 2b can generate terms of order Db . Therefore, we need to

compare the real and approximate dynamics up through the 2b th moment, to verify weak conver-

gence of order b . (The average of a term with k = 2b +1 powers of noise will vanish, since this k

is odd, hence the error in the noise moments will be O(Db+1).)

Since the moments to be compared are to be computed for small D, we use the Ito-Taylor

expansions for the true and approximate solutions, together with a set of results for averaging

various products of noise integrals. The results we need to sufficient order for present purposes are

hI2
(1)i = 1

hI4
(1)i = 3

hI(1)I(1,0)i = 1/2

hI2
(1,0)i = 1/3 (E.16)
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Any averages of noise integrals in which a given noise increment dW (t) appears with an odd power,

will vanish, so that hI(1)i, hI(1,0)i, hI3
(1)i, hI(1)I2

(1,0)i, hI
2
(1)I(1,0)i, and hI(1)I(1,1,0)i are all zero.

Carrying out moment averages using these methods, we can verify that the explicit Euler

method is weak order 1.0, while operator splitting is weak order 2.0.
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APPENDIX F

Derivation of cylindrical cap critical barrier

Suppose there is a “cylindrical cap” well defined by a contact angle q . The cap has two

ends with interfacial tension se, a lateral side with ss, and also a base against the surface with s 0.

The cylinder has a radius R and critical height H. We need to find the various surface areas and

volume of this cap to take a free energy balance, which we can then maximize. The surface area

of an end cap Ae is

Ae = Asector �Atriangle

= qR2 �R2 sinq cosq

= R2
✓

q � 1
2

sin2q
◆

(F.1)

The lateral surface area As is

As = 2qRH (F.2)

The area of the nucleus contacting the surface Ab is a rectangle

Ab = 2RH sinq (F.3)

Finally, the volume of the nucleus V is

V = AeH = R2H
✓

q � 1
2

sin2q
◆

(F.4)
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F. DERIVATION OF CYLINDRICAL CAP CRITICAL BARRIER

Taking a free energy balance

DG = DGs +DGe +DGb �DGv

= Asss +2Aese +Ab(s 0 �s 00)�V DSDT

= 2qRHss +2R2
✓

q � 1
2

sin2q
◆

se �RHss sin2q

�R2H
✓

q � 1
2

sin2q
◆

DSDT (F.5)

in which we have substituted �ss cosq for (s 0 �s 00), according to Young’s equation.

We then differentiate in H to find the critical radius R⇤

R⇤ =
2ss

DSDT
(F.6)

and then in R to find H⇤

H⇤ =
4se

DSDT
(F.7)

which is the same as the critical radius and height for the homogeneous cylinder (note that R⇤ and

H⇤ have no q dependence). Last, substitute back into Eq. F.5 to find the critical barrier DG⇤

DG⇤ =
8ps2

s se

(DSDT )2

✓
q � sin(2q)/2

p

◆

= DG⇤
homv(q) (F.8)
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APPENDIX G

Tail corrections

It is our objective to evaluate the tail correction for material in a slab beyond the volume

already accounted for within the cutoff radius rc

DUi j =
r j

2

Z

V 0
c

U(ri j)dr (G.1)

Since this integral is not simple to evaluate, we will do this by adding and subtracting simpler

integrals. Suppose that we have a slab of thickness 2d which is periodic in two dimensions and has

gaps in the third dimension. Choose any atom i in the slab. This atom will have distances h1 and h2

to the edge of the slab (h1  h2). If we assume rc  d, Figure G.1 shows three possible scenarios

for the atom’s position. Enforcing that rc  d somewhat simplifies the problem by guaranteeing

that the cutoff sphere does not exit both sides of the slab (a fourth scenario). The optimal choice for

rc is d (about 19 Å for our system) since this effectively removes the first scenario; only a marginal

number of atoms would fall into the category of being exactly d from the edge. For all cases, we

will follow a general scheme of: (1) adding back a full spherical tail correction as if the system

were fully periodic, (2) subtracting for material which is not present in the slab dimension, and (3)

adding back any material which was incorrectly subtracted because it lies within the cutoff radius.

For the first case (h1 � rc), Eq. G.1 can be evaluated by taking the full spherical integral,

and subtracting the interaction with two semi-infinite half planes in the slab dimension

DUi j = Usph(rc)�Uhalf(h1)�Uhalf(h2) (G.2)

where Uhalf(h) is found by integrating over a semi-infinite domain and is given by Eq. 4.7.

The second case where the atom lies exactly on the boundary is also easily solved in this

manner. Since the atom lies exactly on the boundary, we cannot use the same correction as in

the first case, since Uhalf(0) diverges. However, we can instead consider only a hemisphere tail
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rc

2d

h1

rc

h1

rc

h1 � rc

h1 < rc

h1 = 0

h2

h2

Figure G.1: Sketch of cutoff scenarios for an atom in a slab with cutoff radius rc, thickness 2d,
distances to edges h1 and h2 (h1  h2), and full periodicity in other dimensions.
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correction and then subtract a single semi-infinite half plane to obtain the missing energy

DUi j =
1
2

Usph(rc)�Uhalf(2d) (G.3)

The nontrivial case occurs when the distance to the boundary is less than the cutoff radius.

As before, we add back a full spherical tail correction, and subtract two semi-infinite half planes.

However, this removes some interactions that were never calculated in simulation since they lie

inside the cutoff radius (more specifically inside a spherical cap), so this energy must be restored.

The energy of the cap is found by integrating in spherical coordinates

Ucap(rc,h) =
r j

2

Z f 0

0

Z rc

r(f)
U(r)2pr2 sinfdr df (G.4)

where cosf 0 = h/rc and r(f) = h/cosf are the necessary limits of integration in this geometry.

Carrying out this integration gives the result in Eq. 4.8. Then, the complete tail correction is

DUi j = Usph(rc)�Uhalf(h1)�Uhalf(h2)+Ucap(rc,h1) (G.5)
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APPENDIX H

Finite thickness correction

Suppose that we have a slab of thickness 2d sufficiently thick that a continuum approxima-

tion is valid for atoms a distance d away. It is our goal to extend the slab to “infinite” thickness

(Figure H.1). We first separate the slab into two half slabs of thickness d (Step 1). Then we can

add a continuum slab of thickness L to the middle (Step 2). If we let hi be the nearest edge distance

for the i-th atom with a specific atom type, then we can add the energy of each atom interacting

with this slab by integrating the Lennard-Jones potential. If the total added thickness is L, then

the atom is “missing” energy from a distance 2d � hi away to a distance 2d � hi + L away (indi-

cated by arrows). This is because we have already calculated the potential in the first 2d �hi from

simulation. Then, the correction DUL,i is

DUL,i =
r j

2

Z 2d�hi+L

2d�hi

Z •

0
U(
p

r2 + z2) 2prdr dz (H.1)

However, we want to expand the added slab to infinite thickness, so letting L tend to infinity, we

find that DUL,i simply becomes Uhalf(2d �hi).

hi

d d

L

1

1.

2.

3.

Figure H.1: Schematic of finite thickness correction.
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H. FINITE THICKNESS CORRECTION

Currently, our correction is described in terms of discrete atom positions hi. However, if d

is large, then the half slabs may also be treated as a continuum. The correction term to the surface

tension is half of the cohesive energy per unit area of interface, which is equivalent to the energy in

one of the half slabs per area (Step 3). Integrating through this half slab gives the correction term

to the surface tension per unit area for density of type i in the half plane interacting with type j in

the added infinite plane.

Ds 0
i j = ri

Z 2d

d
Uhalf(h)dh (H.2)

=
p
2

rir jei j

"
s12

i j

90

✓
1
d8 �

1
(2d)8

◆
�

s6
i j

3

✓
1
d2 �

1
(2d)2

◆#
(H.3)

Then, the correction term to the surface tension is

Ds 0 =
types

Â
i, j

Ds 0
i j (H.4)

where the sum is taken over all possible atom types for the half plane and the added infinite plane.
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APPENDIX I

Wall parameters

The Lennard-Jones 9-3 potential for a single atom with a single wall atom type (reformu-

lated in terms of (C(6),C(12)) parameters rather than (s ,e) parameters) is

Ui j = pr j

2

4C(12)
i j

45h9 �
C(6)

i j

6h3

3

5 (I.1)

where

C(12)
i j = 4ei js12

i j (I.2)

C(6)
i j = 4ei js6

i j (I.3)

However, we want to represent the interaction of the i-th atom with all atom types in the crystal.

Assuming a wall density of rw and summing over all n atom types in the wall

Ui = prw

n

Â
j

r j

rw

2

4C(12)
i j

45h9 �
C(6)

i j

6h3

3

5 (I.4)

= prw

"
C̄(12)

i
45h9 �

C̄(6)
i

6h3

#
(I.5)

where we have defined C̄(12)
i and C̄(6)

i as

C̄(12)
i =

1
rw

n

Â
j

4r j(eiie j j)
1/2(siis j j)

6 (I.6)

C̄(6)
i =

1
rw

n

Â
j

4r j(eiie j j)
1/2(siis j j)

3 (I.7)

according to the geometric mixing rule of the OPLS forcefield. Further, the OPLS forcefield in

GROMACS requires that the Lennard-Jones parameters be in the (s ,e) form. This conversion is
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I. WALL PARAMETERS

straightforward to carry out, and the required formulae for choosing the nonbonded parameters are

s̄i =

 
C̄(12)

i

C̄(6)
i

!1/6

(I.8)

ēi =
(C̄(6)

i )2

4C̄(12)
i

(I.9)

Notice that ēi has a factor of 1/rw, which shows that the wall density may be arbitrarily chosen as

a convenient value (e.g. so that s̄i and ēi are of the same order as typical (s ,e) values).
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APPENDIX J

Effect of tail corrections on Hessian

As stated in the text, given a large enough cutoff radius, we can analyze the effect of tail

corrections on the normal modes by analyzing the magnitude of tail corrections to the Hessian ma-

trix. We require two important criteria: (1) that the cutoff radius is large enough that a continuum

approximation is valid, and (2) all atoms are at their positions corresponding to the “true” energy

minimum.

A cutoff radius of 1.0 nm is large enough that all important short-ranged interactions are

treated discretely, and a continuum approximation beyond the cutoff is valid. Although we have

expanded the cutoff radius to 1.9 nm and approximated with continuum beyond this cutoff when

computing the tail corrections, we could have also simply approximated with continuum beyond

the original 1.0 nm with minimal loss of accuracy.

It is also important that the Hessian is computed around the “true” position of atoms at the

energy minimum. If the atoms are not at their “true” minimum, the Hessian may not accurately

represent the system. The tail correction in the bulk crystal is constant, so the atoms have no

additional forces. We state without proof (for now) that the forces in the slab system are negligibly

small, so we may reasonably assume that the atoms are at their “true” minimum energy positions.

This statement will be justified later. It is thus valid to analyze corrections to the Hessian by

considering only the second derivatives of the tail corrections.

By definition, the (i,k)-th entry in the Hessian is

Hik =
∂ 2U

∂xi∂xk
(J.1)

where i and k are indexes corresponding to atom number and the coordinate axis of differentiation.

Since tail corrections are additive, the tail correction to the Hessian DHik is

DHik =
∂ 2DU
∂xi∂xk

(J.2)
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J. EFFECT OF TAIL CORRECTIONS ON HESSIAN

where DU is the total tail correction of either the bulk or slab system

DU =
N

Â
i

n

Â
j

DUi j (J.3)

and N is the number of atoms and n is the number of density types. For the bulk system, DUi j is a

constant term independent of atom position (Usph), and so DHik will be zero.

The tail corrections in the slab system, on the other hand, have a position dependence.

From Eq. 4.6, the correction on the i-th atom is decoupled from other atoms and varies only in

a single dimension, so DHik will be zero for all i 6= k and for all dimensions that are not the slab

dimension. This amounts to correcting one-third of the diagonal elements of the Hessian.

Taking two derivatives in the slab dimension is equivalent to taking two derivatives with

respect to the nearest edge distance h1, and eliminates all atoms in DU except for the i-th atom.

Analyzing the dominant term of DUi shows that

DUi ⇠

8
<

:
ners6h/r4

c h  rc

ners6/h3 h > rc

(J.4)

where e and s are “typical” Lennard-Jones parameters, r is the “typical” density, and h is the

nearest edge distance. This implies that

DHii,x ⇠

8
<

:
0 h  rc

ners6/h5 h > rc

(J.5)

where the subscript x attempts to clearly indicate that this correction is only necessary for the slab

dimension. So, of the one-third of diagonal elements that could be corrected, only those atoms

that are far from the edge will have a non-zero correction. The maximum correction will occur for

atoms that are rc from the edge, where DHii,x ⇠ ners6/r5
c .

The effect of the tail correction to the Hessian can be analyzed by comparing the magnitude
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J. EFFECT OF TAIL CORRECTIONS ON HESSIAN

of the correction to the Lennard-Jones term in the Hessian Hii|LJ . Because of Lennard-Jones 1-4

exclusions, we expect only attractive terms so

Ui j|LJ ⇠
es6

r6 (J.6)

Taking two derivatives and summing shows

Hii|LJ ⇠
Nes6

r8 (J.7)

where N is the number of atoms inside the cutoff radius (but outside the 1-4 exclusions). The

characteristic radius for these interactions must be on the order of s . For the rough purpose of

scaling, the number of atoms in that shell for a cutoff radius of a few s should be

N ⇠ nrr2Dr ⇠ nrs3 (J.8)

in a continuum sense, so Hii|LJ ⇠ ners . Comparing the two terms

DHii,x

Hii|LJ
⇠
✓

s
rc

◆5
⌧ 1 (J.9)

Therefore, the tail correction to these elements of the Hessian is negligible, and we may be reason-

ably confident that the normal modes are accurate.

Note that this analysis was predicated on the assumption that rc was sufficiently large to

accurately capture the short-ranged interactions. If rc became small, our scaling shows that these

corrections would no longer be negligible. Moreover, for large rc the correction will actually decay

faster (like 1/r6
c when rc � s ).

We have previously stated that forces due to tail corrections in the slab dimension are negli-

gibly small. By a similar argument to the Hessian, the force corrections in the periodic dimensions
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J. EFFECT OF TAIL CORRECTIONS ON HESSIAN

are zero and

DFi,x ⇠ ners2
✓

s
rc

◆4
⌧ 1 (J.10)

in the slab direction, so these derivatives are indeed negligible and the atoms may be assumed to

be at their “true” minimum.
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