
THE PENNSYLVANIA STATE UNIVERSITY 
SCHREYER HONORS COLLEGE 

DEPARTMENT OF PHYSICS

FRUSTRATED MAGNETISM IN OUT-OF-PLANE AND IN-PLANE SYSTEMS 

CHRIS GRIGAS 
SUMMER 2013

A thesis 
submitted in partial fulfillment 

of the requirements 
for baccalaureate degrees

in Physics and Mathematics 
with honors in Physics

Reviewed and approved* by the following: 

Peter Schiffer 
Professor of Physics

Co-Thesis Supervisor 

Jorge Sofo
Professor of Physics

Co-Thesis Supervisor 

Richard Robinett
Professor of Physics

Honors Advisor 

* Signatures are on file in the Schreyer Honors College.



i
ABSTRACT

This thesis presents work related to the study of systems of frustrated nanomagnet 

arrays, or artificial spin ice, whose moments are oriented perpendicularly from the plane of 

the sample. It builds off of previous work by the same research group that has been done 

studying various other geometries of frustrated nanomagnet arrays. 

Frustration is a phenomenon found in real 3D materials like holmium stanate and 

holmium titanate which are called spin ices. Artificial spin ice is a useful model system for 

studying the behavior of these materials and provides several advantages over the real 

materials. Advanced lithographic techniques allow the specific interactions between the 

islands to be finely tuned and the length scale of the samples is such that they can be 

relatively easily imaged by techniques such as atomic force microscopy and magnetic force 

microscopy (AFM/MFM).

This thesis explores the work that has been done on various lattice geometries with a 

particular emphasis on lattices whose constituent islands have their moments oriented 

perpendicularly to the plane of the sample. There are many parts to studying these materials; 

design of the islands, fabrication, demagnetization, and imaging. Of these steps this thesis 

places a particular emphasis on the techniques that are used to image the samples and extract 

meaningful data from them. 

Correlations in the orientation of islands in perpendicularly magnetized arrays, in 

kagome and honeycomb lattices, were computed for island pairs of differing distances. It is 

seen that the correlations between nearest-neighbor pairs of islands are strongest and then 

decay dramatically for higher order island pairs. Fitting this data to two different simulations 
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shows that the correlations in perpendicularly magnetized arrays are dominated by nearest-

neighbor interactions and, by analogy, the same conclusion holds for in-plane hexagonal 

arrays. The similarities between two very different realizations of spin ice suggest that the 

behavior of spin ice is independent of the particular geometry and material of the lattice, 

which could be further explored by studying different geometries.

Demonstration of lattices with perpendicularly oriented moments opens up 

possibilities of using artificial spin ices to imprint a magnetic topology onto a thin film. This 

could have applications in diverse fields ranging from 2D electron gases to superconductors. 
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 Figure 1: The simplest possible frustrated geometry is an equilateral triangle with spins placed on the three corners of the triangle. 
Not all of the pairwise interactions between the spins can be minimized at the same time. Figure from [2].



The simplest example of frustration is placing three antiferromagnetic spins on the 

corners of an equilateral triangle, as illustrated in Figure 1. Not all of the pairwise 

interactions between these three spins can minimized at once. In fact there is a 6-fold 

degeneracy in the ground state of this system. This simple system can be repeated in various 

ways to create extended frustrated lattices. 

 



protons are not an equal distance from all of the oxygen atoms. Two of the protons will be 

closer to the oxygen atom and two of them will be farther away, as shown in Figure 2. This is 

commonly referred to as the ‘2-in,2-out’ ice rule. This arrangement has a 6-fold ground state 

degeneracy [3].  

There is also another class of materials that mimic much of the behavior of water ice 

except they exchange the atomic interactions of water ice for spin-spin interactions. 

Appropriately these materials are called ‘spin ices’ (Figure 3). These materials are all rare 

earth pyrochlores, two examples of which are holmium titanate (Ho2Ti2O7) [7] and 

dysprosium titanate (Di2Ti2O7) [8]. These materials also have a corner sharing tetrahedral 

lattice with the magnetic ions sitting at the corners of the tetrahedra. The magnetic moments 

of the ions are forced to either point directly towards or directly away from the center of the 

tetrahedra, essentially making them large Ising spins. In the ground state two of the spins 

point in towards the center of the tetrahedra and two of the spins point outwards, a behavior 

Figure 3: The 'two-in,two-out' ground state configuration of the magnetic spins in spin ice materials. Figure from [7].



Figure 4: The design of the permalloy islands. Figure from  [2].



was settled on was shaped like a rectangle with half-circles on either end. It has a length of 

220 nm and a width of 80 nm. From the simulations it was found that this shape paired a 

strong shape anisotropy, which forces the magnetic moment to point along the long axis, with 

Figure 5: (left) Projecting a 3D pyrochlore lattice onto its (110) produces a two dimensional square lattice that can serve as 
a model of the real system. (right) This model must also follow the 'two-in,two-out' ice rule which limits the number of 
accesible ground state configurations to 6, down from the total of 16 possible configurations. Figure from [2].
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a single domain remnant state as well as Ising-like switching between states. These properties 

make it most similar to an Ising spin. 

A Two-Dimensional Model for Frustration

Projecting a pyrochlore crystal onto a two dimensional plane going through (110) 

produces a square lattice of points (or vertices) connected by edges to each other [11]. In this 

two dimensional model the magnetic spins can point right or left and up or down giving a 

total of 16 possible configurations of any given vertex. Analogously to the real 3D frustrated 

materials this model also must obey the ‘two-in, two-out’ ground state configuration. This 

drastically reduces the number of possible configurations from 16 down to only 6. This 

procedure is illustrated in Figure 5.
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Demagnetization and Imaging Procedure

Demagnetization

Before the fabricated arrays can be measured they need to have a zero net magnetic 

moment. In order to do this the arrays are initially placed in a magnetic field greater than 770 

Oe [11], which is the coercive field of the islands. The arrays are then rotated at 1000 rpm 

[13] in the field while it is reduced in steps of 1.6 Oe [14]. At each step down in field the 

field is also reversed in direction. This procedure was found to be the most effective at 

demagnetizing the arrays.

MFM/AFM Imaging

The arrays can be imaged once they have demagnetized. They are imaged using a 

Veeco combination atomic and magnetic force microscope (AFM/MFM). An AFM/MFM 

can operate in two modes, static and dynamic [15]. The dynamic mode is typically preferred 

over the static mode as it is more sensitive. The first pass over the array is done using the 

atomic force microscope; This process scans an atomically sharp tip over the sample and 

measures the force acting on the tip. This allows the machine to map the topology of the 

sample. After this process is complete the machine makes a second pass over the sample 

using the MFM which will detect the arrangement of the magnetic moments in the islands. In 
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the dynamic mode, an MFM (AFM) functions by scanning a magnetic (atomically sharp) tip 

on the end of a cantilever over the sample. The cantilever is oscillated at a known frequency 

which is measured by a laser beam that is reflected off of the top of the cantilever. The 

interaction between the tip and the sample will produce a phase shift in the oscillation of the 

cantilever and this can be measured and used to calculate the force that the sample is exerting 

on the tip. The magnitude and direction of this force is then displayed over the topographic 

image that the AFM produced and used to display the magnitude and direction of the domain. 

In order to calculate this force the cantilever is assumed to be a simple harmonic 

oscillator with an applied force given by F z=F 0cos (ω t) and the resulting displacement 

given by z= z0 cos(ωt+ϕ) . The amplitude and phase shift of the resulting motion are given 

by equation (1).

where ωn=√(k / m) is the natural frequency of the oscillator, Q=1 /2δ  is the quality factor, 

and δ=D /(2√(mk )) is the damping factor. The forces acting on the magnetic tip act to 

change the spring constant of the simple harmonic oscillator which produces a change in the 

resonant frequency of the cantilever. Therefore the resonant frequency is given by equation 

(2).

(1)
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where ωn is the natural resonant frequency of the oscillator and ωr is the new 

resonant frequency due to the interaction with the sample. The changes in the resonant 

frequency will be small, therefore we can take the Taylor expansion of the radical in this 

equation and keep only the first term.

Taking the difference between the natural resonant frequency and the modified 

resonant frequency gives equation three.

where f =ω/2π . Here the force gradient ∇ F can be solved for and its magnitude and 

direction can be plotted on the image. 

Image Analysis

Overview

When the AFM/MFM image capturing process is complete the image typically 

resembles that given in Figure 6. While it would be fairly easy to go through and manual 

determine the orientation of the moments in this particular image it is a very tedious process, 

  (4)

  (3)

  (2)
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and if the lattices have a much shorter lattice constant it can be very difficult for a human to 

determine the orientation of the moments without losing track of their position in the lattice. 

This makes manually analyzing the image both a tedious and inaccurate prospect. In order to 

alleviate this problem, code was written in MATLAB [16] that can help the image analyzer to 

accurately and quickly process an image. 

There are five distinct steps in processing an image produced by the MFM. First, the 

image is imported to MATLAB and converted to grayscale. Second, the user defines the 

borders of the lattice for the code and inputs the number of rows and columns in the lattice 

into the program. Then the program iterates through the image and compares each unit cell in 

the array with an ideal image to determine the arrangement of the moments in that cell. Once 

all of these moment configurations are determined the program plots them in an image and 

then compares the produced image with the original image in order to check for errors. 

Importing and Converting the Image

The first step in the image analysis process is to import the image produced by the 

MFM into MATLAB. The MFM saves the images in RGB format, but the analysis is 

concerned only with the intensity of light coming from the image, so the imported images 

must be converted to grayscale before they are useful. There are several different methods for 

converting an RGB image to grayscale but the method used here is called the ‘luminosity’ 



(red, green, and blue) but it varies the weights on each based upon how brightly human eyes 

perceive each color. Therefore the luminance L is calculated as in equation 5.

L=0.2989R+0.5870G+0.1148B (5)
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Human eyes perceive green as brighter than red and blue, therefore the weight on the 

green component of the RGB image is much greater than the other. This produces a grayscale 

image that looks much more like the original RGB image to human eyes. 



four corners of the image. All four corners need to be specified because there can be a 

significant amount of slant to the image. The user then counts the number of rows and 

Figure 7: Comparing the images of a real vertex (left column) with the ideal images (right column). The inner product of 
the two images in the first row would be much greater than zero while the inner product of the two images in the second 
row would be much less than zero. The third row would have an inner product approximately equal to zero. 
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columns of unit cells. The program uses this information to define the size of a unit cell in 

pixels. 

Determining the Moment Orientations

The orientations of the moments in a specific vertex are determined by convolving 

the matrix of the real image with an ideal matrix. Convolution here is simply taking an inner 

product between the two matrices. The output of this operation determines if the real matrix 

matches the ideal matrix. There are three possible outcomes of the convolution of the two 

matrices.

1) The product of convolution of the two matrices is roughly zero. (the third row in 

figure 7)

2) The product of the convolution of the two matrices is greater than or equal to 

some threshold value. (the first row in figure 7)

3) The product of the convolution of the two matrices is less than or equal to the 

negative of the threshold value. (the second row in figure 7)

In the first case, the product is roughly zero, the orientation of the moments in the 

real image are determined to not match the ideal image. Due to noise in the image there may 

be some correlation between the ideal image and the real image that is being tested. To 
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combat this a ‘threshold’ value is set. In the second case, where the product of the two 

matrices is greater than or equal to the threshold value, the matrix being tested is determined 

to have the same moment configuration as the ideal matrix it is being tested against. In the 

third case, where the product of the two matrices is less than or equal to the negative of the 

threshold value, the matrix being tested is determined to have the exact opposite moment 

configuration as the matrix it is being tested against. 

Each vertex in the array will be tested against the ideal vertices until one is found 

whose convolution with the real vertex is greater than the set threshold value. The third case 

from above means that the real image will only have to be tested against a maximum of eight 

different vertices before a match is found. When a match is found the orientations of the 

moment will be input into a spreadsheet as either positive or negative one. 

Setting the threshold at an appropriate value is an important part of this process. In an 

image that is not very noisy the threshold should be set at a very low level. The lack of noise 

will prevent the product of unlike vertices from exceeding the threshold and giving a false 

reading. Therefore the threshold needs to be set at a low level to ensure that all of the vertices 

that are alike exceed the threshold value. If the image is very noisy then it becomes more 

likely that taking the convolution between two unlike vertices will exceed the threshold if it 

is not set high, but if it is set too high then there is the risk that the product of like vertices 

will not result in a high enough value. Figuring out exactly how high or how low to set the 



threshold value is simply a matter of trial and error before an intuitive sense for setting the 

value develops. 

Error Checking

The final step in the process of analyzing the image is to check to make sure that the 

program has accurately determined the moment orientations. To do this the program creates 

another image by superimposing the created image over top of the original image. In this 

image an island is black if the program has assigned it the correct orientation, and an island is 

Figure 8: Examples of some of the classic frustrated lattice geometries. (a) triangular, (b) hexagonal (honeycomb), (c) 
kagome, and (d) centered hexagonal. Figure from [18].
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white if the program has assigned it the incorrect orientation. It is then up to the user to 

manually determine the correct orientation of that island. 

Lattice Geometries of Interest

There are many different lattice geometries that have been investigated in this 

experiment. These lattices include ones whose islands interact in the plane with the other 

islands and those whose moments are directed perpendicularly from the surface of the lattice. 

The in-plane lattices that have be examined are the square, hexagonal, and triangular lattices. 

The perpendicular lattices that were examined were the hexagonal and kagome lattices. 

Examples of some of these lattices are given in Figure 8 above. 
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Perpendicular Magnetization

Fabrication

The discussion in this paper so far has been confined to talking about islands whose 

moments point in the plane of the lattice, but it is also possible to have frustration in a system 

where the magnetic moments are directed out of the plane. 

  

These islands were fabricated with multiple layers of thin metallic films with the 

structure Ti(20 Å )/Pt(100 Å )/[Co(3 Å )/Pt(10 Å )]8  deposited by electron-beam evaporation 

after electron-beam patterning of a bi-layer resist. The arrays are then demagnetized by 

following a similar procedure as the one outlined above. The samples are first placed in a 

field of 2000 Oe to coerce all of the moments into pointing in the same direction. They were 

then rotated at 1000 rpm while the field was stepped down in increments of 1.6 Oe and the 

direction was reversed at each step. After the samples were demagnetized they were then 

imaged with an MFM [19].

 

Analysis

Adapting the previously written code to analyze these images, and then analyzing 

those images, was one of the main goals of this thesis. The code functions in much the same 

way as it does for the in-plane geometries with some slight differences. First, the 



stadium shapes and they occupy the edges of the shapes that make up the lattice. In the out-

Figure 9: SEM (left column) and MFM (right column) images of the two perpendicular moment geometries. These two 
geometries are the kagome (top row) and honeycomb lattices (bottom row). Figure from [19].
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of-plane samples the islands are circles that sit on the vertices of the lattice, so the code 

needed to adjusted to deal with this.

These lattices were studied by considering the pairwise correlations of the 

orientations of the moments, where the pairwise correlations were defined as the average spin 

product over all island pairs of a specific order (see Figure 10 for pair orders). Parallel 

aligned moments were defined to be a +1 and antiparallel aligned moments were defined to 

be a -1. These correlations were calculated for pairs of islands of various orders. The nearest 

neighbors to an island are defined to be the first order islands, next nearest neighbors are the 

second order islands, etc. These correlations were studied for three different geometries; the 

perpendicular kagome, perpendicular honeycomb, and the in-plane hexagonal. The 

perpendicular kagome and perpendicular honeycomb are diagrammed in Figure 10 (d and e) 

and the in-plane hexagonal lattice is diagrammed in Figure 8(b). The correlations are 

strongest at the shortest lattice constant in this experiment, 500 nm, and decrease drastically 

at larger lattice constants. Therefore the data from smallest lattice constant arrays are shown 

here. For each of the geometries the absolute correlations between the nearest neighbor 

islands are greatest and then they decrease monotonically towards zero.



Two simulations were done in order to better understand the behavior of the system. 

One was a quasiequilibrium Gibbsian model (called model G) and the other was a kinetic 

zero-temperature quenched model (called model Z). Model G defined a nearest-neighbor 

interaction function as in equation 6.

Figure 10: (a),(b), (c) The correlations between the orientations of the islands are strongest for nearest-neighbor pairs of 
islands and they decrease monotonically, in absolute value, to zero. All three geometries show a strikingly similar behavior in 
spite of having different geometries and composition. Figure from [19].

(6)
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Φ(s )= ∑

NN Pairs

si s j

Then probability of any given configuration of the system is e(Φ(s ))
 .The overall state  is then 

calculated using standard Monte Carlo methods [20]. Model Z starts with a random 

configuration of the moments in the lattice and then selects individual moments out of that 

lattice. The simulation will then flip the orientation of that selected moment if doing so will 

reduce the nearest-neighbor interaction energy. It then proceeds in this manner until the 

nearest-neighbor correlation value matches that of the experiment. 

Conclusion

Both of these models accurately reproduce the experimental results, as figure 10 

shows. The fact that two very different models accurately reproduce the experimental results 

suggests that the equilibrium state of the system is controlled only by the topology of the 

lattice and the correlation between nearest-neighbor islands. If it is the case that nearest-

neighbor interactions dominate then an ordered ground state would be expected in the 

honeycomb lattice. Indeed, as Figure 11 shows, we do observed domains in the honeycomb 

lattices. 

As Figure 10 (b) and (c) show, there is a clear similarity between the moment 

correlations of the perpendicular kagome and the in-plane hexagonal arrays. The natural 

question to ask after this observation is how that similarity would evolve with changing 



Figure 12: (left) Nearest-neighbor correlations plotted against interaction energy for all of the inter-island spacings. (right) 
Nearest-neighbor correlations plotted against the interaction energy scaled by the effective temperature to match the data 
from a monte carlo simulation of an ideal ising kagome antiferromagnet. Figure from [19].

Figure 11: Domains in honeycomb lattices with lattice constants of (left) 500 nm and right (800) nm. Figure from [19].
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In order to model the data a Monte Carlo simulation of an ideal nearest-neighbor 

Ising kagome antiferromagnet which had been thermalized at an effective temperature, 

T eff , was performed. The solid line in Figure 12 (b) represents the result of this simulation 

scaled by the effective temperature. T eff is taken to be 3.3 x105 K  for perpendicular kagome 

and 7.9 x104 K for the in-plane hexagonal array. This simulation technique captures most of 

the behavior of the experimental data. The only part that it misses is the way in which the 

correlation goes to zero. The simulation shows a slow, asymptotic approach to zero whereas 

the data has a threshold transition from an uncorrelated to a correlated state. 

The striking similarities between the correlation data for all three geometries (Figure 

10) suggest that the behavior of artificial spin ices does not depend on the particular 

geometry or the make up of the islands. The natural extension of this would be to take similar 

data for a different set of geometries. Demonstrating that lattices with perpendicularly 

oriented moments can be constructed open up the door for using these lattices to imprint a 

frustrated magnetic topology onto a thin film. This procedure could have implications in 

diverse fields such as 2D electron gases and superconductors.
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