

THE PENNSYLVANIA STATE UNIVERSITY

SCHREYER HONORS COLLEGE

DEPARTMENT OF ELECTRICAL ENGINEERING

SOFTWARE-DEFINED RADIO TECHNIQUES FOR GEOLOCATION OF

FIRST-RESPONDER TRANSCEIVERS

CHRISTOPHER B. GARDNER

Spring 2010

A thesis

submitted in partial fulfillment

of the requirements

for a baccalaureate degree

in Electrical Engineering

with honors in Electrical Engineering

Reviewed and approved* by the following:

Dr. Sven G. Bilén

Associate Professor of Engineering Design,

Electrical Engineering, and Aerospace Engineering

Thesis Supervisor

Dr. John D. Mitchell

Professor of Electrical Engineering

Honors Adviser

 * Signatures are on file in the Schreyer Honors College.

Abstract

This work explores the implementation of a software-defined solution to radio ge-
olocation. In the event of a natural disaster or other catastrophic event where
existing communications infrastructures were destroyed, multiple relief organiza-
tions would arrive on-scene and find available spectrum space limited. To assist in
dynamically allocating spectrum space, it is valuable to know where each emitter is
positioned in the field. A software-defined radio presents an advantage in this type
of environment because its waveform parameters, such as operating frequency and
modulation type, can be changed in software without any hardware modifications.
This allows for a greater degree of interoperability with existing hardware radios
that the relief organizations already own.

Classical methods of geolocation rely on signal subspace separation techniques
that use computationally complex calculations, such as matrix covariance estima-
tion and eigen-decomposition. These methods are not suitable for mobile appli-
cations where size, power, and speed must be optimized. By taking advantage of
the multi-stage Wiener filter, which separates the signal space more efficiently, an
angle of arrival geolocation algorithm is implemented that is more suitable for the
harsh environment of a disaster relief effort.

The investigation of software-defined radio technology is an important topic of
research within The Pennsylvania State University’s Systems Design Lab. With
research interests in wireless sensor networks and satellite communications, the
study of software-defined radio techniques is relevant to reducing development
times and increasing flexibility in these areas.

ii

Table of Contents

List of Figures v

Acknowledgments vi

Chapter 1
Introduction 1
1.1 Need For Geolocation . 1
1.2 Existing Solutions . 2

1.2.1 Time (Difference) of Arrival 2
1.2.2 Earth Absolute Coordinates (EAC) 4
1.2.3 Differential Doppler . 5
1.2.4 Angle of Arrival . 6
1.2.5 Solving Overdetermined Systems 7

1.3 Contributions of This Work . 7
1.4 Overview of Thesis . 8

Chapter 2
Geolocation System 9
2.1 Overview . 9

2.1.1 Past Work and Contributions 10
2.1.2 Theory of Operation . 11

2.1.2.1 Subspace-Based Methods [1] 12
2.1.2.2 Wiener Filters . 13
2.1.2.3 ESPRIT . 15
2.1.2.4 MUSIC . 15

2.2 Simulation Model . 15
2.3 Real-Time Implementation . 16
2.4 Hardware Setup . 17

iii

Chapter 3
Results and Analysis 20
3.1 Tests . 20
3.2 Analysis . 21

Chapter 4
Summary and Future Work 25
4.1 Project Summary . 25
4.2 Improvements for Future Design . 25

Appendix A
MATLAB Code 27
A.1 1D ESPRIT and MUSIC . 27
A.2 2D ESPRIT with and without Spatial Smoothing 31

Appendix B
Python Code 37
B.1 benchmark rx.py . 37
B.2 benchmark tx.py . 40
B.3 generic usrp.py . 43
B.4 modify dat.py . 43
B.5 pick bitrate.py . 45
B.6 receive path.py . 45
B.7 test esprit mswf.py . 45
B.8 transmit path.py . 50
B.9 usrp options.py . 51
B.10 usrp receive path.py . 51
B.11 usrp transmit path.py . 54

Bibliography 57

iv

List of Figures

1.1 Time of Arrival Geolocation Method [2] 2
1.2 Time Difference of Arrival [3] . 3
1.3 Angle of Arrival Geolocation Method [2] 6

2.1 Block Diagram of Complete Model [4] 10
2.2 A Lattice-Structured Multi-Stage Wiener Filter [5] 14
2.3 ESPRIT Simulation using MATLAB 16
2.4 1-D MUSIC Simulation using MATLAB 17
2.5 The USRP 1.0 by Ettus Research LLC 18

3.1 USRP and GNU Radio Testbed Configuration 21
3.2 ESPRIT Using MSWF with and without Spatial Smoothing 22
3.3 MUSIC Using MSWF with and without Spatial Smoothing 22
3.4 2D MUSIC Using MSWF without Spatial Smoothing 23
3.5 2D MUSIC Using MSWF with Spatial Smoothing 23

v

Acknowledgments

This thesis was made possible by the great support from those around me. I would
like to especially thank my thesis advisor, Dr. Sven Bilén, for the inspiration to take
on this project and for the continued support to see it through. Dr. John Mitchell,
my honors advisor, has been instrumental in my success at The Pennsylvania State
University—offering guidance at every step of my four years as an undergraduate.

I owe many thanks to Pradyumna Desale, whose work before me on the soft-
ware models of geolocation techniques provided the foundation for this project.
My fellow teammates in the Smart Radio Challenge, Okhtay Azarmanesh, Arnab
Banik, and Tejas Nagarmat provided valuable collaboration. I could not have
accomplished this without your support.

Most importantly, I would like to thank my parents, Paul Gardner and Vicki
Gardner. My education would not have been possible without your encouragement
and support throughout the years.

vi

Chapter 1
Introduction

1.1 Need For Geolocation

Many engineering applications require geolocation information. These include nav-

igation, wireless communication, tracking and surveillance, search and rescue, and

other emergency response applications. In each of these examples a wireless sig-

nal exists, either in the form of constant communication or as a beacon, which

can be analyzed to obtain information about the emitter’s or receiver’s location.

The most commonly known use of geolocation today is the Global Positioning

System constellation of satellites, upon which much of our aeronautical, maritime,

and terrestrial navigation relies. Knowing location has very practical implications.

A smart antenna for a wireless telecommunications carrier uses this information

to electronically steer the beam of its tower towards a mobile user for improved

reception. Airports all around the world use the estimated location of aircraft

radios to coordinate flight paths, takeoffs, and landings to avoid collisions. The

improvements that geolocation provides to convenience, efficiency, and safety are

not limited to these few examples.

The emergency scenario, in which geolocation provides added efficiency and

safety, is an area of particular interest. The Federal Communication Commission,

for example, has enacted into law the Enhanced 911 requirements in which a

wireless carrier must use geolocation information to guide emergency response

personnel towards a mobile user in the event of an emergency. In the wireless

telephone environment, where the only discriminating characteristic about each

2

mobile user is which tower the user is connected to, emergency responders could

be left with a search area of tens of square kilometers. An exhaustive search would

take far too long to ensure a timely response. By using various geolocation and

direction finding methods, this search area can be reduced to well under one square

kilometer, greatly reducing response time.

1.2 Existing Solutions

Several different methods exist for the geolocation of a radio emitter. Each method

presents its own set of advantages and disadvantages, and no single method works

perfectly in all environments. Consequently, each method needs to be examined

for its suitability in a certain environment before deployment.

1.2.1 Time (Difference) of Arrival

Time of Arrival (ToA) methods use the travel time of a radio signal between its

emitter and multiple receiver nodes to estimate the emitter’s location. Each time

measurement correlates to a distance from one specific receiver using the relation

between the speed of light and the signal’s carrier frequency. As shown in Figure

Figure 1.1. Time of Arrival Geolocation Method [2]

1.1, in the 2D case, this distance measurement traces a circle around the receiver for

all possible locations of the emitter. By introducing a second ToA measurement,

3

the new circle will intersect the first locus at either one or two points in space.

To eliminate this ambiguity, a third ToA measurement must be used, resulting

in a total system using three receivers to locate one emitter. The three circles

will converge on a single point in space, and this result represents the determined

location of the emitter. Due to the necessity of absolute time measurements, ToA

requires precise clock synchronization between the emitter and all receiver nodes,

and for this reason is difficult to implement accurately in real-time systems.

To overcome the difficulty of clock synchronization between emitter and re-

ceiver, methods of geolocation can be implemented that use the Time Difference

of Arrival (TDoA) to determine an emitter’s location. When a signal is transmit-

ted, it will reach spatially separated receiver nodes at slightly different times. The

TDoA is a result of the different distances from each receiver to the emitter. In

Figure 1.2. Time Difference of Arrival [3]

other words, a single TDoA measurement defines a locus of all points in space from

which a transmitted signal would reach the two defined receiver locations with the

same time difference. Referring to Figure 1.2, in the 2D case, a single TDoA locus

traces a hyperbola of possible emitter locations. Just like the ToA method, a third

receiver is required to accurately resolve the emitter’s location. The third receiver

provides two more TDoA measurements and two more hyperbolic loci that will

4

converge on a single point in space with the first hyperbola. The point of con-

vergence is the determined location of the emitter. The TDoA measurement only

requires the precise clock synchronization of the receiver nodes and therefore is eas-

ier to implement accurately in a real-time system. However, the ToA and TDoA

geolocation methods rely on both a stationary emitter and stationary receivers and

are sensitive to the Doppler shifts that result due to motion.

1.2.2 Earth Absolute Coordinates (EAC)

Perhaps the most common form of geolocation today is the modern Global Posi-

tioning System (GPS). GPS uses a reciprocal case of ToA/TDoA with sophisti-

cated error correction calculations for atmospheric and relativistic effects on the

time measurements. The system consists of a constellation of 31 actively broad-

casting satellites positioned with at least four in each of six orbital planes. From

any position on earth, at least six satellites are within line of sight providing a con-

tinuous transmission of the time and ephemeris data. This enables a geolocation

technique using multiple emitters with known positions to locate one receiver. For

example, multilateration can be used to realize a TDoA solution, while a multi-

dimensional Newton–Raphson algorithm can be used in a ToA approach. Solving

either of these methods in polar form with respect to Earth absolute coordinates

yields the latitude, longitude, and altitude of the receiver.

The main advantage of an EAC-based approach to geolocation is the increased

accuracy that satellite navigation provides. A commercially available receiver can

locate to within 15 meters using the GPS signals alone and to within 3 meters

using Wide Area Augmentation System (WAAS) corrections. WAAS is a system

of ground-based reference stations that measure the inaccuracies of the GPS sig-

nals and transmit correction signals to geostationary satellites. These satellites

broadcast the corrections alongside the GPS signals to improve the accuracy of

calculations at the receiver. There is a crucial downside to EAC approaches: they

rely on the line of sight reception of multiple satellite signals. Indoor operation is

essentially impossible because of the low signal strength, and accuracy diminishes

in harsh urban environments due to multipath effects.

5

1.2.3 Differential Doppler

Analogous to TDoA methods, differential doppler techniques use the Frequency

Difference of Arrival (FDoA) of a received signal at spatially separated moving

receivers to locate the emitter. With a moving receiver, the frequency observed is

different from the frequency transmitted due to the Doppler effect. Because the

transmit frequency is unknown, the moving receiver can not use TDoA to accu-

rately resolve the emitter’s location. Consider a signal of the form A cos(2πfct),

where fc is the unknown transmit frequency. By measuring this signal from a

moving receiver for an interval T , the average frequency observed with Doppler is

given by

favi = fc − (ri2 − ri1)/λT, (1.1)

where rij is the range from receiver i to the emitter at time t = tj, T = t2−t1 is the

measurement interval, and λ is the signal wavelength. This favi measurement for

a single receiver provides a measurement of the change in distance to the emitter

over the interval T . However, since fc is unknown, the use of a second moving

receiver to obtain another favi allows the FDoA to be calculated for the receiver

pair so that

fd = fav1 − fav2 (1.2)

=
r22 − r21 − r12 + r11

λT
. (1.3)

In this form, the reliance on a known constant value of fc is no longer necessary.

In the 2D case, a single FDoA measurement defines a curve in space where the

emitter must lie, which is similar but distinct from the hyperbola defined in TDoA.

By adding a third receiver, two more FDoA measurements become available, and

the resulting loci will converge on a single point in space identifying the emitter’s

location.

FDoA implementations have similar challenges as TDoA in that all receiver

nodes must be precisely synchronized to correlate measurements. Since the FDoA

measurements are dependent on receiver motion, the values for rij must be accu-

rately measured during the interval T . The advantage of FDoA, however, is the

6

independence from prior knowledge of the carrier frequency and the ability to use

mobile receivers such as those found on surveillance airplanes.

1.2.4 Angle of Arrival

Figure 1.3. Angle of Arrival Geolocation Method [2]

Angle of arrival (AoA) methods can be implemented in two ways. The first

requires a topology similar to all of the previous methods in that spatially separated

receiver nodes with known positions are required. With each receiver calculating

an AoA for the emitter, the intersection of two or more of these rays defines a point

in space relative to the receivers where the emitter lies. Noisy signals introduce

errors in the AoA method that degrade the estimate to a region in space as shown

in Figure 1.3. AoA geolocation in this sense is also known as triangulation, since

the mechanism for positioning the emitter is analogous to the angle–side–angle

geometric definition for a triangle. By knowing the two angles at each receiver and

the distance between them, the triangle containing the emitter is fully defined.

The second way of implementing AoA geolocation is to use a linear array of

antennas at one receiver location. Due to spatial separation of about λ/2, each

antenna in the array receives the emitter’s signal slightly differently, and knowing

the array’s parameters, these differences can be used to extract the AoA of the

emitter. The advantage of this method is that spatially separated receiver nodes

aren’t necessary; however, the drawback is that the emitter can only be located on

a line, not at a point in space.

7

1.2.5 Solving Overdetermined Systems

Each of the methods of geolocation theoretically converge to a single point in

space where the emitter or receiver must lie. However, the presence of noise in

received signals adds error to the range and angle measurements, which prevents

obtaining this single point of convergence. Consequently, the solution yields a

region of convergence in space that can be further approximated by a least squares

method. The single point convergence, such as three perfectly intersecting circles,

hyperbolas, or lines, can be used as an adjustable model of the form f(x, β) to

fit to the measured data and approximate the emitter’s location. In this model,

β contains all of the adjustable parameters. Given n geolocation measurements,

(xi, yi), i = 1, 2 . . . n represent the different curves from a single measurement. The

least squares method finds an optimum approximate by minimizing the residual

error between the model and the measured data. This sum

S =
n∑
i=1

ri
2, (1.4)

where

ri = yi − f(xi, β) (1.5)

produces the optimal approximation of (x, y) when S is minimized. To increase the

accuracy of the approximation, more receiver nodes can be added to the system

to further overdetermine the system of equations. The least squares method takes

advantage of this redundant data to further reduce the residuals.

1.3 Contributions of This Work

Classical geolocation techniques are all fairly well documented and published. They

have been used in a wide variety of applications such as radio astronomy, GPS

location, aircraft navigation, and sonar ranging in submarines. However, very little

has been written in the literature on geolocation using an SDR platform. SDR is a

new, cutting edge, rapidly growing field, and the coupling of the Universal Software

Radio Peripheral (USRP) boards with GNU Radio to develop SDR applications

8

is popular among open source developers. Analysis of a geolocation technique for

SDR would be of value to future developers in the community. This is the focus

of this thesis, in which a low complexity angle of arrival geolocation method is

proposed for use on the USRP with GNU Radio.

1.4 Overview of Thesis

With recent events such as Hurricane Katrina and the 2010 earthquakes in Haiti

and Chile, one particular area of interest is the ability to track all of an organi-

zation’s assets in the field using their radios. Ubiquitous positioning of first re-

sponders is a very relevant problem in the wireless industry that can be advanced

by analyzing low computational complexity geolocation methods, which would be

best suited for this scenario and environment. This thesis investigates an efficient

implementation of angle of arrival geolocation on a USRP board with GNU Radio

that addresses the needs of geolocation for a disaster environment

Chapter 2
Geolocation System

2.1 Overview

The geolocation system described herein is a response to the Wireless Innovation

Forum’s 2009 Smart Radio Challenge. Designed to show the usefulness of SDR for

public safety applications, the challenge is as follows:

An earthquake has occurred centered in a major metropolitan area

measuring 10.0 on the Richter scale. Existing communications infras-

tructure is out, and as emergency medical services, police, fire, state

and federal emergency management personnel arrive on the scene from

all over the world, they all begin setting up their own communica-

tions systems to aid in rescue efforts. As more and more personnel

arrive, finding available spectrum becomes a challenge resulting in un-

intentional interference between communications of various services.

Develop a cooperative sensing system that will create and maintain a

database of public safety emitters on the scene, including emitter loca-

tion, physical layer parameters such as modulation type and transmit

frequency, and an association to which emergency team is using this

frequency and waveform.[6]

The overall architecture for the cooperative sensing system involves three ma-

jor functional components. There is the cognitive relay network, which provides

a reliable way to receive data from all emitters in the presence of a harsh RF en-

10

Figure 2.1. Block Diagram of Complete Model [4]

vironment, the modulation classification component, which extracts all necessary

physical layer parameters from the received signal, and the geolocation compo-

nent, which identifies where each received signal is originating. Together, all three

components provide the foundation for a spectrum-usage database.

2.1.1 Past Work and Contributions

This software-defined radio technique for geolocation builds on past work com-

pleted at The Pennsylvania State University Systems Design Lab (SDL). The hard-

ware implementation is a subsystem of a larger development effort by Azarmanesh

et al. [4] for the 2009 Smart Radio Challenge. Specifically, the work done by Desale

on MATLAB geolocation simulations was a building block for the software-defined

radio implementation.

Previous work by Pauraj et al. [7] on Estimation of Signal Parameters via

Rotational Invariance Techniques (ESPRIT) and Schmidt [8] on MUltiple SIgnal

Classification (MUSIC) provide the theoretical background for AoA determina-

tion given the more recently improved subspace separation method by Ricks and

11

Goldstein [9, 5] using multi-stage Wiener filters.

2.1.2 Theory of Operation

Of the various geolocation methods described in Chapter 1, AoA is the best match

for this public safety application. A disaster relief effort presents several conceiv-

able constraints on a hardware implementation. The hardware must be as small,

power-efficient, and easy to deploy as possible.

ToA’s requirement to have precise clock synchronization between all emitters

and receivers makes it a poor match for this system. By the virtue of SDR, each of

the public safety organizations on-scene may be using a different hardware configu-

ration in their radios, which would make this clock synchronization difficult, if not

impossible, to achieve. A true SDR implementation should not rely on hardware

homogeneity as the primary means for radio interoperability. The same argument

holds against TDoA implementations as well. Even though emitter–receiver syn-

chronization is not necessary, the need for multiple spatially separated receiver

nodes all to be clock synchronized is just as prohibitive. An EAC-based approach

using GPS has the potential to be the most accurate implementation. If every

node were position-aware, then the transmitting and databasing of this information

would become trivial. However, since the RF environment is unknown—ranging

anywhere from a rolling rural setting to an underground urban subway system—

line of sight access to the GPS constellation cannot be assumed. FDoA presents

a new set of challenges in its implementation. The cornerstone assumption is that

the receiver antennas are in motion relative to each other [10]. This would require

an antenna configuration that is not as small, power-efficient, or easy to deploy as

a fixed antenna array.

AoA becomes the most attractive geolocation method for the following reasons:

spatially separated receiver locations are not required, which eliminates the need

for difficult clock synchronization, and antenna configurations can be as simple

as a λ/2-spaced linear array. The main drawback of AoA is that geolocation is

limited to a 1-dimensional line, where the other methods can locate to a point in

space.

12

2.1.2.1 Subspace-Based Methods [1]

Several well-known AoA geolocation methods take advantage of the orthogonality

of the noise and signal subspaces within the antenna array’s observation data. This

fact allows for the separation of the signal subspace from the noise subspace. Then

by extracting parameters from the signal subspace using various algorithms, the

signal AoAs can be be found. Classical methods for extracting the signal subspace

require the estimation of the covariance matrix and its eigen-decomposition. Con-

sidering a uniform linear array of M antennas that receive P signals from unique

angles θi = θ1, θ2, · · · , θP , the complex signal output of the M antennas can be

written as

x(t) = A(θ)s(t) + n(t), (2.1)

where A(θ) = [a(θ1), · · · , a(θP)] and the individual steering vectors for each direc-

tion of arrival are

a(θi) = [a1(θi)e
j 2πd
λ

sin θi , · · · , aM(θi)e
j
2π(M−1)d

λ
sin θi]T , (2.2)

with ak(θi) being the complex gain and phase response of each antenna in the array,

d the array element spacing, and the superscript (•)T the transpose operator. The

vector s(t) is composed of the P complex transmitted signals, and is written as

s(t) = [s1(t), · · · , sP (t)]T , (2.3)

while n(t) is considered to be white Gaussian noise. From here, classical methods

estimate the covariance matrix of x, the compiled vectors in (2.1), by

RXX = E[xxH] = ARSSA
H + σ2

nΣn, (2.4)

where the superscript (•)H denotes the Hermitian operator, or the complex con-

jugate transpose, RSS is the signal covariance matrix E[s(t)sH(t)], and σ2
n is the

noise variance. The eigen-decomposition of RXX is as follows:

RXXĒ = ΣnĒΛ (2.5)

13

ARSSA
HĒ + σ2ΣnĒ = ΣnĒΛ (2.6)

ĒHARSSA
HĒ = ĒHΣnĒΛ− σ2ĒHΣnĒ (2.7)

ĒHARSSA
HĒ = Λ− σ2I (2.8)

ARSSA
H = Ē−H [Λ− σ2I]Ē−1 (2.9)

ARSSA
H = ΣnĒ[Λ− σ2I]ĒHΣn. (2.10)

Since ARSSA
H is of rank P , the P largest general eigenvectors of RXX are the

nonzero general eigenvectors of ARSSA
H . Finally, the signal subspace ES can

be represented by these P eigenvectors, written as ES = Σn[e1| · · · |eP] and the

remaining eigenvectors represent the noise subspace, EN = Σn[eP+1| · · · |eM].

2.1.2.2 Wiener Filters

The classical subspace separation method, although fairly straightforward in the-

ory to extract the signal subspace, is computationally complex requiring O(m2N)

computations for the covariance matrix estimation andO(m3) computations for the

eigen-decomposition. This results in a total computational effort of O(m2N +m3)

[11]. It can be shown that, by using Wiener Filters, the signal subspace separation

can be achieved with a computational effort of only O(PMN).

The Wiener filter (WF) provides a way to estimate a desired signal d(t) from

the observation data x(t) that contains noise by using minimum mean-square error

(MMSE) performance criteria,

wwf = arg minE{[d(t)− wHx(t)]2}, (2.11)

where wHx(t) is the estimate of d(k), and the WF wwf is a M × 1 complex linear

filter. The classical WF has the form wwf = R−1
X rXd, which, since it includes the

inverse of the covariance matrix, is just as computationally complex as the earlier

subspace separation methods. It has been derived in [5] that a multi-stage Wiener

filter (MSWF) based on the data-level lattice structure is defined by:

Initialization

d0(t) = s1(t) and x0(t) = x(t) as defined in (2.3) and (2.1), respectively

Forward Recursion

For i = 1, 2, . . . , D where (D ≤ P)

14

hi =
E[xi−1(t)d(t)∗i−1]

||E[xi−1(t)d(t)∗i−1]||
(2.12)

di = hHi xi−1(t) (2.13)

xi(t) = xi−1(t)− hidi(t) (2.14)

Backward Recursion

For i = D,D − 1, . . . , 1

wi =
E[di−1(t)]

||E[xi−1(t)d(t)∗i−1]||
(2.15)

di = hHi xi−1(t) (2.16)

Huang et al. [11, 12] show that all the filters hi, h2, . . . , hP span the signal subspace

of x, while the last M − P filters, hP+1, hP+2, . . . , hM span the noise subspace.

Thus, the signal subspace has been separated from the noise subspace in a very

computationally efficient fashion. The output of the MSWF will be a subspace of

orthogonal WFs representing the signal and noise subspaces

T = [h1, h2, · · · , hP , hP+1, · · · , hM]. (2.17)

Figure 2.2. A Lattice-Structured Multi-Stage Wiener Filter [5]

15

2.1.2.3 ESPRIT

The first classical AoA algorithm, which relies on the separated noise and signal

subspaces, is called the Estimation of Signal Parameters via Rotational Invariance

Techniques (ESPRIT). The method is as follows:

1. Define the signal subspace matrix ES = T [:, 1 : P] = [h1, h2, · · · , hP]

2. Define ES1 = ES[1 : M − 1, :] and ES2 = ES[2 : M, :]

3. Estimate Ψ̄ = ES1/ES2 using either least-squares or total-least-squares

4. Compute eigenvalues µ̄1, µ̄2, · · · , µ̄P of Ψ̄

5. Calculate AoAs using θi = arcsin λ arg(µ̄i)
2πd

for i = 1, 2, . . . , P

2.1.2.4 MUSIC

The second classical AoA algorithm is called MUltiple SIgnal Classification. The

method is as follows:

1. Define the noise subspace matrix EN = T [:, P + 1 : M] = [hP+1, · · · , hM]

2. Define a(θi) the same as in (2.2)

3. Define PMUSIC(θ) = 1
a(θ)HENE

H
N a(θ)

4. Evaluate PMUSIC(θ) for {θ|0 ≤ θ ≤ π}

5. Identify AoAs as the P largest peaks in PMUSIC

2.2 Simulation Model

The work of Desale [4] provides a foundational software model in MATLAB that

simulates the effectiveness of low-complexity ESPRIT and MUSIC AoA methods

under various conditions. The main parameter that was tested in software, but

unable to be replicated in hardware, was varying levels of SNR. The MATLAB

model in Appendix A.1 simulated three point-source signals being received on a

twelve-element, λ/2-spaced linear array of antennas. The simulated signals used

16

random bits of data modulated using 4-QAM over a white Gaussian channel. SNR

levels were modeled at 5 dB, 15 dB, 25 dB, and 35 dB. The AoA estimation results

for both ESPRIT and MUSIC under varying SNR conditions are shown in Figures

2.3 and 2.4 respectively.

Figure 2.3. ESPRIT Simulation using MATLAB

Since ESPRIT computes a direct estimate of signal AoAs, as opposed to MUSIC

which uses an estimator function over all possible angles, the effects of varying

SNR are less apparent with ESPRIT. Neither method failed to converge with SNR

values ranging from 5–35 dB; however, Figure 2.4 shows that for decreasing SNR,

the convergence of MUSIC slows down.

2.3 Real-Time Implementation

Building upon the theory and MATLAB simulations of various AoA geolocation

techniques, a real- or near real-time software-defined radio platform serves as an-

other testbed for comparing these algorithms. The runtime environment between a

pure software simulation in MATLAB and a true hardware implementation varies

greatly. MATLAB has many advanced functions and signal processing blocks

17

Figure 2.4. 1-D MUSIC Simulation using MATLAB

that can make complex operations easy to perform on large sets of data. How-

ever, on a resource-constrained hardware implementation, like the scenario for

first-responders in a disaster region suggests, these complex operations translate

directly into the speed, size, and power consumption of the mobile sensor. Algo-

rithms chosen must not rely on such computationally complex operations. Using

a hardware testbed gives the advantage of evaluating the AoA algorithms in an

environment similar to what would be required in the field.

2.4 Hardware Setup

The testbed used to evaluate the software-defined approach to geolocation relies

on two key components: the USRP system depicted in Figure 2.5 provides the

RF front end and basic signal conditioning blocks, while the GNU Radio software

package provides all of the signal processing capabilities needed to create a radio

platform. This integrated system is capable of transmitting or receiving any variety

of waveforms by interchanging daughter boards with different RF front ends, and

it is capable of performing any signal processing that would be required. GNU

18

Radio’s structure allows for a combination of simplicity, flexibility, and power.

The heart of the platform is a set of predefined C++ signal processing blocks

glued together with the Python scripting language. Rather than having to custom

define basic operations such as filters and mixers every time they are required, the

included C++ blocks can be called within a Python script, passed the necessary

arguments to customize their operation, and run in real-time in conjunction with

the USRP. If a certain signal processing block is required that is not native to

GNU Radio, a C++ block can be custom written to accomplish any task, and

then called just like any other block using Python.

Figure 2.5. The USRP 1.0 by Ettus Research LLC

Developed by Ettus Research LLC, the USRP is intended to be an inexpensive

hardware platform used for the development of software radios. The USRP 1.0

features are provided below:

19

Four 64-MS/s 12-bit ADCs

Four 128-MS/s 14-bit DACs

Four digital downconverters with programmable decimation rates

Two digital upconverters with programmable interpolation rates

High-speed USB 2.0 interface (480 Mb/s)

Capable of processing signals up to 16 MHz wide

Fully coherent multi-channel systems (MIMO capable)

Chapter 3
Results and Analysis

The software-defined radio implementation of low-complexity ESPRIT and MUSIC

algorithms was created using the Python code in Appendix B. Several files from

the GNU Radio 3.2.2 release needed to be modified in order to perform the AoA

calculations on data from the USRP system.

3.1 Tests

The tests for each algorithm were performed according to the data flow shown in

Figure 3.1. The USRP was used as a signal sink to record three unique streams of

data. These data were then input to GNU Radio and passed through the DQPSK

modulator flowgraph in Appendix B.11, which performed the required symbol

mapping, modulation, and upconversion to RF where white Gaussian noise was

added. The three RF signals were then processed to emulate the effects of being

received on an M -element antenna array using the code in Appendix B.4. In

the 1D cases, the array was a linearly separated λ/2 configuration, while in the

2D cases a circular array was used. The M incident signals were then passed

through GNU Radio processing blocks to handle the DQPSK signal reception,

downconversion, demodulation, and symbol extraction in Appendix B.10. Before

the data is extracted in this receiver chain, the signal with carrier information is

stripped off and sent to the various AoA algorithms. A fully custom Python code

can be found in Appendix B.7 which performs the AoA calculations on received

data from the USRP. The results of each algorithm are then plotted using Python’s

21

Matplotlib library. The algorithms of interest for this hardware test were the 1D

ESPRIT and 1D and 2D MUSIC methods. All methods utilized multi-stage Wiener

filters (MSWF) and were tested both with and without spatial smoothing.

Figure 3.1. USRP and GNU Radio Testbed Configuration

3.2 Analysis

For both the 1D ESPRIT and MUSIC algorithms, test parameters of a M = 12

linearly spaced antenna array with P = 3 incident signals were used. Both of these

methods rely on the separation of the signal subspace from the noise subspace in

the observed data, so MSWFs were used to reduce the computational complexity

for a mobile, resource constrained platform.

Figures 3.2 and 3.3 show the 1D ESPRIT and MUSIC results. Both algorithms

converged on the three predefined angles of arrival: 37◦, 109◦ and 144◦. It appears

that, similar to the MATLAB simulation, the smoothing method used did not

improve accuracy, and actually slowed the convergence of MUSIC.

In Figures 3.4 and 3.5, the 2D MUSIC test used an M = 8 antenna circular

array with P = 2 incident signals at azimuth and elevation angles of (25◦, −30◦)

and (−68◦, 50◦) respectively. The MSWF method converged on the appropriate

22

Figure 3.2. ESPRIT Using MSWF with and without Spatial Smoothing

Figure 3.3. MUSIC Using MSWF with and without Spatial Smoothing

23

Figure 3.4. 2D MUSIC Using MSWF without Spatial Smoothing

Figure 3.5. 2D MUSIC Using MSWF with Spatial Smoothing

24

angles as noted by the two peaks in the surface plot. In the 2D case, the effective-

ness of the smoothing method is questionable. It sped the convergence of the (25◦,

−30◦) peak; however, it introduced an ambiguous local-maximum near the second

peak.

Chapter 4
Summary and Future Work

4.1 Project Summary

These hardware tests show that the USRP with GNU Radio is perfectly capable

of performing both 1D and 2D AoA calculations on digital waveforms such as

DQPSK. The great benefit of this software-defined radio approach is that all of

the waveform parameters such as modulation type, packet structure, and coding

scheme are set in software and can be quickly modified. These tests could just

have easily been performed using DBPSK or GMSK, and the extension to OFDM

is also possible in GNU Radio. Use of MSWF greatly reduced the computational

burden on the software-defined radio, while converging on the appropriate angles.

Performance on the hardware platform was not as good as in MATLAB simula-

tions, especially in the 2D MUSIC case, which is likely attributable to the usage

of real data and noise levels recorded from the USRP.

Overall, a very strong proof of concept for software-defined radio geolocation

has been presented. The extension to running live geolocation tests rather than

the current off-line processing of AoAs should be straightforward.

4.2 Improvements for Future Design

To further show the applicability of software-defined radio geolocation methods, a

new testbed can be created using multiple time-synchronized USRP boards each

26

with two receive antennas. This will create an actual λ/2 linearly spaced ar-

ray that can be used to perform live geolocation tests. In addition, geolocation

approaches that combine AoA with other ToA or TDoA measurements, such as

Hybrid AoA/TDoA, may be used to resolve the emitter’s location to a fixed point

in either 2D or 3D space rather than along a 1-dimensional line. Applications of

the 2D AoA methods can serve as spatial channel estimation, or as this software-

defined radio platform matures, can apply to MIMO communication. Finally,

expanding the compatible modulation types of this geolocation system to include

OFDM will open the door for today’s modern waveforms.

Appendix A
MATLAB Code

A.1 1D ESPRIT and MUSIC

Contents

• Setup

• Multi Antenna Reception

• Channel Noise

• Smoothing Matrix

• Multi Stage Wiener Filter Implementation

• ESPRIT Algorithm

• MUSIC Algorithm

close all; clear all; clc;

Setup

Define parameters.

L = 4; % Size of signal constellation

bitspersymbol = log2(L); % Number of bits per symbol

Nb = 10e3; % Number of bits to process

n = Nb;

nsamp = 1; % Oversampling rate

fc = 2400*10^6; % Carrier Frequency = 2400 MHz

28

c = 3*10^8; % Velocity of Light in m/s

Fs = 1/fc; % Sampling Frequency

ts = 4*fc;

Multi Antenna Reception

angdeg = [30 60 90]; % Angles in degree

angrad = angdeg*pi/180; % Angles in radians

angles=angdeg*(pi/180);

powers=[10 5 0.5]; % Powers of received signals

P=length(angdeg); % Aassume that the number of signals is available

dfactor=0.5; % d/lambda = spacing between the antennae

M=8; % No of sensors

Rideal = zeros(M,M); % Predeclare for speed

for i=1:P,

a=exp(1i*2*pi*dfactor*cos(angles(1,i))*(0:M-1)).’; %a(theta)

Rideal=Rideal+a*a’;%

bits = randint(Nb,1); % Random binary data stream signal Source

symbols = bi2de(reshape(bits,bitspersymbol,...

length(bits)/bitspersymbol).’,’left-msb’); % Bits to symbols

mod = modem.qammod(16); % Create modulator object

s(i,:) = modulate(mod,symbols); % Modulate the symbols

if i == 1

tx = zeros(M,length(s(i,:)));

end

tx=tx+a*s(i,:);

end

Channel Noise

rx=awgn(tx,15,’measured’); % Add noise due to measurements

Smoothing Matrix

Ml = 5; % Subarray size

L = M-Ml+1;

l = 1;

J1 = [zeros(Ml,l-1), eye(Ml, Ml),zeros(Ml,M-l-Ml+1)];

l = 2;

29

J2 = [zeros(Ml,l-1), eye(Ml, Ml),zeros(Ml,M-l-Ml+1)];

l = 3;

J3 = [zeros(Ml,l-1), eye(Ml, Ml),zeros(Ml,M-l-Ml+1)];

l = 4;

J4 = [zeros(Ml,l-1), eye(Ml, Ml),zeros(Ml,M-l-Ml+1)];

X = [J1*rx J2*rx J3*rx J4*rx]; % Smoothed data matrix

Multi Stage Wiener Filter Implementation

Assume that the receiver has complete knowledge of transmitted data

d0 = [s(1,:) s(1,:) s(1,:) s(1,:)];

d0 = d0.’;

x0 = X;

h1 = x0*d0/norm(x0*d0);

d1 = h1’*x0;

x1 = x0 - h1*d1;

h2 = x1*d1.’/norm(x1*d1.’);

dot(h1,h2)

d2 = h2’*x1;

x2 = x1 - h2*d2;

h3 = x2*d2.’/norm(x2*d2.’);

dot(h1,h3)

dot(h2,h3)

d3 = h3’*x2;

x3 = x2 - h3*d3;

h4 = x3*d3.’/norm(x3*d3.’);

dot(h2,h4)

d4 = h4’*x3;

x4 = x3 - h4*d4;

h5 = x4*d4.’/norm(x4*d4.’);

d5 = h5’*x4;

x5 = x4 - h5*d5;

30

T = [h1 h2 h3 h4 h5];

ESPRIT Algorithm

Es=T(:,1:P);

Es1=Es(1:Ml-1,:);

Es2=Es(2:Ml,:);

Psi=Es1\Es2;

[T,Phi]=eig(Psi);

Phivec=diag(Phi);

%plot eigenvalues from ESPRIT and compare with true frequencies

polar(0,1,’*’)

hold on

plot(real(Phivec),acos(angle(Phivec)/pi)*(180/pi),...

’ro’,’MarkerSize’,12,’Linewidth’,2);

hold off

legend(’True "poles"’,’ESPRIT estimated angles’)

angests=sort(acos(angle(Phivec)/pi)*(180/pi))

angdeg;

hold off

T = [h1 h2 h3 h4 h5];

Pn=T(:,P+1:Ml)*T(:,P+1:Ml)’;

MUSIC Algorithm

%compute MUSIC spatial spectrum using all noise eigenvectors

%plot and compare with Minimum Variance spatial spectrum

figure

ell=0;

for theta=0:.1:180,

ell=ell+1;

atheta=exp(1i*pi*cos(theta*(pi/180))*(0:Ml-1));

SMUSIC(ell)=-10*log10(real(conj(atheta)*Pn*atheta.’));

end

theta=0:.1:180;

plot(theta,(SMUSIC-max(SMUSIC)),’r’,’Linewidth’,2);

axis([0 180 -80 0]);

hold on

31

for k=1:P,

plot([angdeg(1,k) angdeg(1,k)], [-80 0], ’b’,’Linewidth’,2);

end

legend(’MUSIC’);

title(’Spatial Spectrum Estimates’);

xlabel(’Arrival Angle (Degrees)’);

ylabel(’Spectral Magnitude (dB)’);

hold off

A.2 2D ESPRIT with and without Spatial

Smoothing

Contents

• Setup

• Multi Antenna Reception

• Channel Noise

• Smoothing Matrix

• SVD MUSIC Implementation

• Multi Stage Wiener Filter Implementation

• MUSIC without Spatial Smoothing

• MUSIC with Spatial Smoothing

close all; clear all;

Setup

Define parameters.

close all; clear all; clc;

L = 4; % Size of signal constellation

bitspersymbol = log2(L); % Number of bits per symbol

Nb = 6e4; % Number of bits to process

n = Nb;

nsamp = 1; % Oversampling rate

fc = 2400*10^6; % Carrier Frequency = 2400 MHz

c = 3*10^8; % Velocity of Light in m/s

Fs = 1/fc; % Sampling Frequency

ts = 4*fc;

32

Multi Antenna Reception

theta = [-30 50]; % Elevation angles in degree

thetarad = theta*pi/180; % Elevation angles in radians

phi = [25 -68]; % Azimuth angles in degrees

phirad = phi*pi/180; % Azimuth angles in radians

powers=[10 5 0.5]; % Powers of received signals

P=length(theta); % Assume that the number of signals is available

dfactor=0.5; % d/lambda = spacing between the antennae

M=8; % No of sensors

Rideal = zeros(M,M);% Predeclare for speed

k = 0:M-1;

for i=1:P,

a=exp(-1i*pi*cos(2*pi*k/M-thetarad(i))*sin(phirad(i))).’;

bits = randint(Nb,1); % Random binary data stream signal Source

symbols = bi2de(reshape(bits,bitspersymbol,...

length(bits)/bitspersymbol).’,’left-msb’); % Bits to symbols

mod = modem.qammod(16); %Create modulator object

s(i,:) = modulate(mod,symbols); %Modulate the symbols

if i == 1

tx = zeros(M,length(s(i,:)));

end

tx=tx+a*s(i,:);

end

Channel Noise

rx=awgn(tx,5,’measured’); % Add noise due to measurements

Smoothing Matrix

Ml = 7; % Subarray size = 7

L = M-Ml+1;

l = 1;

J1 = [zeros(Ml,l-1), eye(Ml, Ml),zeros(Ml,M-l-Ml+1)];

l = 2;

J2 = [zeros(Ml,l-1), eye(Ml, Ml),zeros(Ml,M-l-Ml+1)];

X = [J1*rx J2*rx];

33

SVD MUSIC Implementation

Rxx = X*X’/Nb;

[U,S,V]=svd(Rxx);

Vs=U(:,1:P);

Vn=U(:,P+1:Ml);

for theta=-90:90

for fei=-90:90

k=[0:Ml-1]’;

AA=exp(-1i*pi*cos(theta*pi/180-2*pi*k/8)*sin(fei*pi/180));

WW=AA’*Vn*Vn’*AA;

Smusic(theta+91 ,fei+91)=(abs((AA’*AA)./WW));

end

end

theta=-90:90;

phi=-90:90;

mesh(theta,phi,Smusic);

title(’MUSIC with Singular Value Decomposition’);

xlabel(’Azimuth’);

ylabel(’Elevation’);

zlabel(’Estimation’);

grid on;

Multi Stage Wiener Filter Implementation

Assume receiver has complete knowledge of transmitted data

d0 = s(1,:);

x0 = rx;

h1 = x0*d0.’/norm(x0*d0.’);

d1 = h1’*x0;

x1 = x0 - h1*d1;

h2 = x1*d1.’/norm(x1*d1.’);

dot(h1,h2)

d2 = h2’*x1;

x2 = x1 - h2*d2;

34

h3 = x2*d2.’/norm(x2*d2.’);

dot(h1,h3)

dot(h2,h3)

d3 = h3’*x2;

x3 = x2 - h3*d3;

h4 = x3*d3.’/norm(x3*d3.’);

dot(h2,h4)

d4 = h4’*x3;

x4 = x3 - h4*d4;

h5 = x4*d4.’/norm(x4*d4.’);

d5 = h5’*x4;

x5 = x4 - h5*d5;

h6 = x5*d5.’/norm(x5*d5.’);

d6 = h6’*x5;

x6 = x5 - h6*d6;

h7 = x6*d6.’/norm(x6*d6.’);

d7 = h7’*x6;

x7 = x6 - h7*d7;

h8 = x7*d7.’/norm(x7*d7.’);

d8 = h8’*x7;

x8 = x7 - h8*d8;

MUSIC without Spatial Smoothing

T = [h1 h2 h3 h4 h5 h6 h7 h8];

Vn = T(:,P+1:M);

for theta=-90:90

for phi=-90:90

k=[0:M-1]’;

AA=exp(-1i*pi*cos(theta*pi/180-2*pi*k/8)*sin(phi*pi/180));

WW=AA’*Vn*Vn’*AA;

Kmusic(theta+91, phi+91)=(abs((AA’*AA)./WW));

end

end

35

figure

theta=-90:90;

phi=-90:90;

mesh(theta,phi,Kmusic);

title(’MUSIC with Multi Stage Wiener Filtering’);

xlabel(’Azimuth’);

ylabel(’Elevation’);

zlabel(’Music’);

MUSIC with Spatial Smoothing

d0 = [s(1,:) s(1,:)];

x0 = X;

h1 = x0*d0.’/norm(x0*d0.’);

d1 = h1’*x0;

x1 = x0 - h1*d1;

h2 = x1*d1.’/norm(x1*d1.’);

dot(h1,h2)

d2 = h2’*x1;

x2 = x1 - h2*d2;

h3 = x2*d2.’/norm(x2*d2.’);

dot(h1,h3)

dot(h2,h3)

d3 = h3’*x2;

x3 = x2 - h3*d3;

h4 = x3*d3.’/norm(x3*d3.’);

dot(h2,h4)

d4 = h4’*x3;

x4 = x3 - h4*d4;

h5 = x4*d4.’/norm(x4*d4.’);

d5 = h5’*x4;

x5 = x4 - h5*d5;

h6 = x5*d5.’/norm(x5*d5.’);

d6 = h6’*x5;

36

x6 = x5 - h6*d6;

h7 = x6*d6.’/norm(x6*d6.’);

d7 = h7’*x6;

x7 = x6 - h7*d7;

h8 = x7*d7.’/norm(x7*d7.’);

d8 = h8’*x7;

x8 = x7 - h8*d8;

T = [h1 h2 h3 h4 h5 h6 h7];

Vn = T(:,P+1:Ml);

for theta=-90:90

for phi=-90:90

k=[0:Ml-1]’;

AA=exp(-1i*pi*cos(theta*pi/180-2*pi*k/8)*sin(phi*pi/180));

WW=AA’*Vn*Vn’*AA;

Pmusic(theta+91, phi+91)=(abs((AA’*AA)./WW));

end

end

figure

theta=-90:90;

phi=-90:90;

mesh(theta,phi,Pmusic);

title(’MUSIC with Multi Stage Wiener Filtering and spatial smoothing’);

xlabel(’Azimuth’);

ylabel(’Elevation’);

zlabel(’Music’);

Appendix B
Python Code

If a file includes “This file is a part of GNU Radio,” the following GNU General Public License

applies:

Copyright Free Software Foundation, Inc.

GNU Radio is free software; you can redistribute it and/or modify it under the terms of

the GNU General Public License as published by the Free Software Foundation; either version

3, or (at your option) any later version.

GNU Radio is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR

A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with GNU

Radio; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin

Street, Boston, MA 02110-1301, USA.

B.1 benchmark rx.py

#!/usr/bin/env python

#

This file is part of GNU Radio

#

from gnuradio import gr, gru, modulation_utils

from gnuradio import usrp

38

from gnuradio import eng_notation

from gnuradio.eng_option import eng_option

from optparse import OptionParser

import random

import struct

import sys

from current dir

import usrp_receive_path

#import os

#print os.getpid()

#raw_input(’Attach and press enter: ’)

class my_top_block(gr.top_block):

def __init__(self, demodulator, rx_callback, options):

gr.top_block.__init__(self)

Set up receive path

self.rxpath = usrp_receive_path.usrp_receive_path(

demodulator, rx_callback, options)

self.connect(self.rxpath)

///

main

///

global n_rcvd, n_right

def main():

global n_rcvd, n_right

n_rcvd = 0

n_right = 0

def rx_callback(ok, payload):

global n_rcvd, n_right

(pktno,) = struct.unpack(’!H’, payload[0:2])

39

n_rcvd += 1

if ok:

n_right += 1

print "ok = %5s pktno = %4d n_rcvd = %4d n_right = %4d" % (

ok, pktno, n_rcvd, n_right)

demods = modulation_utils.type_1_demods()

Create Options Parser:

parser = OptionParser (option_class=eng_option, conflict_handler="resolve")

expert_grp = parser.add_option_group("Expert")

parser.add_option("-m", "--modulation", type="choice",

choices=demods.keys(), default=’dqpsk’,

help="Select modulation from: %s [default=%%default]"

% (’, ’.join(demods.keys()),))

usrp_receive_path.add_options(parser, expert_grp)

for mod in demods.values():

mod.add_options(expert_grp)

(options, args) = parser.parse_args ()

if len(args) != 0:

parser.print_help(sys.stderr)

sys.exit(1)

if options.rx_freq is None:

sys.stderr.write("You must specify -f FREQ or --freq FREQ\n")

parser.print_help(sys.stderr)

sys.exit(1)

build the graph

tb = my_top_block(demods[options.modulation], rx_callback, options)

r = gr.enable_realtime_scheduling()

40

if r != gr.RT_OK:

print "Warning: Failed to enable realtime scheduling."

tb.start() # start flow graph

tb.wait() # wait for it to finish

if __name__ == ’__main__’:

try:

main()

except KeyboardInterrupt:

pass

B.2 benchmark tx.py

#!/usr/bin/env python

#

This file is part of GNU Radio

#

from gnuradio import gr, gru, modulation_utils

from gnuradio import usrp

from gnuradio import eng_notation

from gnuradio.eng_option import eng_option

from optparse import OptionParser

import random, time, struct, sys

from current dir

import usrp_transmit_path

#import os

#print os.getpid()

#raw_input(’Attach and press enter’)

class my_top_block(gr.top_block):

def __init__(self, modulator, options):

gr.top_block.__init__(self)

41

self.txpath = usrp_transmit_path.usrp_transmit_path(modulator, options)

self.connect(self.txpath)

///

main

///

def main():

def send_pkt(payload=’’, eof=False):

return tb.txpath.send_pkt(payload, eof)

def rx_callback(ok, payload):

print "ok = %r, payload = ’%s’" % (ok, payload)

mods = modulation_utils.type_1_mods()

parser = OptionParser(option_class=eng_option, conflict_handler="resolve")

expert_grp = parser.add_option_group("Expert")

parser.add_option("-m", "--modulation", type="choice", choices=mods.keys(),

default=’dqpsk’,

help="Select modulation from: %s [default=%%default]"

% (’, ’.join(mods.keys()),))

parser.add_option("-s", "--size", type="eng_float", default=1500,

help="set packet size [default=%default]")

parser.add_option("-M", "--megabytes", type="eng_float", default=1.0,

help="set megabytes to transmit [default=%default]")

parser.add_option("","--discontinuous", action="store_true", default=False,

help="enable discontinous transmission (bursts of 5 pkts)")

parser.add_option("","--from-file", default=None,

help="use file for packet contents")

usrp_transmit_path.add_options(parser, expert_grp)

for mod in mods.values():

mod.add_options(expert_grp)

42

(options, args) = parser.parse_args ()

if len(args) != 0:

parser.print_help()

sys.exit(1)

if options.tx_freq is None:

sys.stderr.write("You must specify -f FREQ or --freq FREQ\n")

parser.print_help(sys.stderr)

sys.exit(1)

if options.from_file is not None:

source_file = open(options.from_file, ’r’)

build the graph

tb = my_top_block(mods[options.modulation], options)

r = gr.enable_realtime_scheduling()

if r != gr.RT_OK:

print "Warning: failed to enable realtime scheduling"

tb.start() # start flow graph

generate and send packets

nbytes = int(1e6 * options.megabytes)

n = 0

pktno = 0

pkt_size = int(options.size)

while n < nbytes:

if options.from_file is None:

data = (pkt_size - 2) * chr(pktno & 0xff)

else:

data = source_file.read(pkt_size - 2)

if data == ’’:

break;

payload = struct.pack(’!H’, pktno & 0xffff) + data

send_pkt(payload)

n += len(payload)

43

sys.stderr.write(’.’)

if options.discontinuous and pktno % 5 == 4:

time.sleep(1)

pktno += 1

send_pkt(eof=True)

tb.wait() # wait for it to finish

if __name__ == ’__main__’:

try:

main()

except KeyboardInterrupt:

pass

B.3 generic usrp.py

Unmodified from GNU Radio 3.2.2 Release

B.4 modify dat.py

#!/usr/bin/env python

import scipy as sc

from scipy.io.numpyio import fread, fwrite

from scipy import array

from gnuradio import gr, gru, eng_notation, optfir

from gnuradio import audio

from gnuradio import usrp

from gnuradio import blks2

from gnuradio.eng_option import eng_option

from gnuradio.wxgui import slider, powermate

from gnuradio.wxgui import stdgui2, fftsink2, form

from optparse import OptionParser

from usrpm import usrp_dbid

import sys

44

import math

import wx

#use GNU Radio to filter and demod

class my_graph(gr.top_block):

def __init__(self):

gr.top_block.__init__(self)

#deifne paramerters

M, Nb, P = 12, 12160, 3

angdeg = array([37, 144, 109])

angles = angdeg*(sc.pi/180)

powers = array([10, 5, 0.5])

dlambda = 0.5

X = sc.zeros((M,Nb))

#open and read all .dat files for P emitters

f = open(’dqpsk0.dat’, ’rb’)

if (f < 0):

v = 0

else:

t = fread(f, 2*Nb,’f’)

t = sc.reshape(t,(Nb,2))

f0 = t[:,0] + t[:,1]*1j

f = open(’dqpsk1.dat’, ’rb’)

if (f < 0):

v = 0

else:

t = fread(f, 2*Nb,’f’)

t = sc.reshape(t,(Nb,2))

f1 = t[:,0] + t[:,1]*1j

f = open(’dqpsk2.dat’, ’rb’)

if (f < 0):

v = 0

else:

t = fread(f, 2*Nb,’f’)

t = sc.reshape(t,(Nb,2))

f2 = t[:,0] + t[:,1]*1j

45

b = [f0,f1,f2]

#modify data for linear array of M antennae

for k in range(P): #0,1,2

mu = sc.pi*sc.cos(angles[k])

a = sc.exp(1j*mu*sc.arange(M))[:, sc.newaxis]

X = X+powers[k]*a*b[k]

#add some noise

X = X+0.1*(sc.randn(M,Nb)+1j*sc.randn(M,Nb))

#write .dat files for each of M antenna observed data

for i in range(M):

f = open(’mod%d.dat’%(i), ’wb’)

fwrite(f, X[i,:].size, X[i,:])

f.close

exit()

def main ():

my_graph().run()

if __name__ == ’__main__’:

main ()

B.5 pick bitrate.py

Unmodified from GNU Radio 3.2.2 Release

B.6 receive path.py

Unmodified from GNU Radio 3.2.2 Release

B.7 test esprit mswf.py

#!/usr/bin/env python

46

from scipy.io.numpyio import fread

from scipy import linalg

from scipy import *

import matplotlib.pyplot as plt

#define parameters

M, Nb, P = 8, 12160, 3

angdeg = array([37, 144, 109])

poles = zeros((1,P))

angles = angdeg*(pi/180)

powers = array([10, 5, 0.5])

dlambda = 0.5

#import M-antenna data streams

X = zeros((M,Nb)) + zeros((M,Nb))*1j

for k in range(M):

f = open(’demod%d.dat’ % (k), ’rb’)

t = fread(f, Nb*2,’f’)

t = reshape(t,(Nb,2))

f2 = t[:,0] + t[:,1]*1j

X[k] = f2

Smoothing Matrix

Ml = 5 #sub-array size

L = M-Ml+1

l=1

J1 = hstack([zeros((Ml,l-1)), eye(Ml,Ml), zeros((Ml,M-l-Ml+1))])

l=2

J2 = hstack([zeros((Ml,l-1)), eye(Ml,Ml), zeros((Ml,M-l-Ml+1))])

l=3

J3 = hstack([zeros((Ml,l-1)), eye(Ml,Ml), zeros((Ml,M-l-Ml+1))])

l=4

J4 = hstack([zeros((Ml,l-1)), eye(Ml,Ml), zeros((Ml,M-l-Ml+1))])

Xs = hstack([dot(J1,X), dot(J2,X), dot(J3,X), dot(J4,X)])

#new method, Multi-Stage Weiner Filters

d0 = hstack([X[0,:], X[0,:], X[0,:], X[0,:]])

d0 = d0[:,newaxis]

x0 = Xs

47

h1 = dot(x0,d0)/linalg.norm(dot(x0,d0))

d1 = dot(h1.conj().T, x0)

x1 = x0 - dot(h1, d1)

h2 = dot(x1, d1.T)/linalg.norm(dot(x1, d1.T))

d2 = dot(h2.conj().T, x1)

x2 = x1 - dot(h2, d2)

h3 = dot(x2, d2.T)/linalg.norm(dot(x2, d2.T))

d3 = dot(h3.conj().T, x2)

x3 = x2 - dot(h3, d3)

h4 = dot(x3, d3.T)/linalg.norm(dot(x3, d3.T))

d4 = dot(h4.conj().T, x3)

x4 = x3 - dot(h4, d4)

h5 = dot(x4, d4.T)/linalg.norm(dot(x4, d4.T))

d5 = dot(h5.conj().T, x4)

x5 = x4 - dot(h5, d5)

T = hstack([h1, h2, h3, h4, h5])

#ESPRIT algorithm:

Es=T[:,0:P] #all, 0 to P-1

Es1=Es[0:Ml-1,:] #0 to M-2, all

Es2=Es[1:Ml,:] #1 to M-1, all

Psi = linalg.lstsq(Es1,Es2) #Psi = Es1\Es2

Phivec, T = linalg.eig(Psi[0])

angests = arccos(angle(Phivec)/pi)*(180/pi)

#plot angles from ESPRIT and compare with true angles

plt.figure(1)

plt.hold(True)

plt.polar(angles,angles/angles,’kx’,ms=12)#,’markersize’,12,’linewidth’,1)

plt.polar(angests/(180/pi),abs(Phivec),’bo’,ms=6)#,

’markersize’,12,’linewidth’,1)

print "angests=\n",angests

print "angdeg=\n", angdeg

48

plt.figure(2)

T = hstack([h1, h2, h3, h4, h5])

Pn = dot(T[:,P:Ml],T[:,P:Ml].conj().T)

#compute MUSIC spatial spectrum using all noise eigenvectors

ell=0

SMinVar = zeros(len(arange(0,180,.1)))

SMUSIC = zeros(len(arange(0,180,.1)))

for theta in arange(0,180,.1):

atheta = exp(1j*pi*cos(theta*(pi/180))*r_[:Ml])

SMUSIC[ell] = -10*log10(real(dot(dot(conj(atheta),Pn),atheta.T)))

ell = ell+1

theta = arange(0,180,.1)

plt.plot(theta,(SMUSIC-amax(SMUSIC)),’r’)

plt.axis([0, 180, -80, 0])

plt.hold(True)

plt.plot(theta,(SMinVar-amax(SMinVar)),’b’)

for k in range(P):

plt.plot((angdeg[k], angdeg[k]), (-80, 0), ’m’)

plt.legend([’MUSIC’])

plt.title(’Spatial Spectrum Estimates’)

plt.xlabel(’Arrival Angle (Degrees)’)

plt.ylabel(’Spectral Magnitude (dB)’)

without Smoothing

d0 = hstack([X[0,:]])

d0 = d0[:,newaxis]

x0 = X

h1 = dot(x0,d0)/linalg.norm(dot(x0,d0))

d1 = dot(h1.conj().T, x0)

x1 = x0 - dot(h1, d1)

h2 = dot(x1, d1.T)/linalg.norm(dot(x1, d1.T))

d2 = dot(h2.conj().T, x1)

x2 = x1 - dot(h2, d2)

49

h3 = dot(x2, d2.T)/linalg.norm(dot(x2, d2.T))

d3 = dot(h3.conj().T, x2)

x3 = x2 - dot(h3, d3)

h4 = dot(x3, d3.T)/linalg.norm(dot(x3, d3.T))

d4 = dot(h4.conj().T, x3)

x4 = x3 - dot(h4, d4)

h5 = dot(x4, d4.T)/linalg.norm(dot(x4, d4.T))

d5 = dot(h5.conj().T, x4)

x5 = x4 - dot(h5, d5)

h6 = dot(x5, d5.T)/linalg.norm(dot(x5, d5.T))

d6 = dot(h6.conj().T, x5)

x6 = x5 - dot(h6, d6)

h7 = dot(x6, d6.T)/linalg.norm(dot(x6, d6.T))

d7 = dot(h7.conj().T, x6)

x7 = x6 - dot(h7, d7)

h8 = dot(x7, d7.T)/linalg.norm(dot(x7, d7.T))

d8 = dot(h8.conj().T, x7)

x8 = x7 - dot(h8, d8)

T = hstack([h1, h2, h3, h4, h5, h6, h7, h8])

#ESPRIT algorithm:

Es=T[:,0:P] #all, 0 to P-1

Es1=Es[0:M-1,:] #0 to M-2, all

Es2=Es[1:M,:] #1 to M-1, all

Psi = linalg.lstsq(Es1,Es2) #Psi = Es1\Es2

Phivec, T = linalg.eig(Psi[0])

angests = arccos(angle(Phivec)/pi)*(180/pi)

#plot angles from ESPRIT and compare with true angles

plt.figure(1)

plt.polar(angests/(180/pi),abs(Phivec),’ro’,ms=6)#,

’markersize’,12,’linewidth’,1)

plt.hold(False)

plt.title(’Angle of Arrival’)

50

plt.legend([’True’, ’ESPRIT’,’ESPRIT With Smoothing’],4)

print "angests=\n",angests

print "angdeg=\n", angdeg

plt.figure(2)

T = hstack([h1, h2, h3, h4, h5, h6, h7, h8])

Pn = dot(T[:,P:M],T[:,P:M].conj().T)

#compute MUSIC spatial spectrum using all noise eigenvectors

ell=0

SMUSIC = zeros(len(arange(0,180,.1)))

for theta in arange(0,180,.1):

atheta = exp(1j*pi*cos(theta*(pi/180))*r_[:M])

SMUSIC[ell] = -10*log10(real(dot(dot(conj(atheta),Pn),atheta.T)))

ell = ell+1

#plot 1D MUSIC with and without smoothing

theta = arange(0,180,.1)

plt.plot(theta,(SMUSIC-amax(SMUSIC)),’b’)

plt.axis([0, 180, -80, 0])

for k in range(P):

plt.plot((angdeg[k], angdeg[k]), (-80, 0), ’m’)

plt.legend([’Smoothing’,’No Smoothing’],4)

plt.title(’MUSIC Spatial Spectrum Estimates Using MSWF’)

plt.xlabel(’Arrival Angle (Degrees)’)

plt.ylabel(’Spectral Magnitude (dB)’)

plt.hold(False)

plt.show()

B.8 transmit path.py

Unmodified from GNU Radio 3.2.2 Release

51

B.9 usrp options.py

Unmodified from GNU Radio 3.2.2 Release

B.10 usrp receive path.py

#!/usr/bin/env python

#

This file is part of GNU Radio

#

from gnuradio import gr

import usrp_options

import receive_path

from pick_bitrate import pick_rx_bitrate

from gnuradio import eng_notation

import scipy as sc

from scipy.io.numpyio import fread

from scipy import array

def add_freq_option(parser):

"""

Hackery that has the -f / --freq option set both tx_freq and rx_freq

"""

def freq_callback(option, opt_str, value, parser):

parser.values.rx_freq = value

parser.values.tx_freq = value

if not parser.has_option(’--freq’):

parser.add_option(’-f’, ’--freq’, type="eng_float",

action="callback", callback=freq_callback,

help="set Tx and/or Rx frequency to FREQ",

metavar="FREQ")

def add_options(parser, expert):

add_freq_option(parser)

usrp_options.add_rx_options(parser)

receive_path.receive_path.add_options(parser, expert)

52

expert.add_option("", "--rx-freq", type="eng_float", default=None,

help="set Rx frequency to FREQ, metavar="FREQ")

parser.add_option("-v", "--verbose", action="store_true", default=False)

class usrp_receive_path(gr.hier_block2):

def __init__(self, demod_class, rx_callback, options):

’’’

See below for what options should hold

’’’

gr.hier_block2.__init__(self, "usrp_receive_path",

gr.io_signature(0, 0, 0), # Input signature

gr.io_signature(0, 0, 0)) # Output signature

if options.rx_freq is None:

sys.stderr.write("-f FREQ or --freq FREQ or

--rx-freq FREQ must be specified\n")

raise SystemExit

rx_path = receive_path.receive_path(demod_class, rx_callback, options)

for attr in dir(rx_path): #forward the methods

if not attr.startswith(’_’) and not hasattr(self, attr):

setattr(self, attr, getattr(rx_path, attr))

#define parameters

M, Nb, P = 12, 12160, 3

angdeg = array([37, 144, 109])

angles = angdeg*(sc.pi/180)

powers = array([10, 5, 0.5])

dlambda = 0.5

X = sc.zeros((M,Nb))

#open and read all .dat files

f = open(’dqpsk0.dat’, ’rb’)

if (f < 0):

v = 0

else:

t = fread(f, 2*Nb,’f’)

t = sc.reshape(t,(Nb,2))

f0 = t[:,0] + t[:,1]*1j

f = open(’dqpsk1.dat’, ’rb’)

53

if (f < 0):

v = 0

else:

t = fread(f, 2*Nb,’f’)

t = sc.reshape(t,(Nb,2))

f1 = t[:,0] + t[:,1]*1j

f = open(’dqpsk2.dat’, ’rb’)

if (f < 0):

v = 0

else:

t = fread(f, 2*Nb,’f’)

t = sc.reshape(t,(Nb,2))

f2 = t[:,0] + t[:,1]*1j

b = [f0,f1,f2]

#modify data for linear array

for k in range(P): #0,1,2

mu = sc.pi*sc.cos(angles[k])

a = sc.exp(1j*mu*sc.arange(M))[:, sc.newaxis] #.’ = .T, ’ = .H

X = X+powers[k]*a*b[k]

#add some noise

X = X+0.1*(sc.randn(M,Nb)+1j*sc.randn(M,Nb))

src = gr.vector_source_c(X[11])

#setup usrp

self._demod_class = demod_class

#connect

self.connect(src, rx_path)

def _setup_usrp_source(self, options):

if options.verbose:

print ’USRP Source:’, self.u

(self._bitrate, self._samples_per_symbol, self._decim) = \

pick_rx_bitrate(options.bitrate, self._demod_class.bits_per_symbol(), \

options.samples_per_symbol, options.decim, adc_rate, \

self.u.get_decim_rates())

54

self.u.set_decim(self._decim)

if not self.u.set_center_freq(options.rx_freq):

print "Failed to set Rx frequency to %s" % (

eng_notation.num_to_str(options.rx_freq))

raise ValueError, eng_notation.num_to_str(options.rx_freq)

B.11 usrp transmit path.py

#!/usr/bin/env python

#

This file is part of GNU Radio

#

from gnuradio import gr

import usrp_options

import transmit_path

from pick_bitrate import pick_tx_bitrate

from gnuradio import eng_notation

def add_freq_option(parser):

"""

Hackery that has the -f / --freq option set both tx_freq and rx_freq

"""

def freq_callback(option, opt_str, value, parser):

parser.values.rx_freq = value

parser.values.tx_freq = value

if not parser.has_option(’--freq’):

parser.add_option(’-f’, ’--freq’, type="eng_float",

action="callback", callback=freq_callback,

help="set Tx and/or Rx frequency to FREQ [default=%default]",

metavar="FREQ")

def add_options(parser, expert):

add_freq_option(parser)

usrp_options.add_tx_options(parser)

55

transmit_path.transmit_path.add_options(parser, expert)

expert.add_option("", "--tx-freq", type="eng_float", default=None,

help="set transmit frequency to FREQ, metavar="FREQ")

parser.add_option("-v", "--verbose", action="store_true", default=False)

class usrp_transmit_path(gr.hier_block2):

def __init__(self, modulator_class, options):

’’’

See below for what options should hold

’’’

gr.hier_block2.__init__(self, "usrp_transmit_path",

gr.io_signature(0, 0, 0), # Input signature

gr.io_signature(0, 0, 0)) # Output signature

if options.tx_freq is None:

sys.stderr.write("-f FREQ or --freq FREQ or

--tx-freq FREQ must be specified\n")

raise SystemExit

tx_path = transmit_path.transmit_path(modulator_class, options)

for attr in dir(tx_path): #forward the methods

if not attr.startswith(’_’) and not hasattr(self, attr):

setattr(self, attr, getattr(tx_path, attr))

#setup file sink

self._modulator_class = modulator_class

self.file_sink = gr.file_sink(gr.sizeof_gr_complex, "dqpsk2.dat")

#connect

self.connect(tx_path, self.file_sink)

def _setup_usrp_sink(self, options):

"""

Creates a USRP sink, determines the settings for best bitrate,

and attaches to the transmitter’s subdevice.

"""

#self.u = usrp_options.create_usrp_sink(options)

#dac_rate = self.u.dac_rate()

if options.verbose:

print ’USRP Sink:’, self.u

(self._bitrate, self._samples_per_symbol, self._interp) =

pick_tx_bitrate(options.bitrate, self._modulator_class.bits_per_symbol(),

options.samples_per_symbol, options.interp, dac_rate,

self.u.get_interp_rates())

56

self.u.set_interp(self._interp)

self.u.set_auto_tr(True)

if not self.u.set_center_freq(options.tx_freq):

print "Failed to set Rx frequency to %s" % (

eng_notation.num_to_str(options.tx_freq))

raise ValueError, eng_notation.num_to_str(options.tx_freq)

Bibliography

[1] Roy, R. and T. Kailath (1989) “ESPRIT-Estimation of Signal Parame-
ters via Rotational Invariance Techniques,” IEEE Transactions on Acoustics
Speech Signal Processing, 37(7), pp. 984–995.

[2] Pahlavan, K., X. Li, M. Yilanttila, R. Chana, and M. Latva-aho
(2000) An Overview of Wireless Indoor Geolocation Techniques and Systems,
Tech. rep., Worcester Polytechnic Institute.

[3] (2008) The Technologies behind a Context-Aware Mobility Solution, Tech. rep.,
Cisco Systems, Inc.

[4] Azarmanesh, O., P. Desale, C. Gardner, A. Banik, and T. Nagar-
mat (2010) Report for Smart Radio Challenge 2009, Tech. rep., The Pennsyl-
vania State University.

[5] Ricks, D. and J. Goldstein (2000) “Efficient Implementation of Multi-
Stage Adaptive Wiener Filters,” Antenna Applications Symposium.

[6] Wireless Innovation Forum (2009) Smart Radio Challenge Problem.

[7] Pauraj, A., R. Roy, and T. Kailath (1986) “A Subspace Rotation Ap-
proach to Signal Parameter Estimation,” IEEE, 74, pp. 1044–1046.

[8] Schmidt, R. (1986) “Multiple Emitter Location and Signal Parameter Es-
timation,” IEEE Transactions on Antennas and Propagation, AP-34, pp.
276–280.

[9] Goldstein, J., I. Reed, and L. Scharf (1998) “A Multistage Represen-
tation of the Wiener Filter Based on Orthogonal Projections,” IEEE Trans-
actions on Information Theory, 44(7), pp. 2943–2959.

[10] Chestnut, P. C. (1982) “Emitter Location Accuracy Using TDOA and Dif-
ferential Doppler,” IEEE Transactions on Aerospace and Electronic Systems,
AES-18(2).

58

[11] Huang, L., S. Wu, and L. Zhang (2005) “Low Complexity ESPRIT
Method for Direction Finding,” IEEE Transactions on Acoustics Speech Sig-
nal Processing, 4, pp. 929–932.

[12] ——— (2005) “A Novel MUSIC Algorithm for Direction-of-Arrival Estimation
Without the Estimate Covariance Matrix and its Eigendecomposition,” IEEE
Vehicular Technology Conference.

Vita

CHRISTOPHER B. GARDNER

EDUCATION: Bachelor of Science in Electrical Engineering Expected: 5/2010

 The Pennsylvania State University, University Park, PA

 Schreyer Honors College

 GPA: 3.80/4.00

 Dean’s List (7/7 semesters)

 Relevant Courses:

 FPGA Design Software-Defined Radios

 Digital Design, Microcontrollers Systems Engineering Seminar

 Probability and Stochastic Processes Effective Speech

THESIS: Software-Defined Radio Techniques for Geolocation of First-Responder Transceivers

 Thesis Supervisor: Dr. Sven G. Bilén

 Honors Adviser: Dr. John D. Mitchell

RELATED DRS Signal Solutions, Inc., Gaithersburg, MD 5/2009 – 8/2009

EXPERIENCE: Intern—Tactical Applications R&D

 • Designed high-speed digital Test Fixture for wideband (20 MHz – 6 GHz) upconverter.

 • Developed Xilinx CoolRunner2 CPLD core architecture in VHDL for Test Fixture.

 • Specified design routing requirements for PCB Group to place and route board.

 Bose Corporation, Framingham, MA 5/2008 – 8/2008

 Intern—Home Entertainment, Advanced Development

• Prototyped and debugged an ―Impedance-Controlled Impedance‖ for amplifier safety testing.

• ―ICI‖ models a transducer’s complex, instantaneous impedance while reducing SPL by 40dB.

• ―ICI‖ will increase productivity by eliminating the need to use sound-damping rooms for testing.

 Adaptive Methods, Inc., Rockville, MD 5/2007 – 8/2007

 Intern—Sensors Integration Group

 • Built a sea-worthy RS-232 to RS-422 signal converter for a SURTASS stabilizer.

 • Researched for and helped create two SBIR proposals—one of which was awarded.

 • Improved a sensor data gathering program by adding remote networking support.

 National Security Agency Summer 2005, 2006

 Intern—Microelectronics Reverse Engineering

• Reverse-engineered obsolete ICs to incorporate their functions in newer technology.

• Hold a Top Secret/SCI clearance since June 2005, re-cleared in 2008.

• Had an Agency Special Background Investigation and polygraph.

 Student Space Programs Lab, University Park, PA

 PCB Designer—Hybrid Plasma Probe Team (OSIRIS CubeSat) 8/2007 – 4/2008

• Designed and tested a direct digital synthesizer for a swept bias Langmuir Probe experiment.

 PCB Designer—CanSAT Team 11/2006 – 5/2007

• Designed a solenoid controller in Orcad Capture and populated components by hand.

COMPUTER • Application Programs (MATLAB, MultiSim, Mentor Graphics DxDesigner, Cadence Orcad, FEKO)

SKILLS: • Languages (VHDL, Embedded C/Basic, C, C++)

• Operating Systems (Windows, UNIX/Linux)

HONORS: • James M. Barnak Outstanding Junior Award – Eta Kappa Nu Association

 • Matthew P. Blickley Memorial Scholarship for International Studies

 • Lockheed Martin Scholarship Award Winner, 2008/2009

• College of Engineering Scholarship

• Schreyer Honors College Scholarship

• Washington, D.C. Alumni Association Scholarship

ACTIVITIES: • Teaching Intern for EE 310 – Electronic Circuit Design

 • Member of Electrical Engineering Student Advisory Committee

 • Schreyer Honors College Student Council

