THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE

DEPARTMENT OF FINANCE

A PERSONAL WEALTH MANAGEMENT GUIDE FOR COLLEGE STUDENTS

YUNHUA ZHOU
SPRING 2013

A thesis
submitted in partial fulfillment of the requirements for baccalaureate degrees in Finance and Statistics with honors in Finance

Reviewed and approved* by the following:
Dr. James Miles
Professor of Finance, Joseph F. Bradley Fellow of Finance
Thesis Supervisor/Honors Advisor
Dr. Randall Woolridge
Professor of Finance, The Goldman Sachs and Co. and Frank P. Smeal Endowed
University Fellow
Thesis Reader

* Signatures are on file in the Schreyer Honors College.

Abstract

The purpose of building this Excel project in financial planning is to help college graduates to make a smooth transition to be financially independent from their parents. Under 'Main Display' tab of the Excel Spreadsheet instructions are given for users to put in their input, and explanations are given for the table and graphic displays. It provided tax estimation, budget planning and retirement account management information for students with a minimum amount of complexity. You may access the project by clicking the link: http://sdrv.ms/10j1SV2

TABLE OF CONTENTS
List of Figures iii
Acknowledgements vi
Chapter 1 Introduction 1
Chapter 2 Literature Review. 3
Chapter 3 Calculation on Tax 6
Chapter 4 Expenses 13
Chapter 5 401k Retirement Savings. 17
Chapter 6 Income Statement. 28
Chapter 7 Case Analysis 30
Chapter 8 Conclusion. 39
Appendix A Replace with Appendix Title 41
Bibliography 42

LIST OF FIGURES

Figure 3-1: Federal Individual Income Tax Rates History Inflation Adjusted (Federal Rates History in 2012 Real Dollar)
 6

Figure 3-2: Federal Individual Income Tax Rates History Nominal (Federal Rates History Nominal) 7
Figure 3-3: 2013 Federal Income Tax Brackets 8
Figure 3-4: Tax on Retirement Income Calculation9
Figure 3-5: 2013 Federal Income Tax on Retirement Income 10
Figure 3-6: 2013 New York State Income Tax Brackets 11
Figure 3-7: 2013 New York City Income Tax Brackets 11
Figure 3-8 Income Breakdown and Taxes Breakdown Tables 12
Figure 4-1 Food and Other Expenses Inputs Tables 13
Figure 4-2 Expenses Breakdown Table 14
Figure 4-3 Consumer Expenditure Survey Results Table 15
Figure 4-4 Yearly Actual Vs. Budgeted Expenses Comparison Table 15
Figure 4-5 Monthly Actual Vs. Budgeted Expenses Comparison Chart 16
Figure 5-1 Hostorical Rate of Return Raw Data Table 18
Figure 5-2 Randomly Generated Stock Return Data Table 19
Figure 5-3 Processed Stock Return Data Table 20
Figure 5-4 Stock Return Data by Scenarios Table 20
Figure 5-5 Treasury Bond Return Data by Scenarios Table 21
Figure 5-6 Treasury Bill Return Data by Scenarios Table. 21
Figure 5-7 401k Investment User Input Table 22
Figure 5-8 Weighted Average Rate of Return Table 22
Figure 5-9 Stock, TBond, and TBill Rates of Return Chart 23
Figure 5-10 401k Account Balance Calculation Table 23
Figure 5-11: Social Security Benefit Calculation Table 24
Figure 5-12 401k Account Balance Chart. 26
Figure 5-13 Annual Consumption Spending Table 27
Figure 6-1: Income Statement Table 28
Figure 7-1: Case Scenario 1 Main Display 32
Figure 7-2: 2011 Household Consumption Expenditure 33
Figure 7-3: Case Scenario 2 Consumption Spending Calculation 35
Figure 7-4: Case Scenario 2 Annual Consumption Spending. 35
Figure 7-5: Case Scenario 2 Consumption Spending Calculation with New Condition 36
Figure 7-6: Case Scenario 2 Annual Consumption Spending with New Condition 36
Figure 7-7: Case Scenario 2 Main Display 37

ACKNOWLEDGEMENTS

I would like to thank my father for investing more than $\$ 200,000$ to my college education even if it generated negative rate of return. I would also like to thank him for allowing me to change my majors six times until I was able to pursue any degrees. Without his great love and support, I doubt that this thesis would have been possible.

I would like to thank Dr. James Miles for all of his help during the writing process of this thesis while serving as my honors adviser, thesis supervisor, and faculty marshal. I cannot thank him enough for meeting me at 8:30 am in the early morning to guide me to all the resources I needed for this project. Additionally, I would like to thank Dr. Randall Woolridge for acting as the faculty reader for my thesis and Dr. Orie Barron for giving advice on my thesis proposal.

Chapter 1

Introduction

Since the financial crisis, the job market for college students has been challenging. Lots of recent college graduates cannot find their ideal jobs and are working on temporary positions. The default rate of college loans have raised three constant years. Meanwhile, students usually go back to graduate school and/or purchase a mortgage within five to ten years after their graduation. It will be a tough time for students to pay back their college loans on time as well as build up savings for graduate school and mortgages with limited income. These phenomena created a need for students to have more knowledge on financial planning.

The purpose of building this Excel project for college graduates was to help them to make a smooth transition to be financially independent from their parents. The guide introduces students to very practical accounting and finance knowledge, such as balance sheets, taxes payable and consumption smoothing. Instructions and explanations were written in the linguistic pattern that students were familiar with, and graphics were widely applied to visualize the information. It aimed to help users to understand scenarios such as what will happen to their 401 K plan if they switch to another job, how to use a balance sheet to view the money inflows and outflows and budgeting expenses, and how to use investment tools efficiently to earn desirable rate of return. I want to assist college graduates through the transition period between schools and workforce to reach their goal of financial freedom as soon as possible.

Chapters discussed in the guide include tax, budgeting, rate of return on investment, consumption smoothing and income statements. Two case studies are provided to give a guideline on how the Excel spreadsheet can be used to satisfy basic users and users with advanced Excel skill.

Chapter 2

Literature Review

The original idea of writing my thesis on helping college graduates with optimal financial planning comes from an Excel spread sheet built by Christopher Conforti. The spread sheet calculates a person's yearly savings by deducting taxes and living expenses from the gross salary and bonus. Later, I searched on the internet for similar budgeting tools: for example, PNC bank provides Virtual Wallet to student for basic budgeting which categorized monthly expenses on user's debt card and presented them with pie charts. For more advanced budgeting, Microsoft provided a desktop tool "Microsoft Money" was the most comprehensive that you can link all your credit cards and investment accounts to it. On the Microsoft platform, users were able to see the whole picture of their financial situation by click on the charts and graphs they need. Unfortunately, Microsoft has essentially conceded that there's no demand for the product with banks, brokerage firms and Web sites now providing a range of options for managing personal finances. Nowadays, one of the most popular free personal wealth management tools online is considered to be mint.com which provided similar functions and services as "Microsoft Money" as well as a large scale BBS for users to interact with each other for saving ideas and budgeting tips.

My thesis is targeting on the recent graduated students and their specific needs. For example, paying off student loans, buying/renting apartments etc. To do this, I looked up the consumer expenditure survey on the Bureau of Labor Statistics webpage which provided household expenses breakdown with income brackets. In details, the survey report gives me a percentage of household income spending on food, alcohol, housing, transportation, health care,
entertainment, taxes and miscellaneous which varies with households of different income levels. Information from the survey report reveals the consumer behavior of different income group and can be used to provide estimate to the expense budget for college students. In addition, in chapter three of the book, "Personal finance - an interactive applications approach", by Dan French and Megan Heffernon, it discusses how much loan or monthly rent would a person be able to take out based on his/her annual income and how to calculate the amount. Most graduated students are not likely to live at home when they start work after college; therefore, they are likely to consider either leasing an apartment or purchasing a house with a loan. I would like to build in such calculator in my project to meet such need.

On the other hand, neither does Christopher's spread sheet nor do the online personal wealth management tools build in the idea of consumption smoothing when assisting users with budgeting. I plan to include this part in my project to give student users a general understanding on the influence of long term saving. David Bader compared the difference between traditional and roth 401 k plans on consumption smoothing in his honors thesis. He modeled the consumption and savings habits of an individual throughout his/her lifetime. Dr. James Miles also recorded a series of Youtube videos on how to build a spread sheet for consumption smoothing which I can refer to while doing my project. Mohit Kudaravalli discussed using valuation ratios to predict retirement portfolio performance in his honors thesis. He used a variety of functions to build regression graphs that visualized the return for different asset allocation in the retirement portfolio. I may refer to his functions when providing estimations on expected returns for the overall consumption smoothing strategy in a bull, stable and bear market. Besides, Janathan Skinner's paper, Are You Sure You're Saving Enough for Retirement?, stated that health care cost after retirement is significant and the trend from the past indicated that the out-of-pocket health care costs after retirement were continuously growing. Since the budget for health care is
increasing significantly, he put doubts on the view that expenses after retirement would reduce by cutting the budget for children expenses (e.g. no more bills from college tuition, move to a smaller home when children left). For my project, I might give some additional analysis based on his thoughts and help students better foresee their needs after retirement. Dr. Skinner also paid attention to changes in wealth to income ratio throughout a person's life period mainly influenced by whether the person chooses to buy or rent for an apartment and when. Since housing plays such a significant role in retirement planning and living standard, I would talk about reverse mortgage as an alternative option for those people who don't have enough saving when retiring but own mortgage to achieve their consumption smoothing goal. Shawn Jiang wrote his honors thesis on implementing reverse mortgage in China which I would use as a reference. Last but not least, Dr. Skinner introduced ESPlanner as an online retirement planning tool in his paper. The website has a systematic explanation on the idea of consumption smoothing with a built-in calculator for users to try out the strategy with their own situation.

Chapter 3

Tax

Income tax was calculated at three levels: federal, state, and city; in addition, tax methods used before retirement and after retirement were different.

To begin with calculating federal tax before retirement, it could be divided into three different categories: federal annual income tax, Medicare tax, and social security tax. For the federal income tax, there is new adjustment on the highest tax bracket starting in fiscal year 2013. The table below shows the inflation adjusted new tax bracket (to 2012 dollars) using the average annual CPI during tax year.

Married Filing Jointly			Married Filing Separately 2013			CPI: 234.345 (Projected)			Head of Household		
Marginal	Tax Brackets		Marginal	Tax Brackets		Marginal	Tax Brackets		Marginal	Tax Brackets	
Tax Rate	Over	But Not Over	Tax Rate	Over	But Not Over	Tax Rate	Over	But Not Over	Tax Rate	Over	But Not Over
10.0\%	\$0	\$17,488	10.0\%	\$0	\$8,744	10.0\%	\$0	\$8,744	10.0\%	\$0	\$12,491
15.0\%	\$17,488	\$71,030	15.0\%	\$8,744	\$35,515	15.0\%	\$8,744	\$35,515	15.0\%	\$12,491	\$47,615
25.0\%	\$71,030	\$143,432	25.0\%	\$35,515	\$71,716	25.0\%	\$35,515	\$86,069	25.0\%	\$47,615	\$122,907
28.0\%	\$143,432	\$218,528	28.0\%	\$71,716	\$109,264	28.0\%	\$86,069	\$179,535	28.0\%	\$122,907	\$199,031
33.0\%	\$218,528	\$390,273	33.0\%	\$109,264	\$195,137	33.0\%	\$179,535	\$390,273	33.0\%	\$199,031	\$390,273
35.0\%	\$390,273	-	35.0\%	\$195,137	-	35.0\%	\$390,273	-	35.0\%	\$390,273	-
39.6\%	\$440,876	-	39.6\%	\$220,438	-	39.6\%	\$391,890	-	39.6\%	\$416,383	
Note: Last law to change rates was the American Taxpayer Relief Act of 2012.											
			2012			CPI: 229.594					
Married Filing Jointly			Married Filing Separately			Single			Head of Household		
Marginal	Tax Brackets		Marginal	Tax Brackets		Marginal	Tax Brackets		Marginal	Tax Brackets	
Tax Rate	Over	But Not Over	Tax Rate	Over	But Not Over	Tax Rate	Over	But Not Over	Tax Rate	Over	But Not Over
10.0\%	\$0	\$17,400	10.0\%	\$0	\$8,700	10.0\%	\$0	\$8,700	10.0\%	\$0	\$12,400
15.0\%	\$17,400	\$70,700	15.0\%	\$8,700	\$35,350	15.0\%	\$8,700	\$35,350	15.0\%	\$12,400	\$47,350
25.0\%	\$70,700	\$142,700	25.0\%	\$35,350	\$71,350	25.0\%	\$35,350	\$85,650	25.0\%	\$47,350	\$122,300
28.0\%	\$142,700	\$217,450	28.0\%	\$71,350	\$108,725	28.0\%	\$85,650	\$178,650	28.0\%	\$122,300	\$198,050
33.0\%	\$217,450	\$388,350	33.0\%	\$108,725	\$194,175	33.0\%	\$178,650	\$388,350	33.0\%	\$198,050	\$388,350
35.0\%	\$388,350	-	35.0\%	\$194,175	-	35.0\%	\$388,350	-	35.0\%	\$388,350	-

Figure 3-1: Federal Individual Income Tax Rates History Inflation Adjusted (Federal Rates History in 2012 Real Dollar)

The Internal Revenue Service (IRS) has released the remainder of the 2013 inflation adjustments, including this year's tax rates and income brackets (which are now permanent). Below is a table of tax brackets with the nominal interest rate and the information highlighted in the red box below (for a single tax payer) were used in building my spreadsheet.

Mom $\begin{gathered}\text { Norried Filing Jointly }\end{gathered}$			2013						Head of Household		
			Married Filing Separately			Single					
Marginal	Tax Br	ackets	Marginal	Tax B	rackets	Marginal	Tax Br	ackets	Marginal	Tax Br	ackets
Tax Rate	Over	But Not Over	Tax Rate	Over	But Not Over	Tax Rate	Over	But Not Over	Tax Rate	Over	But Not Over
10.0\%	\$0	\$17,850	10.0\%	\$0	\$8,925	10.0\%	\$0	\$8,925	10.0\%	\$0	\$12,750
15.0\%	\$17,850	\$72,500	15.0\%	\$8,925	\$36,250	15.0\%	\$8,925	\$36,250	15.0\%	\$12,750	\$48,600
25.0\%	\$72,500	\$146,400	25.0\%	\$36,250	\$73,200	25.0\%	\$36,250	\$87,850	25.0\%	\$48,600	\$125,450
28.0\%	\$146,400	\$223,050	28.0\%	\$73,200	\$111,525	28.0\%	\$87,850	\$183,250	28.0\%	\$125,450	\$203,150
33.0\%	\$223,050	\$398,350	33.0\%	\$111,525	\$199,175	33.0\%	\$183,250	\$398,350	33.0\%	\$203,150	\$398,350
35.0\%	\$398,350	\$450,000	35.0\%	\$199,175	\$225,000	35.0\%	\$398,350	\$400,000	35.0\%	\$398,350	\$425,000
39.6\%	\$450,000		39.6\%	\$225,000		39.6\%	\$400,000		39.6\%	\$425,000	

Figure 3-2: Federal Individual Income Tax Rates History Nominal (Federal Rates History Nominal)
The differences in tax brackets revealed the effects of the American Taxpayer Relief Act of 2012. Briefly speaking, the Act provide a partial solution to the fiscal cliff that it gives permanence to the lower rate of much of the Bush tax cuts, while retaining the higher tax rate at upper income levels (Estimate of the Budgetary Effects of H.R. 8, the American Taxpayer Relief Act of 2012, as passed by the Senate on January 1, 2013).

For a single taxpayer, the first $\$ 8,925$ of your income was taxed at ten percent. If the Relief Act hadn't made this Bush-era rate permanent, the income would have been taxed at 15 percent, so there was a five percentage point savings. On the other hand, a new tax bracket was added to the high-income class that a single taxpayer would pay a tax rate of 39.6 percent for income over $\$ 400,000$. Another thing worth mentioning was that the 35 percent income bracket was very thin for a single taxpayer which was from $\$ 398,351$ to $\$ 400,000$ - a $\$ 1,650$ difference. According to Kay Bell, the thin bracket could be a problem in the way that a high-income single taxpayer would soon observe his/her maximum income tax rate jump from 33% to 39.6% with a slight increase in wage payment/inflation (Bell).

For my project, I used the tax brackets with the 2013 nominal rate for a single taxpayer. Excel 'IF' function was used to calculate the federal income tax payable. For example, for a single taxpayer who has taxable income of \$69,500 for fiscal year 2013, his/her taxable income was calculated as: $\operatorname{IF}(\mathrm{AND}(\$ \mathrm{C} \$ 3<\mathrm{B} 7, \$ \mathrm{C} \$ 3>\mathrm{B} 6),(\mathrm{D} 6+\mathrm{D} 5+(\$ \mathrm{C} \$ 3-\mathrm{B} 6) * \mathrm{C} 7), 0)$

Figure 3-3: 2013 Federal Income Tax Brackets
The meaning of the code was that if his/her income is between $\$ 36,250$ (B6) and $\$ 87,850$ (B7) then his/her federal tax would be a summation of the full tax amount for the $\$ 0-\$ 8950$ (i.e. 10 percent) tax bracket, the full tax amount for the $\$ 8,950-\$ 36,250$ (i.e. 15 percent) tax bracket and the partial tax amount for the $\$ 36,250-\$ 87,850$ (i.e. 25 percent) tax bracket. To say it in numbers, $\$ 895+\$ 4,095+(\$ 69,500-\$ 36,250) * 0.25=\$ 11,302.5$. Therefore, the person was expected to pay $\$ 11,302.5$ on his/her income of the year.

Besides federal income tax, Medicare tax and social security tax are charged on a federal level too. 2.9 percent Medicare payroll tax-split equally between employer and employee-was extracted from all wages. For fiscal year 2013, ObamaCare added an additional 0.9 percent to individuals with annual incomes of $\$ 200,000$ and above (Matthews). Therefore, in my spreadsheet, the individual taxpayer was charged by 1.45% Medicare tax for annual income below $\$ 200,000$ and 2.35% for any income amount that was above $\$ 200,000$. The new bracket on higher income taxpayers would raise roughly $\$ 87$ billion over ten years, and the Medicare tax on
net investment income was expected to raise an additional $\$ 123$ billion over ten years, according to the Congressional Research Service Report for Congress (Rosenow). The Medicare taxes are intended to help pay for health insurance subsidies. As for social security tax, 12.4 percent was shared equally between employer and employee; the maximum taxable earnings were adjusted to $\$ 113,700$ in 2013 from $\$ 110,100$ in 2012 (2013 Social Security Changes). I used the Excel function $=\mathrm{IF}(\$ \mathrm{C} \$ 3<\mathrm{C} 16, \$ \mathrm{C} \$ 3 * \mathrm{C} 15, \mathrm{C} 16 * \mathrm{C} 15)$ to calculate social security tax payable. The function means if a taxpayer's income was below the maximum taxable earnings then 'income* $6.2 \%=$ social security tax'; while if above the maximum, the social security tax would be a fixed amount $=\$ 113,700 * 6.2 \%=\$ 7,049.4$.

Federal tax for retirement was calculated in a very similar manner as before retirement, while Medicare tax and social security tax became no longer applicable. A taxpayer may refer to form 1040 and worksheet provided by the Department of the Treasury website to get the retirement income tax payable. I rewrote the deduction rules into my Excel spreadsheet which gave tax payable prediction to my users.

Federal Tax on Retirement						
Social Security	\$	26,182.08	\$	26,182.08	\$	26,182.08
1/2 Social Security	\$	13,091.04	\$	13,091.04	\$	13,091.04
Other Income	\$	262,048.18	\$	33,396.22	\$	13,247.38
1/2 Taxable Amount	\$	125,069.61	\$	10,743.63	\$	669.21
Single	\$	9,000.00	\$	9,000.00	\$	9,000.00
D3 Substract F3	\$	116,069.61	\$	1,743.63	\$	-
sum of H3 and L3	\$	111,750.21	\$	2,353.90	\$	-
Take half	\$	58,034.81	\$	871.81	\$	-
Taxable Amount	\$	250,139.22	\$	21,487.26	\$	1,338.42
Smaller of the D2 and D3	\$	13,091.04	\$	10,743.63	\$	669.21
Smaller of D2 and J2	\$	13,091.04	\$	871.81	\$	-
Taxable Percent		85\%		85\%		85\%
Taxable Total:	\$	11,127.38	\$	2,353.90	\$	-

Figure 3-4: Tax on Retirement Income Calculation

Federal Tax Brackets (Retirement)								
		Annual Income:	\$	11,127.38	\$	2,353.90	\$	-
0		Full Tax						
\$ 8,950.00	10.00\%	\$ 895.00	\$	-	\$	235.39	\$	-
\$ 36,250.00	15.00\%	\$ 4,095.00	\$	1,221.61	\$	-	\$	-
\$ 87,850.00	25.00\%	\$ 12,900.00	\$	-	\$	-	\$	-
\$ 183,250.00	28.00\%	\$ 26,712.00	\$	-	\$	-	\$	-
\$ 398,350.00	33.00\%	\$ 70,983.00	\$	-	\$	-	\$	$-$
\$ 400,000.00	35.00\%	\$ 577.50	\$	-	\$	-	\$	-
Over \$400,000	39.60\%		\$	-	\$	-	\$	-
			\$	1,221.61	\$	235.39	\$	-
Medicare	1.45\%	\$ -						
Social Security	6.20\%							
Max:	\$ 113,700.00	\$ -						
Total Federal Tax:			\$	1,221.61	\$	235.39	\$	-

Figure 3-5: 2013 Federal Income Tax on Retirement Income
State and local taxes are only charged when a person was in the workforce and retirement income was exempt from being taxed. My project has built tax calculators for New York State and Pennsylvania State. New York State tax was charged by income brackets so the calculator I built was highly similar to the federal tax calculator. For example, a person with an annual income of $\$ 73,000$ would be charged $\$ 4,391.5$ on NY state tax. While Pennsylvania in comparison was more tax friendly, that income tax was charged at a flat rate of 3.07% (State-byState Guide to Taxes on Retirees). So the person with the same income of $\$ 73,000$ would pay only $\$ 2,241.1$ on state tax if he/she lived in Pennsylvania instead of New York.

4	B	C	D		E
20	State Tax Brackets				
21	Total Income:	\$ 73,000.00			
22					
23	0		Full Tax		
24	\$ 8,000.00	4.00\%	\$ 320.00	\$	-
25	\$ 11,000.00	4.50\%	\$ 135.00	\$	-
26	\$ 13,000.00	5.25\%	\$ 105.00	\$	-
27	\$ 20,000.00	5.90\%	\$ 413.00	\$	-
28	\$ 75,000.00	6.45\%	\$ 3,547.50	\$	4,391.50
29	\$ 200,000.00	6.65\%	\$ 8,312.50	\$	-
30	\$ 1,000,000.00	6.85\%	\$ 54,800.00	\$	-
31	Over \$1,000,000.00	8.82\%		\$	-
32					
33	Total NY Tax:			\$	4,391.50
34					
35	PA Tax:	3.07\%	N/A	\$	2,241.10

Figure 3-6: 2013 New York State Income Tax Brackets
For city tax, I provide calculations for the three most common cities that Penn State alumni went to: New York City, Philadelphia, and Pittsburgh. New York City tax was calculated by brackets while Philadelphia and Pittsburgh were calculated on flat rates of 3.93% and 3.00%.

4.	B	C	D		E
37	City Tax Brackets				
38	0		Full Tax		
39	\$ 12,000.00	2.91\%	\$ 348.84	\$	-
40	\$ 25,000.00	3.53\%	\$ 459.42	\$	-
41	\$ 50,000.00	3.59\%	\$ 897.75	\$	-
42	\$ 500,000.00	3.65\%	\$ 16,416.00	\$	2,545.05
43	Over \$500,000.00	3.88\%		\$	-
44					
45	Total NYC Tax			\$	2,545.05
46					
47	Philadelphia Tax:	3.93\%	N/A	\$	2,867.44
48	Pittsburgh Tax:	3.00\%	N/A	\$	2,190.00

Figure 3-7: 2013 New York City Income Tax Brackets
According to the spreadsheet I built, a person with annual taxable income of $\$ 69,500$ was estimated to have an effective tax rate of 36.77% which was equivalent to $\$ 25,555.8$. See the graph below for the breakdown of $\$ 25,555.8$ in terms of federal, state and local levels.

*This breakdown was based on a person worked in New York City for state and local tax liabilities
Figure 3-8 Income Breakdown and Taxes Breakdown Tables
The main chart visualized the tax effects on an individual's income that tax payable was more than a third of the pie; the sub-chart visualized the tax effects on three levels that federal tax was almost 75 percent of the total tax payable.

Tax after retirement was significantly lower, in that a middle-income person would have a chance of paying NO tax if he/she doesn't have additional income besides social security income.

Chapter 4

Expenses

In my project, I built two functions related to expenses. The first function is an expenses budgeting sheet under the 'Main Display' tab and the second function is a budgeted vs. actual expenses comparison table under the 'Budget vs. Actual' tab.

For budgeting, I built a budgeting table by month, in which, however, food section was budgeted on a weekly basis:

	1	J	K	L	M	N		0	P	Q
2		Food Expenses				Other Monthly Expenses			\% Gross Salary	\% Net Income
3		Weekday			14	Rent	\$	1,000.00	16.44\%	27.31\%
4	5	Breakfast	\$ 3.00		15	Cable/Internet	\$	95.00	1.56\%	2.59\%
5	6	Lunch	\$ 10.00		16	Transportation	\$	200.00	3.29\%	5.46\%
6	7	Dinner	\$		17	Cell Phone	\$	60.00	0.99\%	1.64\%
7		Weekend			18	Gym	\$	70.00	1.15\%	1.91\%
8		Saturday	Eat In			Food	\$	793.00	13.04\%	21.65\%
9	8	Breakfast	\$ 3.00		19	Clothes	\$	125.00	2.05\%	3.41\%
10	9	Lunch	\$ 25.00		20	Social Networking	\$	300.00	4.93\%	8.19\%
11	10	Dinner	\$ 45.00		21	Recreation	\$	80.00	1.32\%	2.18\%
12		Sunday	Eat Out		22	Dry Cleaners	\$	40.00	0.66\%	1.09\%
13	11	Breakfast	\$ 12.00		23	Misc	\$	300.00	4.93\%	8.19\%
14	12	Lunch	\$ 25.00							
15	13	Dinner	\$ 8.00		24	Savings in Bank	\$	595.00	9.78\%	16.25\%
16		Total Weekly Food	\$ 183.00						60.13\%	99.89\%
17		Total Monthly Food	\$ 793.00			Total Monthly:	\$	3,658.00		
18		Total Yearly Food	\$ 9,516.00			Total Yearly Expense:	\$	43,896.00		

Figure 4-1 Food and Other Expenses Inputs Tables
To explain my design in detail: In the food expenses table, 'Total Weekly Food' (cell 'K16') was calculated as weekday breakfast (cell 'K4')*5 + weekday lunch (cell 'K5') 5 + weekday dinner (cell 'K6')*5 + weekend expenses (sum of cell 'K9-11, K13-15'). 'Total Monthly Food' was calculated as 'Total Weekly Food' multiplied by 52 (number of weeks in a year) and then divided by 12 (number of months in a year). 'Total Yearly Food' was calculated as 52* ‘Total Weekly Food'. Once the user fill out the food expenses table, the number in the 'Total Monthly Food'
would flow into cell 'O8' in the 'Other Monthly Expenses' table. The text contents in cell 'N3-6', which were grey and italic, stood for less elastic expenses categories. For example, rent and cable/internet are most likely to be a yearly contract with low deviation by month. Expense category 'Misc' (cell'N13') was designed for users to put in their own personal expenses that were not listed in previous categories-vacation plans, etc. There was a trade-off between complexity and details; I preferred to make input cells as few as possible to give the users a big picture of their expenses situation with the least amount of complexity. And users could always have an option of customizing the budgeting sheet to their own needs since it was an open source. Column P gave a percentage breakdown of a person's expenses in terms of his/her gross income; Column Q gave a percentage breakdown of a person's expenses in terms of his/her net income. Below is a sample breakdown of my expenses budgeting:

Expenses Breakdown

Figure 4-2 Expenses Breakdown Table
I looked up the Consumer Expenditure Survey that Professor James Miles recommended; the survey data gave a horizontal comparison of my expenses breakdown to others. The data I used
below was the 2011 survey results that were carried out by the U.S. Bureau of Labor Statistics in September, 2012. Data for more recent years was not available.

Average annual expenditures	Food		Housing		
All Consumer Units	$\$ 49,705$	$\$ 6,458.00$	13%	$\$ 16,803.00$	34%
Lowest 20 Percent	$\$ 22,001$	$\$ 3,547.00$	16%	$\$ 8,771.00$	40%
Second 20 Percent	$\$ 32,092$	$\$ 4,659.00$	15%	$\$ 12,136.00$	38%
Third 20 Percent	$\$ 42,403$	$\$ 5,620.00$	13%	$\$ 14,944.00$	35%
Fourth 20 Percent	$\$ 57,460$	$\$ 7,466.00$	13%	$\$ 18,840.00$	33%
Highest 20 Percent	$\$ 94,551$	$\$ 10,991.00$	12%	$\$ 29,321.00$	31%

Figure 4-3 Consumer Expenditure Survey Results Table
Since my budgeted total yearly expenses were $\$ 43,896$, I compared my expenses breakdown to the middle 20 percent with average yearly expenditure $\$ 42.403$ in the survey results table (the table above was a summary of it). I found that my food expenses budget was seven percent higher than my category while my housing expenses budget was seven percent lower. These provide reference information to me if I would like to further adjust my budget. However, the goal is not to have budgeted spending highly similar to the survey results but to the actual spending pattern.

For budgeted vs. actual expenses function, it was simply a table where users could put in their actual expenses every month to track how they were doing in comparison to their budget.

Budgeted		April	May	June	July	August	September	October	November	December	Yearly Total	Differences
\$ 1,000.00	Rent	\$1,000.00	\$1,000.00	\$1,000.00	\$1,000.00	\$1,000.00	\$ 1,000.00	\$1,000.00	\$1,000.00	\$1,000.00	\$12,000.00	(0.00%
\$ 95.00	Cable/Internet	\$ 95.00	\$ 95.00	\$ 95.00	\$ 95.00	\$ 95.00	\$ 95.00	95.00	\$ 95.00	\$ 95.00	\$ 1,140.00	- 0.00%
\$ 200.00	Transportation	\$ 200.00	\$ 200.00	\$ 200.00	\$ 200.00	\$ 200.00	\$ 200.00	\$ 200.00	\$ 200.00	\$ 200.00	\$ 2,400.00	(0.00%
\$ 60.00	Cell Phone	\$ 85.00	\$ 60.00	\$ 60.00	\$ 60.00	\$ 125.00	\$ 60.00	60.00	\$ 60.00	\$ 60.00	\$ 810.00	(7) 12.50%
\$ 70.00	Gym	\$ 70.00	\$ 70.00	70.00	\$ 70.00	\$ 70.00	\$ 70.00	\$ 70.00	\$ 70.00	\$ 70.00	\$ 840.00	(0.00%
\$ 793.00	Food	\$ 793.00	\$ 793.00	\$ 793.00	\$ 793.00	\$ 793.00	\$ 793.00	\$ 793.00	\$ 793.00	\$ 793.00	\$ 9,516.00	- 0.00%
\$ 125.00	Clothes	\$ 125.00	\$ 125.00	\$ 125.00	\$ 125.00	\$ 125.00	\$ 125.00	\$ 125.00	\$ 125.00	\$ 125.00	\$ 1,500.00	- 0.00%
\$ 300.00	Social Networking	\$ 400.00	\$ 500.00	\$ 500.00	\$ 500.00	\$ 500.00	\$ 500.00	\$ 400.00	\$ 300.00	\$ 300.00	\$ 4,800.00	(1) 33.33%
\$ 80.00	Recreation	\$ 80.00	\$ 80.00	\$ 80.00	\$ 80.00	\$ 80.00	\$ 80.00	\$ 80.00	\$ 80.00	\$ 80.00	\$ 960.00	(0.00%
\$ 40.00	Dry Cleaners	\$ 20.00	\$ 40.00	\$ 40.00	\$ 40.00	\$ 20.00	\$ 20.00	\$ 60.00	\$ 60.00	\$ 60.00	\$ 460.00	(- -4.17%
\$ 300.00	Misc	\$ 300.00	\$2,000.00	\$ 300.00	\$ 300.00	\$ 300.00	\$ 300.00	\$ 300.00	\$ 300.00	\$ 300.00	\$ 5,300.00	(1) 47.22%
\$ 595.00	Savings in Bank	\$ 595.00	\$ 595.00	\$ 595.00	\$ 595.00	\$ 595.00	\$ 595.00	\$ 595.00	\$ 595.00	\$ 595.00	\$ 7,140.00	- 0.00\%
\$ 3,658.00	Total Monthly:	\$3,763.00	\$5,558.00	\$3,858.00	\$3,858.00	\$3,903.00	\$ 3,838.00	\$3,778.00	\$3,678.00	\$3,678.00		

Figure 4-4 Yearly Actual Vs. Budgeted Expenses Comparison Table
The column yearly total was the sum of total actual expenses for each category and the differences were the percentage differences between actual and budgeted. I used conditional formatting for the differences column to visualize the condition and make it more user-friendly. If
actual expense was equal to or below budgeted expense, it would show a green dot; if actual expense was above budgeted expense but didn't exceed 150 percent of the budgeted expense, it would have a yellow dot; if actual expense was more than 150 percent of the budgeted expense, it would have a red dot. In addition, a graph was also provided for user to track their performance on a monthly basis.

Actural vs. Bugeted Comparison

Figure 4-5 Monthly Actual Vs. Budgeted Expenses Comparison Chart

Chapter 5

401k Retirement Savings

Overview

There were 4 different tables and charts built for the 401 k retirement savings display: the '401k Contribution/Withdraw Table' was a table for the user to input the percentage they would like to invest under categories of deposit, T bond and stock; the 'rate of return chart' was the chart that visualized the rate of return on the 401 k account investment based on the user's input in the ' 401 k Contribution/Withdraw Table'; the 'Annual Consumption Spending Table' was a table for the user to understand consumption smoothing ability of his/her 401 k ; the ' 401 k Account Balance Chart' was a chart to visualize the 'Annual Consumption Spending Table’ which pointed out the maximum 401 k balance before retirement withdraw.

In addition, the 'Retirement' tab was set up to run the background calculation for display of the 4 tables and charts mentioned. And the 'Reference,' 'Stock Raw,' 'Stock,' 'Bond Raw,' 'Bond,' 'Tbill Raw,' 'Tbill' tabs were used to calculate the rate of return by category.

In this chapter, I am going to explain the 401 k retirement savings function in three sections: the calculation of the rates of return, the weighted average rate of return, and the consumption smoothing analysis.

Calculation of the Rates of Return

4	A	B	C	D	E	F G	H	1 」	J K	L	M	N
1		S\&P500	T-Bonds	T-Bills	Inflation	Real	Real	Real	Year	Age	Year	Rate
2		large stk	(gov't)	(t bill)	Rate	Stock	T-bonds	Tbill	Predict		Assigned	Assiged
3	1926	11.62\%	7.77\%	3.27\%	-1.49\%	13.11\%	9.26\%	4.75\%	2013	23	1993	15.48\%
4	1927	37.49\%	8.93\%	3.13\%	-2.08\%	39.57\%	1.1.01\%	5.20\%	2014	24	1983	-3.12\%
5	1928	43.61\%	0.10\%	3.24\%	-0.96\%	44.57\%	1.07\%	4.21\%	2015	25	1969	-11.18\%
6	1929	-8.41\%	3.42\%	4.75\%	0.20\%	-8.61\%	3.22\%	4.55\%	2016	26	1936	6.31\%
7	1930	-24.90\%	4.66\%	2.41\%	-6.03\%	-18.87\%	10.69\%	8.44\%	2017	27	1978	-10.19\%
8	1931	-43.34\%	-5.31\%	1.07\%	-9.53\%	-33.81\%	4.21\%	10.60\%	2018	28	1975	2.18\%
9	1932	-8.19\%	16.84\%	0.96\%	-10.30\%	2.10\%	27.14\%	11.26\%	2019	29	1987	-2.68\%
10	1933	53.99\%	-0.07\%	0.30\%	0.51\%	53.48\%	-0.58\%	-0.21\%	2020	30	1973	-9.91\%
11	1934	-1.44\%	10.02\%	0.16\%	2.03\%	-3.47\%	7.99\%	-1.87\%	2021	31	1957	4.43\%
12	1935	47.67\%	4.98\%	0.17\%	2.99\%	44.68\%	2.00\%	-2.82\%	2022	32	1964	2.32\%

Figure 5-1 Hostorical Rate of Return Raw Data Table
Professor James Miles provided me data from Wharton Research Data Services on S\&P500, T-bonds and T-Bills returns and inflation rates between the year 1926 and the year 2011. I found the 2012 data on Vanguard from its investment funds' returns. Real return is the nominal return minus the inflation rate. Therefore, in the spreadsheet, 'Real Stock' (Column G) was calculated as 'S\&P500 large stk' (Column B) minus 'Inflation Rate' (Column E); the same concept was applied to the calculation of 'Real T bonds' (Column H) and 'Real Tbill' (Column I).

I am interested in having an estimation of future real returns under each category based on the historical real returns that I calculated so that my users can know how they are doing with their 401 k savings. Therefore, I assigned a real rate of return to a future year by randomly selecting a real rate of return from historical years. For example, for year 2013 (cell B3) when a person is 23 years old (cell L3), I randomly assigned the historical year 1993 (cell M3) with stock
rate of return 7.24% (cell N3) by: first, I used function 'RANDOMBETWEEN $(1926,2012)$ ' to randomly select a year (in this case) to assign to the given year 2013. Second, I used function
$'=$ VLOOKUP(M3,\$A\$3:\$G\$89,6)' to look for the 1993 real stock rate of return under the 'Real
Stock Rate' column and found the rate to be 7.24%. The same method was used to generate ten sets of data and store them under the 'Stock Raw' tab; 'Bond Raw' and 'Tbill Raw' tabs were generated in the similar manner using slightly different VLOOKUP commands.

Figure 5-2 Randomly Generated Stock Return Data Table
The table above was a record of ten sets of stock return data generated under the 'Stock
Raw' tab. For my consumption smoothing analysis in the next section, I am interested in finding out the highest, median, and lowest cumulative returns for the years 2013 to 2085. Therefore, I further processed the data into the 'Stock' tab in which I copied and pasted the table in 'Stock Raw' for value only and had it transposed.

4	A	B	C	D	E	F	G	H	BS	BT	BU	BV
1	product	2013	2014	2015	2016	2017	2018	2019	2082	2083	2084	2085
2	2126.652	1.1386	1.0758	1.110556	1.301902	0.861507	1.131115	1.051329	1.20934	1.1386	1.036959	0.8651
3	1203.201	0.96525	0.786914	1.268465	0.986361	0.765401	0.991	1.04784	1.534817	1.238	0.853852	1.008158
4	589.381	1.187176	1.20934	1.0199	0.904818	1.123937	1.1255	1.301902	1.445736	1.2697	1.200219	0.860438
5	572.6823	0.661887	1.259225	0.618701	1.0758	1.33898	1.123937	0.8651	1.211524	1.268465	0.966997	0.96525
6	556.9769	1.311898	0.861964	1.190307	1.10953	1.17486	1.131115	1.008158	1.301902	1.10953	1.20934	1.316541
7	74.27628	0.900481	1.2697	1.104564	1.301902	1.20595	1.1255	1.051329	0.900481	0.983857	1.000648	1.20934
8	70.07715	0.613291	0.765401	0.629	1.2697	0.618701	0.613291	1.197461	1.33898	0.853852	1.04784	1.20934
9	62.5479	0.900481	0.8745	1.416025	1.0152	1.190307	1.105244	1.008158	1.000648	1.238	1.187176	1.175368
10	27.31777	0.904818	0.865829	0.737648	0.985153	1.445736	0.81135	0.985153	1.10953	1.445736	1.110556	1.26218
11	15.89948	1.284469	1.072371	0.989924	1.20934	1.44683	1.04784	1.227375	0.985153	0.861964	0.986361	0.892576

Figure 5-3 Processed Stock Return Data Table
The newly added Column A was calculated by the PRODUCT fuction. For example, the formula used in cell A2 was =PRODUCT(B2:BV2). Therefore, the value in Column A stood for the cumulative rate of return for stock. By using the 'sort: from highest to lowest' tool in the Excel Data tool bar, I reordered the ten rates of return. Then, under the 'Retirement' tab, the highest, median, and lowest stock rates of return were identified. Row 64 was calculated as Row 53 - 1 starting from Column D. For example, the formula used for cell D64 was =D53-1. Row 65 and Row 66 were created in similar manner as Row 65 and these three rows were prepared for a future purpose which will be further explained in the next section.

4.	B	C	D	E	F	G	H	1	BU	BV	BW	BX
52	Stock	Cumulative	2013	2014	2015	2016	2017	2018	2082	2083	2084	2085
53	High	212665\%	1.1386	1.0758	1.11055629	1.30190183	0.86150661	1.13111486	1.20933967	1.1386	1.0369592	0.8651
54		120320\%	0.965250131	0.78691438	1.2684648	0.98636093	0.76540086	0.991	1.53481729	1.238	0.85385238	1.00815846
55		58938\%	1.187176079	1.20933967	1.0199	0.90481758	1.12393741	1.1255	1.44573632	1.2697	1.20021914	0.8604377
56		57268\%	0.661886694	1.25922468	0.61870135	1.0758	1.33898019	1.12393741	1.21152432	1.2684648	0.96699687	0.96525013
57		55698\%	1.311897714	0.86196415	1.19030688	1.10953041	1.17485991	1.13111486	1.30190183	1.10953041	1.20933967	1.31654144
58	Median	7428\%	0.900480583	1.2697	1.10456423	1.30190183	1.20595013	1.1255	0.90048058	0.98385731	1.00064755	1.20933967
59		7008\%	0.613291147	0.76540086	0.629	1.2697	0.61870135	0.61329115	1.33898019	0.85385238	1.04783972	1.20933967
60		6255\%	0.900480583	0.8745	1.41602464	1.0152	1.19030688	1.10524386	1.00064755	1.238	1.18717608	1.17536826
61		2732\%	0.904817577	0.86582876	0.73764752	0.98515257	1.44573632	0.81134977	1.10953041	1.44573632	1.11055629	1.2621801
62	Low	1590\%	1.284468695	1.07237071	0.98992355	1.20933967	1.44682991	1.04783972	0.98515257	0.86196415	0.98636093	0.89257638
63												
64	High		13.86\%	7.58\%	11.06\%	30.19\%	-13.85\%	13.11\%	20.93\%	13.86\%	3.70\%	-13.49\%
65	Median		-9.95\%	26.97\%	10.46\%	30.19\%	20.60\%	12.55\%	-9.95\%	-1.61\%	0.06\%	20.93\%
66	Low		28.45\%	7.24\%	-1.01\%	20.93\%	44.68\%	4.78\%	-1.48\%	-13.80\%	-1.36\%	-10.74\%

Figure 5-4 Stock Return Data by Scenarios Table
Identical steps were applied to 'Bond Raw' and 'Tbill Raw' tabs and created two tables, which are attached below under the 'Retirement' tab.

$\mathbf{2 0 8 2}$	$\mathbf{2 0 8 3}$	$\mathbf{2 0 8 4}$	$\mathbf{2 0 8 5}$
1.05167346	1.0631	0.88815058	0.8364779
0.89813402	1.13453135	1.13453135	1.08483939
1.269	0.95753475	1.10689133	1.269
1.0261	1.10689133	0.96241162	0.985
1.0322	0.88815058	1.05663339	0.8547463
1.16193776	0.96881586	1.03006847	1.05167346
0.81730833	0.92908213	0.89813402	1.04212104
0.91549816	1.36474973	0.81730833	0.98784185
0.90092928	1.12297707	1.09257577	1.11946615
1.00296569	1.04212104	0.95753475	0.8364779
5.17%	6.31%	-11.18%	-16.35%
16.19%	-3.12%	3.01%	5.17%
0.30%	4.21%	-4.25%	-16.35%

Figure 5-5 Treasury Bond Return Data by Scenarios Table

68	Tbill	Cumulative	2013	2014	2015	2016	2017	2018	2082	2083	2084	2085
69	High	276\%	0.9802	1.04754474	1.04207117	1.0576902	0.99050141	1.01871859	1.01236853	1.01452745	1.00145052	1.04551914
70		248\%	0.914976603	1.01510834	1.00119153	0.99780968	1.04551914	1.00495417	1.00495417	1.0438	0.9963	1.00427351
71		194\%	1.045519141	1.04754474	1.0128	1.08442539	0.90982524	0.98154008	1.00145052	1.00119153	0.98223604	1.02002112
72		183\%	0.989	0.9810651	0.9955	1.06670703	1.0438	1.03540235	1.0128	0.9834702	0.98969295	1.04754474
73		174\%	0.985	1.00495417	1.00427351	1.0254	1.01510834	1.0254	1.04754474	1.02761346	1.0256	1.11259525
74	Median	168\%	1.029040673	1.01452745	1.03730682	1.03540235	1.01186992	0.99780968	1.01197829	1.01941984	1.00119153	1.01197829
75		140\%	0.997878729	1.0438	0.972063	0.9919	1.02527438	1.021	1.04207117	1.04551914	0.8218964	0.98790289
76		84\%	1.004733308	1.01941984	0.972063	1.01236853	1.05429495	0.9963	1.01467612	1.04551914	0.8218964	0.97184503
77		72\%	1.084425385	1.0256	1.01510834	0.9706907	0.9813241	1.00473331	1.01406457	1.00119153	1.00618761	1.01452745
78	Low	67\%	1.012368532	1.00145052	0.97184442	1.0147	1.03061202	1.05429495	0.99050141	1.08442539	1.021	1.0438
79												
80	High		-1.98\%	4.75\%	4.21\%	5.77\%	-0.95\%	1.87\%	1.24\%	1.45\%	0.15\%	4.55\%
81	Median		2.90\%	1.45\%	3.73\%	3.54\%	1.19\%	-0.22\%	1.20\%	1.94\%	0.12\%	1.20\%
82	Low		1.24\%	0.15\%	-2.82\%	1.47\%	3.06\%	5.43\%	-0.95\%	8.44\%	2.10\%	4.38\%

Figure 5-6 Treasury Bill Return Data by Scenarios Table

Weighted Average Rate of Return

From the section above, I have set up the high, median and low case scenarios for stock, bond, and Tbill returns. 401 k retirement account investment is a combination of investment in stock, bond, and bank deposit (using the Tbill return rates) with different weights in each category according to an account owner's choice. Therefore, in this section, I am going to explain my calculations on obtaining the weighted average rate of return for a 401 k account holder. First, a user gives their desired weight on stock, bond, and bank deposit under the 'Main Display' tab.

There are two sets of weights to enter: the '401k Contribute' (desired weight on each category during the working period) and the '401k Withdraw' (desired weight on each category after retirement). Under both sets, a user inputs his/her desired weights on '\% Invest in bonds’ and '\% Investment in Stocks' then '\% Deposit' will be calculated automatically by formula $=1-$ ' $\%$ Invest in bonds' - '\% Investment in Stocks.' Generally speaking, a reasonable person is willing to
take more risk when he/she is young and has an income than when he/she is retired. Therefore, ‘\% invest in Stocks' is likely to be higher in '401k Contribute' period, while '\% Deposit' is likely to be higher in ' 401 k Withdraw' period.

401K Contribute	
25 \% Invest in Bond	20%
26 \% Invest in Stock	70%
\% Deposit	10%
401 K Withdraw	
27 \% Invest in Bond	50%
28 \% Invest in Stock	10%
\% Deposit	40%

Figure 5-7 401k Investment User Input Table
The user inputs were linked to the weighted average rate of return table under
'Retirement' tab.

4	1 B	C	D	E	F	G	H	1	BU	BV	BW	BX
2	Year		2013	2014	2015	2016	2017	2018	2082	2083	2084	2085
3	Rate of Return (High)		7.47\%	7.04\%	9.74\%	20.14\%	-9.65\%	7.88\%	5.17\%	5.12\%	-5.16\%	-7.70\%
4	Rate of Return (Median)		-6.92\%	20.35\%	5.94\%	21.54\%	12.96\%	9.23\%	7.58\%	-0.94\%	1.56\%	5.16\%
5	Rate of Return (Low)		21.30\%	4.08\%	-2.95\%	14.58\%	31.64\%	7.26\%	-0.38\%	4.10\%	-1.42\%	-7.50\%

Figure 5-8 Weighted Average Rate of Return Table
Here are samples of two cells that explain how the value in this table is calculated. Cell D3 is the weighted average rate of return under high return scenario for year 2013. It is calculated as 'bond return under high return scenario in 2013 (cell D48)' * '401k Contribute: \% Invest in Bonds' + 'stock return under high return scenario in 2013 (cell D64)' * '401k Contribute: \% Invest in Stocks' + 'Tbill return under high return scenario in 2013 (cell D80)' * '401k Contribute: \% Deposit' $=20 \% *(-10.19 \%)+70 \% * 13.86 \%+10 \% *(-1.98 \%)=7.47 \%$. Cell BX5 is the weighted average rate of return under low return scenario for year 2085. It is calculated as 'bond return under low return scenario in 2085 (cell BX48)' * '401k Withdraw: \% Invest in bonds' + 'stock return under low return scenario in 2085 (cell BX64)' * '401k Withdraw: \% Invest in Stocks' + 'Tbill return under low return scenario in 2086 (cell BX80)' * ‘401k Withdraw: \% Deposit' $=50 \% *(-16.35 \%)+10 \% *(-10.74) \%+40 \% * 4.38 \%=-7.50 \%$.

The 'Rate of Return' chart under the 'Main Display' tab visualized the variability of a user's weighted investment returns for the years 2013 to 2085.
Rate of Return

Figure 5-9 Stock, TBond, and TBill Rates of Return Chart

Consumption Smoothing Analysis

The concept of consumption smoothing is as simple as having the similar amount of deposable income before and after retirement; in other words, maintain the same expenditure level. Based on the percentage of income a user put into the 401 k account and his/her choice of 401 k investment under three categories, a table and a chart are provided in my project to visualize his/her consumption smoothing effort.

To begin with how the table and chart were calculated and drawn. Under the 'Retirement' tab, there is a table as below (all the numbers were in 2012 real dollars):

4	1 B	C	D	E	F	AV	AW	AX	BV	BW	BX
2	Year		2013	2014	2015	2057	2058	2059	2083	2084	2085
3	Rate of Return (High)		7.47\%	7.04\%	9.74\%	33.37\%	5.27\%	2.77\%	5.12\%	-5.16\%	-7.70\%
4	Rate of Return (Median)		-6.92\%	20.35\%	5.94\%	-14.06\%	-1.33\%	6.21\%	-0.94\%	1.56\%	5.16\%
5	Rate of Return (Low)		21.30\%	4.08\%	-2.95\%	9.25\%	-3.89\%	1.03\%	4.10\%	-1.42\%	-7.50\%
7	Age	22	23	24	25	67	68	69	93	94	95
8	\% salary gro	0\%									
9	Salary		\$73,000	\$73,000	\$73,000	\$73,000	\$26,182	\$26,182	\$26,182	\$26,182	\$26,182
10	Saving	Withdraw (H)	\$3,500	\$3,500	\$3,500	\$3,500	\$262,048	\$262,048	\$262,048	\$262,048	\$262,048
11		Withdraw (M)					\$33,396	\$33,396	\$33,396	\$33,396	\$33,396
12		Withdraw (L)					\$13,247	\$13,247	\$13,247	\$13,247	\$13,247
13	Tax	Tax (H)	\$25,556	\$25,556	\$25,556	\$25,556	\$1,222	\$1,222	\$1,222	\$1,222	\$1,222
14		Tax (M)					\$235	\$235	\$235	\$235	\$235
15		Tax (L)					\$0	\$0	\$0	\$0	\$0
16	Consumption	S Spending (H)	\$43,944	\$43,944	\$43,944	\$43,944	\$287,009	\$287,009	\$287,009	\$287,009	\$287,009
17	Consumption	n Spending (M)	\$43,944	\$43,944	\$43,944	\$43,944	\$59,343	\$59,343	\$59,343	\$59,343	\$59,343
18	Consumption	n Spending (L)	\$43,944	\$43,944	\$43,944	\$43,944	\$39,429	\$39,429	\$39,429	\$39,429	\$39,429
19	\% withdraw	5\%									
20	401K Accoun	\$	\$3,500	\$7,247	\$11,452	\$5,240,964	\$5,241,272	\$5,117,367	\$815,065	\$524,455	\$242,190
21	401K Account	t Balance (M)	\$3,500	\$7,712	\$11,670	\$667,924	\$626,070	\$629,499	\$122,490	\$90,481	\$60,029
22	401K Account	t Balance (L)	\$3,500	\$7,143	\$10,432	\$264,948	\$241,908	\$231,019	\$6,453	-\$6,698	-\$18,450

Figure 5-10 401k Account Balance Calculation Table
For advanced users, they could put in a percentage in ‘\% salary growth' (cell C8) to customize their situation. For general users, I put in an initial value of zero percent to simplify the case. The
table assumed a user start to work in 2013 at age 23, retire in 2057 at age 67, and died in 2085 at age 95 . The initial salary at age 23 is 'Salary' (cell D9) is linked to the user's inputs under 'Main Display' tab which is the sum of 'Annual Income' (cell D4) and 'Bonus' (cell D5). The initial 'Saving' (cell D10) is linked to the 'Total Tax-deducitable Retirement Savings' (cell D8) under 'Main Display' tab which is. The initial 'Tax' (cell D13) is linked to the 'Total Tax Payable' (cell D18) under 'Main Display' tab. In addition, on the first year of retirement, the social security benifit (cell AW 9) is linked to the calculated output from 'SSN benefit Calculator' under 'Tax \& SSN' tab. For a wage earner who has annual income of $\$ 73,000$, his/her social security retirement benefit was calculated as: $=\mathrm{IF}(\$ \mathrm{H} \$ 37>\mathrm{G} 41,(\mathrm{I} 40+\mathrm{I} 41+(\$ \mathrm{H} \$ 37-\mathrm{G} 41) * \mathrm{H} 42), 0)$

4.	G	H	I		J
35	Social Security Benefit Calculator				
36	Annual Income:	\$ 73,000.00			
37	Monthly Income:	\$ 6,083.33			
38	Monthly Income Brackets		Maximum Amont		
39	\$				
40	\$ 791.00	90.00\%	\$ 711.90	\$	-
41	\$ 4,768.00	32.00\%	\$ 1,272.64	\$	-
42	Over \$4,768.00	15.00\%		\$	2,181.84
43	Monthly Benefit:			\$	2,181.84
44	Yearly Benefit:			\$	26,182.08

Figure 5-11: Social Security Benefit Calculation Table
The monthly income of the wage earner was equal to 'Annual Income'/12. If the monthly income is 'Over $\$ \$ 4,768$ ' (cell G42) then the 'Monthly Benefit' would be a summation of the 'Maximum Amount' for bracket \$0-\$791 (cell I40) of the 'Maximum Amount' for bracket \$791-\$4,768 (cell I41) and partical amount for the 'Over $\$ 4,768$ ' bracket. To say it in numbers, $\$ 711.9+\$ 1,272.64$ $+(\$ 6,083.33-\$ 4,768) * 15 \%=\$ 2,181.84 /$ month. Therefore, the yearly payment was $\$ 26,182.08$. The withdraw amount at age 67 with optimistic market expectation (cell AW 16) was calculated as ‘\% withdraw' * ‘401k account balance' at age $67=$ cell $\$ \mathrm{C} \$ 19$ *cell AV20 $=5 \% * \$ 5,240,964$ $=262,048.18$.

Follow are two samples of how each row is calculated that the first sample is on 401 k contribution period and the second sample is on 401 k withdraw period.

- Sample 1: the calculation on 401 k account balance when a person is 24 (Column E). First, 'Salary' (cell E9) is calculated as 'Salary' of previous year * ($1+\%$ salary growth) $=$ cell D9 $*(1+$ cell $\$ \mathrm{C} \$ 8)=\$ 73,000 *(1+0 \%)=\$ 73,000$. Second, ‘Saving' (cell E10 $)$ and 'Tax' (cell E13) are the same as previous year. Third, 'Consumption Spending' (cell E16) is calcuated as 'Salary' - 'Saving' - 'Tax' = cell E9 - cell E10 - cell E13 $=\$ 73,000-$ $\$ 3,500-\$ 25,556=\$ 43,944$. The 401k account balance under optimistic scenario (cell E20) is calculated as '401k account balance' from previous year * (1+ high rate of return) + 'Saving' for this year $=$ cell D20 $*(1+$ cell D3 $)+$ cell E10 $=\$ 3,500 *(1+7.47 \%)+$ $\$ 3500=\$ 7,247$. The 401 k account balance under neutral and pessimistic scenarios (cell E21 and E22) are calculated in similar manners.
- Sample 2: the calculation on 401 k account balance when a person is 69 (column AX). First, 'Salary' (cell E9) and 'Withdraw (H)' (cell AX10) are the same as previous year. Second, 'Tax’ (AX13) was linked to ‘Total federal tax’ (cell J18) under ‘Tax\& SSN' tab. Third, 'Consumption Spending' (cell AX16) is calcuated as 'Salary' + 'Withdraw (H)' $‘$ Tax' $=$ cell AX9 + cell AX10 - cell AX13 $=\$ 26,182+\$ 262,048-\$ 33,396=\$ 287,009$. The 401 k account balance under optimistic scenario (cell AX20) is calculated as (' 401 k account balance' from previous year- 'Withdraw $\left.(\mathrm{H})^{\prime}\right) *(1+$ high rate of return $)=($ cell AX20 - cell AX10) $*(1+$ cell AX3 $)=(\$ 5,241,272-\$ 262,048) *(1+2.77 \%)=$ $\$ 5,117,367$. The 401 k account balance under neutral and pessimistic scenarios (cell AX21 and AX22) are calculated in similar manners.

The chart under the 'Main Display' tab visualized the change over years in the 401 k account for all three scenarios.

Figure 5-12 401k Account Balance Chart
The green line stood for the optimistic rate of return scenario; the yellow line stood for neutral scenario; the red line stood for pessitistic scenario. The number marked was the 401 k account balance at age of 67 (year of retirement) which is the turning point for a person to stop deposit money and to start withdraw from the account. However, it did not necessarily be the maximum account balance because of the influence of rate of return on your 401k investment. For example, the yellow line given was showing the maximum account balance was reached before retirement date. It indicated that the the loss due to poor rate of return on 401 k investment was larger than the yearly contribution made to the account that cause the 401k account balance to decrease.

The 'Annual Consumption Spending' table was constructed for my user to have a easy view of his/her consumption smoothing effort. The goal is to minimize the difference between consumptable income before and after retirement. The consumpatable income for retirement period should be greater than, if not at least equal to the working period. And a user is expected to observe a positive ending balance for their 401k account, otherwise it means the account run out of money before he/she passes away which is undesirable.

Annual Consumption Spending Table						Ending Balance		
	Retired		Working		Difference			
High ROR	$\$$	$287,008.66$	$\$$	$43,944.20$	$\$$		$243,064.46$	$\$$
Median ROR	$\$$	$59,342.91$	$\$$	$43,944.20$	$\$$	$15,398.71$	$\$$	
Low ROR	$\$$	$39,429.46$	$\$$	$43,944.20$	$\$$	$(4,514.74)$	$\$ 00.028 .62$	

Figure 5-13 Annual Consumption Spending Table
In this table, for the 'Difference' column: if consumption spending in retirement period was smaller than it during working period, it would show a red dot; for 'Ending Balance" if the value was less than zero, it would display a red dot. These two 'red dot' functions are designed warn the user about the risk of their 401 k strategy. $\mathrm{He} /$ she may increase his/her 401 k contribution percentage of income or reweight his/her investment in deposit, bond and stock to achieve a more successful consumption spending strategy.

Chapter 6

Income Statement

The 'Income Statement' table is the first table under 'Main Display' tab. It involves a series of user inputs and calculation output from other tabs. Detailed explanations on calculation were already given in previous chapters and this chapter is a brief summary of everything mentioned.

Figure 6-1: Income Statement Table
Cells with orange background were user input cells. When a user input 'Annual Income' (cell D4), 'Bonus' (cell D5), and selected a desirable '401k Saving Rate' (cell D7)—5\%, 10\% or
15% from a drop down list, 'Federal Taxable Income' (cell D11) was calculated as 'Annual Income' + 'Bonus' - 'Total tax-deductible Retirement Savings' $=\$ 70,000+\$ 3,000-\$ 3,500=$ $\$ 69,500$. Then, the user chose the city that he/she resident in via the drop down list with choices of New York, Pittsburgh, and Philadelphia. Calculations were done under the 'Tax and SSN' tab and results of federal, state and city taxes flowed back to the income statement table in cell D15, D16, D17 and D18. The 'Effective Tax Rate' (cell D19) was calculated as 'Total Tax Payable' divided by 'Federal Taxable Income'. The 'Yearly Net Income' (cell D21) was equal to 'Total Tax Payable' minus 'Federal Taxable Income'. The 'Monthly Net Income' (cell D22) was the 'Yearly Net Income'/12. The 'Total Yearly Expense' was the ending number from the 'Expense' table. The 'Free Cash Flow Year End' was the 'Yearly Net Income' deducted 'Total Yearly Expense'.

Chapter 7

Case Analysis

This chapter discusses two cases on the applications of my project: the first one with basic input and the second one with advanced input and modification of formulas. Both of them are real life examples.

- Case Scenario 1:

Sue is a Penn State student at the Smeal College of Business majoring in Actuarial Science. Sue accepted a full-time job in New York City with one of the largest asset management firms. Her annual salary is $\$ 70,000$ with a one-time sign on bonus of $\$ 10,000$ if she stays with the firm for 12 months. She decides to have a five percent savings rate on her 401k account. Since she is a risk taker, she allocates 80 percent of her 401 k investment into stocks, 20 percent into bonds and zero percent into deposit before her retirement. After retirement, she would like to switch to a more conservative investment strategy: 50 percent in bonds, 30 percent in stocks and 20 percent in bank deposit.

Sue is on a healthy diet: on workdays she makes cereal for breakfast, which costs about $\$ 1 / \mathrm{bag}$; she dines in the cafeteria located in the office building for lunch with an estimated cost of $\$ 12 /$ meal; in the evening she leaves office around 9 pm and went to Subway or a Chinese food take-out booth for dinner which on average costs her $\$ 10 /$ meal.

In addition, her studio lease in midtown Manhattan costs her $\$ 21,600 /$ year which includes everything (gas, heating, electricity and wireless). Sue uses dry cleaning service for her business attires which on average costs $\$ 50 /$ month. She purchased a 30 -day unlimited Metro card for daily
transportation which costs $\$ 112 /$ month. The company provides Sue with a Blackberry work phone and pays for the telephone bills so she is able to avoid cell phone expenses. Sue has a gym membership of $\$ 150 /$ month and she also attends yoga class one time per week which costs $\$ 10 /$ class. She spends around $\$ 300$ on clothes in store or online every month. Sue estimates the average cost for her to drink with colleagues and buy gifts to be $\$ 200 /$ month. And she also has a budgeted $\$ 100$ for movies and other entertainments.

Last but not least, Sue has plan for pursuing a CFA designation in the next three years and attending a full-time MBA program in the next five years.

On the next page is a view of 'Main Display' tab after recording all the information given above. Analyses were provided on Sue's expenses breakdown and consumption spending effort. And advice is written based on the analyses.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Creat Your Personal Wealth Management Report Income Statement}} \& \multicolumn{3}{|l|}{Food Expenses} \& \multicolumn{3}{|l|}{Other Monthly Expenses} \& \multicolumn{2}{|l|}{\% Gross Salary \% Net Income} \& \multicolumn{4}{|l|}{} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Ending Balance}} \\
\hline \& \& \& \multicolumn{3}{|l|}{\begin{tabular}{l|l|}
\hline \(\begin{array}{l}\text { Weekday } \\
5 \text { breakast }\end{array}\) \& 5 \\
\hline
\end{tabular}} \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{|cr|}
\(27.00 \%\) \\
\(0.00 \%\) \& \(45.05 \%\) \\
\(0.00 \%\) \\
\hline
\end{tabular}}} \& \multicolumn{2}{|r|}{\(\xrightarrow{\text { Annual Consumption Spending Table }}\) Retired Working \(_{\text {a }}^{\text {difference }}\)} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{cc}
Working \& \\
\hline \(47,94.184\) \& Difference \\
\hline
\end{tabular}}} \& \& \\
\hline \multicolumn{3}{|l|}{1 Annual Income: \(\quad\) \$ 70,000.00} \& 5 Breakfast \& \$ \& 1.00 \& \& \& \& \& \& High ROR \& 433,917.07 \& \& \& \multicolumn{2}{|r|}{3,401,578.94} \\
\hline 2 Bonus: \& \multicolumn{2}{|r|}{\multirow[t]{2}{*}{10,000.00}} \& \multirow[t]{2}{*}{\({ }_{6} 6\) Lunch} \& \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\begin{tabular}{ll}
\$ \& 12.00 \\
\(\$\) \& 10.00 \\
\hline
\end{tabular}}} \& \multirow[t]{3}{*}{\begin{tabular}{l}
16 Transportation \\
17 Cell Phone \\
18 Gym
\end{tabular}} \& \multicolumn{2}{|r|}{\multirow[t]{2}{*}{112.00}} \& 0.00\% \& \multirow[t]{2}{*}{\[
2.80 \%
\]
\[
0.00 \%
\]} \& \multirow[t]{2}{*}{\[
\begin{array}{|l|}
\hline \text { Median ROR } \\
\hline \text { Low ROR } \\
\hline
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 65,899.82 \\
\& 41,849.02
\end{aligned}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
47,941.84 \\
\(47,941.84\) \\
\hline
\end{tabular}} \& \multirow[t]{2}{*}{\(17,957.98\)
\((6,09282)\)} \& \multicolumn{2}{|r|}{- 3 300,5,580.34} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Retirement Saving 40}} \& \& \& \& \& \& \& \multirow[t]{2}{*}{0.00\%
\(3.00 \%\)} \& \& \& \multicolumn{5}{|l|}{\multirow[t]{2}{*}{41,849,02 \(\leqslant \quad 47,941.84\) ¢}} \\
\hline \& \& \& \multicolumn{3}{|l|}{Weekend} \& \& s \& 200.00 \& \& 5.01\% \& \& \& \& \& \& \\
\hline Total tax-deductible Retirement Savings: \(\quad 3,50000\) \& \multicolumn{2}{|r|}{\multirow[t]{2}{*}{3,500.00}} \& Saturday \& \multicolumn{2}{|r|}{Eat In} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { Food } \\
\& 19 \text { Clothes }
\end{aligned}
\]} \& \$ \& 910.00 \& 13.65\% \& 22.78\% \& \multicolumn{6}{|l|}{} \\
\hline Health Insurance \& \& \& \multicolumn{3}{|l|}{8 Breakfast} \& \& S \& 300.00 \& \multirow[t]{2}{*}{\(\begin{array}{ll}\text { 4.50\% } \& \\ 3.00 \% \& 7.51 \% \\ 5.01 \%\end{array}\)} \& \multirow[t]{2}{*}{\(7.51 \%\)
\(5.01 \%\)} \& \multicolumn{6}{|l|}{Read your report:
Annual Consumption Spending Table: your goal is to have ultimate consumption} \\
\hline \multirow[t]{2}{*}{Hedert Sal Taxable Income} \& \& \& 9 Lunch \& \& 25.00 \& \begin{tabular}{l}
19 Clothes \\
20 Social Networking
\end{tabular} \& 5 \& 200.00 \& \& \& \multicolumn{6}{|l|}{\multirow[t]{2}{*}{smoothing (minimum difference amount for what you can spend before and after your retirement) with positive account ending balance. Under this model, you started to work}} \\
\hline \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\$ 76,500.00}} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 10 \text { Dinner } \\
\& \text { Sunday }
\end{aligned}
\]} \& \multicolumn{2}{|l|}{\begin{tabular}{|l|l|l|}
\hline 10 Dinner \& S \& 35.00 \\
\hline
\end{tabular}} \& \multirow[t]{2}{*}{22 Dry Cleaners} \& \$ \& 100.00 \& 1.50\% 2.50\% \& \multirow[t]{2}{*}{2.50\%
\(1.25 \%\)} \& \& \& \& \& \& \\
\hline \& \& \& \& \multicolumn{2}{|l|}{Eat Out} \& \& \& 50.00 \& \& \& \multicolumn{6}{|l|}{with you are 23 and retired when you are 67 and your life expectation is 95 . It provides} \\
\hline Taxes Estimate \& \& \& \multirow[t]{2}{*}{\begin{tabular}{l}
11 Breakfast \\
12 Lunch
\end{tabular}} \& \multicolumn{2}{|l|}{} \& 23 Misc \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{S}} \& \multirow[t]{2}{*}{0.00\% 0.00\%} \& 0.00\% \& \multicolumn{6}{|l|}{\multirow[t]{2}{*}{three senerios: high return on investment, neutral return on investment and low return on investment for your 401 K account.}} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \& \& \& \& \multirow[t]{2}{*}{24 Savings in Bank} \& \& \& \& \multirow[t]{3}{*}{\begin{tabular}{|}
\(0.00 \%\) \\
0.9191
\end{tabular}} \& \& \& \& \& \& \\
\hline \& \& \& 13 Dinner
Total Weekly food \& \multicolumn{2}{|l|}{\begin{tabular}{|ll|}
\hline \& \\
\(\$\) \& 10.00 \\
\hline
\end{tabular}} \& \& \multicolumn{2}{|l|}{} \& \multirow[t]{2}{*}{0.00\%

55.08%} \& \& \multicolumn{6}{|l|}{\multirow[t]{3}{*}{If you observe a 'red dot' in difference, this indicate under that return senerios you will have less to spend after retirement than before retirement. If you observe a 'red dot' in Ending balance, this indicate under that return senerio, your account run out of money}}

\hline State Tax \& \multicolumn{2}{|l|}{\$ $4,4853.00$} \& \multirow[t]{2}{*}{Total Monthly Food} \& \& 210.00 \& \multicolumn{3}{|l|}{\multirow[b]{2}{*}{}} \& \& \& \& \& \& \& \&

\hline New York Tax \& \& \& \& \multicolumn{2}{|r|}{910.00} \& \& \& \& \& 91.91\% \& \& \& \& \& \&

\hline Total Tax Payable \& 5 \& 28,558.16 \& Total Yearly food \& \& 10,920.00 \& \multicolumn{5}{|l|}{Total Yearly Expenses: | \% |
| :--- |
| |} \& \multicolumn{6}{|l|}{Ending balance, this indicate under that return senerio, your account run out of money before age 95 .}

\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Effective Tax Rate $\quad 37.33$}} \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\qquad}} \& \multicolumn{11}{|l|}{\multirow[t]{2}{*}{}}

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline Yearly Net Income \& \multicolumn{2}{|l|}{\$ ${ }^{\text {¢ }}$ ($47,941.84$} \& \multicolumn{3}{|l|}{\multirow[t]{3}{*}{| 25 \% Invest in Bond | 20% |
| :--- | ---: |
| $\%$ Invest in Stock | 80% |
| \% Deposit | 0% |
| 401K Withdraw | |}} \& \multicolumn{11}{|l|}{\multirow[t]{2}{*}{| Instructions: |
| :--- |
| 1\&2: input your annual income and bonus |}}

\hline Monthly Net Income \& \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\$ 44,064,00}} \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline Total Yearly Exp \& \& \& \& \& \& \multicolumn{11}{|l|}{\multirow[t]{2}{*}{3: decide an annual persentage contribution you want to make to your tax-exempt retirement account from the drop down list 4: choose the city of your residence from the drop down list}}

\hline Free Cash Flow Year End \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\$ 3,877.84}} \& \multirow[t]{3}{*}{27 \% Invest in Bond
28 \% Invest in Stock
\% Deposit} \& \multicolumn{2}{|r|}{50%} \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \multicolumn{2}{|l|}{\multirow[b]{2}{*}{}} \& \multicolumn{6}{|l|}{| 5-23: input your daily food expenses or monthly other expenses accordingly |
| :--- |
| 24: decide the amount of emergency savings you would like to have in bank, when you do it, make sure you minimize the * 'Free Cash Flow Year End' on the balance sheet |} \& you minimize th \& 'Free Cash Flow Yea \& d' on the ba \& \&

\hline \& \& \& \& \& \& \multicolumn{11}{|l|}{\multirow[t]{2}{*}{25-28: while you are working, put the percentage of your retirement funding you would like to put into each investment categories under ' 401 K contribute'- $\%$ Invest in T Bond $+\%$ Invest in Stock $+\%$ Deposite $=100 \%$; while you retired, put the percentage breakdown into ' 401 K withdraw'. Generally speaking, your investment strategy would be more ,}}

\hline \& \& \& \& \multicolumn{2}{|l|}{} \& \& \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

First, we took a look at her income breakdown. Sue's yearly expenses counted for 55 percent of her income, and followed by 36 percent tax, five percent free cash and four percent in retirement savings. Under the expenses category, which was the largest category, rent counted for 49 percent, and followed by 25 percent on food. We refer to the expenditure survey and located Sue's expenses level under the' third 20 percent' and comparing the national average amount by household to Sue's case:

Average annual expenditures	Food		Housing		
All Consumer Units	$\$ 49,705$	$\$ 6,458.00$	13%	$\$ 16,803.00$	34%
Lowest 20 Percent	$\$ 22,001$	$\$ 3,547.00$	16%	$\$ 8,771.00$	40%
Second 20 Percent	$\$ 32,092$	$\$ 4,659.00$	15%	$\$ 12,136.00$	38%
Third 20 Percent	$\$ 42,403$	$\$ 5,620.00$	13%	$\$ 14,944.00$	35%
Fourth 20 Percent	$\$ 57,460$	$\$ 7,466.00$	13%	$\$ 18,840.00$	33%
Highest 20 Percent	$\$ 94,551$	$\$ 10,991.00$	12%	$\$ 29,321.00$	31%

Figure 7-2: 2011 Household Consumption Expenditure
It indicated that Sue was spending about 200 percent on food and 145 percent on housing comparing to the national average. This might be reasonable since New York City has a living expense adjustment point of 144 (the national-wide expense adjustment point is set as 100). And food and housing are two main drivers for living expenses.

Second, we looked at the 'Rate of Return' chart for Sue's 401k investment. The lines fluctuated more before retirement and less after retirement which aligned with Sue's data inputs-she was heavily invested in stock (a higher risk category) in the 401 k contribution period and switched to bond (a more moderate risk category) in the 401 k withdraw period.

Third, we moved on to the '401k Account Balance' chart. Under the worst case scenario, Sue would still have $\$ 292,339$ in her 401k account by the time she retired which was considered as relatively sufficient. Under the optimistic case scenario, Sue would have more than $\$ 1,000,000$ in her 401 k account at the age of 48 . And under the neutral case scenario, she would reach the amount by the age of 72. It was interesting to point out that her 401 k account continued to grow and reached $\$ 1,000,000$ bar during the 401 k withdraw period. This was because the outstanding weighted average rate of return overcame the effect of yearly retirement withdrawing amount and
continue to build up the savings in the account. In other words, the investment strategy Sue chose in the retirement period happened to be very successful.

Forth, the 'Annual Consumption Spending' table offers the best summary for Sue's consumption smoothing goal. By having positive 'ending balance' under all three circumstances, Sue's 401 k account management was generally successful. The 'red dot' popped up in the 'Difference' column under the 'Low ROR' scenario indicating Sue would have less money (by 13 percent) for consumption after retirement under the worst case scenario. To resolve the risk under 'Low ROR' case, Sue may increase her annual 401k contribution amount or adjust her weights under three investment categories.

Last but not least, the 'Free Cash Flow Year End' line in the 'Income Statement' table gave Sue a broad idea of how much she would be able to save to achieve her further education goals and if there would be a need to take out student loan for MBA School.

- Case Scenario 2:

Lucy is a student at Penn State majoring in advertising. She took out $\$ 35,000$ student loan from a national bank and is required to make monthly repayment of $\$ 500$ for 10 years to repay the loan. After graduation, Lucy plans on going to Spain to teach students in poor community for 2 years. She decided to pay the minimum amount (interest payment on the total amount of student loan which is allowed by the bank for a maximum of 2 years after graduation) during the period she lives in Spain. Afterwards, Lucy is going to work full time in Pittsburgh area with a small marketing firm for a starting salary of $\$ 55,000$ and she expects her salary to grow 0.5 percent over years. She decided to contribute five percent every year to her 401 k account every year. After inputting all the information required on the 'Main Display' tab, she found out she was in short of $\$ 100$ for her monthly loan repayment obligation (student loan is considered as a 'misc expense' in the table). Lucy feels that her monthly expenses are lack in
flexibility for further cut that she have to contribute $\$ 1,200$ less every year into her 401k account for the first ten years when she is trying to pay off her student loan.

Based on the criteria given, the 'retirement' tab was modified as follow: first, I deleted two columns and reset the calculation starting year to 2015. Second, I put in 0.5 percent in '\% Salary Growth' (cell C8). Then I went to 'saving' row and minus $\$ 1,200$ for the year 2015 to 2024 (cell D10-M10). However, because of the limitation of my project, tax is not able to be modified with the chances I made above.

4.	,	C	D	E	F	G	H	I	J	K	L	M
2	Year		2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
3	Rate of Return	rn (High)	7.37\%	9.01\%	-4.33\%	2.45\%	-1.62\%	8.28\%	15.83\%	0.41\%	17.06\%	8.51\%
4	Rate of Return	rn (Median)	1.99\%	10.55\%	4.30\%	4.37\%	3.72\%	15.04\%	3.75\%	-0.41\%	-3.61\%	-3.00\%
5	Rate of Return	rn (Low)	-4.37\%	6.54\%	14.72\%	8.65\%	9.85\%	5.40\%	9.88\%	3.56\%	5.50\%	11.61\%
6												
7	Age	22	25	26	27	28	29	30	31	32	33	34
8	\% salary gro	0.5\%										
9	Salary		\$55,000	\$55,275	\$55,551	\$55,829	\$56,108	\$56,389	\$56,671	\$56,954	\$57,239	\$57,525
10	Saving	Withdraw (H)	\$1,550	\$1,564	\$1,578	\$1,591	\$1,605	\$1,619.44	\$1,633.54	\$1,647.71	\$1,661.94	\$1,676.25
11		Withdraw (M)										
12		Withdraw (L)										
13	Tax	Tax (H)	\$16,326	\$16,326	\$16,326	\$16,326	\$16,326	\$16,326	\$16,326	\$16,326	\$16,326	\$16,326
14		Tax (M)										
15		Tax (L)										
16	Consumption	n Spending (H)	\$37,124	\$37,386	\$37,648	\$37,912	\$38,177	\$38,444	\$38,712	\$38,981	\$39,251	\$39,523
17	Consumption	n Spending (M)	\$37,124	\$37,386	\$37,648	\$37,912	\$38,177	\$38,444	\$38,712	\$38,981	\$39,251	\$39,523
18	Consumption	Spending (L)	\$37,124	\$37,386	\$37,648	\$37,912	\$38,177	\$38,444	\$38,712	\$38,981	\$39,251	\$39,523
19	\% withdraw	5\%										
20	401K Accoun	\$	\$1,550	\$3,253	\$4,690	\$6,396	\$7,898	\$10,172	\$13,416	\$15,118	\$19,359	\$22,683
21	401K Account	t Balance (M)	\$1,550	\$3,277	\$4,996	\$6,806	\$8,664	\$11,587	\$13,654	\$15,245	\$16,358	\$17,543
22	401K Account	t Balance (L)	\$1,550	\$3,215	\$5,266	\$7,313	\$9,639	\$11,779	\$14,575	\$16,743	\$19,326	\$23,245

Figure 7-3: Case Scenario 2 Consumption Spending Calculation
After the modifications above, I realized that in the 'Annual Consumption Spending' table both neutral and worst case scenarios ended with negative ending balance. I traced back to 'Retirement' tab and found out that her 401 k account will run out of money at age 94 under neutral scenario and 91 under worst case scenario.

Annual Consumption Spending Table						Ending Balance
	Retired	Working	Difference			
High ROR	$\$$	$51,614.47$	$\$$	$42,084.09$	$\$$	$9,530.38$
Median ROR	$\$$	$34,498.05$	$\$$	$42,084.09$	$\$$	$(7,586.03)$
Low ROR	$\$$	$29,535.34$	$\$$	$42,084.09$	$\$$	$(12,548.74)$

Figure 7-4: Case Scenario 2 Annual Consumption Spending
Therefore, further adjustments were necessary. The simplest solution would be lower the annual 401 k account withdraw rate to 4.5 percent to achieve a possible balance. However, as
observed, besides issue with ending balance Lucy's consumption smoothing effort was not very successful. (Notice that the consumption spending amounts during working period were different every year driven by the 0.5 percent in salary increase; therefore, the consumption spending amount in the table is an average over the entire working period.) Lucy is likely to have a significantly lower amount for consumption after retirement for the two scenarios mentioned. Therefore, in addition to lower the withdraw rate, Lucy should also consider increasing the 401 k contribution amount during working period. As I increased Lucy's 401 k account contribution to ten percent a year, I also needed to cut the contribution amount by $\$ 3,000$ for the first ten years in order to leave enough money to meet her college loan obligation.

4	1 B	c	D	E	F	G	H	1	J	K	L	M
2	Year		2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
3	Rate of Retur	(High)	7.37\%	9.01\%	-4.33\%	2.45\%	-1.62\%	8.28\%	15.83\%	0.41\%	17.06\%	8.51\%
4	Rate of Retur	n (Median)	1.99\%	10.55\%	4.30\%	4.37\%	3.72\%	15.04\%	3.75\%	-0.41\%	-3.61\%	-3.00\%
5	Rate of Retur	((Low)	-4.37\%	6.54\%	14.72\%	8.65\%	9.85\%	5.40\%	9.88\%	3.56\%	5.50\%	11.61\%
6												
7	Age	22	25	26	27	28	29	30	31	32	33	34
8	\% salary gro	0.5\%										
9	Salary		\$55,000	\$55,275	\$55,551	\$55,829	\$56,108	\$56,389	\$56,671	\$56,954	\$57,239	\$57,525
10	Saving	Withdraw (H)	\$2,500	\$2,528	\$2,555	\$2,583	\$2,611	\$2,638.88	\$2,667.08	\$2,695.41	\$2,723.89	\$2,752.51
11		Withdraw (M)										
12		Withdraw (L)										
13	Tax	Tax (H)	\$15,428	\$15,428	\$15,428	\$15,428	\$15,428	\$15,428	\$15,428	\$15,428	\$15,428	\$15,428
14		Tax (M)										
15		Tax (L)										
16	Consumption	Spending (H)	\$37,072	\$37,320	\$37,568	\$37,818	\$38,070	\$38,322	\$38,576	\$38,831	\$39,087	\$39,345
17	Consumption	n Spending (M)	\$37,072	\$37,320	\$37,568	\$37,818	\$38,070	\$38,322	\$38,576	\$38,831	\$39,087	\$39,345
18	Consumption	n Spending (L)	\$37,072	\$37,320	\$37,568	\$37,818	\$38,070	\$38,322	\$38,576	\$38,831	\$39,087	\$39,345
19	\% withdraw	4.5\%										
20	401K Accoun	\$	\$2,500	\$5,253	\$7,581	\$10,349	\$12,793	\$16,491	\$21,768	\$24,552	\$31,464	\$36,895
21	401K Account	t Balance (M)	\$2,500	\$5,291	\$8,074	\$11,010	\$14,030	\$18,779	\$22,150	\$24,753	\$26,584	\$28,539
22	401K Account	t Balance (L)	\$2,500	\$5,191	\$8,510	\$11,830	\$15,605	\$19,087	\$23,639	\$27,177	\$31,396	\$37,793

Figure 7-5: Case Scenario 2 Consumption Spending Calculation with New Condition
I rechecked the 'Annual Consumption Spending' table which was given a slightly negative ending balance under the worst case scenario (account run out of money at age 95) and this was considered acceptable. Besides, the consumption smoothing results were significantly improved.

Annual Consumption Spending Table							Ending Balance	
	Retired		Working		Difference			
High ROR	\$	69,574.94	*	40,341.06	\$	29,233.88		358,385.22
Median ROR	\$	42,701.02	*	40,341.06	*	2,359.96		57,157.62
Low ROR	+	34,350.42	+	40,341.06	-	(5,990.64)		(1,810.61)

Figure 7-6: Case Scenario 2 Annual Consumption Spending with New Condition

To conclude, the first case scenario analysis only involves the use of basic tools for users. And it meets the major purpose of this thesis which was to obtain a big picture of a student's performance in financial planning. It minimizes the requirement for Excel proficiency and applies to a large student base. For advanced users, the second case scenario shows by modifying functions under the 'Retirement' tab, the spreadsheet could be tailored to meet specific needs. One of the build-in features haven't been introduced in the second case study was 'cell C20' which allows users to put in a starting 401 k account balance. It would be helpful to students who switched jobs over time. The other feature not mentioned was that users could use other seven sets of data with few steps to generate new rate of return for their investments besides the high, median and low sets used in the model. So users who feel the three case scenarios were overoptimistic or over-pessimistic could choose a new rate of return level that they think is appropriate.

Chapter 8

Conclusion

In Chapter 7 Case Analysis, I have discussed how to use my project to learn about selffinancial planning for users of different Excel knowledge levels. The project mainly provided users with tax estimation, expenditure breakdown and retirement saving performance and visualized them in charts and tables. Next, I would like to discuss some limitations and points of improvement.

The main limitation on my project is tax since tax brackets and tax law were reviewed and modified every year. In my project, all the calculations were based on 2013 tax brackets, which is not desirable given how different the tax law could be 72 years from now in year 2085 (for tax prediction at the age of 95). However, there was very little and unpractical to make tax trend prediction to improve the accuracy on tax payables. Therefore, I would expect and warn users of high uncertainty on the tax payable amounts used in 401k account performance.

Moreover, to put my project online and make it accessible by clicking a link brought another limitation: Excel VBA was not available for online versions. My original plan was to have users click on a button to generate a series of random rate of return. They could repeat the process to generate multiple trials to see their 401 k account performance under different scenarios. However, this was not realizable without the use of VBA. I had to pre-generate ten sets of random data as an alternative, which reduced the interactive level of my project.

Last but not least, the design of expenses category was hard to tailor. I only created the very basic amount of categories to minimize the input cells for users; however, this may limit the
useful information users can obtain from the expenses breakdown when the 'Misc' category counted for a high percentage.

Appendix A

Department of the Treasury Worksheet for Tax on Retirement Income

Worksheet 1. Figuring Your Taxable Benefits

- If you are married filing separately and you lived apart from your spouse for all of 2012, enter "D' to the right of the word "benefits' on Form 1040, line 20a, or Form 1040A, line 14a.
- Do not use this worksheet if you repaid benefits in 2012 and your total repayments (box 4 of Forms SSA-1099 and RRB-1099) were more than your gross benefits for 2012 (box 3 of Forms SSA-1099 and RRB-1099). None of your benefits are taxable for 2012. For more information, see Repayments More Than Gross Benefits.
- If you are filing Form 8815, Exclusion of Interest From Series EE and I U.S. Savings Bonds Issued After 1989, do not include the amount from line 8 a of Form 1040 or Form 1040A on line 3 of this worksheet. Instead, include the amount from Schedule B (Form 1040 A or 1040), line 2.

1. Enter the total amount from box 5 of ALL your Forms SSA-1099 and RRB-1099. Also enter this amount on Form 1040, line 20a, or Form 1040A, line 14a 1. \qquad 2. \qquad
2. Combine the amounts from:
Form 1040: Lines 7, 8a, 9a, 10 through 14, 15b, 16b, 17 through 19, and 21
Form 1040A-Lines 7, 8a, 9a, 10, 11b, 12b, and 13
3. \qquad
Enter the amount, if any, from Form 1040 or 1040A, line 8b
4. \qquad
5. Enter the total of any exclusions/adjustments for:

- Adoption benefits (Form 8839, line 24).
- Foreign earned income or housing (Form 2555, lines 45 and 50, or Form 2555-EZ, line 18), and
- Certain income of bona fide residents of American Samoa (Form 4563, line 15) or Puerto Rico

5.
6. \qquad
7. Form 1040 filers: Enter the amounts from Form 1040 , lines 23 through 32 , and any write-in adjustments you entered on the dotted line next to line 36
Form 10404 filers: Enter the amounts from Form 1040A, lines 16 and 17
8. \qquad
9. Is the amount on line 7 less than the amount on line 6 ?
No. None of your social security benefits are taxable. Enter -0- on Form 1040, line 20b, or Form 1040A, line 14b.
Yes. Subtract line 7 from line 6
10. \qquad
11. If you are:
Married filing jointly, enter $\$ 32,000$

- Single, head of household, qualifying widow(er), or married filing separately and you lived apart from your spouse for all of 2012, enter $\$ 25,000$

9. \qquad
Note. If you are married filing separately and you lived with your spouse at any time in 2012 , skip lines 9
through 16; multiply line 8 by $85 \%(.85)$ and enter the result on line 17 . Then go to line 18.
10. Is the amount on line 9 less than the amount on line 8 ?
No. None of your benefits are taxable. Enter-0-on Form 1040, line 20b, or on Form
1040 A , line 14 b . If you are married filing separately and you lived apart from you 1040A, line 14b. If you are married filing separately and you lived apart from your
spouse for all of 2012, be sure you entered "D' to the right of the word "benefits" on spouse for all of 2012, be sure you entered 'D' to
Form 1040, line 20a, or on Form 1040A, line 14a. Yes. Subtract line 9 from line 8
11. Enter $\$ 12,000$ if married filing jointly: $\$ 9,000$ if single, head of household, qualifying widow(er), or married filing separately and you lived apart from your spouse for all of 2012
12. Subtract line 11 from line 10 . If zero or less, enter -0 -
13. Enter the smaller of line 10 or line 11
14. Enter one-half of line 13
15. Enter the smaller of line 2 or line 14 15.
16. Multiply line 12 by 85% (.85). If line 12 is zero, enter -0 -
17.
18. Add lines 15 and 16
19.
20. Multiply line 1 by 85% (.85)
21.
22. Taxable benefits. Enter the smaller of line 17 or line 18. Also enter this amount on Form 1040, line 20b, or Form 1040A, line 14b

Bibliography

2013 Social Security Changes. 16102012. http://www.ssa.gov/pressoffice/factsheets/colafacts2013.htm. 2722013.

Bell, Kay. Taxes Blog. 151 2013. http://www.bankrate.com/financing/taxes/2013-tax-rates-income-brackets/. 2722013.
"Estimate of the Budgetary Effects of H.R. 8, the American Taxpayer Relief Act of 2012, as passed by the Senate on January 1, 2013." 11 2013. Congressional Budget Office. http://www.cbo.gov/sites/default/files/cbofiles/attachments/American\ Taxpayer\ R elief\%20Act.pdf. 2222013.
"Federal Rates History in 2012 Real Dollar." n.d. Taxfoundation. http://taxfoundation.org/sites/taxfoundation.org/files/docs/fed_rates_history_real_1913_2 013_0.pdf. 1732013.
"Federal Rates History Nominal." n.d. TaxFoundation. http://taxfoundation.org/article/us-federal-individual-income-tax-rates-history-1913-2013-nominal-and-inflation-adjusted-brackets. 1732013.

Matthews, Merrill. Forbes. 1712013. http://www.forbes.com/sites/merrillmatthews/2013/01/17/you-know-that-new-3-8-medicare-tax-double-it/. 2722013.

Rosenow, Kathleen. High-Income Individuals to Pay Higher Medicare Taxes Starting in 2013.9 2012. http://www.towerswatson.com/en-US/Insights/Newsletters/Americas/insider/2012/high-income-individuals-to-pay-higher-medicare-taxes-starting-in-2013. 2722013.

State-by-State Guide to Taxes on Retirees. 92012.
http://www.kiplinger.com/tool/retirement/T055-S001-state-by-state-guide-to-taxes-onretirees/index.php. 2722013.

Academic Vita

Yunhua Zhou

233 Atherton Hall, University Park, PA 16802 / (814) 753-0471

Education

B.S., Finance, 2013, The Pennsylvania State University, University Park, PA
B.S., Statistics (Apply Statistics Option), 2013, The Pennsylvania State University, University

Park, PA

Honors and Awards

Beta Gamma Sigma, National Business Honor Society
The Evan Pugh Scholar Award - Junior, April 2012
Division of Undergraduate Studies Award for Exploratory Students, March 2011
The President Sparks Award for Academic Excellence, March 2011
President Freshman Award for Academic Excellence, April 2010

Study Abroad

University of Oxford, Oxford, United Kingdom (British History, and Economics), Fall 2012
Schreyer Honors College, London, United Kingdom (Theater Studies), Spring Break 2012
University of Hong Kong, Hong Kong, China (Social Science), Summer 2010

Association Memberships/Activities

Smeal Career and Corporate Connections	University Park, PA
HR Intern	Aug 2011-May 2013

2011 Johnson \& Johnson University Case Competition
University Park, PA
Team Secretary
Feb 2011-Apr 2011

Professional Experience

Ernst \& Young LLP
New York, NY
Risk \& Performance Analyst Jun 2012 - Aug 2012

- Assisted the partner and senior managers with a 5 M sales pitch to a pharmaceutical client by communicating with the global team members and making the presentation slides
- Teamed with a senior staff on a project to reduce national cell phone expenses and learned to use SAS for data cleaning and Spotfire for data presenting

Goldman Sachs \& Co.
Jersey City, NJ
Finance Analyst
Jun 2011 - Aug 2011

- Calculated revenue and earnings for Goldman tax entities and produced tax forms
- Created a data bank for 300+ entities under Goldman Sachs to identify future tax planning opportunity

