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Abstract

In this thesis, we apply the concept of a cursed equilibrium to a sequential auction envi-

ronment. In a cursed equilibrium, players fail to take into consideration the relationship

between their opponents’ strategies and types with probability χ. In auctions, bidders

who exhibit this behavior are said to suffer from the winner’s curse: the price they pay

upon winning the auction exceeds the true value of the object. As an extension of Eyster

and Rabin’s original paper, we derive symmetric equilibria strategies for a two-round

sequential auction as well as the corresponding price series for any fixed level of cursed-

ness. In addition, we posit a plausible connection between the winner’s curse and the

downward price anomaly in sequential common-value auctions.
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1 Introduction

An auction is a method of efficiently allocating objects to individuals who value those

objects the most. In most auction formats, those individuals who wish to acquire the

object for sale submit sealed bids, from which the seller chooses the winner. Usually,

but not always, the winner is the individual who submits the highest bid, paying a price

equal to his bid to the seller. This is commonly known as a first-price auction. A well

known alternative is the Vickrey auction (also known as the second-price auction), where

the highest bidder wins but instead pays a price equal to the second-highest bid. In

real world markets, there exist a variety of auction formats. While some auctions rely

on selling goods simultaneously–such as government securities–others split the auction

into rounds of bidding, with a single object sold in each round. Objects from houses,

wine, paintings, flowers, and even satellite transponders are sold by sequential auctions.

When objects are sold in sequence,as opposed to simultaneously, bidders have multiple

chances to win, giving an opportunity for bidders to re-evaluate their strategy following

each round.

In an auction, the worth of the objects for sale has either one of two possible states

(or sometimes a combination of the two), called private or common values, respectively.

Objects with a common-value possess some intrinsic worth equal to all bidders. Consider,

for example, an oil field. The oil field has a specific monetary value directly related to

the amount of petroleum potentially available to extract. Bidders bidding on an oil field

do not know the definite value of the field, since they do not know the exact amount of

petroleum underground. This leads bidders to make an approximated “guess” in the form

of a sealed bid, dependent on some previously available public or private information. For

example, a firm may hire an oil field service company to estimate the potential amount

of petroleum. This private information, often called a signal, is strategically considered

in submitting a bid on the object. Observed frequently in real-world auctions, bidders

whose private signals partially reveal the common-value of the object often bid more than

1



the equilibrium theory predicts (see Krishna, 2002).

When the winning bid exceeds not only the equilibrium bid but the object’s true value,

the bidder is said to exhibit the phenomenon of the “winner’s curse”. The winner’s curse

is a psychological bias widely observed in experimental literature (see Kagel and Levin,

1986 and Klemperer, 1998). In contrast to laboratory experiments, theory dictates that

bidders never bid over the true value of the object in an equilibrium, no matter how many

bidders there are. The Bayesian Nash equilibrium (BNE) corrects for this possibility in

the form of “bid shading,” or bidding a fraction of one’s estimate of the object’s value.

One existing explanation for the winner’s curse is that bidders typically fail to fully

appreciate the correlation between other bidders’ signals, and the probability of winning

the auction. If other bidders have “low” signals, a bidder with a comparatively “high”

signal who fails to temper his bid leads him to believe that the object is worth more

than it truly is. Winning the auction with a high signal reveals something about the

object; specifically that other bidders took some negative information about the object

into consideration that the winning bidder did not.

In this thesis, we extend the existing work on the “cursed equilibrium” concept created

by Eyster and Rabin (2005) that captures this intuition for simultaneous auctions to the

environment of sequential auctions. This concept allows bidders to partially appreciate

the correlation between other bidders’ signals and their actions with positive probability

that their beliefs regarding this correlation are incorrect. Their χ-virtual game corre-

sponds to a parametric model of the BNE. Our paper’s novel contribution is establishing

a possible relationship between the winner’s curse and the widely-observed ‘downward

price anomaly’ in sequential auctions.

We begin the following section (Section two) with a literature review, briefly outlining

pertinent contributions to the analysis of sequential auctions as well as an introduction

to the cursed equilibrium concept.

In Section three, we outline the auction environment for first-price and second-price

auctions and draw some assumptions from the model.
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In Section four, we formally derive symmetric cursed equilibria for the two auction

formats. We show that the cursed equilibrium leads to an ambiguous effect on the seller’s

revenue, dependent on the number of competing bidders as well as the distribution of

values. In an example, we show that a fully-cursed auction can produce either higher or

lower expected revenues than the Bayesian auction equivalent.

In Section six, we study the equilibrium price series for both formats. We show that

for the symmetric bidders case, the price series at equilibrium is at best a martingale for

a fixed level of cursedness. A (discrete-time) martingale is a stochastic process X1, X2,

etc. that satisfies E[Xt+1|X1, . . . , Xt] = Xt for any time t.

In Section seven, we refine the cursed equilibrium concept in an example with asym-

metrically cursed bidders. We show that the price series of the auction is no longer

bound as a non-decreasing function. Thus for some instances of asymmetric cursedness,

the expected prices are downward drifting, tying the winner’s curse to the downward

price anomaly in our conclusion.

We end the thesis (Section eight) with a brief discussion and reflect on extensions and

possible future directions of our research.
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2 Literature Review

Auctions have been used as a market mechanism since the time of the ancient Babyloni-

ans. As a famous historical example, the entire Roman Empire was sold via an ascending

auction in 193 A.D. By comparison, the study of auctions in economic literature is rel-

atively recent. Vickrey’s seminal paper (1962) was the first to truly study auctions as

games. Though early contributors like Ortega-Reichert (1968) and Wilson (1969) made

significant headway in augmenting the discipline, Milgrom and Weber’s paper (1982) sig-

nals the beginning of the modern era of the theory of auctions. See Klemperer (1999)

and Krishna (2002) for a thorough introduction to the foundation of the theory.

By comparison to the simultaneous auction environment, the study of sequential auc-

tions is rather sparse and generally still considered incomplete. In 2000, Milgrom and

Weber published a follow-up to their early work that defines Nash equilibrium conditions

in sequential auctions under the assumption of affiliated values. Unlike Weber’s private

signal result, the expected price path no longer follows a martingale (e.g., random walk),

but a submartingale (e.g., upward drifting). At this point, there is a bifurcation between

the empirical data and theoretical results.

Many empirical papers on sequentially sold homogeneous objects find that the price

paid for the object declines as the auction progresses. Ashenfelter’s (1989) early con-

tribution to the study of wine auctions is among the first of many to bring attention

to this result. This peculiarity has since been dubbed by economists as the “downward

price anomaly,” or alternatively, the “afternoon effect”. Van den Berg et al. (2000) find

evidence for the downward price anomaly in sequential Dutch (first-price) auctions of

roses in large flower auctions.

McAfee and Vincent (1993) offer an elegant solution to the problem of downward

drifting price series’ in the form of risk averse bidders. However, their result depends

on risk aversion increasing with wealth, and so it remains doubtful that this offers a

plausible explanation for the observed anomaly. Bernhardt and Scoones (1994) explain
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the decline in prices by assuming the objects are heterogeneous. In a different manor,

Jeitschko (1999) considers a multi-unit demand model. The downward price anomaly

has inspired many competing theories, though there is no clear-cut explanation for its

frequent occurrence in the data.

In addition to the relevant auction literature, the basis of this thesis draws heavily on

Eyster and Rabin’s work (2005) on an equilibrium concept in games with private informa-

tion, the cursed equilibrium. In that paper, they apply the concept to models of bilateral

trade, signaling games, and common-value auctions. In the latter, cursed equilibrium el-

egantly captures the phenomenon of the winner’s curse. Their parameterized equilibrium

inbeds the Bayesian Nash Equilibrium (BNE) as an extreme case, in which they show a

range of ‘cursedness’ values fitting empirical data better than general equilibrium analysis

suggests. In the discussion of their paper, Eyster and Rabin comment on the possibility

of extending their equilibrium concept to sequential games. In the remaining portion of

this thesis, we extend the cursed equilibrium into a two-stage auction environment.
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3 The Environment

In this section, we incorporate the cursed effect in a two-stage model for both first-

price and second-price auctions. Assume there are 2 identical objects to be auctioned

individually in sequence, and N symmetric bidders with a single-unit demand. Bidder

i observes the realization xi of a private signal Xi, a random variable with support on

[x̌, x̂]. We assume that the signals are independently and identically distributed with a

probability density function f(·) and cumulative distribution function F (·). As a usual

convention in the literature, we define an order statistic Yj, as the j-th highest signal of

the N − 1 non-winning bidders, j ≥ 1. Let x be a vector of all bidders signals and x−i

be the vector of all signals except i. Furthermore, the object for auction has a common-

value V , dependent on the vector x. Most of the literature on common-values assumes

either V =
∑
xi or V = 1

N

∑
xi, the sum of the signals or the average of the signals,

respectively.

All aspects of the environment are assumed to be known by bidder i with the exception

of the realization of x−i. We assume that bidders are risk neutral–that is, they are profit-

maximizing agents. Therefore, in round t a perfectly rational bidder is willing to bid

up to his own value vt(xi,x−i), as determined by the player-specific perception of the

object’s common-value. This value is altered by the extent to which a player is “cursed,”

defined as the probability χ that a bidder believes other bidders play the average action

regardless of the realized value of their private signal. Consequently, the cursed bidder

attaches the correct (equilibrium) strategy of all other bidders with probability (1− χ).

In this framework, we view auctions as a sequential game played among symmetric

bidders. In each round, bidder i submits a χ-cursed bid bi to a seller, where bi is chosen

from a strategy function βχi : [x̌, x̂] → R+ common to all bidders. At the end of the

first round of bidding, the highest bid wins, and his bid is made public to the N − 1

bidders that remain to bid in the second round. This bid announcement behaves as a

signal, from which the remaining bidders correctly infer the realization y1 of the previous
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winner’s signal. From here, we independently examine the two most common formats:

first-price sealed-bid, and second-price sealed-bid auctions. In the first-price environment,

the bidder with the highest bid wins the object and pays his bid, bi. We define a bidder’s

payoff πi for a chosen bid of bi as:

πi =


vt(xi,x−i)− bi if bi >maxj 6=i(bj)

0 if bi ≤maxj 6=i(bj)

In the second-price equivalent, the bidder who submits the highest bid wins and pays a

price equal to the second-highest bid, maxj 6=i(bj). A bidder’s payoff πi for a chosen bid

of bi ∈ βχi is:

πi =


vt(xi,x−i)−maxj 6=i(bj) if bi >maxj 6=i(bj)

0 if bi ≤maxj 6=i(bj)

From the cursed effect, in either format bidder i’s χ-cursed profit conditional on winning

the auction with a bid of bi and paying a price of pi is

πi = (1− χ)vt(xi,x−i) + χC(xi)− pi

where pi = bi for the first-price auction and pi = maxj 6=i(bj) in the second-price equiv-

alent. This expression is simply the χ-weighted average of the object’s true value to i

and the value conditioned on the realization of Xi. There are two vital functions in our

analysis: the value of the object vt(xi,x−i), and what we refer to as the cursed function

C(xi) = E[V |Xi = xi], equal to the expected value of the object conditioned only on the

realized value of i’s signal xi. As an addition to the concepts developed prior, we feel

that it is necessary to outline some basic assumptions regarding the state of the auction

environment. Hence:

A1. The function vt(xi,x−i) is increasing in xi, twice differentiable, and symmetric for
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all N bidders.

A2. The expression fYt(·|xi)FYt(·|xi)−1 is increasing in xi. Here, F (·|xi) is the distribu-

tion of Yj conditional on Xi = xi and f(·|xi) denotes the conditional density function

associated with the distribution.

A3. The distribution of Yt given the realization of X1, Y1 and given Y1 ≤ X1 is stochas-

tically increasing in xi.

A4. We assume X1 � Y1 � . . . � Yt−1, i.e. the signal of the first winner stochastically

dominates the signal of the second winner, which in turn dominates that of the next

highest bidder, and so forth.

A5. Finally, we have f(x|y)f(x′|y′) > f(x′|y)f(x|y′) ∀x > x′, y > y′

The fifth assumption is commonly referred to as the strict monotone likelihood ratio

property (SMLRP). We use the SMLRP in our derivation of the expected price series

at cursed equilibrium. The following section is dedicated to incorporating the cursed

equilibrium into the general symmetric model first derived by Milgrom and Weber (1982).

We develop symmetric cursed equilibrium conditions for both sequential first-price and

second-price common-value auctions and offer a complete example that clearly illustrates

cursed bidding behavior.
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4 Symmetric Cursed Equilibria

We now derive the symmetric cursed equilibria for the two common-value auction formats.

The sequential cursed equilibrium concept not only has roots in psychology, but is easily

adaptable to the current theory. We provide some discussion on the difference in bidding

behavior for increasing values of χ.

Eyster and Rabin’s (2005) definition of the cursed equilibrium for simultaneous auc-

tions allows players to have partially incorrect beliefs about the correlation between other

players’ signals and their bids. In a χ-cursed equilibrium, each bidder optimally responds

to a belief that with probability χ his opponents’ bids do not depend on their signals,

and with probability (1− χ) their bids do depend on their signals. Hence, the valuation

of the object to any bidder is the χ-weighted average of the object’s true value and the

expectation of its value conditional only on that bidder’s signal. Our work extends Eyster

and Rabin’s model to account for a common bidder’s dilemma; each bidder must account

for the possibility of winning the object not only in the first round, but in the t − 1

future rounds that follow. The equilibrium strategy, consisting of t bids, leads to a less

aggressive first-round strategy, i.e. bidders shade their bid below what they would have

in a simultaneous auction to account for the possibility of a future payoff in following

rounds.

Lemma 4.1. For all χ ∈ [0, 1], the χ-weighted average of the value of the object to those

in the second and final round of the auction is V χ = v2(x;x, y1) + χ[C(x)− v2(x;x, y1)]

Proof. The result follows from the definition of a χ-cursed equilibrium. A bidder i’s

expectation of the common value of the object V conditional on i’s signal Xi = x and

the highest of the remaining bidders’ signals being x is just v2(x;x, y1). His valuation of

the object conditional on only his signal Xi is dependent on the realization of the signal,

x and the expected value of the random variable Xi. The χ-weighted average of the two

valuations is
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V χ = E {(1− χ)V + χE[V |Xi = x]|Xi = x, Y1 = y1, Y2 = x}

= (1− χ)v2(x;x, y1) + χC(x)

= v2(x;x, y1) + χ[C(x)− v2(x;x, y1)] (1)

In a cursed equilibrium, the χ-weighted average of these two valuations is used in

place of the Bayesian valuation to reflect the ignorance of the correlation between signals

and bids. Note that for χ = 0 the cursed value is equivalent to the fully rational value,

and for χ = 1, the value is drawn strictly from the cursed function C(x). Bidders who

act as if winning the auction conveys no information about the true value of the object

are called fully cursed. The proofs of the two main theorems introduced in this section

follow succinctly from arguments by Milgrom and Weber (2000) as well as Mezzetti et

al. (2004), and so will not be discussed for purposes of clarity.

4.1 First-Price Auctions

With the definition of V χ in hand, consider a sequential first-price auction with the

winning bid announced ex post. Since the highest bidder wins the first-price auction

and pays the amount equal to his own bid, this format coincides with the general price

announcement model developed by Milgrom and Weber (2000). Let S∗ = (βχ1 , β
χ
2 ) be a

symmetric equilibrium strategy of a two-round auction; βχ1 (x) and βχ2 (x; y1) denote the

χ-cursed bid made by the bidder with signal x and winning bid announcement y1 in the

first and second stage, respectively.

Theorem 1. Let V χ be the cursed valuation of the object to each bidder and suppose

that y1 is the signal corresponding to the winning bid in the first round. A symmetric

cursed equilibrium profile S∗=(βχ1 , β
χ
2 ) in the sequential first-price auction is given by the
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solutions to the pair of differential equations

βχ
′

2 (x; y1) = [V χ − βχ2 (x;x, y1)]
fY2(x|x; y1)

FY2(x|x; y1)
(2)

βχ
′

1 (x) = [βχ2 (x;x)− βχ1 (x)]
fY1(x|x)

FY1(x|x)
(3)

The principal implication of the cursed equilibrium is that the winner’s curse arises

naturally from a sufficiently large pool of bidders. As the number of bidders N gets large,

the probability P that the bidder with the highest signal submits a bid in excess of the

true value of the object tends to 1. In first-price auctions, the symmetric equilibrium

is complex: bidders must attempt to maximize the probability of winning while simul-

taneously minimizing the chance of overpaying. Milgrom and Weber (2000) prove that

fully rational bidders always correct for the possibility of overpaying in equilibrium, con-

ditioning their bid on their random signal Xi being the highest, and equal to that of the

next highest signal Y1. However, for any non-zero χ, those with high signals bid higher

than predicted by the Bayesian equilibrium, increasing the probability that the winning

bidder suffers the winner’s curse. By comparison to the first-price auction, analysis of

the second-price auction offers a less intuitive, but more tractable solution.

4.2 Second-Price Auctions

In a second-price auction, the highest bidder wins the auction and pays a price equal to

the second highest bid. In the independent private values (IPV) model, a well-known

result is that bidding one’s private value x is a weakly dominant strategy for any bidder.

However, under the assumption of affiliate values a bidder bids the value of the object

conditioned on his signal X1 = x being the highest signal and equal to the highest of the

remaining bidders’ signal, Y1. At cursed equilibrium, bidders bid the χ-weighted average,

so that β(x) = (1− χ)v(x, x) + χC(x). In sequential auctions, bidders remaining in the

final round of the auction still have an incentive to bid the χ-weighted average of their
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values; however, as is the case for first-price auctions, bidders shade their bid below their

cursed value in previous rounds.

Theorem 2. Let V χ be the cursed value of the object to each bidder and suppose that

y1 is the signal corresponding to the winning bid in the first round. A symmetric cursed

equilibrium strategy profile S∗=(βχ1 , β
χ
2 ) in the sequential second-price auction is given

by

βχ2 (x; y1) = E[V χ|X1 = x, Y1 = y1, Y2 = x] (4)

βχ1 (x) = E[βχ2 (y2;x)|X1 = x, Y1 = x] (5)

First, observe that in the second round it is a symmetric equilibrium for bidders to

bid their cursed value V χ = (1 − χ)v2(x;x, y1) + χC(x). For χ = 0, it is an equilibrium

for bidders to bid their true value v2(x;x, y1), conditioned on the previous winning bid

y1 and the realized value of the next highest signal Y2 = x, consistent with the results in

Milgrom and Weber (2000). For χ = 1, bidders at fully cursed equilibrium bid C(x).

In the first round, a bidder knows that if he could win in the first round with a bid

of b(x) he would also win in the second round, and pay a lower price. Therefore, in

equilibrium he bids the price he expects to pay in the second round, conditioned on the

realized value of his signal being the highest and equal to the highest of N − 1 remaining

bidders. The price he expects to pay is equal to the bid of the opponent with the second

highest signal Y2, since the winning bid in the second round with a signal Y1 wins and

pays β2(Y2;x).

The SMLRP implies that (4) is increasing in x, while (5) is increasing in x and y1.

Thus, affiliation leads χ-cursed bidders to bid at least as high as their first round bid in

the following round. The process of acquiring “better” information i.e., other players’

signals, drives the bidding upward. We now provide a simple example of the χ-cursed

equilibrium in a sequential first-price auction.
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5 Example

In this example, we illustrate the differences between perfectly rational (χ = 0) and

fully cursed (χ = 1) symmetric equilibrium bidding strategies in a two-round first-price

auction. To set up the model, first suppose that there are three bidders. The objects

are sold sequentially in two rounds of bidding. For simplicity, we study bidders with

strictly single-unit demand, so that after a round of bidding the bidder with the highest

submitted bid wins the object and leaves the auction, leaving the remaining bidders to

bid in subsequent rounds. Each bidder i observes a private signal Xi = Si + ε, where

S, and ε are uniformly and independently distributed on [0,1] for all bidders. That is,

bidder 1 receives the signal X1 = S1 + ε, bidder 2 receives the signal X2 = S2 + ε, and

bidder 3 receives the signal X3 = S3 + ε. The object for sale has a common value,

V =
1

3

3∑
i=1

Xi (6)

All bidders choose a bid from a symmetric strategy function βχt (·). As usual in auction

literature, if X1 is the highest bid, we define Y1 as the highest of N − 1 bidders, Y2 as the

second highest, and so on. Let fY1(·) and fY2(·) be the probability density functions (with

some arguments) of Y1 and Y2, and let FY1(·) and FY2(·) be the corresponding cumulative

distribution functions.

To develop some intuition regarding the example to follow, without loss of generality

consider the case where X1 � X2 � X3. A fully rational bidder will always bid some

positive fraction k < 1 of his signal, so the range of βχi is in the closed interval [0, Xi].

For partially cursed bidders, this assumption does not hold. The two losing bidders

simultaneously observe the winning signal y1 and get another chance to win the object in

the second round. We know that Y1 � Y2, and so knowing the realization y1 of Y1 in the

second auction causes bidder 2 and 3 to reassess their bidding strategy. Theoretically,

bidders 2 and 3 will bid at a higher fraction of their own signals, X2 and X3, respectively.
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Figure 1: First period equilibrium bidding strategy, χ=0

5.1 Fully Rational Bidders

Developing a set of BNE strategies requires a backward inductive study of the model.

When χ = 0, the χ-cursed value V χ = (1 − χ)vt(·) + χC(x) = vt(·). Simplifying the

cursed equilibria strategies defined in the previous section, the BNE profile simplifies to

the set of differential equations

β′2(x; y1) = [(v2(x;x, y1)− β2(x;x, y1)]
fY2(x|x; y1)

FY2(x|x; y1)
(7)

β′1(x) = [β2(x;x, y1)− β1(x;x)]
fY1(x|x)

FY1(x|x)
(8)

with the boundary condition β′t(x̌) = vt(x̌; x̌) = 0. To determine the equilibrium bidding

strategy, we need to explicitly solve for fY2(x|x; y1), the density function of the third

highest bidder conditional on X1 = x, Y1 = y1. This requires some further analysis into

methods of Bayesian inference. It can be verified that

fY2(x|x; y1)

FY2(x|x; y1)
=

2

x
(9)

For a complete derivation of (9), see Appendix A. Now using the argument above, the

differential equation defining the symmetric equilibrium with the boundary condition
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β2(0; y1) = 0 in the second round of bidding is

β′2(x; y1) =

(
2x+ y1

3
− β2(x; y1)

)
2

x
(10)

which has a unique solution

β2(x; y1) =
4x+ 3y1

9
(11)

The symmetric equilibrium for the first round of bidding is determined in a similar man-

ner. However, in the first round, bidders have no information other than their own private

signal. It follows that

fY1(x|x)

FY1(x|x)
=

3

x
(12)

so the symmetric equilibrium strategy in the first round satisfies the differential equation

β′1(x) =

(
7x

9
− β1(x;x)

)
3

x
(13)

with boundary condition β1(0) = 0. This yields a symmetric equilibrium of

β1(x) =
7

12
x (14)

Thus, each bidder has a Bayesian Nash strategy profile,

S∗(x) =

(
7

12
x,

4

9
x+

1

3
y1

)
(15)

Under our assumptions, the expected revenues in the fully rational auction are
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E[RI] = E
[
max

{
7

12
X1,

7

12
X2,

7

12
X3

}]
=

7

12
E[max{S1, S2, S3}] +

7

12
E[ε]

=
35

48

for the first round of bidding, and

E[RII] = E
[
max

{
4

9
X1 +

1

3
Y1,

4

9
X2 +

1

3
Y1

}]
=

4

9
E[max{S1, S2}] +

4

9
E[ε] +

1

3
E[Y1]

=
49

54

for the second.

Figure 2: Second period equilibrium bidding strategy, χ=0
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5.2 Fully Cursed Bidders

We now turn our attention to studying the equilibrium bidding strategies of fully cursed

bidders; i.e., when χ = 1∀i ∈ N . In the fully cursed environment, bidders act as if

they were participating in an auction with private (but affiliated) values. Assume two

items are sold sequentially to three bidders with private signals distributed as before on

the closed interval [0, 2]. With respect to the second period equilibrium strategy of an

arbitrary winning bidder, the differential equation can be written as

βχ
′

2 (x; y1) = [C(x)− βχ2 (x; y1)]
fY2(x|x)

FY2(x|x)
(16)

where

C(x) = E[V χ|X1 = x] =
1

3
x+

(n− 1)

3
E[Xi] =

1

3
x+

2

3
(17)

From the assumption of a uniform distribution with support on [0, 2] we get

fY2(x|x)

FY2(x|x)
=

2

x
(18)

so

βχ
′

2 (x) =

(
x+ 2

3
− βχ2 (x)

)
2

x
(19)

which gives a solution to the second period strategy

βχ2 (x) =
2

9
x+

2

3
(20)

It is interesting to note that in equilibrium, the second period strategy is completely

independent of the previous price announcement y1. That is, fully cursed bidders fail to

consider any correlation between the previous winning bid and the value of the object for

which they are bidding. Working backward, the first period equilibrium strategy is the

solution to the differential equation

17



βχ
′

1 (x) = [βχ2 (x)− βχ1 (x)]
fY1(x|x)

FY1(x|x)
(21)

with the boundary condition βχ1 (0) = 0. Since bidders assume their signal distributions

are symmetric, the expression can be rewritten as

βχ
′

1 (x) =

(
2x+ 6

9
− βχ1 (x)

)
3

x
(22)

Solving the differential equation yields the solution

βχ1 (x) =
1

6
x+

2

3
(23)

Thus, the fully cursed symmetric equilibrium profile follows directly:

S∗(x) =

(
1

6
x+

2

3
,
2

9
x+

2

3

)
(24)

The expected revenues in the fully cursed environment are

E[RI] = E
[
max

{
1

6
X1,

1

6
X2,

1

6
X3

}]
+

2

3

=
1

6
E[max{S1, S2, S3}] +

1

6
E[ε] +

2

3

=
7

8

for the first round of bidding, and

E[RII] = E
[
max

{
2

3
X1,

2

3
X2

}]
=

2

9
E[max{S1, S2}] +

2

9
E[ε] +

2

3

=
8

9
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x

b(x)

βχ2 (x)

βχ1 (x)

0 2

10
9

1
2
3

Figure 3: Equilibrium bidding strategies, χ=1

for the second.

5.3 Notes

Though we make some relatively simplistic assumptions for the purpose of tractability, the

consequences of the level of cursedness in these two examples leads to an interesting result.

In the first round of bidding, the fully cursed auction generates higher revenues than the

fully rational auction. However, second round revenues are higher in the fully rational

auction. As shown in Figure 3, cursedness raises the intercept and lowers the slope of the

equilibrium bidding function. This suggests that there is an implicit correlation between

the aggressiveness of bidders in subsequent rounds and the revelation of information,

specifically learning previous winning bids. Fully cursed bidders are less likely to bid

aggressively because they do not take the information conveyed in the previous winning

bid into consideration in the second round. The effect of the level of cursedness on

seller’s revenue is therefore ambiguous. In the following section, we derive the χ-cursed

equilibrium price series for symmetric bidders in an attempt to formalize this intuition.
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6 Equilibrium Price Path

Proposition 1. Suppose that χ-cursed bidders follow the symmetric bidding strategies

βχ1 (·) and βχ2 (·). Then ∀χ ∈ [0, 1), the equilibrium price series follows a submartingale,

E[P2|P1] > P1.

In this section, we provide a proof of the price series proposition above. The proposi-

tion states that for any χ ∈ [0, 1) the expected price series of both sequential first-price

as well as second-price auctions are upward drifting. The assumption of affiliation causes

the expected price to rise in subsequent rounds, since bid announcements carry valuable

information to the remaining bidders. We use a revenue ranking lemma to show that the

proposition holds for the second-price auction as well.

6.1 First-Price Auctions

A bidder i with a signal Xi = x wins the Bayesian auction in round two. Assuming

bidders follow symmetric strategies, it must be that x < y1, or else i would have won in

the previous round of bidding. From the definition of a first-price auction, the winning

bidder in round two pays the price P2 equal to the winning bid, βχ2 (·). This implies that

the price path is equivalent to

E[P2|P1] = E[P2|βχ1 (x)]

= E[βχ2 (x; y1)|βχ1 (x)]

Now, let

d
dx

[F ′Y1(·)β
χ
1 (x)]

fY1(·)
= δ > 0

Through manipulation of the first-order differential equation for βχ2 (x; y1), we obtain
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β′1(x) = [βχ2 (x;x)− βχ1 (x)]
fY1(·)
FY1(·)

fY1(·)β
χ
2 (x;x) =

d

dx
[F ′Y1(·)β

χ
1 (x)] + fY1(·)β

χ
1 (x)

βχ2 (x;x) =
d
dx

[F ′Y1(·)β
χ
1 (x)]

fY1(·)
+ βχ1 (x)

βχ2 (x;x) = δ + βχ1 (x)

From the strict monotone likelihood ratio property, the function βχ2 (·) must be increasing

in all its arguments. Since we know the winning signal y1 is strictly greater than x,

E[βχ2 (x; y1)|βχ1 (x)] > E[βχ2 (x;x)|βχ1 (x)]

and we have shown previously that for δ > 0,

βχ2 (x;x) > βχ1 (x)

Therefore,

E[P2|P1] = E[βχ2 (x; y1)|βχ1 (x)]

> E[βχ2 (x;x)|βχ1 (x)]

> βχ1 (x)

= P1

Thus, we have shown that E[P2|P1] > P1. The inequality holds from the assumption that

βχ1 (x) is an increasing function, coupled with the fact that Y2 ≤ x. The upward drift

of prices is a well known result in auction theory proven first for risk neutral bidders

by Milgrom and Weber (2000). When χ = 1, bidders have private (but interdependent)

values of the object. Furthermore, the price series with private values is
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E[P2|P1] = E[P2|βχ1 (x)]

= E[βχ2 (Y2;x, y1)|Y2 ≤ x ≤ y1]

= βχ1 (x)

= P1

So we have E[P2|P1] = P1. It follows that for any χ ∈ [0, 1], the price path Pt is a strictly

non-decreasing function of βχ1 (x).

6.2 Second-Price Auctions

Now consider the equivalent second-price auction format. In a second-price auction, the

winning bidder with signal x pays an amount equal to βχ1 (Y1), where Y1 is the second-

highest signal of the remaining bidders. The winning bid announcement in the first

round is the same as the first-price auction, given by βχ1 (x). It follows that the price in

the second round, P2 = βχ2 (Y2;X1), where Y2 = x3 is the third-highest signal.

Lemma 6.1. In the sequential symmetric model with affiliated signals and common

values, the first-price (FP) and second-price (SP) auctions can be ranked in terms of

expected revenues, E[RSP ] > E[RFP ].

It follows directly that the second-price auction price series also follows a submartin-

gale (see Krishna, 2002). This concludes the proof of the proposition. Though these

proofs hold for any fixed χ, they rely on the assumption of symmetric bidding functions.

The addition of asymmetrically χ-cursed bidders may in fact lead to lower revenues in

subsequent rounds. For instance, bidders with a higher χ value are more likely to bid

above V . As these bidders win, those with lower (or zero) χ values are left, and though

they bid more aggressively relative to their own bids in prior periods, they may still be

less than the bids made by those with high χ values in previous rounds. In this case,
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under certain cursed conditions the equilibrium price path would not be submartingale

but rather supermartingale, a tendency in common-value auctions with strong empirical

evidence (see McAfee and Vincent, 1993).
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7 Asymmetric χ Values

Next, we consider the implications of asymmetries in the level of cursedness among bid-

ders. This has somewhat interesting effects on the expected price series at equilibrium.

We approach asymmetry with a single model. The environment contains two types of

bidders: fully cursed bidders, and fully rational bidders.

Consider a two-round auction between two fully cursed bidders and a single rational

bidder. Let the true common-value of the object V =
∑
xi. For bidders i = 1, 2, 3

suppose that the signals Xi are interdependent and distributed (as before) on [0, 2]. To

differentiate between rational and cursed bidders again we denote only the cursed bids

with a superscript χ. The rational bidder, further referred to as bidder 3, realizes the

correct distribution of the common value as the sum of the independent signals, and so

his valuation is

v3(x1, x2, x3) = x1 + x2 + x3 (25)

However, both cursed bidders fail to value the object at its true common-value, instead

opting to bid strictly from the cursed function, C(xi). Specifically,

V χ = C(xi) = E[V |Xi = xi] = xi + (N − 1)E[Xi] = xi + (2)(1) = xi + 2

Therefore, bidders 1 and 2 value the object at

v1(x1) = x1 + 2

v2(x2) = x2 + 2

and (at equilibrium) in round one bid symmetrically,

βχ1 (xi) = k · xi + 2 k ≤ 1 (26)
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where k is a constant. In the first stage of bidding, we know that bidder 3 will, at

most, bid his expected value conditional on his signal being the highest of his opponents,

eliminating the possibility of the winner’s curse. Thus in the first round,

argmax
x3∈R

(β1(x3)) = 3 · x3 (27)

is 3’s maximum possible bid. Considering β1(x3) = 3 · x3 and βχ1 (x1) = k · x1 + 2, there

are two possible cases. If β(X3) > k ·max{x1, x2}+ 2, Bidder 3 wins the first round and

pays the bid of the second highest bidder, say in the case that x2 > x3, k ·x2 +2. The two

cursed bidders then bid V χ in the next round and the bidder with the higher signal pays

that of the lower. On the other hand, if k ·max{x1, x2}+ 2 > β(X3) a cursed bidder pays

some price and bidder 3 bids against the remaining cursed bidder. Consider the second

round choice made by bidder 3. He knows that bidder 2 will, of course, bid his private

value in the final round. Therefore, bidder 3’s expected payoff with a bid of b from the

second round is

Π3(b, x3; y1) =

∫ b

0

[v(x3, y1, x2)− C(x2)]dx2

=

∫ b

0

[(x3 + y1 + x2)− (x2 + 2)]dx2

=

∫ b

0

(x3 + y1 − 2)dx2

= b · x3 + b · y1 − 2 · b

Maximizing Π3(·) with respect to b shows that if bidder 2 follows the strategy βχ2 (x2) =

x2 + 2, it is optimal for bidder 3 to bid

β2(x3; y1) =


x3 + y1 if x3 + y1 ≥ 2

0 if x3 + y1 < 2
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Bidder 3 will only submit a non-zero bid if his signal combined with the signal of the

previous winner is greater than 2, the minimum price he expects to pay conditional on

winning in the second round. To verify this, consider the case where βχ2 (·) = β2(·), or

x3+y1 = x2+2. The payoff to bidder 3 upon winning is v2(x1, y1, x3)−x2+2 = y1+x3−2.

Since y1 + x3 ≥ 2, bidder 3’s payoff conditional on winning is strictly non-negative.

Furthermore, it is trivial to show that E[β2(X3)] ≤ E[β2(X2;X1)], so on average, bidder

2 will win the second round of the auction, and pay β2(x3; y1). However, since bidder 1

previously won, and paid a price P1 = k · x2 + 2 ≥ 2, it follows that E[P2|P1] ≤ P1. Note

that while we do not solve explicitly for the first round strategies, they are bound by the

intercept from C(x).

To supplement our example, we consider the impact asymmetric χ values has on the

auction’s competitiveness. A sequence of N auctions is called competitive if the expected

price in the Bayesian Nash equilibrium converges to the value of the object. Whenever

χ > 0, Eyster and Rabin (2005) show that when N is sufficiently large, all N bidders suffer

the winner’s curse in the symmetric model. In the asymmetric model, the probability that

any uniquely χ-cursed bidder has a signal greater than E[Xi] increases with the number

of χ-cursed bidders. As the auction progresses, the proportion of fully cursed bidders

to partially cursed bidders decreases, and thus the exent of the winner’s curse varies for

remaining bidders with unique χs. Though our example exhibits decreasing prices, with

more rounds (and thus more bidders) the expected price path becomes ambiguous.
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8 Discussion

In this paper, we have derived symmetric cursed equilibria for sequential auctions with

winning bid announcements. From extending the equilibrium concept from simultaneous

to sequential auctions, we have shown the cursed equilibrium to be a robust parametric

representation of a Nash equilibrium. When the first round bids are announced, sym-

metric χ-cursed bidders update their bidding strategies to reflect information acquisition.

We show the submartingale price series first derived by Milgrom and Weber (2000) for

symmetric bidders with affiliated values holds for any χ ∈ [0, 1). Consequently, χ may

increase or decrease the seller’s revenue in any sequence of auctions, but E[RI ] < E[RII ]

for any fixed χ. As a result, the effect of χ on a seller’s revenue is ambiguous. We have

also shown how even slight asymmetries among bidders’ χ values may lead to downward

drifting prices in equilibrium. Fitting χ values to empirical sequential auction data may

yield more interesting results in this direction.

Furthermore, our model may be strengthened in various ways. For instance, allowing

χ to follow some probability distribution across bidders may be a more realistic adapta-

tion to sequential games than assuming binary χ values for the entire bidder population.

Though this would appear to be a natural extension of our work, the possibility of prov-

ing the existence of such an equilibrium solution does not seem particularly tractable.

Eyster and Rabin (2005) note that another possible refinement of a cursed equilibrium

in repeated games could be allowing for a more robust definition of cursedness. If we

consider the action of observing winning bids, it is perhaps more realistic to assume that

even fully cursed bidders would rationally update their strategies. In this sense, bidders

could become more rational as they gain more information in sequential games, i.e. χ

decreases as a function of t. However, this idea partially undermines the essence of a

cursed equilibrium since for χ ∈ (0, 1) bidders partially update their bidding strategies

as they gain better information anyway and only fully cursed bidders fail to do so across

rounds.
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In conclusion, we believe that the cursed equilibrium offers an intuitive and portable

adaptation to the Nash equilibrium and may help in bridging the gap between the theory

of auctions and phenomena observed in empirical studies.

28



Appendices
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A

Joint Densities

A.1 Two Bidders

For clarity, let the signals of bidder Y1 and Y2 be denoted by Y and Z, respectively. To

get the joint distribution f(y, z), note that for any fixed ε, Y and Z are uniformly and

independently distributed over [ε, ε+ 1]. Therefore,

fY Z|ε(y, z|ε) =


1 if (y, z) ∈ [ε, ε+ 1]× [ε, ε+ 1]

0 otherwise

The joint distribution of Y ,Z, and ε over R3 is easily shown to be

fY Zε(y, z, ε) =


1 if ε ≤ min(y, z) ≤ max(y, z) ≤ ε+ 1

0 otherwise

Case 1. Let z ≤ y. We now have

f(y, z, ε) =


1 if ε ≤ z ≤ y ≤ ε+ 1

0 otherwise

Sub-case A. Let z ≤ y ≤ 1. In this case,

f(y, z, ε) =


1 if ε ≤ z

0 otherwise

To obtain our joint density f(y, z) from f(y, z, ε), we solve the indefinite integral

f(y, z) =

∫ ∞
−∞

f(y, z, ε) dε

with respect to the bounds of f(y, z, ε). For z ≤ y ≤ 1,
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f(y, z) =

∫ 1

0

f(y, z, ε)dε =

∫ z

0

dε = z

Sub-case B. Let 1 ≤ z ≤ y. In this case,

f(y, z, ε) =


1 if y − 1 ≤ ε ≤ 1

0 otherwise

Thus if 1 ≤ z ≤ y,

f(y, z) =

∫ 1

0

f(y, z, ε)dε =

∫ 1

y−1
dε = 2− y

Sub-case C. Let z ≤ 1 ≤ y and y − 1 ≤ z. If y − 1 is strictly greater than z, there

is no ε such that y − 1 ≤ ε ≤ z. So in this case,

f(y, z, ε) =


1 if y − 1 ≤ ε ≤ z

0 otherwise

So for z ≤ 1 ≤ y and y − 1 ≤ z,

f(y, z) =

∫ 1

0

f(y, z, ε)dε =

∫ z

y−1
dε = 1 + z − y

Combining the cases above when z ≤ y,

fY Z(y, z) =



z if z ≤ y ≤ 1

2− y if 1 ≤ z ≤ y

1 + z − y if z ≤ 1 ≤ y ≤ z + 1

0 otherwise

The case when y ≤ z is determined symmetrically. Calculating the conditional densities

requires some probability manipulation. Let
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fZY (z|y) =
fZY (y, z)

fY (y)
(28)

be the probability density function of y conditional on x being the realization of the

variable X. Since Xi = Si + ε, the probability density function of Xi over the interval

[0, θ] is

fY (y; θ) =



2θ−y
θ2

if θ ≤ y

y
θ2

if y ≤ θ

0 otherwise

Now, for z ≤ y ≤ 1 (the other cases are symmetric) the conditional distribution is

f(z|y; θ) =
zθ2

y

and for all y ∈ [0, θ], the cumulative distribution function F (y|y; θ) is

F (y|y; θ) =

∫ y

0

f(z|y)dz

=
z2θ2

2z

∣∣∣y
0

=
zθ2

2

Thus,

fY2(x|x; y1)

FY2(x|x; y1)
=

2

x
(29)

A.2 Three Bidders

Let the signals of bidders X1, Y1 and Y2 be denoted by X, Y , and Z. To get the

joint distribution f(x, y, z), note that for any fixed ε, X, Y , and Z are uniformly and
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independently distributed over [ε, ε+ 1].

Case 1. Let z ≤ y ≤ x. We now have

f(y, z, x, ε) =


1 if ε ≤ z ≤ y ≤ x ≤ ε+ 1

0 otherwise

Sub-case A. Let z ≤ y ≤ x ≤ 1. In this case,

f(x, y, z, ε) =


1 if ε ≤ z

0 otherwise

To obtain the joint density f(x, y, z) from f(x, y, z, ε), we solve the indefinite integral

with respect to the bounds of f(x, y, z, ε). For z ≤ y ≤ x ≤ 1,

f(x, y, z) =

∫ 1

0

f(x, y, z, ε)dε

=

∫ z

0

dε

= z

We offer the other possible cases without proof. Combining the cases not shown with the

one above, when z ≤ y ≤ x,

fXY Z(x, y, z) =



z if z ≤ y ≤ x ≤ 1

2− x if 1 ≤ z ≤ y ≤ x

1 + z − x if z ≤ 1 ≤ y ≤ x ≤ z + 1

1 + z − x if z ≤ y ≤ 1 ≤ x ≤ z + 1

0 otherwise

Like in the prior example, the other possible cases can be determined symmetrically. The
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joint density f(x, y) requires another integration,

fXY (x, y) =

∫ ∞
−∞

f(x, y, z) dz

=

∫ y

0

z dz

=
y2

2

Again, since Xi = Si + ε the probability density function of Xi over the interval [0, 2] is

(from a standard application of the convolution formula)

fX(x) =


x if x ≤ 1

2− x if x ≥ 1

0 otherwise

Now, for z ≤ y ≤ x ≤ 1 (the other cases are symmetric about 1) the conditional

distribution is

fY |X(y|x) =
y2

2x

and for all y ∈ [0, 2], the cumulative distribution function F (y|y; θ) is

F (x|x) =

∫ x

0

f(y|x)dy

=

∫ x

0

y2

2x

=
y3

6x

∣∣∣x
0

=
x2

6

Thus,
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fY1(x|x)

FY1(x|x)
=

3

x
(30)
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