
THE PENNSYLVANIA STATE UNIVERSITY

DEPARTMENT OF ELECTRICAL ENGINEERING

3D MEDICAL IMAGE PROCESSING TOOLBOX

Edward Wang

Spring 2013

A paper
submitted in partial fulfillment

of the requirements
for baccalaureate degrees

in Electrical Engineering and Computer Engineering
with honors in Electrical Engineering

Reviewed and approved* by the following:

William E. Higgins
Distinguished Professor of Electrical Engineering
Thesis Supervisor

John Mitchell
Professor of Electrical Engineering
Honors Adviser

* Signatures are on file in the Schreyer Honors College.

i

Abstract

The Multidimensional Image Processing Laboratory (MIPL) has been developing

methods and systems for general 3D medical image analysis and visualization for over 20

years. During this period, several incarnations of a general 3D image processing software

program have been created. The current program, VFX 2.1, was derived from these past

programs and includes functions for processing both 8-bit and 16-bit multidimensional im-

ages. In light of modern developments in medical imaging, we worked towards upgrading

VFX to a fully 16-bit standard. We did so by upgrading outdated functions or archiv-

ing unnecessary functions when progressing towards the next version of VFX. This paper

describes the methods and testing performed when executing these changes. While this

upgrade made significant strides towards this goal, there remains many functions left to be

upgraded in future revisions of VFX.

ii

Table of Contents

List of Tables . iv

List of Figures . v

Chapter 1. Introduction . 1

1.1 History of VFX . 1

1.2 Overview of VFX 2.1 . 2

1.3 Problem Description . 3

1.4 Overview of the paper . 6

Chapter 2. System-Level Upgrades . 7

2.1 Code Reorganization . 7

2.2 Function Selection Dialog . 8

2.3 Progress Bar Window . 10

2.4 Splash Screen . 12

2.5 Addition of Functions . 12

2.5.1 Function information in nvsharedcommand.h 13

2.5.2 Format of Function Files . 14

2.6 Example Process for Adding a Function 14

2.6.1 Step 1: Adding the Source Files 15

2.6.2 Step 2: Writing the Comment Header 17

2.6.3 Step 3: Coding the getName Function 18

2.6.4 Step 4: Coding the getHelp Function 18

2.6.5 Step 5: Coding the registerParameters Function 18

2.6.6 Step 6: Coding the setParametersGUI Function 19

2.6.7 Step 7: Coding the perform Function 20

Chapter 3. Category and Function Upgrades . 21

3.1 Parameter Bounding and Error Detection 21

3.2 Format Function Upgrades . 24

3.3 Workspace Function Upgrades . 25

3.4 Morphology Function Upgrades . 26

iii

3.5 Topology Function Upgrades . 28

3.6 Manipulation Function Upgrades . 30

3.7 Other Categories . 31

3.8 Function Manual . 31

Chapter 4. Tests . 33

4.1 General Procedure and Sample Data . 33

4.2 General Function Testing . 34

4.3 Workspace Function Testing . 37

4.4 Format Function Testing . 42

Chapter 5. Results . 44

5.1 VFX 2.1 Function Tables and Test Results 44

5.2 Overview of Category Changes . 52

5.3 VFX 2.2 Function Tables and Test Results 60

5.4 Sample Runs of Topology Functions . 68

5.5 Sample Runs of Morphology Functions 77

Chapter 6. Discussion and Future Work . 84

6.1 Discussion . 84

6.2 Future Work . 84

References . 86

Appendix A.Network Location of VFX . 87

A.1 VFX 2.2 . 87

A.2 VFX 2.2 Function Manual . 87

iv

List of Tables

5.1 VFX 2.1 status of Format functions. 45

5.2 VFX 2.1 status of Workspace functions. 45

5.3 VFX 2.1 status of Filter functions. 46

5.4 VFX 2.1 status of Morphology functions. 46

5.5 VFX 2.1 status of Topology functions. 47

5.6 VFX 2.1 status of Segmentation functions. 48

5.7 VFX 2.1 status of Manipulation functions (part 1). 49

5.8 VFX 2.1 status of Manipulation functions (part 2). 50

5.9 VFX 2.1 status of Measurement functions. 50

5.10 VFX 2.1 status of System functions. 51

5.11 VFX 2.1 status of VTK functions. 51

5.12 VFX 2.1 status of Turnkey functions. 51

5.13 VFX 2.1 status of BranchFunc functions. 51

5.14 VFX 2.1 status of TestingPurpose functions. 52

5.15 Changes made to Format functions. 54

5.16 Changes made to Workspace functions. 55

5.17 Changes made to Filter functions. 55

5.18 Changes made to Morphology functions. 56

5.19 Changes made to Topology functions. 57

5.20 Changes made to Manipulation functions (part 1). 58

5.21 Changes made to Manipulation functions (part 2). 59

5.22 VFX 2.2 status of Format functions. 62

5.23 VFX 2.2 status of Workspace functions. 63

5.24 VFX 2.2 status of Filter functions. 64

5.25 VFX 2.2 status of Morphology functions. 64

5.26 VFX 2.2 status of Topology functions. 65

5.27 VFX 2.2 status of Manipulation functions. 66

5.28 List of archived functions . 67

v

List of Figures

1.1 The interface of VFX, showing a sample run of the BinaryMorph Dilate

function on the image curve branch tube128. 4

2.1 The code for RenderSurfaceWithSkeleton, which is implemented entirely in

nvsharedcommand.h with no external files. 9

2.2 Implementation of VFX 2.2 function selection dialog, showing the function

archive and revised organization. 11

2.3 VFX 2.1 Progress bar window, showing nonfunctioning progress bar and

progress. 11

2.4 Progress bar window with functioning progress bar and progress. 12

2.5 VFX 2.2 splash screen image. 13

2.6 The location to which the header (red) and source (green) files should be

stored. 16

3.1 Bounding the median filter’s Z window dimension to odd values between 1

and 9 using a choice parameter. The user may select any of these choices. . 22

3.2 Bounding the lambda value of the AnisotropicDiffusionFilter between 0.00

and 0.25 using parameter limits. The user cannot enter a value outside these

bounds. 22

3.3 An example of parameter error detection for the Thresholding function using

exceptions at runtime. 23

3.4 A sample slice of Curve Branch Tube before (left) and after (right) binary

morphological dilation using the binaryMorph Dilate function. 27

3.5 Slice 81 of image r1a after Thresholding and ConnCompLabeling with labels

saved. Six unique regions are visible. 29

3.6 VFX 2.1 Function Manual entry for the GaussianBlurFiltering function. . . 32

4.1 Slice 175 of 16-bit Image 20349 3 3 B31. 35

4.2 A sample script to test the MedianFiltering filter. 37

4.3 A slice of image r1a before (left) and after (right) median filtering. This is

the output of the test script in Figure 4.2. 38

4.4 A sample script to test the EmbedTo workspace function. 41

vi

4.5 A subset of image r1a embedded in another copy of r1a. This is the output

of the test script in Figure 4.4. 42

5.1 The script to threshold grayscale image r1a to a binary image. 68

5.2 A slice of image r1a after thresholding. This is the result of the script in

Figure 5.1. 69

5.3 The script to perform 3D connected component labelling with default pa-

rameters. 70

5.4 A slice of image r1a after connected component labelling. This is the result

of the script in Figure 5.3. 70

5.5 The parameters of ConnCompLabelling with an increased minimum region

size. 71

5.6 A slice of image r1a after connected component labelling with an increased

minimum region size. This is the result of the script in Figure 5.5. 72

5.7 The parameters for ConnCompLabeling with a maximum of three regions. . 72

5.8 A slice of image r1a after connected component labelling with a maximum

of three regions. This is the result of the script in Figure 5.7. 73

5.9 The parameters of ConnCompLabelling set to save region labels. 74

5.10 A slice of image r1a after performing connected component labelling with

region labels saved. This is the result of the script in Figure 5.9. 74

5.11 The parameters of ConnCompLabeling set to perform 2D region analysis. . 75

5.12 A slice of image r1a after 2D connected component analysis. This is the

result of the script in Figure 5.11. 76

5.13 The script to load and display the image curve branch tube128, to be built

upon in the following sample runs. 77

5.14 A slice of image curve branch tube128 with no modifications. This is the

result of the script in Figure 5.13. 78

5.15 The script to run binary morphology dilation on image curve branch tube128

with the default parameters. 78

5.16 A slice of image curve branch tube128 after 3 × 3 × 3 binary morphological

dilation. This is the result of the script in Figure 5.15. 79

5.17 The paramaters of BinaryMorph Dilate with a larger 11 × 11 × 11 mor-

phology mask. 80

vii

5.18 A slice of image curve branch tube128 after 11 × 11 × 11 binary morpho-

logical dilation. This is the result of the script in Figure 5.17. 81

5.19 The paramaters of BinaryMorph Dilate to perform morphology with a 2D

4-connected mask. 82

5.20 A slice of image curve branch tube128 after 2D 4-connected binary morpho-

logical dilation. This is the result of the script in Figure 5.19. 83

1

Chapter 1

Introduction

Since the late 1980s, the Multidimensional Image Processing Lab (MIPL) at the

Pennsylvania State University has been developing systems and techniques for processing

3D medical images. A critical aspect of this is the development of a system to process and

manipulate these images. An ideal toolbox allows the user to load any image or images,

choose from a wide variety of image processing functions, and display or save the result.

In this paper, we continue the development and modernization of VFX, a general

image processing system. VFX 2.1, the most recent version, was developed in 2010 by Jue Li.

While significantly improved from previous versions, VFX 2.1 still lacks full compatibility

with modern 16-bit medical images. Our primarily goal in our upgrade to VFX 2.2 is to

phase out the older 8-bit image processing functions, replacing them with 16-bit equivalents.

The current version of VFX is the result of decades of development and iteration

that extends beyond the history of the MIPL. The following section provides a brief history

of the origins and development of VFX. Afterwards, we will look at the initial state of VFX

2.1 and identify the problems to be addressed in the remainder of the paper.

1.1 History of VFX

The origins of VFX go back over 20 years. The system originated from the ANALYZE

package, developed by R. A. Robb et al. This is an 8-bit image processing system developed

in the late 1980s. The ROI (Region of Interest) system, developed by Dr. William Higgins

while he was with the Mayo Clinic, was added to the ANALYZE system. ROI provided a

graphical interface and toolbox of image processing functions.

In 1989, Dr. Higgins joined Penn State and continued the development of such

tools in the MIPL. The next program, IMPROMPTU, was developed in the 1990s [6]. IM-

PROMPTU, which stands for IMage PROcessing Module for the Prototyping, Testing, and

Utilization of image-analysis processes, was built on top of the ROI system. This program

2

also operated only on 8-bit images, but provided significantly more image processing func-

tionality than ROI. Also, like ROI, IMPROMPTU was written in C and ran on Sun/Unix

platforms.

In 1997, VFX 1.0 was developed by Greg Simon [5]. This upgrade moved the pro-

gram to a Windows PC platform and was written in C++. It significantly improved the

organization of the code, easily allowing for new functions to be added. VFX 1.0 was

originally a command line program without a means of viewing images. In 2001, Anthony

Sherbondy improved the system by providing a GUI using the Microsoft Foundation Class

library [4].

In the mid 1990s, 16-bit images came into common usage as the output of 3D medical

imaging devices. However, VFX 1.0 could only operate on 8-bit images. In 1997, Shu-Yen

Wan began designing NV (NaVolgator or Volume Navigator), a system which could run 16-

bit image processing functions [8]. This program also allowed for the loading and processing

of object skeletons and data structures, which were a subject of research by the MIPL at

the time. NV could originally only be run in a command line or with scripts specified in

text files. In 2000, Kun-Chang Yu continued developing NV, importing it into an arterial

tree analysis system called Tree Analyzer [9]. This system gave NV a limited graphical

interface that allowed the user to view images and see the progress of operations.

In 2004, Andrew Weitz developed VFX 2.0, which incorporated the 16-bit image

processing functionality of NV with the graphical interface and the 8-bit functionality of

VFX 1.0 [10]. In 2010 Jue Li upgraded this program to VFX 2.1, which fixed many of the

outstanding code issues from VFX 2.0 [3]. In the next section, we will look at VFX 2.1 and

show its features and operation.

For a more detailed history of VFX and the programs that preceded it, refer to Jue

Li’s 2010 thesis on VFX 2.1.

1.2 Overview of VFX 2.1

VFX 2.1 is an image processing toolbox based on scripts. Scripts can be created

interactively by adding a series of operations from VFX’s function selection dialog box.

The user must also specify the parameters for each function, which control options related

to the function’s operation. Once the script is created, the user can execute the script or

save it for later use.

3

The functions in VFX vary widely in purpose and usage. The most commonly used

are basic operations such as loading, saving, and displaying images. Additional functions

are provided to manipulate workspaces, which allow working with more than one image at

a time. The vast majority of the functions perform various image processing operations,

such as filtering or morphology.

A run of a sample VFX script can be seen in Figure 1.1. The script can be seen

on the top left. This is a four-step process. Step 1 of the process loads an image called

curve branch tube128. Step 2 displays the image as is. Step 3 performs binary morphological

dilation on the image using a 3×3×3 jack (6-connected) mask. Step 4 displays the resulting

image. In the bottom left, the log window can be seen. This window displays information

printed out by the functions. In this case, it shows information about the image printed by

the DisplayImage function. The log window also gives the running time of each function.

On the right side of the window, the two displayed images can be seen. Each image has an

associated control dialog which changes the way the image appears. This allows the user

to scroll through the slices, change the gray scale, and increase or decrease the size of the

display window.

VFX 2.1 still needs modernization to improve its compatibility with modern medical

images. Also, additional upgrades to the functions and interface are needed. In the next

section, we will look at the outstanding issues with VFX 2.1 that we hope to address in our

upgrade to VFX 2.2.

1.3 Problem Description

The goal of this thesis project is to make the following improvements to VFX:

1. Make overall improvements in the program’s organization and interface.

2. Progress VFX towards a 16-bit standard.

3. Improve the robustness of VFX’s functions.

4. Add additional functions to provide desired functionality.

5. Update and improve the program’s documentation.

4

Fig. 1.1. The interface of VFX, showing a sample run of the BinaryMorph Dilate function
on the image curve branch tube128.

5

In this section, we will justify the need for these improvements and briefly overview

the upgrades performed. Our first goal is to address several system level issues pertaining

to VFX’s interface and code structure.

One change to VFX 2.1’s interface pertains to the function selection dialog box.

Because every operation in VFX involves the selection of a function, it is very important

to make this dialog as organized as possible. In this project, we address the following two

issues:

• Outdated and obsolete filters are mixed in with current ones. It may not be clear

which is the current version and what the differences between them are.

• All filters are sorted alphabetically; this ordering does not take into account the rel-

ative rates of use for certain functions, and often makes commonly used functions

harder to find.

To address these, we create a function archive, providing a clear categorical division

between current and outdated functions. We also allow for a custom ordering of functions

within each category.

Another issue with VFX 2.1’s interface is the progress bar window, which does not

function correctly. The progress bar itself does not move. The current and total progress

parameters are not correctly being passed from the current function to the progress bar

window, and thus do not display properly.

Another system level upgrade considered in this project is the reorganization of code.

This is particularly important for the file nvsharedcommand.h. This is one of the most com-

monly edited files in the program, as every time a developer adds, removes, or modifies a

function, he or she must edit nvsharedcommand.h. However, this file is nearly 6,000 lines

of code long, causing very long compile times and making it difficult to read and edit. We

work to move and reorganize some of this code in this project.

The next major goals of our project involve improvements to the functions and

categories of VFX. We will first look at the distinction between 8-bit and 16-bit functions.

VFX’s functions fall into two classes. Those imported from VFX 1.0 can only operate

directly on 8-bit images. While VFX allows these functions to run on 16-bit images, it

automatically converts the grayscale values to 8 bit values during processing, resulting in

6

loss of information. Functions developed for VFX 2.x or NV, on the other hand, can operate

on both 8-bit and 16-bit images.

8-bit images use 8 bits to store each voxel, allowing for graylevels between 0 and 255.

16 bit images, in contrast, use 16 bits to store the graylevel. These images generally allow

for a 12-bit range, for values between -1024 and +1024. Modern medical imaging tends to

exclusively use 16-bit images, as it allows scanned data to be saved without loss, so 8-bit

images are very rarely used today. Our ultimate goal for VFX is to phase out all of the

8-bit functions and replace them with equivalent 16-bit functions, and this project makes

significant progress towards this goal.

When phasing out the older functions, we must be careful not to lose any capabilities.

Many of VFX’s 8-bit functions include very diverse features and robust error detection. The

equivalent 16-bit functions, however, tend to be more basic. This project includes significant

upgrades to the functionality and error detection of 16-bit functions.

The final important aspect of this project pertains to the program’s documentation.

The VFX 2.1 Function Manual contains information about the purpose and usage of each

function. Firstly, we update the manual to reflect the changes to functions mentioned

above. Additionally, we work to improve the documentation of existing functions. Many

of the older 8-bit VFX functions have very detailed documentation on the way they work

and how to use them. However, most of the NV-based functions lack this detail, and some

contain no more than a single line of information. We add additional relevant information

to these functions’ entries for the VFX 2.2 Function Manual.

1.4 Overview of the paper

The remaining chapters of this paper describe the upgrades made to address these

issues. Chapter 2 describes the methodology used in making system level changes to VFX.

Chapter 3 describes the methods used in upgrading individual functions and categories.

Chapter 4 describes the procedure by which different types of functions were tested. Chapter

5 outlines the changes and current state of the functions in VFX. Finally, the Appendix

gives the location of VFX and its function manual on the MIPL network.

7

Chapter 2

System-Level Upgrades

This chapter outlines the process and changes used to solve the system level issues

from the Introduction. These are the changes related to the overall program and its in-

terface. In Section 2.1, we look at how code organization issues were resolved. Next, in

Section 2.2, we look at how the function selection dialog was improved. In Section 2.3, we

describe the fixes to the progress bar window. In Section 2.4, we introduce the VFX 2.2

splash screen. In Section 2.5, we look at the process of adding a function and provide an

example in Section 2.6.

The methods for making upgrades to specific functions and categories are given in

the next chapter.

2.1 Code Reorganization

The first system-level upgrade to VFX pertained to the organization of code, par-

ticularly in the file nvsharedcommand.h. This file contains the initialization and operation

information for every function in VFX, so it is by far the most commonly edited code file

in the program. We worked to improve the organization of this file, primarily by removing

code from this file and moving it to external files.

The first change was to move code pertaining to the initialization and implementation

of functions to function-specific files. Most functions are already implemented in external

code files; for instance, for the binaryMorpholgy function, the function is implemented in

the separate file binaryMorphology.cpp but initialization and execution details are defined

in nvsharedcommand.h. For these functions, this code was moved two new functions in the

separate function file:

firstTimeSetup(commandDecoder* oc, int cCode)

This member function performs initialization in nvsharedcommand.h. It is run when VFX

initializes to populate the function list.

8

applyFilter(commandDecoder* oc, int cCode, const int id,

const char op[], NVImage<NVImage t>& img)

This member function performs the following steps as well as outputting appropriate info

to the log:

1. Initialize filter instance

2. Apply parameters specified in GUI

3. Run filter on image ’img’

For a few functions in nvsharedcommand.h, no separate file exists for the function.

The entire implementation, sometimes hundreds of lines long, is stored within nvsharedcom-

mand.h. For instance, the RenderSurfaceWithSkeleton function was implemented without

an external file. The code for this function can be seen in Figure 2.1. As can be seen, it

contains nearly 150 lines of code, contributing to the excessive length and disorganization

of the nvsharedcommand.h file.

For functions like this, a corresponding header (*.h) and source (*.cpp) file were

created, and the code was moved into these new files. After moving the code over, the code

in nvsharedcommand.h was replaced with references to these files.

In the next section, we will look at changes made to VFX’s graphical user interface

(GUI), starting with the function selection dialog.

2.2 Function Selection Dialog

The function selection dialog is the window used to select a function to add to a

script. As such, it is one of the most commonly used windows in VFX. In this section, we

show how the organization of this dialog was improved.

It was clear that outdated or obsolete functions needed to be archived in some way.

It is often undesirable to completely remove the functions in question; one may wish at a

future date to revive a formerly unneeded function, or there may be some behavior of the

older 8-bit functions which should be preserved for future use or reference.

Our solution was to add a function archive at the end of the list of categories. The

process by which a function is archived is by simply inserting an ”Archive ” in front of the

9

Fig. 2.1. The code for RenderSurfaceWithSkeleton, which is implemented entirely in
nvsharedcommand.h with no external files.

10

name of the function’s category. Each category was given its own archive. This way, the

organization of the functions can be preserved even after they have been archived. For the

current contents of the function archive, refer to Table 5.28 in Section 5.3.

Another means by which the function selection dialog’s organization was improved is

by reordering the functions therein. The existing Visual Studio library used to implement

the function selection dialog provides two options for sorting; it either can be in alphabetical

order, or in the order in which items are inserted. Before changing this setting, the order

of functions in the file nvsharedcommand.h, which was previously arbitrary, needed to be

defined in some way. Commonly used filters were moved to the top of the list, related filters

were grouped together, and older 8-bit functions were moved to the bottom.

Another change made to the function archive was increasing the size of the window.

Particularly, the portion of the window where the categories and functions appear was

expanded. The new design allows 18 functions to appear at a time, while the old design

only allowed for 12 to appear. This change reduces the amount of scrolling a user needs to

do to find a desired function.

Additionally, we changed the names and categories of many individual functions to

better reflect their usages. This makes it much easier to quickly find and identify a desired

function. More details on these changes are given in Chapter 3.

The final implementation of the function selection dialog may be seen in Figure 2.2.

Note the addition of the function archive and the changes to the window’s size and organi-

zation.

In the next two sections, we will look at a few miscellaneous interface upgrades.

2.3 Progress Bar Window

The progress bar window appears when a script is executed and displays the progress

of the current function being run. Figure 2.3 shows the progress bar window in VFX 2.1.

As can be seen, the progress bar does not appear and the percentage progress reads 1900

percent.

To fix the issue of the progress bar not appearing, the bad pointer referring to the

progress bar object needed to be fixed. The problem occurred because the progress bar

pointer was initialized when VFX itself is initialized, and this pointer was not properly

being passed to the progress bar window’s code. To bypass this, the initialization of the

progress bar was moved to the progress bar window code. The other problem with the

11

Fig. 2.2. Implementation of VFX 2.2 function selection dialog, showing the function archive
and revised organization.

Fig. 2.3. VFX 2.1 Progress bar window, showing nonfunctioning progress bar and progress.

12

progress bar window was of the percent progress displaying incorrectly. This was solved

by adding code to pass the necessary parameters from the calling script to this window.

The new progress bar window is shown in Figure 2.4. As can be seen, the progress bar and

percentage progress are now working correctly.

Fig. 2.4. Progress bar window with functioning progress bar and progress.

2.4 Splash Screen

The other miscellaneous interface upgrade was to update the splash screen. The

VFX 2.1 splash screen had not been updated since VFX 2.0, so it displayed outdated

version and copyright information. After upgrading to VFX 2.2, we created the splash

screen in Figure 2.5 using Adobe Photoshop and replaced the VFX 2.0 splash screen with

this one.

Next, we will look at the process to add a function to VFX.

2.5 Addition of Functions

In the course of this project, many new functions were added to VFX. The organiza-

tion of the program makes it fairly easy to add new functions. The process described below

was first introduced in version 2.0 of VFX.

13

Fig. 2.5. VFX 2.2 splash screen image.

All code relating to the initialization and execution of every function in the program

is stored in the file nvsharedcommand.h. The code in this file is executed first when the

program starts, and also upon every subsequent script run.

2.5.1 Function information in nvsharedcommand.h

The minimum a programmer must do to add a function is to add an entry in the file

nvsharedcommand.h. For very simple functions, the code can be implemented without any

external files. The entry should contain the following:

• In the initialization section:

– Add the function, specifying the category and name of the function.

– Set the function’s description.

– Specify the input parameters of the function.

• In the execution section:

– Read the parameters.

– Execute the function.

14

This is the means by which many of the format and workspace operations are imple-

mented, as the functions are fairly simple and use image libraries to perform their operations.

However, for more complicated functions, such as filters, it is undesirable to implement the

function entirely in the file nvsharedcommand.h. Because every function in VFX must be

implemented in this file, doing so would cause the length of the file to become unmanageable.

As such, separate files should be created to implement the function.

2.5.2 Format of Function Files

For each function, a header and a main source file should be created to store the

relevant code. These files should contain the following information:

• Header

– Required import statements.

– Function prototypes.

– Variable declarations.

• Main Code File

– getHelp(), returning a descriptive line about the usage of the function.

– registerParameters(), a function which specifies the names, types, and bounds of

all the input parameters of the function.

– setParameters(), a function which reads the values of the parameters at runtime

and stores them to local variables.

– perform(), which executes the function on an input image object.

Additional methods may be inserted in these files, but all functions should have at

least these methods implemented. After these files have been created, an import statement

should be added to the file nvsharedcommandheader.h to include the header of the function,

and the revelant functions should be called in an entry in the file nvsharedcommand.h.

2.6 Example Process for Adding a Function

As an example, we will walk through how a programmer would add the Thresholding

function to the Manipulation category. The following subsections will cover these steps:

15

1. Adding the Source Files

2. Writing the Comment Header

3. Coding the getName Function

4. Coding the getHelp Function

5. Coding the registerParameters Function

6. Coding the setParametersGUI Function

7. Coding the perform Function

2.6.1 Step 1: Adding the Source Files

First, we would add the two required files, the header and the source file. The nv-

alpha directory stores all the information about the individual functions in VFX, including

both the NV-based functions and the VFX-based functions. The header file will always

be stored in the INCLUDE directory in the nv-alpha directory in the home directory of

VFX; this is true of all header files which do not pertain directly to the interface of VFX.

In Figure 2.6, the appropriate directory for the header file is highlighted in red.

When it comes to storing the source file, there are two pertinent folders, NV and

VFX in the nv-alpha directory. The VFX directory contains the back-end source files

for functions ported from the original 8-bit version of VFX. The NV directory, on the

other hand, contains the source files for functions ported from NV, an older 16-bit image

processing program. Because the thresholding function we are adding is designed to work

with 16-bit images, we are adding our function to the NV directory. Within these two

folders, there are also subfolders for each category and function. When adding a new

function, one should identify the appropriate category for the function (Manipulation in

this case), and create a new folder with the name of the function. In Figure 2.6, the

appropriate directory for the source file is highlighted in green.

Once the programmer has added the two empty files, a Thresholding.h and a Thresh-

olding.cpp, it is time to write the necessary code. First, the programmer should choose a

separate function and the associated header and source files, then copy the code directly to

the files just created. Doing so provides a template with the necessary comment headers,

function declarations, and certain imports which provide a starting point to code the new

function.

16

Fig. 2.6. The location to which the header (red) and source (green) files should be stored.

17

2.6.2 Step 2: Writing the Comment Header

The comment header appears at the top of both the header and source files. These

two headers should be identical and contain the following information:

• Module. The name of the file; i.e., “thresholding.h”.

• Usage. The purpose of the file itself; i.e., “Include file for Thresholding plug-in”.

• Purpose. The purpose of the function implemented in the file.

• Input Variables. The parameters the user needs to enter as input for the function.

• Returned Results. The output of the function.

• Processing Flow. A basic overview of the process the function follows.

• Restrictions/Notes. Any restrictions; i.e., “Only operates on 8-bit image”, or miscel-

laneous notes.

• See Also. Any related code file either referenced by, or that references, the current

function.

• References. Any references for the algorithm or code.

• Author. The author of the function.

• Date. The date the function was originally created.

• Revisions. The date of last revision of the function.

In the remainder of the header file, any references to the template function must be

changed to those of the new function, such as the name of the class. Also, at the bottom

of the header file, the data structures and variables to be used in the processing of the

image are declared. Any variables that are input parameters should be added here. If any

additional functions need to be added for use in the processing flow of the function, the

prototypes should be added to the header file as well.

Next, the functions in the source file should be changed to reflect the desired func-

tionality of the new function.

18

2.6.3 Step 3: Coding the getName Function

The getName function requires a return value of the name of the function. For our

example, we simply require:

return "Thresholding";

2.6.4 Step 4: Coding the getHelp Function

The getHelp function requires a descriptive string about the usage of the function.

For our example, we will have:

return "16-bit thresholding to convert grayscale to binary";

2.6.5 Step 5: Coding the registerParameters Function

The registerParameters function registers all the required input parameters so that

they can be entered by the user into the GUI. There is a variety of parameter types which

can be used:

• Integer Parameter. This parameter can take on any integer value between the specified

minimum and maximum. The parameter registration code takes the following form,

where the last two arguments are optional:

params->addIntParameter(i, "parameter name", default value, minimum value,

maximum value);

• Real Parameter. This can take on any continuous real value between the specified

minimum and maximum. The parameter registration code takes the following form,

where the last two arguments are optional:

params->addRealParameter(i, "parameter name", default value, minimum value,

maximum value);

• Choice Parameter. This should be used when the parameter can only take a small

number of discrete values, particularly with non-numeric choices or non-continuous

values such as odd integers. Adding a choice parameter requires two discrete steps.

The first is to register the parameter itself:

params->addChoiceParameter(i, "parameter name");

The next step is to register the individual choices:

19

params->addChoices(i, "First choice name", Index of default value, "Second choice

name", ...additional choices..., "");

For our example of a basic Thresholding function, the registerParameters function

will contain the following:

params->addIntParameter(i, "Minimum foreground graylevel value");

params->addChoiceParameter(i, "Use max graylevel value?");

params->addChoices(i, "Use max graylevel value?", 0, "No", "Yes", "");

params->addIntParameter(i, "Maximum foreground graylevel value");

2.6.6 Step 6: Coding the setParametersGUI Function

The setParametersGUI function operates at runtime and assigns the variable values

input by the user into the function itself. There should be a line corresponding to each

parameter required by the filter. The code in this function takes on the following form:

• Integer Parameter :

variable name = params->getIntValue(i, "parameter name", id);

• Real Parameter :

variable name = params->getIntValue(i, "parameter name", id);

• Choice Parameter. There are two options for importing the value of a choice param-

eter. The first is to take the index of the selected option; i.e., 0 for the first option, 1

for the second option, etc:

variable name = params->getChoiceValueOffset(i, "parameter name", id);

The other option is to return the choice itself:

variable name = params->getChoiceValue(i, "parameter name", id);

It is also a good idea to perform parameter checks on the input parameters at this

point; more detail regarding the procedure and methods for doing so are given in the below

section titled “Parameter Bounding and Checks”.

For our example of a basic Thresholding function, the setParametersGUI function

will contain the following. Our example will include a parameter check to ensure that the

maximum foreground graylevel value is not less than the minimum foreground graylevel

value:

m opt = params->getChoiceValueOffset(i, "Use max graylevel value?", id);

20

m par1 = params->getIntValue(i, "Minimum foreground graylevel value", id);

m par2 = params->getIntValue(i, "Maximum foreground graylevel value", id);

if (m opt && m par1 > m par2)

throw commandDecoderError(0, 4, "Maximum < Minimum","");

2.6.7 Step 7: Coding the perform Function

Lastly, the perform function needs to be implemented. This function performs the

necessary image processing operations on the input image. To begin, we use the following

line to load the image pointer to the local image object:

Img = &img;

Once this is done, the processing of the image can begin. We will not run through

all possible operations that can be performed on an image; see the NVImage class docu-

mentation for a more complete reference. The most commonly used functions are:

• Img->getNumSlices(). Returns the number of slices in the image.

• Img->getNumRows(). Returns the number of rows in the image.

• Img->getNumColumns(). Returns the number of columns in the image.

• Img->kij(slice number, row number, column number). This function allows for

both accessing and modifying the pixel values in an image. If used by itself, the

function returns the value of the specified voxel. If a number is assigned to this

function using the ’=’ character, the specified number is saved to the voxel.

A combination of these functions can implement almost any filtering, manipulation,

or morphological operation.

In the next chapter, we will look at upgrades made at the function level, beginning

with the methods used to add functions to VFX.

21

Chapter 3

Category and Function Upgrades

This chapter outlines the process and changes used in upgrading the individual cat-

egories and functions in VFX. Our ultimate goal is to modernize VFX by upgrading all

functions to 16-bit, and these upgrades make significant progress towards this goal. In Sec-

tion 3.1, we will look at general parameter bounding and error detection. In the remaining

sections, we will look at the individual categories and the upgrades made to their functions.

We will look at the format (Section 3.2), workspace (Section 3.3), morphology (Section

3.4), topology (Section 3.5), manipulation (Section 3.6), and other categories (Section 3.7),

in that order. Finally, in Section 3.8, we will look at the VFX Function Manual and the

process of documenting these function changes.

Chapter 4 then overviews the process used for verifying these changes.

3.1 Parameter Bounding and Error Detection

Parameter bounding and error detection are two distinct means of preventing invalid

parameter values. Bounding works while the user is editing the script, while error detection

occurs at runtime.

Bounding can prevent errors such as running 0 iterations of a filter or specifying a

filter with an even-valued mask dimension. This is a feature already incorporated in many

functions in VFX. It is implemented in the parameter registration process. There are two

ways of adding parameter bounding. The first, as seen in Figure 3.1, is to specify all the

valid values in a list. This is most appropriate in cases where only specific values of the

parameter will work. In the example, the parameter is for a filtering window size, and only

odd values are valid.

The second means of bounding, as seen in Figure 3.2, is to specify a maximum and

minimum value of the parameter. In this case, the user may enter any value that falls within

the specified limits. In the example, the user is only allowed to enter values between 0.00

and 0.25 for the lambda value of the anisotropic diffusion filter.

22

Fig. 3.1. Bounding the median filter’s Z window dimension to odd values between 1 and
9 using a choice parameter. The user may select any of these choices.

Fig. 3.2. Bounding the lambda value of the AnisotropicDiffusionFilter between 0.00 and
0.25 using parameter limits. The user cannot enter a value outside these bounds.

23

Parameter bounding only works to prevent invalid values that are never allowed. In

some cases, the list of valid values may vary depending on other parameters or on the input

image. Parameter error checking prevents invalid values in these situations.

Parameter error checking can prevent the entry of incompatible parameters, and pro-

vides additional verification over bounds. For instance, if the user specifies a 2D structure

with a window depth greater than 1, these values satisfy the independent parameter bounds

but not the parameter compatibility checks that occur at runtime. This feature is inserted

after the function reads the parameter values, but before the function is executed. If the

parameters are incompatible, it is desirable to cancel execution of the current process and

require the user to correct the issue. To do so, a non-fatal NVException is thrown, which

stops the script and allows a specific error message to be displayed. The following lines of

code allow this to be done:

char errSubj[80];

throw(NVException(errSubj, "Error Message"));

In Figure 3.3, we see an example of the implementation of parameter error checking.

This function, Thresholding, uses both a maximum and a minimum as an input. It is

obviously not valid to enter a minimum value greater than the maximum value. If the user

does so, it causes this error message to be thrown during runtime and stops the execution

of the script.

Fig. 3.3. An example of parameter error detection for the Thresholding function using
exceptions at runtime.

24

In the preceding sections, we looked at general procedures applicable to all categories

of functions. In the following sections, we will describe specific upgrades made to individual

categories. This is a list of all categories in VFX that were upgraded in this project:

• Format

• Workspace

• Filter

• Morphology

• Topology

• Manipulation

These are the categories that were NOT considered for upgrades:

• Segmentation

• Measurement

• System

• VTK

• Turnkey

• BranchFunc

• TestingPurpose

In the following sections, we will provide details on the upgrades that were performed.

Categories will be described in the order they appear in the function selection dialog.

3.2 Format Function Upgrades

Several minor upgrades were made to functions in the Format category. A bug in

the CreateImage function was fixed, and the ability to load MetaImage (*.mhd) and bitmap

(*.bmp) files was added.

The CreateImage function in the Format category of VFX crashed upon the second

and subsequent runs of the function, as the function failed to clear the image workspace

25

memory before attempting to regenerate the image. To solve this, function calls were added

to clear the previously generated image before the new image is generated.

Ronnarit Cheirsilp upgraded the LoadImage, LoadHeader, and SaveImage functions

to support the loading and saving of MetaImage files. This is a file format commonly used

in medical imaging consisting of a *.mhd header file and a *.img image file.

A function to load 2D bitmap files was added in this version of VFX. Loading a

bitmap file required two distinct steps; loading the bitmap file into memory, and porting it

to an ANALYZE format image.

To load the bitmap file, the bitmap file header is first read. This initial header

includes information about the size of the DIB header, which includes additional details

about the image. The DIB header is then read, storing the image size and depth. Using

this information, the remainder of the file is then read and stored into memory.

To convert the BMP data to ANALYZE format, both the header information and

the image data needed to be stored. Some of the header information, such as the image

size and depth, was copied directly from the BMP header. Other information, such as the

resolution, has no equivalent in the BMP header and is given a default value. After the

header information is stored, the image is initialized and the voxels are individually copied.

Next, we will look at the changes made to the Workspace category.

3.3 Workspace Function Upgrades

In the Manipulation category, there were numerous functions operating directly on

multiple workspaces. In VFX 2.2, these functions have been moved to the Workspace

category. Parameter error detection for image size mismatch and other incompatibilities

were added for most of the functions.

Here, we list the functions which were moved to the Workspace category. Most of

the workspace functions are in sets of three; the “From” functions operate on the current

workspace, the “To” functions operate on the specified target workspace, and the “FromTo”

functions operate on two specified workspaces. The functions moved are shown below:

• WorkspaceCrop. Crops one workspace to a different workspace.

• CopyFrom, CopyTo, CopyFromTo. Copies an image from one workspace to another.

• EmbedFrom, EmbedTo, EmbedFromTo. Embeds an image from one workspace to a

subset of another.

26

• SubFrom, SubTo, SubFromTo. Subtracts one image from another image.

• AddFrom, AddTo, AddFromTo. Adds one image to another image.

• MultFrom, MultTo, MultFromTo. Multiplies one image with another.

• DiffFromImage, DiffImages. Prints the different voxels between two images.

The next section covers upgrades to the Morphology category.

3.4 Morphology Function Upgrades

In this project, significant work was done to upgrade VFX’s morphology category to

a 16 bit standard. The existing 16 bit binary and grayscale morphology functions under-

went significant upgrades. New 16 bit maximum and minimum morphology functions were

introduced. Finally, the 8-bit equivalents of these functions were archived. We will begin

by overviewing the Morphology category prior to these upgrades.

The original organization of the morphology functions consisted of the following

functions:

1. BinaryMorphology. 16-bit binary morphology. Erode/Dilate/Open/Close is a se-

lectable parameter.

2. GrayscaleMorphology. 16-bit grayscale morphology. Erode/Dilate/Open/Close is a

selectable parameter.

3. VFXbinErode, VFXbinDilate, VFXbinOpen, VFXbinClose. 8-bit binary morphology

4. VFXgrayErode, VFXgrayDilate, VFXgrayOpen, VFXgrayClose. 8-bit grayscale mor-

phology

5. VFXmax, VFXmin. 8-bit maximum/minimum morphology

Our goal in this upgrade was to archive the 8-bit VFX morphology functions. Before

we could do so, functionality from these 8-bit functions that was missing in the 16-bit

functions needed to be ported over. In addition, other new features were also desired in the

16-bit functions. Some of the changes include:

1. Parameter bounds and compatibility checks

27

Fig. 3.4. A sample slice of Curve Branch Tube before (left) and after (right) binary mor-
phological dilation using the binaryMorph Dilate function.

2. Separation into separate Erode, Dilate, Open, Close functions

3. Introduce additional morphology structures

4. Introduction of Maximum and Minimum functions

First, we separated the BinaryMorphology and GrayscaleMorphology functions into

individual functions for erosion, dilation, opening, and closing. New code files were created

and the relevant code was divided amongst them. The “number of iterations” parameter

was removed for opening and closing, as these are idempotent functions; they produce the

same result regardless of how many times they are run.

We also upgraded the capabilities of these functions. A 2D 4-connected morphol-

ogy structure was present in the older 8-bit morphology functions but not in the newer

equivalents. In this project, we introduced this structure in the 16-bit morphology func-

tions. The option for this structure was added to the structure selection parameter, and

the corresponding code to perform 4-connected morphology was added.

Finally, we introduced maximum and minimum morphology functions for 16-bit im-

ages. Two new functions called Maximum and Minimum were introduced. These functions

analyze all the voxels in a specified mask, find the maximum or minimum, and assign that

value to the voxel of consideration. New files were created to implement these two func-

tions. The available morphology structures for these functions were ported over from the

BinaryMorphology function.

In the next section, we will look at changes made in the Topology category.

28

3.5 Topology Function Upgrades

The only functions considered in the Topology category were the 16-bit Connected-

ComponentLabeling and ConnComp2D functions. In this project, we worked to upgrade

these functions to match the functionality of their equivalent 8-bit functions. We also com-

bined these two functions into a single function, ConnCompLabeling. We will first overview

the capabilities of the 8-bit connected component labeling functions.

The 8-bit VFX connected component analysis functions, VFXConnComp2D and

VFXConnComp3D, allowed for the following selectable parameters:

1. Connectivity. The options are 4/8 connectivity for 2D analysis, or 6/26 connectivity

for 3D analysis. The higher connectivity options allow for edge/vertex connectivity,

while the lower option only allows for face connectivity.

2. Minimum Region Size. This is the smallest contiguous region size allowed in the

output image. Regions below this size are discarded.

3. Maximum Number of Regions. This is the maximum number of regions that is retained

in the output image. If the number of regions exceeds this number, the largest regions

are retained while the smaller ones are discarded.

4. Save Labels. If this option is enabled, the regions in the output image are given

independent labels, or grayscale values. Labels are assigned between 1 and 255. If

this is disabled, the background is assigned to 0 and the foreground is assigned to 1.

In Figure 3.5, the effect of this option can be seen. In this example, image r1a was

thresholded with a threshold of 128 and connected component labelling was performed

with saving labels enabled. In the displayed slice, 81, six unique regions are visible.

As can be seen, all regions have unique grayscale values assigned.

In the 16-bit VFX connected component analysis functions, ConnComp2D and Con-

nectedComponentLabelling, only the first two parameters are available. The remaining two

features needed to be added to both of the 16-bit functions. While the 2D and 3D functions

are distinct and have different implementations, the means via which these features were

implemented remain fairly consistent between them.

To implement the Maximum Number of Regions parameter, the largest regions in

the image needed to first be identified. In the original function from VFX 2.1, an array of

region sizes is created; the index of the array corresponds to the label of the region. To

29

Fig. 3.5. Slice 81 of image r1a after Thresholding and ConnCompLabeling with labels
saved. Six unique regions are visible.

30

allow for reordering of labels, a separate array was initialized with the labels of the regions.

Then, the arrays were sorted in descending order using the region size as the key. Next,

all regions beyond the specified maximum were removed by setting all voxels with their

labels to -1. Finally, because the remaining labels are no longer consecutive, these were

then reassigned to label numbers between 0 and the maximum number of regions.

To implement the Save Labels parameter, each independent region needed to be

assigned a unique grayvalue in the output image. While the existing function assigned

labels as grayvalues within the analysis process, the labels are not retained nor reordered

after the region filtering process. To address this, the segmentation process to remove the

labels was changed from default behavior to an option. Also, a loop was written to reassign

the labels to grayvalues between 0 and the number of regions. Because we are working with

16-bit images, we are now able to assign tens of thousands of labels instead of just 254.

Finally, after the changes had been made, it we combined the 2D ConnComp2D

and the 3D ConnectedComponentLabelling functions into a single function. To do this, an

additional parameter was added to the ConnectedComponentLabelling function which allows

the user to select between 2D and 3D analysis. Next, the code to perform 2D connected

component labelling was copied over from the ConnComp2D function, and all variable

names and other details were updated. The new 2D/3D parameter allows the user to select

between the two operations within this filter.

In the next section, we will look at the upgrades made to the Manipulation category.

3.6 Manipulation Function Upgrades

Another category which underwent major changes is the Manipulation category.

Several 16-bit versions of existing 8-bit functions were introduced. Additionally, more robust

error detection was added to several functions. Finally, all functions operating between

multiple workspaces was moved to the Workspace category. We will first look at the newly

introduced 16-bit functions.

The Manipulation category of VFX 2.1 contains numerous 8-bit functions without

16-bit equivalents. To progress towards our goal of a 16-bit standard, we introduced several

new equivalent functions and archived the 8-bit versions. We did so for the following

functions:

• AssignValue. This assigns a specified value to a specified voxel.

31

• ImageMasking. This zeroes out voxels outside a defined window.

• HighZero. This zeroes out grayscale values above a certain threshold.

• LowZero. This zeroes out grayscale values below a certain threshold.

• RangeLabel. This reassigns a specified range of grayscale values to a single value.

• CropImage. This extracts a subset of the original image to be the new image. Two

existing functions, CropImage NV and CropImage new, did not function as intended.

• GrayInversion. This inverts the grayscale values.

3.7 Other Categories

Only the above mentioned categories were considered in the course of this project.

All other categories were left as is, and are in the same state as they were in VFX 2.1.

In the next section, we will look at the documentation of the above mentioned changes

in the VFX Function Manual.

3.8 Function Manual

The VFX 2.1 Function Manual describes every function in VFX. It provides infor-

mation about the purpose and methods of each function, as well as guidance about how the

function should be used. The function manual for VFX 2.1 is written using LaTeX and the

source files are stored alongside the pdf file for the function manual.

It is organized in the following manner:

1. Table of contents.

2. Overview of categories. This section summarizes all of VFX’s functions and is provided

as a quick reference. It lists all functions by category and gives a short, single-line

description of each.

3. Detailed Description. Detailed descriptions of the purpose, parameters, and usage of

each function are given. The functions are separated by category and each function

is given a separate page.

32

During the development of VFX 2.2, significant changes were made in VFX’s func-

tions. These changes include the order in which functions appear, their parameters and

operation, and their names. In addition, many older functions were archived and many new

functions were added. These changes needed to be reflected in the updated VFX function

manual.

Additionally, for many functions, there was a significant lack of detail in the detailed

description of many functions. In Figure 3.6, for instance, the documentation for the Gaus-

sianBlurFiltering function is shown. As can be seen, very little useful information about

the function’s operation and usage is provided. During the course of updating the function

manual, an effort was made to improve the description of functions which lack adequate

documentation.

Fig. 3.6. VFX 2.1 Function Manual entry for the GaussianBlurFiltering function.

The location of the final VFX 2.2 Function Manual can be found in Appendix A.

In the next chapter, we will look at the procedure used in testing the functions

changed above.

33

Chapter 4

Tests

In this chapter, the detailed testing procedure is outlined for the different elements

of the program. In Section 3.1, a general introduction to the considerations and available

sample data is given. In Section 3.2, the general process to test a function is described.

Finally, we look at the process for testing Workspace (Section 3.3) and Format (Section 3.4)

functions specifically. The results of this testing are given in the next chapter, Results.

4.1 General Procedure and Sample Data

When functions are added or modified, testing must be done to ensure that they

work as intended. When doing so, the primary goal is to cover all possible test cases, to

account for all possible images and parameter values. As a result, a wide sample of images

and test cases are needed to fulfill these various possibilities.

The first factor to account for is the file format of the image. Many medical images

currently used by the lab are in ANALYZE format, a 3D image format which consists of

a *.img file and a *.hdr file. The header file includes information about the dimensions,

resolution, and other information about the image, while the image file stores the voxel

data. When testing the LoadBMP function, a sample 2D bitmap image was needed to

verify its functionality. Bitmap header information and image data is stored within the

same *.bmp file.

The second factor to consider is the distinction between 8-bit and 16-bit images.

As noted earlier, many older functions only operate on 8-bit images, while newly coded

functions handle both 8-bit and 16-bit images. 8-bit images allow for 256 distinct gray

levels within an image, while 16-bit images allow for 65,536 distinct gray levels.

A third property of test images is whether it is binary or grayscale, or in the case of

bitmap images, RGB. Binary images only have two distinct grayscale values, one being zero

(black) and one being nonzero (white). Grayscale images, on the other hand, can cover a

much wider range of voxel values. For bitmap RGB images, there are three separate values

34

stored for each pixel; one represents the brightness of the red channel, one for the green

channel, and one for the blue channel.

The following images were used in testing:

• curve branch tube128 (ANALYZE, 8-bit, binary, 128 × 128 × 128) [7] This is a 3D

image of a synthetic tube that branches from a single tube into two. It has two distinct

voxel values of 0 and 128, where the brighter value of 128 represents voxels inside the

tubes.

• r1a (ANALYZE, 8-bit, grayscale, 97 × 97 × 102) [2] This is a 3D image of a heart. The

voxel values range from 0 to 255, where brighter regions represent the left ventricular

chamber and the darker regions represent the myocardium heart muscle.

• 20349 3 3 B31 (ANALYZE, 16-bit, grayscale) [1] This is a 3D image of a human chest.

The voxel values represent Hounsfield units, ranging from around -1100 to +1000 HU.

A sample slice of this image is shown in Figure 4.1.

• gray (Bitmap, 8-bit, RGB) This is a sample BMP image with three 8-bit color chan-

nels. Once converted to grayscale, it contains four distinct gray levels ranging from 0

to 255.

Next, we will describe the process for testing general functions using this test data.

4.2 General Function Testing

The test procedure described in this section is applicable to the majority of functions

in VFX. We are considering functions which operate on the image in the current workspace

and directly modify the image in place. All of the tested functions in the filter, manipulation,

and morphology sections operate in this manner.

In this project, all functions which were modified in any way were tested. For func-

tions meeting the above criteria, the following process was used:

1. Load the sample image data.

• 8-bit binary image curve branch tube

• 8-bit grayscale image r1a for grayscale morphology and max/min functions

• 16-bit grayscale image 20349 3 3 B31 for grayscale and max/min functions

35

Fig. 4.1. Slice 175 of 16-bit Image 20349 3 3 B31.

36

2. Display the unmodified image for later comparison.

3. Operate on the image.

• Vary the window size (dependent on function):

– Default size 3×3×3

– Larger size 5×3×5

– 2D mask 3×3×1

• For morphology functions:

– Test all possible morphology structures

– For erosion, dilation, maximum, and minimum functions, try multiple iter-

ations

4. Display the image after operation and compare with original

An example of a simple testing script used to test the MedianFiltering function can

be seen in Figure 4.2. Because we are simply testing a function that operates on a single

image, we simply need to load an image and operate on it. To test the parameters, we

simply run the test script multiple times after changing the parameters of the function.

This is a breakdown of the purpose of the functions used in the testing script men-

tioned above:

1. LoadImage Loads the test image r1a into the current working image.

2. DisplayImage Displays the original unmodified image. By running this function at

this point in the script, we avoid the need to create an additional workspace to store

a copy of the unmodified image.

3. MedianFiltering Performs median filtering on the image. According to the function

documentation, this function should at each point in the image take the median of all

voxel values within the window specified by the three input dimensions, and assign

that value to the current voxel. We are using a 5 × 5 × 5 sized window for this run of

the testing script, but must also run it for additional sizes to ensure that all parameter

inputs work.

4. DisplayImage Displays a copy of the image after it has been median filtered using the

above function. Now that both the original and modified images have been output,

37

we can directly compare the two images and visually determine whether the output

is correct.

The output of both DisplayImage functions in the above testing script can be seen in

Figure 4.3. It can clearly be seen that the modified image is significantly smoother than the

original image, yet edges have still been preserved to some extent. Also, while not shown,

the degree of smoothing is visibly greater than when the filter was run with a 3 × 3 × 3

sized window. This is the desired output of the MedianFiltering operation.

Fig. 4.2. A sample script to test the MedianFiltering filter.

When testing the Workspace and Format categories, we are considering functions

which do not operate in place on a currently loaded image. Thus, we need specialized

testing procedures to test these functions. We begin by looking at the tests done on the

Workspace category.

4.3 Workspace Function Testing

By default, VFX scripts use a single workspace. The functions in the Workspace

category allows users to create and manipulate multiple workspaces. This allows the user

38

Fig. 4.3. A slice of image r1a before (left) and after (right) median filtering. This is the
output of the test script in Figure 4.2.

39

to work with multiple images or multiple copies of images. In this section, we describe the

procedure for testing Workspace functions.

Most of the workspace functions require two initialized workspaces to function. Thus,

the first step in testing is to create and set up the two workspaces. The following procedure

was used to do this:

1. Create the initial workspace, Image1.

2. Set Image1 to be the working image.

3. Load the test image.

4. Add an additional workspace, Image2.

5. Set Image2 to be the working image.

6. Copy or re-load the test image.

7. Modify the image using a filter or crop operation.

Once the two workspaces are initialized, we can now apply a workspace operation

to the two workspaces and verify that the result of the operation is correct given the two

inputs. The copy functions are tested through their use in the above test script. An example

of an actual workspace testing script for the EmbedTo operation can be seen in Figure 4.4.

This is a more detailed rundown on the individual functions used in the above refer-

enced testing script:

1. CreateWorkSpace Creates the initial working space and assigns it an image name of

”Orig”.

2. SetWorkImage Sets the current working image to the workspace we have just created,

so that the subsequent operations operate on this workspace.

3. LoadImage Loads the test image r1a into the working image ”Orig”.

4. AddWorkSpace Adds an additional workspace and assigns it an image name of ”Mod-

ified”.

5. SetWorkImage Sets the current working image to the workspace we have added in the

previous step.

40

6. LoadImage Loads the test image r1a again, this time into the ”Modified” image

workspace.

7. CropImage Crops the image in the ”Modified” image workspace to a subset of the

original image.

8. EmbedTo This is the function to be tested. According to the function manual, it

embeds the current image, ”Modified”, into the target image, ”Orig”, at the specified

x, y, and z values of (10, 10, 10).

9. SetWorkImage Sets the current working image back to ”Orig” so we can check that

the target image of the EmbedTo function has indeed been modified.

10. DisplayImage Displays the target image so we can verify that the result of the oper-

ation is correct.

The output of this testing script can be seen in Figure 4.5. As can be seen, a cropped

version of the original, ”Modified”, has clearly been embedded into a subset of the original

image, ”Orig”.

Finally, we will look at the means by which Format category functions were tested.

41

Fig. 4.4. A sample script to test the EmbedTo workspace function.

42

Fig. 4.5. A subset of image r1a embedded in another copy of r1a. This is the output of
the test script in Figure 4.4.

4.4 Format Function Testing

Within the Format category, the LoadImage, LoadHeader, SaveImage, and CreateIm-

age functions were modified and the LoadBMP function was added. While these functions

operate only on the current workspace, similar to the general functions noted above, the

SaveImage function outputs an image file to disk and the other functions import image files

to VFX.

The load functions are used to import an image file at the beginning of a script. In

the course of this project, we added the ability to load *.mhd and *.bmp files. The following

procedure was used to test the Format category functions:

1. Load a file

• Bitmap image

• MetaImage

2. Apply other VFX functions and verify functionality

• SaveImage function followed by subsequent LoadImage

• binaryMorphology or grayscaleMorphology function

43

• medianFilter function

All test results are given in the next chapter.

44

Chapter 5

Results

This chapter summarizes the changes made to the categories and functions of VFX

in the upgrade to version 2.2. First, we show the VFX 2.1 function tables from Jue Li’s

thesis in 2010, which provides a list of functions and test results from before this upgrade.

Next, a series of tables illustrate the various changes made to these functions. Afterwards,

we present tables showing the final state of VFX 2.2 at the conclusion of this upgrade. At

the end of this section, sample runs for selected upgraded functions are given.

5.1 VFX 2.1 Function Tables and Test Results

In this section, we present the state of VFX 2.1’s functions prior to the upgrades in

this project. This provides a baseline reference that the next sets of tables will build off.

The test results given below have been copied from Jue Li’s thesis on VFX 2.1 in 2010.

The testing was performed on the binary-valued image

“curve branch tube128”, the grayscale (8-bit) image “r1a”, and the 16-bit image “20349 3 3 B31.”

In the test results columns of the tables, the various entries mean the following:

• “Pass” means that the function worked for the specified data type.

• “Fail” means that the function did not work for the specified data type.

• “N/A” means that the function is not applicable to the specified data type. For ex-

ample, “VFXgrayClose” is not applicable to a binary-valued image.

The phrase “This category was NOT upgraded” in the table caption means the

category was not changed from VFX 2.1 to VFX 2.2. Thus, for these categories, the tables

in this section also reflect the current state of these categories. The categories appear in

the order in which they appear in VFX’s function selection dialog.

45

Function Binary Image Type 8-bit Image Type 16-bit Image Type

AddSkeleton — — —
CreateImage Pass Pass Pass
DisplayImage Pass Pass Pass
ImportTr2 — — —
LoadHeader Pass Pass Pass
LoadImage Pass Pass Pass
LoadPath — — —
LoadSkeleton — — —
ResumeLoadImage — — —
SampleLine Pass Pass Pass
SaveImage Pass Pass Pass
SaveImageNoCalGray Pass Pass Pass
SavePath — — —
SaveSkeleton — — —
SaveThin — — —
SaveTrc — — —

Table 5.1. VFX 2.1 status of Format functions.

Function Binary Image Type 8-bit Image Type 16-bit Image Type

AddWorkSpace Pass Pass Pass
CreateWorkSpace Pass Pass Pass
FreeWorkImage Pass Pass Pass
RenameWorkImage Pass Pass Pass
SetImageShared Pass Pass Pass
SetWorkImage Pass Pass Pass
WorkImage Pass Pass Pass

Table 5.2. VFX 2.1 status of Workspace functions.

46

Function Binary Image Type 8-bit Image Type. 16-bit Image Type

AnisotropicDiffusionFilter Pass Pass Pass
GaussianBlurFiltering Pass Pass Pass
LaplacianOfGaussian Pass Pass Pass
MeanFiltering Pass Pass Pass
MedianFiltering Pass Pass Pass
SigmaFiltering Pass Pass Pass
VFXanisoDiffuse Pass Pass Pass
VFXaverageMax Pass Pass Pass
VFXaverageMin Pass Pass Pass
VFXdespike Pass Pass Pass
VFXfilter4D Need a 4D image input.
VFXlowpass Pass Pass Pass
VFXmaxHomog Pass Pass Pass
VFXmedian Pass Pass Pass
VFXsigma Pass Pass Pass
VFXsymmetricNN Pass Pass Pass
VFXwshedFilter Need a 4D input image gradient.

Table 5.3. VFX 2.1 status of Filter functions.

Function Binary Image Type 8-bit Image Type 16-bit Image Type

BinaryMorphology Pass N/A N/A
GrayscaleMorphology N/A Pass Pass
VFX4Dmorphology Need a 4D input image.
VFXbinClose Pass N/A N/A
VFXbinDilate Pass N/A N/A
VFXbinErode Pass N/A N/A
VFXbinOpen Pass N/A N/A
VFXcondDilate Need a 4D condition volume.
VFXgrayClose N/A Pass Pass
VFXgrayDilate N/A Pass Pass
VFXgrayErode N/A Pass Pass
VFXgrayOpen N/A Pass Pass
VFXmax Pass Pass Pass
VFXmin Pass Pass Pass
VFXtopHat Pass Pass Pass
VFXultimateErode Fail Fail Fail

Table 5.4. VFX 2.1 status of Morphology functions.

47

Function Binary Image Type 8-bit Image Type 16-bit Image Type

BorderBranchLabel Pass Pass Pass
BranchLabeling Pass Pass Pass
CavityDelete2D Pass Pass Pass
CavityDeletion Fail. Fail when choosing recursive mode.
CenterlineTracking Need a surface file.
CheckBranchLabel Fail Fail Fail
ComnnComp2D Fail. It can generate an output, but the output is wrong.
ConnectedComponentLabeling Pass Pass Pass
FreeCheckBranchLabel Pass Pass Pass
PrintBranchLabel Pass Pass Pass
SetCenterlineTracking Pass Pass Pass
SplineSkeleton Pass Pass Pass
Thinning Pass Pass Pass
Thinning2 Fail Fail Fail
ThinningSaha Fail Fail Fail
VFXcavityDeletion ajs Fail Fail Fail
VFXconnComp2d Fail Fail Fail
VFXconnComp3d Fail. Fail. Fail.
VFXhomotopicThick Pass Pass Pass
VFXhomotopicThin Pass Pass Pass

Table 5.5. VFX 2.1 status of Topology functions.

48

Function Binary Image Type 8-bit Image Type 16-bit Image Type

BrightRegionGrowing Pass Pass Pass
FWHMRegionGrowing Pass Pass Pass
HybridHalfMaximumRegionGrowing Need the input, threshold and local-half-max images.
HysteresisThresholding Pass Pass Pass
LocalThresholdRegionGrowing Pass Pass Pass
MaskingImage Pass Pass Pass
RegionGrowing Pass Pass Pass
RemoveOuterRegion Fail. It can generate an output, but the output is wrong.
SegmentGen Need a input skeleton representation.
VFXadaptiveThresh Pass Pass Pass
VFXbinBordDetect Pass Pass Pass
VFXbtRegionGrow Fail Fail Fail
VFXcueRegionGrow Fail for number of region above 2.
VFXcueRelax Need a cue filenames.
VFXcueWatershed Pass Pass Pass
VFXhystThreshold Fail Fail Fail
VFXhystThreshSeed Need a cue filenames.
VFXkirschEdge Pass Pass Pass
VFXmorphGradient Pass Pass Pass
VFXnonmaxSuppress Pass Pass Pass
VFXrelaxLabeling environment variable ISEHOME not defined.
VFXseedRegGrow Fail Fail Fail
VFXsobel Pass Pass Pass
VFXwshedCueRelax Need cue filenames and gradient input volume.
VFXwshedMarkerRelax Need the gradient input volume.

Table 5.6. VFX 2.1 status of Segmentation functions. This category was NOT upgraded.

49

Function Binary Image Type 8-bit Image Type 16-bit Image Type

AddFrom Pass Pass Pass
AddFromTo Pass Pass Pass
AddTo Pass Pass Pass
AddValue Pass Pass Pass
Complement Pass Pass Pass
ConvertImage Pass Pass Pass
CopyFrom Pass Pass Pass
CopyFromTo Pass Pass Pass
CopyTo Pass Pass Pass
CreateCrossSection Need the segmented image name.
CropImage new Pass Pass Pass
CropImage NV Fail Fail Fail
DiffFromImage Pass Pass Pass
DiffImages Pass Pass Pass
EmbedFrom Pass Pass Pass
EmbedFromTo Pass Pass Pass
EmbedTo Pass Pass Pass
FixHeader Pass Pass Pass
FlipImage Pass Pass Pass
HistogramEqualization N/A Pass Pass
Interpolation Pass Pass Pass
MultFrom Pass Pass Pass
MultFromTo Pass Pass Pass
MultiplyValue Pass Pass Pass
MultTo Pass Pass Pass
ResizeImage Pass Pass Pass
SetBinaryMinMax N/A Pass Pass
SubFrom Pass Pass Pass
SubFromTo Pass Pass Pass
SubTo Pass Pass Pass
Thresholding Pass Pass Pass

Table 5.7. VFX 2.1 status of Manipulation functions (part 1).

50

Function Binary Image Type 8-bit Image Type 16-bit Image Type

VFXassign Pass Pass Pass
VFXcomplement Pass Pass Pass
VFXdemaskRegion Fail Fail Fail
VFXembedImage Pass Pass Pass
VFXexpand Pass Pass Pass
VFXflip Pass Pass Pass
VFXgaussNoise Pass Pass Pass
VFXgrayInversion Pass Pass Pass
VFXhighZero Pass Pass Pass
VFXimageMasking Pass Pass Pass
VFXinterpOrlick Fail Fail Fail
VFXinterpWEH Pass Pass Pass
VFXlevelSlicing Pass Pass Pass
VFXlinearInterp Fail Fail Fail
VFXlowZero Pass Pass Pass
VFXrangeLabel Pass Pass Pass
VFXresize Pass Pass Pass
VFXsaveLargest Pass Pass Pass
VFXshade2D Pass Pass Pass
VFXshrink Pass Pass Pass
VFXthreshold Pass Pass Pass
VFXumbra Pass Pass Pass
VFXvolumeAlgebra Need the “vol2” input parameter.
VFXzeroPad Pass Pass Pass
Volume Algebra Need volume 1 and volume 2.

Table 5.8. VFX 2.1 status of Manipulation functions (part 2).

Function Binary Image Type 8-bit Image Type 16-bit Image Type

ComputeMedianGrayScale Pass Pass Pass
Information Pass Pass Pass
Profiling Pass Pass Fail
SaveHistogram Pass Pass Pass
SupportArea Pass Pass Pass
VFX3Dhistogram Fail Fail Fail
VFXerrorFunc Need the second volume.
VFXhistogram Pass Pass Pass
VFXminBdCube Pass Pass Pass
VFXregionProps Need the grayscale volume.
VFXvolProperties Pass Pass Pass

Table 5.9. VFX 2.1 status of Measurement functions. This category was NOT upgraded.

51

Function Binary Image Type 8-bit Image Type 16-bit Image Type

Time Pass Pass Pass
Version Pass Pass Pass

Table 5.10. VFX 2.1 status of System functions. This category was NOT upgraded.

Function Binary Image Type 8-bit Image Type 16-bit Image Type

RenderSurface Pass Pass Pass
RenderSurfaceWithSkeleton Need input tree surface and input skeleton representation.
SetSurfaceWriter — — —
Skeleton2vtkFile — — —
SurfaceGeneration Pass Pass Pass
SurfaceWriter — — —

Table 5.11. VFX 2.1 status of VTK functions. This category was NOT upgraded.

Function Binary Image Type 8-bit Image Type 16-bit Image Type

LungMask Pass Pass Pass
VFXangioAnalysis Fail Fail Fail
VFXblobExtract Fail Fail Fail
VFXconcaveGapFill Fail Fail Fail
VFXlvExtract Fail Fail Fail
VFXmicroCT Fail Fail Fail
VFXregionIso Fail Fail Fail
VFXregionSep Pass Pass Pass
VFXrootRemoval Fail Fail Fail

Table 5.12. VFX 2.1 status of Turnkey functions. This category was NOT upgraded.

Function Binary Image Type 8-bit Image Type 16-bit Image Type

PruneGenHard Invalid parameter: Generation ID
PruneGenSoft Invalid parameter: Generation ID
Pruning Need input skeleton.
RootSearch Need input skeleton representation.
SkeletonRep Fail Fail Fail
VFXbranchMeas Fail Fail Fail

Table 5.13. VFX 2.1 status of BranchFunc functions. This category was NOT upgraded.

52

Function Binary Image Type 8-bit Image Type 16-bit Image Type

FilterResponse Pass Pass Pass
MaxResponse Pass Pass Pass
TubularStructureDetection Fail Fail Fail
VesselThresholder Fail Fail Fail

Table 5.14. VFX 2.1 status of TestingPurpose functions. This category was NOT
upgraded.

5.2 Overview of Category Changes

We have just looked at the list of functions in VFX 2.1 prior to any changes. The

following set of tables present this same list of functions, but show the changes made to

each of the functions during the course of the upgrade to VFX 2.2. Tables are only shown

for categories which have changed; categories which were not considered in this project are

left out.

The columns of these tables have the following meanings:

• “Examined” indicates that the function was considered for changes in this paper.

• “Upgraded” means that functionality, parameter bounding, or error checking was

improved, or a bug was fixed.

• “Archived” means that the function was moved to the function archive.

• “Renamed” means that the function has been renamed or merged with a function of

a different name. The new name of the function is provided.

• “Moved” indicates that the function has been moved to a different category. The new

category name is provided.

The entries in the columns have the following meanings:

• “Y” means the the change applies to the current function.

• “Y*” is used to represent changes made by Ronnarit Cheirsilp.

• “-” means that the corresponding change does not apply.

53

The tables appear in the order in which the categories appear in VFX’s function

selection dialog.

54

VFX 2.1 Function Examined Upgraded Archived Renamed Moved

AddSkeleton Y - Y - -
CreateImage Y Y - - -
DisplayImage - - - - -
ImportTr2 Y - Y - -
LoadHeader Y* Y* - - -
LoadImage Y* Y* - - -
LoadPath Y - Y - -
LoadSkeleton Y - Y - -
ResumeLoadImage - - - - -
SampleLine Y - Y - -
SaveImage Y* Y* - - -
SaveImageNoCalGray - - - - -
SavePath Y - Y - -
SaveSkeleton Y - Y - -
SaveThin Y - Y - -
SaveTrc Y - Y - -

Table 5.15. Changes made to Format functions.

55

VFX 2.1 Function Examined Upgraded Archived Renamed Moved

AddWorkSpace Y - - - -
CreateWorkSpace Y - - - -
FreeWorkImage - - - FreeWorkSpace -
RenameWorkImage - - - RenameWorkSpace -
SetImageShared - - - - -
SetWorkImage - - - SetWorkSpace -
WorkImage - - - WorkspaceName -

Table 5.16. Changes made to Workspace functions.

VFX 2.1 Function Examined Upgraded Archived Renamed Moved

AnisotropicDiffusionFilter Y - - - -
GaussianBlurFiltering - - - - -
LaplacianOfGaussian - - - - -
MeanFiltering Y Y - - -
MedianFiltering Y Y - - -
SigmaFiltering Y Y - - -
VFXanisoDiffuse Y - Y - -
VFXaverageMax - - - - -
VFXaverageMin - - - - -
VFXdespike - - - - -
VFXfilter4D - - - - -
VFXlowpass - - - - -
VFXmaxHomog - - - - -
VFXmedian Y - Y - -
VFXsigma Y - Y - -
VFXsymmetricNN - - - - -
VFXwshedFilter - - - - -

Table 5.17. Changes made to Filter functions.

56

VFX 2.1 Function Examined Upgraded Archived Renamed Moved

BinaryMorphology Y Y - BinaryMorph Erode -
BinaryMorph Dilate
BinaryMorph Open
BinaryMorph Close

GrayscaleMorphology Y Y - GrayscaleMorph Erode -
GrayscaleMorph Dilate
GrayscaleMorph Open
GrayscaleMorph Close

VFX4Dmorphology - - - - -
VFXbinClose Y - Y - -
VFXbinDilate Y - Y - -
VFXbinErode Y - Y - -
VFXbinOpen Y - Y - -
VFXcondDilate - - - - -
VFXgrayClose Y - Y - -
VFXgrayDilate Y - Y - -
VFXgrayErode Y - Y - -
VFXgrayOpen Y - Y - -
VFXmax Y - Y - -
VFXmin Y - Y - -
VFXtopHat - - - - -
VFXultimateErode Y - Y - -

Table 5.18. Changes made to Morphology functions.

57

VFX 2.1 Function Examined Upgraded Archived Renamed Moved

BorderBranchLabel - - - - -
BranchLabeling - - - - -
CavityDelete2D - - - - -
CavityDeletion - - - - -
CenterlineTracking - - - - -
CheckBranchLabel - - - - -
ConnComp2D Y Y - ConnCompLabeling -
ConnectedComponentLabeling Y Y - ConnCompLabeling -
FreeCheckBranchLabel - - - - -
PrintBranchLabel - - - - -
SetCenterlineTracking - - - - -
SplineSkeleton - - - - -
Thinning - - - - -
Thinning2 - - - - -
ThinningSaha - - - - -
VFXcavityDeletion ajs - - - - -
VFXconnComp2d - - - - -
VFXconnComp3d - - - - -
VFXhomotopicThick - - - - -
VFXhomotopicThin - - - - -

Table 5.19. Changes made to Topology functions. Note: ConnComp2D and Connected-
ComponentLabelling were merged to a single function, ConnCompLabeling.

58

VFX 2.1 Function Examined Upgraded Archived Renamed Moved

AddFrom Y Y - - Workspace
AddFromTo Y Y - - Workspace
AddTo Y Y - - Workspace
AddValue Y Y - - -
Complement - - - - -
ConvertImage - - - - -
CopyFrom Y - - - Workspace
CopyFromTo Y - - - Workspace
CopyTo Y - - - Workspace
CreateCrossSection - - - - -
CropImage new Y - - WorkspaceCrop Workspace
CropImage NV Y - Y - -
DiffFromImage Y - - - Workspace
DiffImages Y - - - Workspace
EmbedFrom Y - - - Workspace
EmbedFromTo Y - - - Workspace
EmbedTo Y - - - Workspace
FixHeader - - - - -
FlipImage - - - - -
HistogramEqualization - - - - -
Interpolation - - - - -
MultFrom Y Y - - Workspace
MultFromTo Y Y - - Workspace
MultiplyValue Y Y - - -
MultTo Y Y - - Workspace
ResizeImage - - - - -
SetBinaryMinMax - - - - -
SubFrom Y Y - - Workspace
SubFromTo Y Y - - Workspace
SubTo Y Y - - Workspace
Thresholding Y Y - - -

Table 5.20. Changes made to Manipulation functions (part 1).

59

VFX 2.1 Function Examined Upgraded Archived Renamed Moved

VFXassign Y - Y - -
VFXcomplement Y - Y - -
VFXdemaskRegion - - - - -
VFXembedImage Y - Y - -
VFXexpand - - - - -
VFXflip Y - Y - -
VFXgaussNoise - - - - -
VFXgrayInversion Y - Y - -
VFXhighZero Y - Y - -
VFXimageMasking Y - Y - -
VFXinterpOrlick - - - - -
VFXinterpWEH - - - - -
VFXlevelSlicing - - - - -
VFXlinearInterp - - - - -
VFXlowZero Y - Y - -
VFXrangeLabel Y - Y - -
VFXresize Y - Y - -
VFXsaveLargest - - - - -
VFXshade2D - - - - -
VFXshrink - - - - -
VFXthreshold Y - Y - -
VFXumbra - - - - -
VFXvolumeAlgebra - - - - -
VFXzeroPad - - - - -
Volume Algebra - - - - -

Table 5.21. Changes made to Manipulation functions (part 2).

60

5.3 VFX 2.2 Function Tables and Test Results

We have just looked at the original status of VFX 2.1’s functions and the changes

we have made to them. In this section, we overview the organization and functionality of

VFX 2.2’s functions after the conclusion of the project.

The first column, Function, lists the functions in the order they appear in the cat-

egories. The three Tests columns give the results of testing the functions using binary,

grayscale, and 16-bit images as inputs. The test images used are the binary image

“curve branch tube128”, the grayscale image “r1a”, and the 16-bit image “20349 3 3 B31.”

All test results in this section were performed as part of this upgrade after any changes

were made. The entries in the Tests columns have the following meanings:

• “Pass” means that the function worked for the specified data type.

• “Fail” means that the function did not work for the specified data type.

• “N/A” means that the function is not applicable to the specified data type. For

example, “VFXgrayClose” is not applicable to a binary-valued image.

• “-” means that the function was not tested. Refer to Jue Li’s tests in the original

function tables for the most recent test results.

The last four columns of these tables correspond to upgrades. The columns have the

following meanings:

• “New” indicates that the function was newly introduced in VFX 2.2.

• “Upgraded” means that functionality, parameter bounding, or error checking was

improved, or a bug was fixed.

• “Renamed” means that the function has been renamed or merged with a function of

a different name. The former name of the function is not provided - see the previous

section for details on the name change.

• “Moved” indicates that the function has been moved to a different category. The for-

mer category name is not provided - see the previous section for details on the name

change.

61

The entries in the upgrade columns have the following meanings:

• “Y” means the the change applies to the current function.

• “-” means that the function was considered, but the change was not made.

• “Not considered” means that the function was not considered for changes in this

project.

The tables will appear in the order in which the categories appear in VFX’s function

selection dialog. Categories which were not upgraded are not shown. For these categories,

refer to their tables in Section 5.1 for their state. The last table shows the contents of the

VFX 2.2 function archive.

62

Tests Changes From 2.1
Function Binary Grayscale 16-bit New Upgrade Rename Move

LoadImage Pass Pass Pass - Y - -
SaveImage Pass Pass Pass - Y - -
DisplayImage Pass Pass Pass - - - -
ResumeLoadImage Pass Pass Pass - - - -
LoadBMP – Pass – Y - - -
LoadHeader Pass Pass Pass - Y - -
CreateImage – Pass – - Y - -
SaveImageNoCalGray Pass Pass Pass - - - -

Table 5.22. VFX 2.2 status of Format functions.

63

Tests Changes From 2.1
Function Binary Grayscale 16-bit New Upgrade Rename Move

CreateWorkSpace – Pass – - - - -
AddWorkSpace – Pass – - - - -
FreeWorkImage - - - - - - -
SetImageShared - - - - - - -
SetWorkImage Pass Pass Pass - - - -
RenameWorkImage Pass Pass Pass - - - -
WorkImage Pass Pass Pass - - - -
WorkspaceCrop Fail Fail Fail - - Y Y
CopyFrom Pass Pass Pass - - - Y
CopyTo Pass Pass Pass - - - Y
CopyFromTo Pass Pass Pass - - - Y
EmbedFrom Pass Pass Pass - - - Y
EmbedTo Pass Pass Pass - - - Y
EmbedFromTo Pass Pass Pass - - - Y
SubFrom Pass Pass Pass - Y - Y
SubTo Pass Pass Pass - Y - Y
SubFromTo Pass Pass Pass - Y - Y
AddFrom Pass Pass Pass - Y - Y
AddTo Pass Pass Pass - Y - Y
AddFromTo Pass Pass Pass - Y - Y
MultFrom Pass Pass Pass - Y - Y
MultTo Pass Pass Pass - Y - Y
MultFromTo Pass Pass Pass - Y - Y
DiffFromImage Pass Pass Pass - Y - Y
DiffImages Pass Pass Pass - Y - Y

Table 5.23. VFX 2.2 status of Workspace functions.

64

Tests Changes From 2.1
Function Binary Grayscale 16-bit New Upgrade Rename Move

MedianFiltering Pass Pass Pass - Y - -
MeanFiltering Pass Pass Pass - Y - -
TentFiltering Pass Pass Pass Y - - -
SigmaFiltering Pass Pass Pass - Y - -
LaplacianOfGaussian - - - Not considered.
GaussianBlurFiltering - - - Not considered.
AnisotropicDiffusionFilter Pass Pass Pass - Y - -
VFXaverageMax - - - Not considered.
VFXaverageMin - - - Not considered.
VFXdespike - - - Not considered.
VFXfilter4D - - - Not considered.
VFXlowpass - - - Not considered.
VFXmaxHomog - - - Not considered.
VFXsymmetricNN - - - Not considered.
VFXwshedFilter - - - Not considered.

Table 5.24. VFX 2.2 status of Filter functions.

Tests Changes From 2.1
Function Binary Grayscale 16-bit New Upgrade Rename Move

binaryMorph Erode Pass - - - Y Y -
binaryMorph Dilate Pass - - - Y Y -
binaryMorph Open Pass - - - Y Y -
binaryMorph Close Pass - - - Y Y -
Maximum Pass Pass Pass Y - - -
Minimum Pass Pass Pass Y - - -
grayscaleMorph Erode Pass Pass Pass - Y Y -
grayscaleMorph Dilate Pass Pass Pass - Y Y -
grayscaleMorph Open Pass Pass Pass - Y Y -
grayscaleMorph Close Pass Pass Pass - Y Y -
VFX4Dmorphology - - - Not considered.
VFXcondDilate - - - Not considered.
VFXtopHat - - - Not considered.

Table 5.25. VFX 2.2 status of Morphology functions.

65

Tests Changes From 2.1
Function Binary Grayscale 16-bit New Upgrade Rename Move

ConnCompLabelling Pass N/A N/A - Y - -
CavityDeletion - - - Not considered.
CavityDelete2D - - - Not considered.
Thinning2 - - - Not considered.
Thinning - - - Not considered.
ThinningSaha - - - Not considered.
branchLabeling - - - Not considered.
checkBranchLabel - - - Not considered.
printBranchLabel - - - Not considered.
SplineSkeleton - - - Not considered.
borderBranchLabel - - - Not considered.
freeCheckBranchLabel - - - Not considered.
setCenterlineTracking - - - Not considered.
centerlineTracking - - - Not considered.
VFXhomotopicThick - - - Not considered.
VFXhomotopicThin - - - Not considered.

Table 5.26. VFX 2.2 status of Topology functions.

66

Tests Changes From 2.1
Function Binary Grayscale 16-bit New Upgrade Rename Move

AssignValue Pass Pass Pass Y - - -
ImageMasking Pass Pass Pass Y - - -
HighZero Pass Pass Pass Y - - -
LowZero Pass Pass Pass Y - - -
RangeLabel Pass Pass Pass Y - - -
CropImage Pass Pass Pass Y - - -
AddValue Pass Pass Pass - - - -
MultiplyValue Pass Pass Pass - - - -
ConvertImage - - - - - - -
CreateCrossSection - - - - - - -
FixHeader - - - - - - -
FlipImage Pass Pass Pass - - - -
HistogramEqualization - - - - - - -
Interpolation - - - - - - -
GrayInversion Pass Pass Pass Y - - -
Thresholding Pass Pass Pass - - - -
Complement Pass Pass Pass - - - -
ResizeImage Pass Pass Pass - - - -
SetBinaryMinMax - - - Not considered.
VolumeAlgebra - - - Not considered.
VFXdemaskRegion - - - Not considered.
VFXexpand - - - Not considered.
VFXgaussNoise - - - Not considered.
VFXinterpOrlick - - - Not considered.
VFXinterpWEH - - - Not considered.
VFXlevelSlicing - - - Not considered.
VFXlinearInterp - - - Not considered.
VFXsaveLargest - - - Not considered.
VFXshade2D - - - Not considered.
VFXshrink - - - Not considered.
VFXumbra - - - Not considered.
VFXvolumeAlgebra - - - Not considered.
VFXzeroPad - - - Not considered.

Table 5.27. VFX 2.2 status of Manipulation functions.

67

Category Function

Format LoadPath
LoadSkeleton
AddSkeleton
ImportTr2
SaveTrc
SavePath
SaveSkeleton
SampleLine
SaveThin

Filter VFXanisoDiffuse
VFXmedian
VFXsigma

Morphology VFXbinClose
VFXbinDilate
VFXbinErode
VFXbinOpen
VFXgrayClose
VFXgrayDilate
VFXgrayErode
VFXgrayOpen
VFXmax
VFXmin
VFXultimateErode

Topology ConnComp2D
VFXcavityDeletion ajs
VFXconnComp2D
VFXconnComp3D

Manipulation CropImage NV
VFXcomplement
VFXembedImage
VFXflip
VFXgrayInversion
VFXhighZero
VFXimageMasking
VFXlowZero
VFXrangeLabel
VFXresize
VFXthreshold

Table 5.28. List of archived functions.

68

In the following sections, we will provide sample runs to demonstrate some of the

function upgrades made.

5.4 Sample Runs of Topology Functions

Major upgrades were made to the ConnCompLabelling function in VFX 2.2. Here, we

will demonstrate many of the changes and upgraded features in the new ConnCompLabelling

function. This function takes in a binary image and identifies distinct regions of connected

(contiguous) foreground pixels according to a specified connectivity, and performs basic

filtering and labelling on these regions. The first step is to set up the input data.

To use the function, we need a binary image as the input. This binary image must

have values of only 0 and 1. All grayscale values not equal to one would be considered as

part of the background, not the foreground. In other words, using a binary image with

discrete values 0 and 255 as the input would not be correct; this image would also need

to be thresholded prior to being run. In Figure 5.1, we see the process for converting a

sample image, r1a, from grayscale to binary and displaying the result. The threshold used

in thresholding, 128, was chosen to provide a good balance between the foreground and

background regions of the image. In Figure 5.2, we see the thresholded image with no

modifications.

Fig. 5.1. The script to threshold grayscale image r1a to a binary image.

69

Fig. 5.2. A slice of image r1a after thresholding. This is the result of the script in
Figure 5.1.

Next, we introduce the ConnCompLabelling function to the script. We are using the

default values for Connectivity, Minimum size of a region, Max number of regions, and Save

labels. However, we have set the “2D or 3D” parameter to 3D; we will test the 2D option

further below.

From Figure 5.4, it can be seen that compared to the original thresholded image in

Figure 5.2, many of the smaller regions have been removed; this is due to the fact that we

have specified a minimum region size of 10 voxels. Thus, all regions that have fewer than ten

voxels have been removed. Because we are performing 3D connected component labelling,

there remain regions which have fewer than ten pixels on the current slice, as they may

have voxels connected on neighboring slices. Because we are using the default value of 4/6

connectivity, this means that only sets of voxels that share an entire face with another voxel

in the set are considered as a region. The 4 refers to the 4 edges of a 2D pixel, while the 6

refers to the 6 faces of a 3D voxel. If we had instead chosen 8/26 connectivity, connected

regions of voxels could have included foreground voxels sharing only a single vertex with

each other.

Next, we will illustrate the effect of changing the “Minimum size of a region” pa-

rameter. This parameter removes all connected components, or regions, that contain fewer

70

Fig. 5.3. The script to perform 3D connected component labelling with default parameters.

Fig. 5.4. A slice of image r1a after connected component labelling. This is the result of
the script in Figure 5.3.

71

than the specified number of voxels. Thus, by decreasing this value, we identify and retain

more regions, or by increasing this value, we filter out and remove more regions.

Fig. 5.5. The parameters of ConnCompLabelling with an increased minimum region size.

In Figure 5.5, we have changed the value of the ”Minimum size of a region” parameter

to 800. The result of this change can be seen in Figure 5.6. As expected, because very few

regions are able to meet this criteria, all but the largest regions have been removed. While

the entire 3D image is not visible in the included figure, by scrolling through the slices of

the image, it can be seen that only about six to eight regions have been retained in the

output image.

In VFX 2.1, the only way to filter out smaller regions in the ConnectedComponent-

Labelling function was to use the above mentioned parameter to filter our regions below

a specified size. However, this creates an arbitrary number of regions, and there was no

way to directly specify the desired number of regions. In VFX 2.2, we have introduced

the ”Max number of regions” parameter. By default, the parameter takes the value of 0,

which effectively disables the feature by allowing for an infinite number of regions. This

was the case for the two prior sample runs. By specifying a finite nonzero value, the user

can specify the maximum number of regions in the final output. If the number of regions

meeting the other criteria is less than this maximum, this parameter does nothing; if the

number of regions exceeds this maximum, this feature removes the smallest regions, and

keeps the specified number of the largest regions.

In Figure 5.7, we have changed the value of the “Max number of regions” parameter

to 3. We have also changed the value of the “Minimum size of a region” parameter back

to 10. The result of this change can be seen in Figure 5.8. As can be seen, even though

72

Fig. 5.6. A slice of image r1a after connected component labelling with an increased
minimum region size. This is the result of the script in Figure 5.5.

Fig. 5.7. The parameters for ConnCompLabeling with a maximum of three regions.

73

Fig. 5.8. A slice of image r1a after connected component labelling with a maximum of
three regions. This is the result of the script in Figure 5.7.

the “Minimum size of a region” has been returned to its value in Figure 5.4, the number of

regions is the same as in Figure 5.6. This is because we have only allowed for three regions

to be displayed. Thus, even if there are more than three regions which satisfy the minimum

size, only the three largest regions will appear.

Next, we will demonstrate the save labels functionality of the new ConnCompLa-

belling function. While this was a feature of the VFXConnComp2D and VFXConnComp3D

functions, it was missing from the ConnectedComponentLabelling function in VFX 2.1. As

a result, there was no way to use the graylevel to identify unique regions from each other

and count the total number of regions. In VFX 2.2, if the user chooses to save labels, the

output is grayscale instead of binary; each distinct region is assigned a unique grayscale

value. The background is assigned to -1 and all foreground regions are numbered from 0 to

the total number of regions displayed.

In Figure 5.9, we have enabled the saving of labels. The result of this change can be

seen in Figure 5.10. Also, we have selected a different slice to view which contains a greater

number of regions, in order to better demonstrate the result of our change. As can be seen,

each region has been assigned a different graylevel, and thus appears as a different shade of

gray in the output image. The background is the darkest color, having the value of -1. By

looking at the maximum gray value of the image, we can find the total number of regions.

74

Fig. 5.9. The parameters of ConnCompLabelling set to save region labels.

Fig. 5.10. A slice of image r1a after performing connected component labelling with region
labels saved. This is the result of the script in Figure 5.9.

75

Lastly, we will demonstrate the 2D functionality of the ConnCompLabelling function.

This function was merged with the ConnComp2D function that existed in VFX 2.1. It is

important to note the differences from the 3D connected component labelling function.

Fig. 5.11. The parameters of ConnCompLabeling set to perform 2D region analysis.

76

Fig. 5.12. A slice of image r1a after 2D connected component analysis. This is the result
of the script in Figure 5.11.

In Figure 5.11, we have chosen to perform 2D labelling with a maximum of 3 regions.

The result of this change can be seen in Figure 5.12. The important thing to note is that

instead of applying to the entire image, the parameters now only apply to each slice. In

other words, the maximum of 3 regions now means that three regions are allowed per slice;

there could be up to 300 distinct regions in an image with 100 slices. Also, the specified

minimum region size means that each region must have ten pixels in the current slice,

whereas before, regions could span dozens of slices. Therefore, much lower minimum sizes

are required to achieve a desired output. Also, the user should be aware that the labelled

regions only have unique labels within a single slice. Distinct regions in separate slices could

share the same label, as the algorithm only considers a single slice at a time.

We have now demonstrated some of the added features of the ConnCompLabeling

function. Next, we will demonstrate some of the Morphology functions.

77

5.5 Sample Runs of Morphology Functions

Another set of functions to which significant modifications were made are the mor-

phology functions. Upgrades were made to the binary morphology functions, and 16-bit

maximum and minimum functions were introduced. Here, we will show some sample runs

of the binary morphology dilation function. The erosion function is the inverse operation

of the dilation function, and the opening and closing functions perform a combination of

erosion and dilation. Opening performs erosion and then dilation, while closing performs

dilation and then erosion. We will begin by showing the input test data.

Here, we will display the image without any modifications. The binary morphology

images run on any images, including grayscale ones; it simply treats all values of 0 as the

background, and all values 1 or above as the foreground. Therefore, unlike the connected

component labelling function, any binary image with a background level of 0 can be used

without prior thresholding.

Fig. 5.13. The script to load and display the image curve branch tube128, to be built upon
in the following sample runs.

In Figure 5.13, we have loaded and displayed the sample test image curve branch tube128.

This is a binary image. The displayed image can be seen in Figure 5.14.

First, we will run the binary morphology dilation function using the default param-

eters. By default, the function operates with a window size of 3 × 3 × 3 with a rectilinear

structure, which is a rectangular prism shaped mask with the specified dimensions. The

rectilinear structure of size 3 × 3 × 3 occupies all of the 26-neighbors of the voxel of

consideration.

78

Fig. 5.14. A slice of image curve branch tube128 with no modifications. This is the result
of the script in Figure 5.13.

Fig. 5.15. The script to run binary morphology dilation on image curve branch tube128
with the default parameters.

79

Fig. 5.16. A slice of image curve branch tube128 after 3 × 3 × 3 binary morphological
dilation. This is the result of the script in Figure 5.15.

80

In Figure 5.15, we have performed binary morphology dilation on the test image.

The image after this processing has been done can be seen in Figure 5.16. As can be seen,

the dilation has ’expanded’ the white (foreground) portion of the image has been expanded.

More specifically, all 26-neighbors of the original foreground in Figure 5.14 have now been

added to the foreground. The erosion operation would have performed the same operation

on the background of the image, expanding the black background region instead of the

white foreground region.

Next, we will modify the window size parameter. By expanding the size of the

morphology mask, we will produce a greater dilation effect in a single iteration of the

process. In Figure 5.17, we have increased the window size to an 11 × 11 × 11 rectilinear

mask. This is a rectangular prism shaped mask that extends 5 voxels outwards from the

voxel of consideration in every direction.

Fig. 5.17. The paramaters of BinaryMorph Dilate with a larger 11 × 11 × 11 morphology
mask.

In Figure 5.18, we see the result of morpholoy using an 11 × 11 × 11 rectilinear mask.

This has the effect of adding all voxels within 5 voxels in all directions from any existing

foreground voxel to the foreground. For instance, a single pixel of the initial foreground

would add all pixels up to 5 slices, 5 rows, and 5 columns away to the final foreground.

As can be seen, the white foreground region of the image has been significantly expanded

relative to the original image and the image after the 3 × 3 × 3 mask dilation. The extent

of the dilation has also caused the kinks on either side of the foreground shape to completely

removed.

81

Fig. 5.18. A slice of image curve branch tube128 after 11 × 11 × 11 binary morphological
dilation. This is the result of the script in Figure 5.17.

82

Finally, we will explore the other available morphology masks. One mask available

in VFX 2.1 was the 3D 6-connected mask; this is a mask that occupies a 3 × 3 × 3 window,

but instead of including all 26 neighbors, it only includes the 6 neighbors that share a face

with the voxel of interest. One mask that was introduced in VFX 2.2 is the 2D 4-connected

mask. This allows the user to specify a 2D mask that only consists of the 4 voxels which

share a face with the voxel of interest on the same slice (z value).

Fig. 5.19. The paramaters of BinaryMorph Dilate to perform morphology with a 2D
4-connected mask.

In Figure 5.19, we have performed binary morphology dilation using a 2D 4-connected

mask on the test image. Note that the dimensions of the morphology mask have been

changed to 3 × 3 × 1, the dimensions of the 4-connected window. The image after this

processing has been done can be seen in Figure 5.20. When comparing this image with

the result of the 3 × 3 × 3 dilation in Figure 5.16, we can see a distinct difference. The

result of this dilation has added exactly 1 pixel horizontally and 1 pixel vertically to the

foreground when compared to the original image in Figure 5.14, while the 3 × 3 × 3 dilation

has added not only all the 8-connected pixels on the same slice, but also all diagonally and

vertically connected voxels from neighboring slices. It is clear from the slice visible that

the 2D 4-connected mask has resulted in significantly less dilation than the 3 × 3 × 3

rectilinear mask, despite the fact that they technically have the same window size in the x

and y directions.

83

Fig. 5.20. A slice of image curve branch tube128 after 2D 4-connected binary morphological
dilation. This is the result of the script in Figure 5.19.

84

Chapter 6

Discussion and Future Work

6.1 Discussion

In this paper, we made significant progress in updating VFX to a 16-bit standard.

A function archive has been introduced to separate out older functions, and nearly 40 func-

tions have been archived. Many older 8-bit functions have been replaced by equivalent

16-bit image processing functions. Around 25 functions have been upgraded. These func-

tions have been given more powerful functionality, more diverse parameter options, and

greater robustness in error detection and tolerance. Finally, over ten completely new func-

tions have been introduced to VFX, some providing entirely new functionality and some

re-implementing functions which only operate on 8-bit images. Additional miscellaneous

improvements have been made in the program’s code organization and user interface.

6.2 Future Work

While much progress was made in this upgrade of VFX, there remains significant

work to be done to upgrade VFX to a fully 16-bit image processing toolbox. Additionally,

there are other issues that were not addressed due to time constraints.

The following are outstanding issues to be addressed in future upgrades of VFX:

• Continue upgrading functions. Within the categories worked on in the preceding

sections, there still remains many 8-bit functions that have not been upgraded or

archived. In the above results section, a listing of functions that were not considered

in the current upgrade can be found; the vast majority of these are functions derived

from VFX 1.0 for which 16-bit equivalents have not been implemented. The following

categories received no attention in terms of upgrades in this paper:

– Segmentation

– Measurement

– System

85

– VTK

– Turnkey

– BranchFunc

• Reorganize the code. While some progress was made in reorganizing the code in the file

nvsharedcommand.h, there remains many functions which should be moved to separate

files. Other potential improvements are possible, including completely reorganizing

the function initialization process to take place within the function files themselves;

only a handful of functions have had this change implemented.

• Fix the debug mode. When run in debug mode, VFX is extremely unstable, tending

to cause faults upon script runs. In the future, an effort should be made to identify

the source of these crashes. Solving this problem will allow for much more effective

debugging of future implemented functions by allowing for the use of Visual Studio’s

debug tools.

• Improve the display image dialog. When presented with small images with fewer than

200 columns, it is impossible to move the window without first resizing it because no

portion of the top bar is visible. The current implementation of the image display

dialog doesn’t allow for an artificial border to be inserted, as the window automatically

takes on the size of the image. In a future iteration of VFX, the display image dialog

should be modified to prevent

86

References

[1] M. W. Graham, J. D. Gibbs, D. C. Cornish, and W. E. Higgins. Robust 3-D Airway

Tree Segmentation for Image-Guided Peripheral Bronchoscopy. IEEE Transactions on

Medical Imaging, 29(4):982–997, April 2010.

[2] W. E. Higgins, N. Chung, and E. L. Ritman. Extraction of left-ventricular chamber

from 3-D CT images of the heart. IEEE Transactions on Medical Imaging, 9(4):384–

395, December 1990.

[3] J. Li. Graphical User Interface System for 3D Medical Image Processing. Master’s

thesis, The Pennsylvania State University, Summer 2010.

[4] A. J. Sherbondy and W. E. Higgins. PC VFX Manual. The Pennsylvania State

University, 2001.

[5] G. R. Simon. Object-Oriented System for Multidimensional Image Processing. Master’s

thesis, The Pennsylvania State University, May 1997.

[6] G. Sundaramoorthy, J. D. Hoford, E. A. Hoffman, and W. E. Higgins. IMPROMPTU:

A System for Automatic 3D Medical Image-Analysis. Computerized Medical Imaging

and Graphics, 19(1):131–143, January-February 1995.

[7] R. D. Swift, A. P. Kiraly, A. J. Sherbondy, A. L. Austin, E. A. Hoffman, G. McLennan,

and W. E. Higgins. Automatic axes-generation for virtual bronchoscopic assessment of

major airway obstructions. Computerized Medical Imaging and Graphics, 26(2):103–

118, March-April 2002.

[8] S. Y. Wan. Analysis and Visualization of Large Branching Networks in 3D Digital

Images. PhD thesis, Penn State University, May 2000.

[9] S. Y. Wan, K. C. Yu, and W. E. Higgins. “NV” Manual for Users and Developers.

The Pennsylvania State University, September 2001.

[10] A. C. Weitz. Computer-Based System for Multidimensional Medical Image Processing.

BS thesis, The Pennsylvania State University, Fall 2004.

87

Appendix A

Network Location of VFX

In this appendix, we provide the location of VFX 2.2 and the VFX 2.2 Function

Manual on the MIPL network. We first provide the final location of VFX 2.2 and its source

code. We also give the location of the SVN repository, which stores the entire version

history of this upgrade.

In the next section, we give the final location of the VFX 2.2 Function Manual and

the associated LaTeX source files. An SVN repository was also used in the development of

the function manual, and the location of that is provided as well.

A.1 VFX 2.2

A final copy of the code and compiled release executable is located on RIPKEN at

this location:

S/VFX/VFX-2.2/

During development, an SVN repository was used for version control. It can be found

on CAREW at:

W 1TB/eyw5037/SVN/VFX

A.2 VFX 2.2 Function Manual

A final copy of the function manual has been stored on RIPKEN at this location:

T/Manuals/VFX/VFX-2.2-functions

During development, an SVN repository was used for version control. It can be found

on CAREW at:

W 1TB/eyw5037/SVN/VFX Function Manual

Academic Vita of Edward Wang

Name: Edward Wang

Address: 58 Dutch Meadows Dr

Cohoes, NY 12047

Email Address: eyw5037@psu.edu

Education:

University : The Pennsylvania State University, University Park, PA

Expected Graduation: May 2013

Major : B.S., Electrical Engineering and Computer Engineering

Minor : Physics

International Education:

School : Royal Institute of Technology

Location: Stockholm, Sweden

Date: Spring 2012

Honors and Awards:

• Schreyer Travel Ambassador Grant

• Cisco Systems Scholarship

• 4-year Penn State Engineering Scholarships

Professional Experience:

Company : Intel Corporation

Date: May to August, 2012

Title: Validation Intern

Company : GE Transportation

Date: May to August, 2011

Title: Reliability Intern

Company : PPL Corporation

Date: May to August, 2010

Title: Information Technology Intern

Research Interests:

• Image Processing

• Integrated Circuits

