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ABSTRACT 
 

To investigate the standardization of ground robot endurance as defined by the National 

Institute of Standard and Technology (NIST), this thesis presents both the fabrication of a NIST 

testing arena and the development of a novel robot tracking system that uses several overhead 

cameras to record the number of laps and the distance traveled by a robot over the duration of a 

test. The computer algorithms employed perform four primary functions: 1) image acquisition 

and correction for camera barrel distortion, 2) localization of the robot through fiducial 

identification, 3) lap counting between user-defined “end-zones,” and 4) conversion of the path 

traversed from pixels to real-world distances via user-conducted calibrations.  Analyses of the 

precision and accuracy of this system, as well as expected sources of error, are provided.   

Two applications relevant to robot endurance are discussed using data from three separate 

testing events. The first evaluation is the consistency of laps completed (the current NIST method 

of estimating the distance traversed), comparing distance and time across different robots and 

operators. The second evaluation considers trends in operator performance over time for the 

duration of a test. 
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Chapter 1  
 

Introduction 

As the capabilities of mechatronic systems develop, the potential for using emergency 

response robots to save lives in hazardous conditions increases. The disaster at the Fukushima 

Nuclear Plant, the oil spill of the Deepwater Horizon, and the Chilean Copiapó mine collapse are 

just a few examples of recent events in which the involvement of advanced, robust robotics could 

have made — or have made — a positive contribution. This opportunity has been recognized, and 

investment in emergency response robots has risen accordingly.  For example, the 2012 DARPA 

Robotics Challenge consists of tasks for emergency response robots that could have enabled 

operators of the Fukushima Nuclear Plant to open pressure valves in a timely fashion when high 

radiation levels limited the ability of humans to be in the vicinity during the tsunami disaster of 

March 2012 [1].  Institutions participating in this challenge are eligible for hundreds of thousands 

of dollars in funding.  

The need for methods of evaluating emergency response robots has accompanied this 

increase in their commercial, academic, and governmental development.  With sponsorship from 

the Department of Homeland Security, the National Institute of Standards and Technology 

(NIST) is producing a set of standardized metrics to quantify and compare the capabilities of 

emergency response robots. Test results are to be used as an aid both in robot purchasing 

decisions and in understanding robot capabilities prior to deployment.  As one such metric, NIST 

uses the number of figure-eight laps completed around an 8’x24’ arena to measure of robot 

endurance in time and distance [2].  
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Pre-existing methods of lap counting rely upon human volunteers to manually record 

each lap—a task that is both time consuming and subject to human error.  Additionally, the 

consistency of this metric is unknown because different robots and operators exhibit variable lap 

paths.  Completing the lap counting task automatically, as well as exploring the consistency of 

using laps completed to approximate distance traveled, was an initial motivator for the 

development of a digital data acquisition system for the NIST Test Methods Arena.  However, it 

quickly became apparent that such a system would have numerous other applications.  One of 

these is its use in developing correlations between a robot’s performance in a standardized arena 

and its performance in the field, making its NIST testing results much more meaningful to end 

users who rely upon the robot to perform real world missions. 

Once the decision to develop a system had been made, the method of data acquisition to 

be used for robot tracking within the NIST arenas was explored.  Three sensors in frequent use 

for tracking vehicles were quickly ruled out.  First, GPS receivers cannot be used because many 

of the NIST test methods are often conducted indoors.  Second, Inertial Measurement Units 

(IMUs), which are a combination of accelerometers, gyroscopes, and often magnetometers, are 

unusable because the constant “banging around” a robot undergoes as it drives up and down 15º 

ramps in the testing arena creates too much sensor noise.  Finally, rotary encoders placed on the 

vehicle’s drive shaft or wheels cannot account for wheel or tread slip, nor are they easily mounted 

the wheels or tracks if a robot does not already have encoders.  All three of these sensors also 

require that hardware be mounted to the robot, which can be difficult or impossible to do for 

robots that were not designed to transport a payload.  Additionally, the extra weight of this 

hardware is likely to negatively affect the robot’s performance.  

Using cameras to track the motion of the robot does not have the detractions exhibited by 

other methods.  For fiducial identification (locating an object in a digital image using its color), 

the only modification to the robot required is to tape a bright piece of cardboard to its top surface.  
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More advanced object identification techniques would require no modification to the robot at all.  

Furthermore, if the system is designed properly, the banging around of the robot within the ramps 

does not affect the ability to track its position.  This method also allows the position of the robot 

relative to that of elements in the arena to be easily found.  The cameras can literally “see” if the 

robot has crossed into the end-zones at each end of the arena.  This sensor also allows for 

concurrent measurement of distance traveled and laps completed, enabling their direct 

comparison as metrics of robot endurance.   

Many of the visual tracking and image processing algorithms that were assembled to 

form the data acquisition system are well documented throughout computer vision literature.  

However, implementation of these specifically for use in the NIST testing arenas posed a unique 

problem, particularly with regard to the use of multiple cameras in order to view the entire arena 

and the development of methods for converting from pixels in the camera images to a real-world 

coordinate frame.   

Chapter 2 of this document details the fabrication of a NIST testing apparatus in a facility 

of the Penn State Applied Research Lab.  Chapter 3 follows the development of the data 

acquisition system, including detailed descriptions of the algorithms and analysis of its 

performance.  Chapter 4 presents the system’s use for several different applications of interest, 

and Chapter 5 provides final conclusions and suggestions for future work.  MATLAB and Python 

code for collecting and processing data, as well as brief instructions for using this code, are 

provided in the appendices.  



4 
 

Chapter 2  
 

Fabrication of a Testing Arena 

The NIST Apparatus Assembly Guide for Standard Test Methods defines a suite of 

terrains, targets, and tasks that can be used to evaluate the performance and capabilities of 

emergency response mobile robots.  One terrain element used to measure the endurance of a robot 

is a series of upwards and downwards sloping ramps arranged into an 8’x24’ arena, termed 

“continuous pitch/roll ramps,” and pictured in Figure 2-1.  Within this arena, the number of 

figure-eight laps around pylons sixteen feet apart that a robot can complete on one full charge of 

batteries is used to define the endurance of that robot.   

 
Figure 2-1: Graphic of continuous pitch/roll ramps apparatus 

 
 

In order to receive credit for completing a full lap, the robot must cross into the “end-

zones” on either end of the arena, which are four feet deep.  Before a data acquisition system for 

the apparatus could be constructed, an arena itself had to be fabricated in-house.  The following 

sections detail this process.   
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2.1 Overview and Modifications to Assembly Guide Instructions 

The apparatus is composed of three basic components: the endurance bay walls and door, 

the support arches, and the interior ramps.  While the guidelines laid out in the February 2011 

version of the NIST Apparatus Assembly Guide were generally followed, a few small alterations 

were made, primarily to the construction of the bay door.  Since the construction of the ramps in 

Summer 2012, a new version of the NIST Apparatus Assembly Guide (dated March 2013) has 

been released.  It introduces one additional modification to the pitch/roll ramps arena, made to the 

support structure of the interior ramps, which was not a part of this build.  This new version also 

includes details about the pylons and end-zone locations used to define the figure-eight pattern 

constituting a lap, which were incorporated. 

2.1.1 Endurance Bay Walls and Door 

The endurance bay walls enclose the ramps and prevent a robot from falling out of the 

arena if it drives to the edge of the ramps.  The walls are made from 7/16” thick oriented strand 

board (OSB) panels framed with 2x4 posts.  At one end of the walls, an 8’ wide bay door opens to 

allow robots to be loaded into and out of the arena.  In the NIST Assembly Guide, this is designed 

to swing downward like an oven door and be secured in place entirely with slide latches.  For this 

fabrication, the bay door was instead hinged so that it could swing outward like an ordinary house 

door.  This makes it much easier and faster to open and close the door.  In order to make this 

modification, an overhang of OSB beyond the 2x4 frame of the door called for in the NIST 

Apparatus Assembly Guide was removed.  One slide latch was installed on the top of the bay 

walls on the opposite side of the door from the hinges so that the door could be secured in place 

when closed.  Figures 2-2 and 2-3 below show the completed door. 
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(LEFT) Figure 2-2: Bay door from right side 

(RIGHT) Figure 2-3: Bay door from left side 

2.1.2 Support Arches 

Support arches stabilize the bay walls.  They are constructed from 2x4 posts and 

supported at joints with triangles of 7/16” thick OSB paneling.  These arches ultimately served 

not only as stabilizers for the bay walls, but also as beams from which to hang the overhead 

cameras used to measure robot position.   

2.1.3 Ramps 

The ramps are placed within the bay walls, and form the surface on which robots drive.  

The ramps are constructed from 3/4” thick OSB panels, and supported underneath by 4x4 posts.  

Termed “half” ramps, these are 24.625” long and 4’ wide.  To save material, the length of each of 

the “half” ramps was shortened by 0.625”, to be an even 24”.  This made it possible to cut four 

ramps from one 8’x 4’ OSB panel, but also shortened the overall size of the arena by several 

inches along its 24’ length, causing a small gap between the bay wall on one end and the ramps.  

This gap is negligible enough in size that it does not jeopardize the validity of the fabricated arena 

as a reproduction of the NIST standard.  The March 2013 version of the NIST Apparatus 
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Assembly Guide has introduced one modification to the ramps that is not reflected in this 

discussion—the addition of support triangles to the sides of the ramps that add extra strength and 

stability for tests involving heavy robots.  Because no robots heavy enough to require this feature 

were used in this study, and because the driving surface of the ramps is not affected by the 

change, the absence of the support triangles in the fabricated arena was not of consequence.  

2.2 Materials 

The first step in the fabrication process was to determine what materials and how much 

of each would be required.  All of the arena’s components are composed of essentially four 

different materials.  These are: 

1. Oriented strand board (OSB) panels 

2. Wood posts 

3. Screws 

4. Hardware for the bay door 

The parts lists provided in the NIST Apparatus Assembly Guide were compiled into one 

master list, and adjusted to account for the modifications described above to ramp size, as well as 

to the bay door.   

1. Oriented strand board (OSB) plywood panels 

a. [11] 8’ x 4’ x 7/16” 

b. [6] 8’ x 4’ x 3/4” 

2. Solid wood posts (non pressure treated) 

a. [41] 2” x 4” x 8’ 

b. [4] 2” x 4” x 10’ 

c. [7] 4” x 4” x 8’ 
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3. Screws 

a. 1.5” 

b. 1” 

4. Hardware for the bay door 

a. [1] Slide Latch 

b. [2] Hinge 

2.2.1 Bill of Materials 

Prior to purchasing the raw materials for the ramps, the online catalogue for Lowes was 

used to estimate the cost of these materials.  Table 2-1 presents the results.  The total materials 

cost was just under $500. 

Table 2-1: Pitch and roll ramps bill of materials 

ITEM QTY NEEDED COSTEACH ($) NET COST ($) 
OSB    
8' x 4' x 7/16” 11 9.47 104.17 
8' x 4' x 3/4” 6 16.17 97.02 
POSTS    
2” x 4” x 8' 41 3.77 154.57 
2” x 4” x 10' 4 4.22 16.88 
4' x 4' x 8' 7 7.97 55.79 
SCREWS    
1-1/2” 2 boxes 10.57 21.14 
1” 2 boxes 13.97 27.94 
HARDWARE    
Slide Latch 1 7.55 7.55 
Hinge 2 2.78 5.56 
   TOTAL COST ($) = 490.62 
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2.3 Cuts 

Following purchase and delivery of the raw materials, the posts and OSB panels were cut 

to the necessary dimensions using a chop saw and a circular saw.  Extensive use of jigging greatly 

reduced the time required to cut the elements, and aided in the standardization of part sizes.   

Pieces of the following dimensions and quantities were cut: 

 

Oriented strand board (OSB) plywood panels: 

[11] 8’ x 4’ x 7/16” 

[7] 8’ x 4’ x 7/16” – Wall Panel 

[1] 4’ x 4’ x 7/16” – Door 

 [2] 4’ x 2’ x 7/16” – Front Wall Panel 

[8] 2’ x 2’ x 7/16” – Support Triangle* 

[6] 8’ x 4’ x 3/4” 

 [24] 24’ x 48’ x 3/4”– Ramp Surface 

 

Solid wood posts (non pressure treated): 

[41] 2” x 4” x 8’ 

[2] 2” x 4” x 24” – Support Stud Front 

[28] 2” x 4” x 45” – Support Studs 

[2] 2” x 4” x 45” – Side Plate 

 [16] 2” x 4” x 96” – Stud Plate 

 [8] 2” x 4” x 96” – Arch Support Stud 

 [1] 2” x 4” x 48” – End Cap 
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[4] 2” x 4” x 10’ 

 [4] 2” x 4” x 107” – Support Arch 

[7] 4” x 4” x 8’ 

 [72] 4” x 4” x 6.375” – Ramp Support (15°cut) 

 [12] 4” x 4” x 3.5” – Connection Block 

*Note that the dimensions given for the support triangle are of the base and height of the 

right triangle shape into which those panels should be cut. 

2.4 Assembly 

Figure 2-4 presents a view of the assembled arena as viewed from the bay door.  

Assembly steps are much more extensively described in the NIST Apparatus Assembly Guide for 

Standard Test Methods. 

 
Figure 2-4: Testing arena viewed from door 
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The only tools required for assembly were an electric hand drill and a Phillips head bit.  

The ramps were assembled first because they were perceived to be the easiest part of the build.  

Three screws were used to attach each ramp support post to a ramp surface OSB panel.  Next, the 

bay walls and door were assembled.  Two screws were used at joints between 2x4 posts in the 

frame for each segment of the wall, and then an OSB panel was screwed onto each frame.   Once 

these individual parts had been built, the wall panels were connected to form the boundary of the 

track using 4x4 connection blocks, and the ramps were placed into position.  In order to reduce 

the presence of gapping between the ramps and bay walls, one screw was put through the OSB 

panels of the bay walls into each of the outer posts of the half ramps  

The next step in the build process was to assemble and install the four arches that 

stabilize the bay walls.  The NIST assembly steps state that the vertical arch posts should be 

installed on the bay walls first and then the horizontal beams and support triangles should be 

added.  To avoid having to stand on a ladder and hold the pieces in place while screwing them 

together, the team chose to instead completely assemble the arches independently, and then just 

attach them to the bay walls.   

Figures 2-5 and 2-6 present additional views of the completed arena. 

                    
(LEFT) Figure 2-5: Arena viewed from rear bay wall 

(RIGHT) Figure 2-6: Talon robot in arena 
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2.5 Lap Markers 

The March 2013 version of the Assembly Guide calls for pylons to be placed along the 

midline of the arena, 8’ from either end.  It also defines the use of a 4’ deep end-zones at both 

ends of the arena, identified by painting black and white strips on the portion of the bay walls that 

contains the end-zones.  In order to receive credit for the completion of a lap, a robot must 

encircle each of the pylons and cross into each endzone during its trip around the arena.  The 

latter criterion was added to prevent nimble robots from cutting sharp corners around the pylons, 

driving several feet less per lap than their less maneuverable counterparts.  In the fabricated 

arena, orange traffic cones were screwed into the ramps to serve as its pylons.  These can be seen 

in Figure 2-7.  Prior to testing, the endzones were identified with strips of duct tape, as is pictured 

in Figure 2-8, an overhead view of the arena from three different cameras.   

    
(LEFT) Figure 2-7: View of traffic cone pylons 

(RIGHT) Figure 2-8: Stripes identifying end-zones 

2.6 Fabrication Time and Safety 

The exterior dimensions of the arena are 8’ wide feet by 24’ long by 8’ tall, with an 

additional 4.5’ of clearance needed on one end so that the bay door can swing open completely.  

The forty-two man-hours required to fabricate the apparatus are detailed in Table 2-2.   
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Table 2-2: Pitch and roll ramps fabrication time 

TASK 
# OF 

WORKERS 
# OF HOURS 

TO COMPLETE 
MAN 

HOURS/TASK 
Purchasing Materials 2 1 2 
Cutting Wood to Size 3 3 9 
Assembling Ramps 1 4 4 
Assembling Bay Wall Panels & Door 2 6 12 
Assembling Arches 3 1 3 
Installing Bay Wall Panels & Door 3 3 9 
Installing Arches & Arch Bridge 3 1 3 
 TOTAL MAN HOURS: 42 

  

Beyond following standard safety procedures for woodworking during the fabrication of 

the arena, there are no additional safety concerns to discuss.  It is highly recommended that work 

gloves, steel-toed shoes, and eye protection be worn at all times during the build process. 

The arena has proven to be relatively portable in terms of the time investment required 

for relocation.  A team of three workers was able to take apart the arches and disassemble the bay 

wall into its component panels in about an hour.  After spending a half hour relocating these parts 

to an adjacent room, it took another hour to reassemble the arena. 

2.7 Performance and Suggestions for Improvement 

The constructed arena has proven to be very durable after extensive use.  The modified 

bay door can be easily opened and closed to load and unload robots, and when closed forms a 

structurally sound component of the bay walls.  However, the weight of the door causes it to sag 

slightly on its hinges when open, requiring it to be lifted onto the 2x4 that lies underneath as it is 

swiveled into the closed position. This could be addressed by placing a wheel between the door 

and the floor to prevent it from sagging when open.  This wheel should be cantilevered from the 

side of the door, because if it were directly underneath it would interfere with the 2x4. 
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Some slight gaps (approximately 1” wide) between the ramps along the centerline of the 

track can emerge during a trial as a robot traverses through the course.  Using a hammer to bang 

on the walls makes it easy to align the ramps back into their proper places. 

Overall, the fabricated arena is an excellent reproduction of the standard introduced by 

NIST, and a suitable environment for which to develop a data acquisition system to augment the 

research that can be conducted using NIST Test Methods.     
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Chapter 3  
 

Development of a Data Acquisition System 

One element of robot testing procedures not covered by the NIST Apparatus Assembly 

Guide is the method of data collection used for endurance tests.  In previous testing events, this 

has been a human assistant, using either a mechanical tally counter or pen and paper to log the 

number of laps completed by a robot in an arena.  The original inspiration to develop camera-

based data acquisition system was twofold.  First, the capacity to conduct digital lap counting 

eliminates both the need for a human agent to engage in the mundane task of tallying laps for 

hours at a time and the susceptibility to human error of this manual method of data acquisition.  

Second and more importantly, a camera system can be used to compute the actual distance 

traveled and confirm or disprove the validity of using laps completed as a measure of a robot’s 

total travel distance.  This is necessary because the consistency of the distance traveled from lap 

to lap, as well as for different robots and operators, has been observed to be variable. 

Beyond examining the metrics of the NIST Standard Test Methods, the camera system 

has many additional research applications.  Explored in Chapter 4, these include its use in 

determining trends in operator performance with time, and in developing correlations between 

performance in the testing arenas and in the field.   

3.1 Hardware 

The camera system includes three types of hardware: 1) the cameras themselves, 2) an 

Ethernet switch, and 3) a computer to collect and process the camera images.   
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3.1.1 Camera 

Three AXIS 216MFD network cameras were used for the camera system.  They were 

mounted to 2x4 posts bridging the centerline of the testing arena’s support arches, approximately 

8’ above the surface of the ramps, and pointed straight down.  Orienting the cameras this way 

eliminated the need to perform perspective transformations to correct for an angled view of the 

ramps in order to collect reasonably accurate data.  Figure 3-1 shows the AXIS cameras mounted 

above the testing arena.   

 
Figure 3-1: Cameras mounted to posts across support arches 

 

The cameras provide an excellent field of view of 100° horizontally, which is sufficiently 

wide that the entire width and length of the arena can be viewed with three cameras spaced 

evenly along its length.  They also operate with 20 fps at mid-level resolutions. The AXIS 

branded cameras are easily interfaced with many programming languages, such as MATLAB and 

Python, which greatly assisted with the development of algorithms for lap counting and distance 

tracking.  Lastly, these cameras are Power Over Ethernet (PoE) equipped, which allows them to 

be powered by a compatible switch via Ethernet cables only, eliminating the need for additional 

power supply cables.   
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3.1.2 Ethernet Router 

In order to take advantage of the PoE feature of the cameras, a PoE-equipped Ethernet 

switch was required.  A TRENDnet TPE-S44 was used.  This device has eight ports, half of 

which are PoE compatible.  The switch was mounted to the top of the bay walls, about halfway 

along the arena’s length. 

3.1.3 Computer 

Any computer capable of running the image acquisition and processing algorithms was 

suitable for use with the camera system, but faster processors and internal hardware capable of 

handling faster data transmission rates are obviously more desirable.  Over the course of testing, 

several different machines were used, including an Apple MacBook Pro running OS X 10.8, a 

Dell desktop running Windows 7, and a Panasonic Toughbook running Ubuntu 12.04.  All three 

machines demonstrated comparable performance.   

3.2 Software 

Developing algorithms capable of identifying a robot within the testing arena, computing 

the laps completed, and measuring the distance traveled over the course of a testing event is not 

trivial.  In fact, over 80% of the total project time was spent on this task.  While commercial 

products exist to track robots in a 3-dimensional space, these are quite costly and far beyond the 

budget allowances for a simple test arena [3].  At the core of the code is the use of standard image 

processing techniques, facilitated by functions built into the MATLAB Image Processing 

Toolbox.  These techniques include fiducial identification (the process of using color to locate an 

object in a camera’s field of view), and corrections for barrel distortion (warping introduced by 
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camera lenses that causes the picture to appear radially bent around the center of the image).  In 

addition, methods were developed to allow users to input the boundaries of end-zones used in 

defining the completion of a lap, and to calibrate the system to convert between pixels in the 

camera image and real-world positions.  Computational efficiency was given a great deal of 

attention throughout the development, to achieve the highest frame rates possible when collecting 

and processing data.  MATLAB was chosen as the programming language in which to write the 

scripts, both for its ease of use and for the prevalence of embedded functions for image 

processing.  However, this MATLAB-based approach was prohibitively slow when both 

obtaining and processing images from the cameras in real time, so Python scripts were written to 

only load synchronized images from the three cameras and save them to file. These images were 

then post-processed in MATLAB to extract the laps completed and distance travelled.  This two-

step approach had the added benefit of allowing camera images from testing events to be “played 

back” as the MATLAB processing code was debugged.  All MATLAB scripts and functions used 

are included in Appendix 1, while the Python scripts used are included in Appendix 2.   

3.2.1 Software Overview 

The flow chart on the following page, Figure 3-2, presents a top-level overview of the 

algorithms developed for the camera system.  The code can be roughly divided into two stages: 1) 

an initialization procedure that loads all the necessary conditions, parameters, variables, and 

calibration data, finds the starting position of the robot, and plots the images from the cameras so 

the user can verify that the system is operating properly, and 2) a loop in which new images from 

the cameras are continually obtained and processed, the number of laps completed and distance 

traveled are updated, and relevant data is logged.  The user may set the loop to continuously plot 

images from the cameras to verify long-term operation of the system; however, this plotting 
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activity results in a more than tenfold reduction in frame rate and therefore is recommended only 

for debugging. 

 
Figure 3-2: Algorithm flow chart 

 

In order to efficiently and robustly localize the robot’s position, a circular piece of bright 

green cardboard, about 1’ in diameter, is taped to the robot’s top, along the geometric center left-
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to-right and front-to-back.  This object serves as a fiducial, identifiable in the camera images 

primarily by the uniqueness of its color, but also by the known thresholds on its size and 

eccentricity.  Bright green was chosen for the fiducial because of its dissimilarity to the color of 

the arena surfaces, of the robots to be driven in the arena, and of the traffic cones used as end-

zone markers.  Figure 3-3 presents an unprocessed image obtained from one of the cameras 

during testing, in which the fiducial (attached to the Talon robot) clearly stands out.  The 

following discussion presents more specific details of the algorithms developed for the camera 

system, in roughly the order in which they occur in Figure 3-2.   

 
Figure 3-3: Talon robot in test arena 

3.2.2 Initialization 

 The initialization stage is responsible for loading all the necessary conditions, 

parameters, variables, and calibration data for the algorithms.  If any of the calibration data is 

missing, this stage provides users with the opportunity to perform those calibrations.  It also finds 

the starting position of the fiducial, ensuring that it is in the field of view of the cameras.  If the 

fiducial is not found in this first attempt, the user is notified and execution of the code is stopped.  

Lastly, the initialization stage plots the first set of images from the cameras, overlays the fiducial 
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and end-zone locations, and waits for user confirmation before starting the loop stage.  The 

resulting plot of this process is shown in Figure 3-4.  The blue and red lines represent the left and 

right endzones, respectively.  The fiducial is outlined in yellow, and a crosshair is placed at its 

centroid.  The text next to the fiducial gives its current location in feet, with the origin at top left 

intersection of the bay walls.  Pressing the “START” button begins the loop stage.  The 

initialization stage is explained in greater detail below.   

 
Figure 3-4: Plot at end of initialization 

3.2.2.1 Load test conditions, prameters, and variables 

The first step of the initialization is to load a series of test conditions, camera parameters, 

and variables required throughout the algorithms.   

Test conditions 

The test conditions include physical information about the system, such as the number of 

cameras being used, and information about how the system is intended to be used, such as 

whether camera images are to be pulled live from the cameras or from loaded files stored 
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internally on the computer or on an external disk.  The latter set of conditions allows the 

algorithms to run in real time or be used to post-process images saved from prior testing events.  

Camera parameters  

Next, the script loads parameters for each camera in the system.  These include their focal 

length, skew coefficients, and distortion coefficients.  These parameters are necessary for 

correcting the images for barrel distortion, and they vary not only between cameras, but also with 

the zoom and focus positions of each camera’s lens.  Two methods by which the parameters can 

be measured are the Camera Calibration Toolbox for MATLAB and the OpenCV Camera 

Calibrator.  Both procedures involve having the user hold a checkerboard pattern in view and 

automatically measuring the size and curvature of features in the pattern.  Figure 3-5 presents a 

sample calibration image from the OpenCV Camera Calibrator documentation, with the corners 

of the checkerboard as extracted by the algorithms.   

 
Figure 3-5: Open CV Camera Calibrator [4] 

 

The OpenCV method was used to find camera parameters in favor of the Camera 

Calibration Toolbox for MATLAB.  It was preferred both due to its much more user-friendly 
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interface and the observation that it appeared to calculate much more accurate values.  The latter 

conclusion was made after extensive experimentation with each method, in which the OpenCV 

method repeatedly generated parameters that removed more of the distortion in images than the 

MATLAB method.  Once the parameters were found using OpenCV, distorted images could be 

run though embedded functions in the Camera Calibration Toolbox for MATLAB to be corrected 

for distortion.  Figure 3-6 presents a distorted image of the testing apparatus next to the corrected 

image generated by use of these functions. 

 
Figure 3-6: Distorted and undistorted images side-by-side 

 

The effect of the correction is especially observable in the straightening of the bay walls.  

The MATLAB distortion correction functions are not capable of operating at high frame rates, 

and therefore were only used in pre-computing transformation matrices capable of performing 

much faster distortion corrections.  This process is part of the calibration script, and is described 

in more detail later on.  It is worth noting that the OpenCV method reports camera parameters 

slightly differently from its MATLAB equivalent.  Figure 3-7 presents a color-coded example of 

how parameters from OpenCV can be put into the format required by MATLAB 
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Figure 3-7: Converting camera parameters between OpenCV (left) and MATLAB formats (right) 

Variables 

The next step of the initialization stage is to allocate memory for a number of variables 

that are continuously changed as the algorithms iterate over new images from the cameras.  These 

include the current position of the fiducial, the number of laps completed, and the distance 

traveled. 

3.2.2.2 Load calibration data 

The next major process of the initialization stage is to load three sets of calibration data, 

each of which is stored as a .mat file in the current directory.  The first file facilitates conversions 

from pixels to feet for both axes of every camera image.  The second defines the locations of the 
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arena’s end-zones.  The third includes several transformation matrices used to quickly remove 

distortion from images.  If any of these files is missing, a calibration script can be used to create 

them.  The process of generating each calibration, as well as the way in which each is packaged in 

a matrix, is described below. 

Pixel-to-feet conversions  

In order to report the true distance traveled by the robot, the distance calibration 

algorithms must include some way to convert between pixel location and feet for any point in 

each camera’s image.  One way to do this would be to simply measure the real-world size of the 

fiducial used to track the robot, and use its pixel dimensions to generate a conversion factor, but 

because the fiducial is constantly changing elevation and orientation as the robot ascends and 

descends the ramps, this would not be an accurate method.  Users could also place a stationary 

object of known length, such as a yard stick, in view of each camera and automatically detect and 

measure its length in pixels, but the accuracy of the pixel measurement would only be as good as 

the ability to exactly define the boundaries of that object using fiducial identification, which 

varies with lighting conditions, the color settings of the cameras, and other factors.  A third option 

would be to draw a grid on the surface of the ramps and identify its features, similarly to how the 

MATLAB and OpenCV camera calibration tools use a checkerboard pattern to obtain distortion 

parameters.  However, such a system would involve intensive development time and require 

visual modifications to the standardized testing arena defined by NIST.  This would also make it 

more difficult to install and reinstall the arena because the ramps might no longer be 

interchangeable. 

The best solution for this system, and the one ultimately used to develop calibrations 

between pixels and real-world distance, was to plot the image from each camera on the monitor 
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and have users define a line segment parallel to each axis of each camera by clicking two points 

on the image and manually typing the real-world coordinate location of each point.  After both 

the pixel and real-world locations of just two points along each axis of each camera have been 

input and stored, linear interpolation can be used to define a horizontal and vertical real-world 

position for every pixel in the image.  The real-world coordinate frame chosen is irrelevant as 

long as it is consistent across all the cameras, since only the distance between points is ultimately 

necessary to calculating the distance traveled by the robot.    

This method results in highly accurate measurement of the real-world positions in the 

arena, which enabled the real-world distance traversed by a robot to be calculated.  More details 

about the accuracy of the system are given in Section 3.4.  As shown in that section, the accuracy 

is greatly improved when the points selected in calibrations relate to positions at the mean height 

of the fiducial when attached to the robot to be used for testing, rather than at the height of the 

surface of the ramps.  This is due to the fact that the view of the arena from all points but directly 

below the cameras is of an angled perspective.   

The matrix used to store distance calibration data for each camera consists of two, one-

column vectors, with lengths equal to the vertical and horizontal resolution of the camera image 

respectively.  The row index of each column corresponds to a pixel number in its respective axis, 

and the number stored in the element is its corresponding real-world location along that axis.  A 

third dimension allows data to be stored for each camera in the system into one matrix.  These 

matrices are computed as part of the calibration script, and are saved to file for access by the lap 

counting and distance tracking scripts.  This calibration process needs to be repeated between 

testing events only if the orientation, position, or focus of the cameras is changed. 
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End-zone locations  

 Another task of the calibration procedure is to define the end-zones into which the robot 

must cross at each end of the track in order to receive credit for completing one full lap.  Again, 

these could be marked physically on the arenas and identified automatically with image 

processing techniques, but having them be user-defined is much easier to develop and reduces the 

need to visually modify the NIST standard testing arena.  After plotting images from each camera 

and arranging them end-to end so that the entirety of the arena is visible, the end-zone calibration 

algorithm has users click two points on each end-zone line.  The horizontal zero-intercept and 

slope of the lines created by connecting each set of points are stored to file, for use not only in 

conducting lap counting, but also in visually demonstrating the location of the end-zones to the 

user when plotting images.  Figure 3-8 shows the combined images from all three cameras in the 

arena, with the end-zone lines overlaid in blue on the left and in red on the right.  

 
Figure 3-8: User-calibrated end-zone locations overlaid on images of arena 

Barrel distortion corrections 

The final calibration data loaded in the initialization stage is a set of transformation 

matrices that allow entire camera images, as well as individual pixels in the images, to be quickly 
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corrected for barrel distortion.   These matrices are created by tracking individually the movement 

of every pixel in the camera images when using the embedded distortion removal functions in the 

Camera Calibration Toolbox for MATLAB.  One by one for every pixel, a matrix is created of 

the same dimensions as the image with zeros in every element except for that of the pixel to be 

tracked.  The matrix is then run through the distortion removal functions, and the new location of 

the nonzero entry is found.  These locations are stored into a one-dimensional vector, so that 

every element’s index refers to a pixel location in the distorted image, and the value of the 

element gives the new index location of that same pixel following the distortion removal process.  

The vector is used as a look-up table when a single point is to be undistorted (namely, the 

centroid of the fiducial).  The vector is then flipped, so that the indexes refer to pixels in the 

undistorted image, and the value of the elements gives the index locations of distorted pixels.  

This vector is used to remove distortion from an entire image from the camera, via the MATLAB 

“reshape” function.  Calculating the transformation matrices in the calibration script can take 

several hours for each camera, but this investment in advance of testing events pays dividends in 

performance when processing images.  The embedded distortion removal functions of the Camera 

Calibration Toolbox for MATLAB take around 0.3 seconds to process just one image.  Using the 

transformation matrices produces an essentially identical undistorted image in just 0.015 seconds.  

Removal of distortion on a single pixel is even faster.   

3.2.2.3 Initial fiducial position 

Once all the necessary matrix data has been successfully loaded, the next step in the 

initialization is to obtain a first set of camera images, find a starting position for the fiducial, and 

plot the camera images with the end-zones and position of the fiducial overlaid.  These algorithms 

are identical to those detailed below in the discussion of the loop stage, with two exceptions.  



29 

First, if the fiducial is unable to be identified in this first attempt, execution of the script is 

stopped, because this is a clear indication that there is a fault in either the physical set-up of the 

test or in the algorithms used to identify the fiducial.  Second, regardless of whether the code has 

been set to plot the camera images during each iteration of the data-collection loop, they are 

always plotted as part of the initialization process.  This allows users to verify that the fiducial 

was correctly identified.  An example of the plot visible following the initialization procedure 

was presented previously in Figure 3-4.   

3.2.3 Loop 

After the fiducial has been identified and plotted in the initialization phase, a virtual 

button appears that can be pressed to begin execution of the loop.  The loop stage, as its name 

implies, runs continuously until the user manually halts execution, or until the last set of images 

from each camera has been processed if images are being read from file.  The first steps of the 

loop are to acquire images, find the fiducial’s real-world location, and under some conditions also 

plot the camera images.  Next, the number of laps completed and distance traveled is updated.  

Finally, the data collected is printed to the command window and logged to file.   

3.2.3.1 Image acquisition and fiducial identification 

Figure 3-9 presents an in-depth flow chart of the algorithms used to acquire images and 

identify the fiducial location, both in the initialization procedure and the loop.  This process is 

carefully designed to be as computationally efficient as possible.  Individual steps are discussed 

in more detail below.   
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Figure 3-9: Closer look at image acquisition and fiducial identification 
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Get the next camera images 

The scripts allow images to either be taken live from the cameras or loaded from file.  

Flags associated with the test conditions loaded during the initialization stage allow the method of 

image acquisition to be chosen.  Images to be loaded from file can be generated with an 

independent Python script run during testing events, capable of loading and storing images from 

all three cameras at up to 15 fps.  The same task was attempted first with an independent 

MATLAB script, but it ran at less than 2 fps.  Images from each camera are stored in their own 

folder, and named with the elapsed time since the loop stage began.  When these images are 

loaded for processing, the filenames are extracted and used as timestamps for the images.  When 

images are being loaded in real time from the cameras, the time since the loop began to run is 

used as a timestamp for the images.   

The first step of the algorithms is to check a flag that tracks whether the fiducial was 

found in the last iteration.  If it was, there is no need to process the entirety of every image from 

every camera, since we know the fiducial must be in the vicinity of its last location.  In this case, 

a bounding box is established around the last known position of the fiducial, the dimensions of 

which represent the maximum distance that the robot is likely to have traveled since the last 

iteration.  Unless the code has been set to plot the camera images continuously, the algorithm 

only loads an image from a camera if its view includes a portion of the bounding box, and the 

loaded images are further cropped along the boundaries of that box.  This step is critical to the 

computational efficiency of the algorithms.  If the code is set to plot the camera image 

continuously, the images are also undistorted as this time using the transformation matrix for 

removing distortion of the entire image generated during calibrations.  Figure 3-10 presents an 

example of a bounding box created while processing images of the Talon robot driving in the 

arena.  
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Figure 3-10: Bounding box around Talon robot 

 

The length used for each edge of the box is 150 pixels (75 pixels on either side of the last 

fiducial location).  This was determined experimentally using data collected while driving the 

Talon around the arena so as to have as small a box as possible while still guaranteeing that the 

robot cannot drive fast enough to escape the box between frames.  This length of the box can be 

easily adjusted in the algorithms for use with faster or slower robots.   

Regardless of whether a bounding box is formed, the function that obtains camera images 

does crop some of the edges of the images to remove any area outside the walls of the arena that 

is in view, as well as to reduce overlap between the camera images.   The latter results in the 

appearance of vertical black bars at the intersection of the images, visible in Figure 3-8.  The 

width and placement of these can be easily adjusted in code to facilitate a smooth transition 

between cameras when a robot being tracked crosses between their views.     

If camera images are being plotted every iteration, they are corrected for distortion 

immediately after acquisition using the transformation matrices created by the initialization script.  

Otherwise only the point location of the fiducial is corrected for distortion in a later step.   
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Convert to an HSV colorspace 

The next step in the process is to convert the image from an RGB to an HSV colorspace.  

The term colorspace refers to the way in which an image is broken up into layers.  This practice 

traces its roots to the beginnings of color printing. A printer cannot have a different dye for every 

color in every image it prints, so instead it breaks each color down into a combination of just a 

few primary colors. For example, purple can be made by layering a 61% dilution of red, a 19% 

dilution of green, and 100% of blue. This use of individual red, green, and blue layers defines a 

colorspace called RGB, in which every pixel in the image is assigned a value between 0 and 255 

for each layer. A pixel containing lots of red, very little green, and a medium amount of blue 

might be expressed numerically by (230, 12, 100), in which 230, 12, and 100 are the values of the 

pixel in the red, green, and blue layers respectively.  

The layers of a colorspace can also describe properties other than color. An HSV image is 

broken into layers of hue (color), saturation (purity), and value (brightness), and is much more 

useful for fiducial tracking because well-chosen fiducials tend to stand out more from their 

background in each layer than they do in the layers of RGB images. This is exhibited by Figure 3-

11, which shows the individual components of an image in both RGB and HSV colorspaces.  It 

can clearly be seen that the fiducial (the green circle attached to the robot) tends to stand out 

much more from the background in the components of the HSV colorspace than the RGB, 

specifically in the saturation and value components.  Additionally, the separation of colors into 

HSV for the fiducial-detection process gives an inherent immunity to lighting conditions, as 

lighting changes typically only affect the value (V) space and not hue (H) or saturation (S). 
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Figure 3-11: Colorspace components for RGB and HSV 

Convert to a 2D binary intensity matrix 

Now that the fiducial has been made to stand out as much as possible in each layer of the 

image, the layers are fused together into a single layer, called an intensity image. This conversion 

of three layers into one increases the computational efficiency of the process by reducing the 

number of data points that must be analyzed in later steps by two-thirds. This step also makes 

those pixels belonging to the fiducial stand out even more from the background.  

The intensity matrix is formed by multiplying, adding, and subtracting together the 

individual layers of the HSV image. For example, in Figure 3-12, every pixel value in the 

saturation component has been multiplied by 20, and from each, 10 times the value of the pixel in 

the same location of the hue component has been subtracted.  Representing this example as an 

equation: I  = 0.*H + 20.*S-10.*V, where I is the intensity matrix, and H, S, and V represent the 

hue, saturation, and value components of the HSV colorspace.  The “.*” operator represents an 

element-by-element product of two matrices.  The coefficients in this equation were determined 

by trial and error, using careful observation of the components of the HSV image as a basis from 
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which to choose values to try.  Figure 3-12 is plotted using a standard blue-to-red colormap, in 

which pixel values have been scaled to the full colormap range.   

 
Figure 3-12: Intensity matrix 

Threshold to make a mask 

The next step of the process converts the intensity matrix into a binary mask. The mask is 

a two-dimensional matrix with a 1 at any pixel location that likely belongs to the fiducial and a 0 

everywhere else. To create the mask, a threshold is applied to the intensity image, in which only 

pixels of the highest values (depicted with redder colors in Figure 3-12) are assigned a 1.  The 

cutoff used for this threshold is carefully selected to preserve robustness. If the cutoff is too high, 

pixels belonging to the fiducial could be improperly removed from consideration. If it is too low, 

pixels that are not the fiducial will remain in consideration.  

Figure 3-13 presents a binary mask, in which all pixels with a value less than or equal to 

65% of the maximum possible have been filtered out.  Represented as an equation,  

Mask  = (logical) I ./20 > 0.35, where I is the intensity matrix and the “./” operator represents the 

element-by-element division of two matrices. 
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Figure 3-13: Image mask 

Remove small objects and fill holes in remaining objects 

Next, clusters of white pixels that are too small to be the fiducial are removed, and 

interior holes in the remaining clusters are filled. Figure 3-14 presents the effects of the step on 

the portion of the mask containing the fiducial. To aid in the demonstration, a square hole has 

been artificially added to the mask near the center of the cluster of pixels corresponding to the 

fiducial.  The initial mask is given in figure 3-14(a). 

 
Figure 3-14: Removing small objects and filling in holes 

 

In 3-14(b), any instances of less than sixty connected pixels have been removed from the 

image, using the MATLAB “bwareaopen” function.  This is visible by the removal of the spots 
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around the fiducial.  If too small a number is used, the clusters of pixels around the fiducial will 

not be removed. If too large a number is used, the fiducial itself could be removed.  

In 3-14(c), interior holes in the remaining objects have been filled using “imfill” in 

MATLAB.  It is easy to see that the square hole has been filled in.  In Figure 3-15, the full area of 

the mask is visible.  It is clear that all of the white clusters from the top right corner of Figure 3-

13 have been eliminated as well as a result of using the “bwareopen” function.  However, some 

clusters, just barely visible along the bottom edge of the mask, persist.   

 
Figure 3-15: Full mask 

Filter by eccentricity and area 

Using the MATLAB “regionprops” function, we can identify the three remaining pixel 

clusters in the mask of Figure 3-15, and obtain the area, eccentricity, and centroid of each.  Table 

3-1 presents this data.  Even without using the centroid information, we can tell that cluster 2 is 

the fiducial because of the combination of a small eccentricity (meaning that the component is 

very circular) and a large area.  Filtering by these two criteria allows the algorithms to make the 

same conclusion, and assign the centroid of the correct cluster as the location of the centroid of 
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the fiducial.  The specific filter criteria used in the algorithms are an eccentricity less than 0.8 and 

area less than 2000 pixels.   

 As is discussed in Section 3.3.2, a new fiducial location is only posted if it is further than 

one standard deviation from the stationary fiducial noise along each axis of the image.  

Otherwise, the location used in the preceding iteration is carried through. 

 

Table 3-1: Cluster properties 

CLUSTER NUMBER 1 2 3 
AREA (pixels) 426 542 71 

CENTROID (pixels) (208 , 360) (157 , 197) (454 , 359 
ECCENTRICITY 1.000 0.4831 0.9980 

 

Correct for barrel distortion and convert to feet 

Unless the images are being plotted every iteration and thus have already been corrected 

for barrel distortion, the location of the fiducial itself needs to be corrected.  In either case, the 

location needs to be converted from pixels into a real-world coordinate frame.  Correcting the 

centroid location for barrel distortion and converting it to a real-world coordinate frame is as 

simple as using the lookup tables generated for each purpose in the calibration script.  For the 

distortion correction, the index of the distorted centroid pixel corresponds to a row in the table, 

the element of which gives the undistorted location in pixels.  This is in turn used as an index in 

the rows for pixel-to-feet conversions to find the real-world location of the point along both the 

vertical and horizontal axes.  
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Plot the fiducial location 

If the option to plot the fiducial location is turned on, or the function is being run as part 

of the initialization phase, the image from each camera is plotted, and the end-zone locations are 

overlaid, as well as the outline and centroid of the fiducial.  Lastly, the real-world location of the 

centroid in feet is displayed in text.  Figure 3-16 shows an example of such a plot.   

Figure 3-16: Example of plotted camera images and overlaid information  

3.2.3.2 Update laps completed 

From the start of the code, the lap counting algorithm checks the fiducial position each 

iteration to determine whether one of the end-zones has been entered.  After this occurs, the end-

zone entered is stored as the “last end-zone,” and the code only checks whether the fiducial has 

crossed into the opposing end-zone.  When it does, a half lap is added to the total laps completed.  

This method ensures that a robot does not receive credit for multiple laps by crossing back and 

forth on the boundary of just one end-zone.  Whether an end-zone has been crossed is computed 

by plugging the vertical pixel centroid coordinate into the slope-intercept form of the straight line 

equation, using the values of zero horizontal intercept and slope calculated in the end-zone 

calibrations.  The output of this equation is compared to the horizontal pixel centroid coordinate 
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to determine on which side of the end-zone line the centroid lies.   

3.2.3.3 Update distance traveled 

The distance traveled by the fiducial is calculated using the distance formula between the 

current and prior real-world positions of the fiducial, and adding this to the previous total.   

3.2.3.4 Log Data and Print to Command Window 

For robustness, data is logged in two different formats.  Described in more detail below, 

these formats are: 1) A series of .mat files, and 2) A single .txt file.  This data includes the current 

iteration, lap number, fiducial location in pixels, fiducial location in feet, elapsed time since the 

start of the test, and distance traveled since the start of the test.  This information is also printed to 

the MATLAB command window every iteration, along with notice if the fiducial is not located in 

a particular iteration.  By adjusting a flag in the “Test Conditions” function, the plotted camera 

images can also be saved to file (although doing so significantly slows down the processing time 

per iteration) and later used in movie editing software such as iMovie to create stop-motion 

videos showing the tracking of the robot.   

.mat files 

The primary format of storing data is via .mat files.  To prevent complete loss of data in 

the event of computer crashes, data from batches of a preset number of iterations (this number is 

easily adjustable using the “Test Conditions” function”) are saved to file in sequentially named 
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.mat files.  Whenever the number of iterations that have elapsed since the last save equals this 

preset number, the most recent batch of data is saved to file. 

.txt files  

As a backup format by which to save data, the results of each iteration are appended to a 

.txt file stored in MATLAB’s current directory.  Text files are useful in the rare situations where 

the MATLAB software crashes during operation; in a crash, the ‘mat’ files are not recoverable, 

whereas the text files usually are. Thus, one would not lose an entire test run – which takes days 

to prepare and hours to run – if the software were to crash mid-test. 

3.3 Performance 

The camera system was evaluated for performance in terms of its frame rate, precision, 

and accuracy.  Frame rate can pertain to both the speed at which images can be acquired and the 

speed at which they are processed, although in some configurations these tasks are performed 

sequentially at every frame.  Precision is measured by the variance in measurement for a 

stationary position.  Accuracy is measured through two means.  They are: 1) The mean real-world 

position measurement of the fiducial as compared to a hand measurement of the same, and 2) 

Distance measurements for straight traverses along both axes of the arena as compared to the 

known distances of those traverses.  The results of this performance analysis are discussed in 

detail below.  Suggestions of sources for the error that was measured are provided, along with the 

steps taken to account for this error in code.   
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3.3.1 Frame rate 

Table 3-2 presents an approximate frame rate for the code when running in several 

different configurations, including when only loading and storing images from all three cameras 

using Python or MATLAB, and when processing images in real time or from storage using 

MATLAB.  The fastest method is clearly to save images using Python during testing events, and 

then post-process them from file using MATLAB later on.  The only disadvantage of this method 

is that it does not allow the laps completed and distance traveled to be conveyed to users in real 

time during a testing event.  However, by plugging two computers into the Ethernet switch, 

MATLAB and Python scripts can be run simultaneously, each on its own machine, without 

interference. This provides users with real time estimates via the live processing of low frame rate 

images by MATLAB, which can be updated when there is time to post-process the higher frame 

rate images collected and stored to file by Python. 

 

Table 3-2: Frame rates 

SAVING IMAGES TO FILE ONLY 
FRAME RATE 

(fps) 
MATLAB 1.5 
Python 15 

PROCESSING IMAGES LIVE  
MATLAB (not plotting every iteration) 3.0 

POST-PROCESSING IMAGES FROM FILE  

MATLAB (not plotting every iteration) 30 

MATLAB (plotting every iteration) 0.9 
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3.3.2 Precision 

The precision of the system is measured by the variability in measurements of a 

stationary fiducial position.  Early on in the evaluation of the system, it was observed that the 

noise in measured position of a stationary fiducial resulted in increasing calculations of distance 

traversed when in reality the robot was not moving. 

In order to remove the noise, the standard deviation of both axes for approximately 50 

position measurements of a stationary fiducial was found at about a dozen different locations 

across the arena, and the mean of these was used as a threshold against noise.  The standard 

deviations are provided in Table 3-3.  The mean standard deviation of each axis is about a quarter 

of a pixel.   

Table 3-3: Standard deviations in pixels of position for a stationary fiducial 

MEASURED POSITION (pixels) STANDARD DEVIATION (px) 
X-axis (Length) Y-axis (Width) X-axis (Length) Y-axis (Width) 

411.2034 389.6780 0.4060 0.4713 
698.0877 397.1053 0.2854 0.3096 
477.0000 325.1818 0.0000 0.3892 
933.8246 303.0000 0.3837 0.0000 
182.0000 235.0000 0.0000 0.0000 
561.5161 241.0000 0.5038 0.0000 
891.4677 242.1774 0.9002 0.8782 

1042.7000 239.0192 0.4660 0.1387 
773.0000 200.0000 0.0000 0.4572 
235.0000 194.7089 0.0000 0.4572 
83.0000 118.0000 0.0000 0.0000 

548.0000 120.7308 0.0000 0.0000 
895.0000 75.0141 0.0000 0.1187 

MEAN STANDARD  DEV: 0.2265 0.2477 
 

 

To prevent this noise from inflating the distance measurement when the fiducial is 

stationary, a given iteration’s measured fiducial position is only used to update the current 

location estimate if its distance from the previous position is more than three standard deviations 

(about 0.75 pixels) in both axes from the position at the preceding iteration.   
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For tall robots (over 12” in height) this noise increases significantly because the fiducial 

is at a greater elevation and therefore closer to the cameras. Enlarging the size of the fiducial 

increases the variance in the identification of its boundaries, also increasing the noise in the 

centroid positions found. The thresholds against noise were increased for testing with the Talon 

robot until the noise in the stationary fiducial position measurements no longer resulted in inflated 

measurements of traveled distance. A suitable threshold when testing with tall robots was found 

to be approximately two pixels for each axis, which corresponds to about half an inch in position.  

The standard deviations in position measurements of stationary fiducial can also be 

expressed in terms of the measured real world coordinates generated from pixel-to-feet 

conversions.   Table 3-4 presents data from the same testing events as Table 3-3, but using the 

real world positions calculated instead of image pixel locations. The average of the standard 

deviations for each location happened to be equal, at around 1/16” (note that the units in  

Table 3-4 are feet).    

 

Table 3-4: Standard deviation in feet of position for a stationary fiducial 

MEASURED POSITION (ft) STANDARD DEVIATION (ft) 
X-axis (Length) Y-axis (Width) X-axis (Length) Y-axis (Width) 

8.0127 0.2943 0.0113 0.0116 
16.0302 0.1110 0.0080 0.0076 
9.8515 1.8858 0.0000 0.0096 

21.1801 2.5658 0.0099 0.0000 
4.3895 4.2562 0.0000 0.0000 

12.2171 3.9630 0.0141 0.0000 
20.0919 3.9866 0.0231 0.0205 
23.9770 4.0604 0.0120 0.0032 
17.0483 4.9719 0.0000 0.0000 
5.8710 5.2769 0.0000 0.0116 
1.6221 7.2202 0.0000 0.0000 

11.8357 6.9307 0.0000 0.0111 
20.1826 7.8917 0.0000 0.0028 

MEAN STANDARD  DEV: 0.0060 0.0060 
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3.3.3 Accuracy 

As previous stated, accuracy was measured in two ways.  These are: 1) The mean real-

world position measurement of the fiducial as compared to a hand measurement of the same, and 

2) Distance measurements for straight traverses along both axes of the arena as compared to the 

known distances of those traverses.  While the latter aligns more closely with the actual use of the 

testing system, the former is still a good metric by which to judge whether the system functions 

properly. 

3.3.3.1 Position Measurement Accuracy 

The same testing data that was used to measure the system’s precision was applied to 

evaluate the accuracy of measured positions.   Table 3-5 presents the results.  The mean of the 

error at every location was about 1.5” in both axes.   

 

Table 3-5: Accuracy of position measurements 

TRUE  
POSITION (ft) 

MEAN MEASURED  
POSITION (ft) 

MEAN MEASUREMENT 
ERROR (ft) 

X-axis  
(Length) 

Y-axis 
 (Width) 

X-axis  
(Length) 

Y-axis  
(Width) 

X-axis  
(Length) 

Y-axis 
 (Width) 

8 0 8.0127 0.2943 0.0127 0.2943 
16 0 16.0302 0.1110 0.0302 0.1110 
10 2 9.8515 1.8858 0.1485 0.1142 
21 2.5 21.1801 2.5658 0.1801 0.0658 

4.67 4 4.3895 4.2562 0.2805 0.2562 
12.25 4 12.2171 3.9630 0.0329 0.0370 

20 4 20.0919 3.9866 0.0919 0.0134 
24 4 23.9770 4.0604 0.0230 0.0604 
17 5 17.0483 4.9719 0.0483 0.0281 
6 5 5.8710 5.2769 0.1290 0.2769 
2 7 1.6221 7.2202 0.3779 0.2202 

12 7 11.8357 6.9307 0.1643 0.0693 
20.17 8 20.1826 7.8917 0.0126 0.1083 

 
MEAN MEASUREMENT  

ERROR FOR ALL POSITIONS (ft): 0.1178 0.1273 
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3.3.3.2 Distance Measurement Accuracy 

The second method of evaluating the accuracy of the system is to drive a robot back and 

forth parallel to axes of the arena for a known distance and compare this to the distance measured 

by the system.  Because the “true” distance only took into account the distance traveled along one 

axis at a time, the method of calculating distance in the system’s code was modified to do the 

same, so that any lateral changes in position undergone by the robot did not contribute to the 

calculated distance.  The results of this testing, performed at several locations in the arena, are 

presented in Table 3-6. 

 

Table 3-6: Accuracy of distance measurements 

PATH DRIVEN 
TRUE 

DISTANCE (ft) 
MEASURED 

DISTANCE (ft) ERROR (%) 
LENGTH AXIS    
Along left wall 133.65 130.10 -2.66 
Along center 133.65 129.33 -3.23 
Along right wall 133.65 130.10 -2.66 
  MEAN % ERROR: -2.85% 
WIDTH AXIS    
Along 2nd Ramp 45.5 49.26 +8.26 
Along 5th Ramp 45.5 45.74 +0.53 
Along 11th Ramp 45.5 46.71 +2.66 

  MEAN % ERROR: +3.82% 
 

The distance accuracy testing results are very promising, and certainly more accurate 

than any method of estimating the distance traveled from only the number of laps completed.  

Measured distances along the length of the arena were about 3% lower than the true values, while 

those along the width were about 4% high.  As expected, this percent error in distance is larger 

than that of the position measurements.  Because the distance traversed is calculated from the 
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accumulation of many position measurements, the error accumulates as well.  While there does 

appear to be consistent bias in each axis direction, neither is significant enough to merit the 

addition of a “fudge factor” or other corrective measures.  Potential sources of the accuracy error 

observed are discussed below.   

3.4 Sources of Error 

Three major sources of error are believed to exist within the testing system.  These are: 1) 

errors due to the angled perspective of the cameras, 2) errors due to inconsistent real world 

coordinate frames between cameras, and 3) errors due to measurement of only planar traversal of 

the ramps.  These are discussed in detail below. 

3.4.1 Error Due to Angled Camera Perspective 

One of the largest errors expected is a result of the angled perspective of the cameras 

relative to all locations in the arena except those directly underneath one of the cameras.  If the 

cameras are calibrated to convert from pixels to feet using points at the height of the surface of 

the ramps, Figure 3-17 shows how the height of the fiducial off the ground creates a discrepancy 

between the position of the fiducial perceived by the camera and its actual location.  For a camera 

angle of just 15º and a mean fiducial height of 15” (an approximate height when attached to the 

Talon robot), the difference between the perceived and actual position of the fiducial is about 4”.   
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Figure 3-17: Errors due to camera perspective (robot image from [6]) 

 

One way to mitigate this source of error is to perform the pixel-to-feet calibrations using 

markers placed at the mean height of the fiducial on the robot in the arena, effectively calibrating 

the system to a plane at the mean height of the fiducial.  However, because scaling the arena’s 

ramps causes the robot to rise and fall by 6” (or 3” on either side of its mean position), this error 

cannot be completely removed with the current level of sophistication of the system.  The rising 

and falling of the robot and fiducial from their mean position is believed to be responsible for 

most of the overall error found in the previous section.  This also explains why measured 

distances along the “width” axis of the arena are found to be greater than those along the “length” 

axis relative to their true values. 

A simple way to fix this error is to calculate the fiducial’s likely orientation and height 

based on its position relative to the ramps. This would require position-sensitive corrections and 

the development of a grid used to map the location of each ramp. While this would be relatively 
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simple to implement, it was not incorporated into the system because it was felt that the error was 

small enough even without this calibration step. 

3.4.2 Error Due to Inconsistent Coordinate Frames Between Cameras 

A second source of error results from instances of inconsistent coordinate frames between 

cameras when calibrations for pixel-to-feet conversions are conducted.  This can cause the real 

world coordinate of the fiducial to seemingly “jump” in position when the robot crosses between 

two cameras’ fields of view.  Figure 3-18, shows the path created by connecting fiducial locations 

measured for a test in which a robot drove back and forth in a straight line along the length of the 

arena.  

 
Figure 3-18: Measured positions for a testing event with poor pixel-to-feet calibrations 
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The top plot shows the locations in pixels, and the lower in feet.  While ripples in this 

plot can be seen at each ramp due to the camera perspective error discussed previously, there 

appears to be a smooth, essentially imperceptible handoff in pixel locations measured when the 

fiducial transitions from the view of one camera to that of another.  However, in the lower plot, 

the fiducial measurement in real world coordinates jumps sharply every time the fiducial passes 

between camera views.  This occurs because the mapping between pixels and a real world 

coordinate frame must be calculated individually for each camera.  The real world locations 

manually entered during calibrations for each camera must refer to a consistent coordinate frame 

across all cameras.  While careful calibration of each camera’s pixel-to-position can greatly 

reduce this error, it cannot be completely eliminated.  Figure 3-19 shows an example of data for a 

similar testing event to that used in Figure 3-18, but with a more consistent real world coordinate 

frame.   
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Figure 3-19: Measured positions for a testing event with proper pixel-to-feet calibrations 

3.4.3 Error Due to Planar Distance Measurement Only 

A third source of error between the true distance traveled by the robot and the measured 

distance stems from the fact that the overhead nature of the cameras only enables them to view 

the planar distance traveled.  As depicted in Figure 3-20, although the robot is traversing the 

hypotenuse of the triangle formed by the ramps surface and the actual floor, only the base of this 

triangle can be measured from overhead.  Due to the relatively small angle of the ramps of 15º, 

the distance measured as a result of this error is only approximately 3.5% less than what it would 

be were the error not present.  However, this error does not play a role in the accuracy 

calculations presented in the previous section, because the “true” distances used also only took 

into account planar distance traveled.   
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Figure 3-20: Errors due to ramp angle (robot image from [6]) 

3.5 Interpreting Testing Event Data 

To facilitate in the interpretation of data, a MATLAB script was written that loads the 

data collected for each camera image (the loop iteration, lap number, fiducial location in pixels, 

fiducial location in feet, elapsed time since the start of the test, and distance traveled since the 

start of the test).   This data is indexed by laps, providing the distance traversed and time taken to 

complete each.  Plotting this information allows trends in distance per lap and time per lap to be 

easily viewed.  The script also plots the measured fiducial location in both pixels and feet for 

every iteration, as shown in Figure 3-18 and 3-19.  This allows users to inspect the results of 

image processing visually and to verify that the pixel-to-feet conversions refer to a consistent 

coordinate frame across all three cameras (see the source of error discussed in Section 3.4.2).  

Figures throughout Chapter 4 show more examples of the plots generated by this script for data 

from robots driving in a figure-eight pattern around the ramps (as per the NIST Standard Test 

Methods). 
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Chapter 4  
 

Applications 

The applications currently envisioned for the data acquisition system fall into three 

general themes.  These are: 1) the consistency of laps (the current NIST Robot Test Methods 

metric for endurance) across different robots and operators, 2) trends in operator performance 

with time, and 3) relationships between robot performance in the arena and in the field.  Because 

enough data has not yet been collected to make statements about these applications with statistical 

significance, the discussion here intends only to show that the camera tracking system can be 

used to investigate these themes, and to prove that, based on the data that has been collected thus 

far, there is intellectual merit in investigating further.   

Analysis is made using the data from three testing events, conducted in accordance with 

the NIST Test Methods.  The first two events were conducted with the Talon robot, originally 

developed by Foster-Miller (which has since become a subsidiary of Qinetic North America).  

Pictured in Figure 4-1, the Talon is a tracked robot of floor area approximately 3’x1.5’ and 

weight of about 150 lbs [5]. Data was taken for two different drivers, (referred to as “Driver 1” 

and “Driver 2” in this document) operating the Talon.   
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Figure 4-1: Talon robot [6] 

 
 

The third test was conducted with the Bombot, sold by Azimuth, Inc.  Pictured in Figure 

4-2, the Bombot is a front-wheel steered, four-wheel drive robot of floor area approximately 

1.5’x1’ and weight of about 30 lbs [5].  It is much more agile than the Talon in terms of 

acceleration, but cannot execute the zero-radius turns of a tracked robot, and therefore must take 

corners in much wider arcs.  Data was taken for Driver 1 operating the Bombot.   

 
Figure 4-2: Bombot [7] 
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4.1 Data Presentation 

Using the script discussed in Section 3.5, measurements of robot position, taken at an 

average of around 12 Hz, were plotted for all three testing events in both pixels and feet.  Testing 

event 1 consists of 27 laps of the Talon being directed in a figure-eight pattern within the arena by 

Driver 1, and is shown in Figure 4-3.   

 
Figure 4-3: Position measurements for Talon, Driver 1 (testing event 1) 

 
 

Testing event 2 consists of 21 laps of the Talon being directed in a figure-eight pattern 

around within arena by Driver 2, and is shown in Figure 4-4.   
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Figure 4-4: Position measurements for Talon, Driver 2 (testing event 2) 

 
 

Testing event 3 consists of 25 laps of the Bombot being driven in a figure-eight pattern 

within the arena by Driver 1, and is shown in Figure 4-5.   
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Figure 4-5: Position measurements for Bombot, Driver 1 (testing event 3) 

 

The distance and time data from each testing event can also be organized by lap.  This is 

presented in Figures 4-6, 4-7, and 4-8.  A linear best-fit regression is overlaid on each plot.   
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Figure 4-6: Data by lap for Talon, Driver 1 (testing event 1) 

 

 
Figure 4-7: Data by lap for Talon, Driver 2 (testing event 2) 

Y = -0.2679 + 40.05X 

Y = -0.0392 + 55.89X 

Y = -2.4649 + 95.44X 

Y = -0.6540 + 70.32X 
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Figure 4-8: Data by lap for Bombot, Driver 1 (testing event 3) 

 
 
 The data collected for all three testing events is summarized in Table 4-1, below, along 
with some additional statistics. 
 

Table 4-1: Testing event data 

TESTING EVENT 1 2 3 
Robot Talon Talon Bombot 
Driver 1 2 1 
Lap Count 27 21 25 
Average Distance/Lap (ft) 55.34 63.13 105.27 
Average Time/Lap (s) 36.30 68.32 49.75 
Average Speed (mph) 1.039 0.630 1.443 
R-value between lap time and lap distance 0.8634 0.7467 0.8133 
R2 value between lap distance and linear best fit 0.0385 0.1157 0.0275 
R2 value between lap times and linear best fit 0.0004 0.5987 0.1216 

 

The sections below explain how this data can be applied to learn about the nature of the 

NIST test methods, robot operators, and the robots themselves.   

Y = -0.7916 + 60.04X 

Y = -1.2646 + 121.71X 
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4.2 Consistency of Laps 

The consistency of laps as a metric of robot endurance can be explored in terms of its 

consistency both across different operators and across different robots. 

4.2.1 Different Operators  

Under the operation of Driver 2, the Talon traversed an average of about 8’ more per lap 

than under Driver 1, but this could be explained through measurement and statistical error.  It is 

more telling to compare the paths taken by each driver (Figures 4-3 and 4-4).   One significant 

difference between the two figures occurs along the right edge of each, where Driver 2 (Figure 4-

4) exhibits much higher activity, appearing to have traversed in straight lines back and forth along 

the width of the track many times.  This occurred because Driver 2 had much less prior 

experience, both with driving robots within the arena and with the Talon specifically, than Driver 

1.  Under Driver 2’s direction, the robot on several occasions became “stuck” between the bay 

wall and the upward slope of the ramps at one end of the arena.  Figure 4-9 provides a camera 

image from one such instance.   

 
Figure 4-9: Talon “stuck” between wall and ramps 
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From this position within the arena, attempting to turn the Talon to the right results in its 

back end hitting the bay wall, causing the tracks to slip on the surface of the upward-angled 

surface of the ramp.  Escaping this position required the driver to drive forward and backwards 

along the width of the arena several times, increasing both the distance and time required to 

complete the lap.  Relying on previous experiences operating the Talon in the arena, Driver 1 was 

able to avoid this occurrence entirely. 

There is a much more significant difference in the average time to complete a lap 

between the two operators.  Driver 1, at a much higher level of familiarity than Driver 2, drove 

both at higher speeds and in a smoother pattern, correcting the angle of the robot without 

reducing the throttle. Driver 2 often stopped the robot completely in order to adjust its trajectory, 

which slows the traversal.  Therefore, this difference between operators is also largely a 

consequence of their experience level.     

In summary, the consistency of laps across different drivers likely depends closely upon 

the familiarity of those operators with the robot and the arena.  Because most formal NIST testing 

is conducted with “expert” drivers at the controls, NIST data for different operators of the same 

robot should be fairly consistent, especially in terms of the distance traversed per lap, which is 

treated by NIST as a much more valuable measurement of robot capability than the time per lap.  

Aiding in this consistency is the requirement that robots must enter the endzone at each end of the 

arena in order to receive credit for a lap, which is a relatively recent addition to the NIST Test 

Methods meant to prevent drivers from turning sharply around the pylons in order to reduce the 

robot’s energy consumption per lap and therefore record more laps on one charge of batteries.  

Implementation of the distance tracking system could eventually eliminate the need for this 

requirement, since lap counting would no longer be the primary method of estimating the distance 

traversed.   
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4.2.2 Different Robots 

Comparing testing events 1 and 3, in which the same operator drove the Talon and 

Bombot respectively for 25 or more laps in the arena, allows the consistency of laps as a measure 

of distance traveled to be explored across different robots.  The data suggests that different robots 

may in fact travel very different distances in order to complete a lap.  The Bombot, without the 

advantage of zero-radius turns, was not as maneuverable within the confines of the arena, and 

often had to be guided forward and back through lengthy multi-point turns.  The robot’s light 

weight, high center of gravity, and low torque at the steering motor causes interaction with the 

ramps to often reorient its direction of travel, which requires the traversal of extra distance to 

correct.  Despite having a comparable average time per lap relative to testing with the Talon due 

to its much greater acceleration and top speed, the Bombot drove almost twice as far per lap on 

average than the Talon.   

While data collected with more robots and operators should be conducted in order to 

validate these findings, based off just three testing events, early indications are that the distance 

traveled per lap is inconsistent across different robots.     

4.3 Trends in Operator Performance 

Although the data shows operators performing better with time, both in terms of distance 

traversed and time per lap, as exhibited by the negative slope of the trend lines in Figure 4-6, 4-7, 

and 4-8, the R2 values between the data and these trend lines tend to be very small, suggesting 

low likelihood of measurable improvement in performance with laps.  However, this may be 

because both Drivers (especially Driver1) had some level of prior experience with the robots and 

arena.  It is possible that data for completely “green” operators would show significant 
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improvement with time initially over the course of a testing event, and eventually converge to an 

essentially constant level of performance. 

One intuitive observation that the data does support is that the time and distance taken to 

complete laps are correlated.  This is supported by the relatively high R-values found in each 

testing event between the time to complete and distance to traverse each lap.  In other words, if an 

operator takes a relatively long time to direct a robot around a particular lap, the robot probably 

also traversed a relatively long distance over the course of that lap.      

4.4 Relationships to the Field 

Imagine that an emergency response robot technician would like to use a particular robot 

to inspect a nuclear plant.  To do this, the robot must be able to drive for one mile round trip over 

level pavement on a full charge of batteries.  If NIST test results indicate that the robot can 

complete 100 laps around the endurance arena with fully charged batteries, can it complete this 

task?  Although the development of the camera tracking system facilitates a significant step in 

answering this question (the conversion from laps to distance as a metric), a conversion factor 

would be required that allows distance traversed across the ramps of the arena to be used to 

estimate the distance traversable on level pavement, on stairs, etc.  As discussed in Chapter 5, 

further development of this application for the tracking system forms the most significant need 

for future work. 
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Chapter 5  
 

Conclusions 

This thesis presents the fabrication of a NIST test arena, development of a tracking 

system for robots within the arena, and applications for that system.  Although measurements of 

distances traversed by the system are accurate to within a few percent of their true value, there are 

still several improvements that could be made to increase its quality and capabilities.  Even more 

importantly, more work is required in applying the system to learn about the performance of 

emergency response robots and their operators.  

5.1 Recommendations for Future Work on the Tracking System 

One current issue with the algorithms that needs to be addressed is that the measured 

position of the fiducial can vary slightly with the mode of operation of the code.  When images 

are set to be plotted every iteration (the mode used when processing the data presented 

previously), entire images are corrected for camera distortion before the centroid of the fiducial is 

found.  When images are not to be plotted (the most computationally efficient method of running 

the code), entire images are not corrected for distortion—only the individual pixel at the centroid 

of the fiducial is corrected.  However, because barrel distortion corrections slightly change the 

shape of the fiducial (and therefore the location of its centroid), these two methods are not exactly 

the same.  A better way to compute fiducial locations when not plotting would be to correct the 

part of the image immediately surrounding the last known location of the fiducial for distortion 

before searching for its new location.  The addition of distortion corrections on a segment of an 

image (not just one pixel) would slow the speed of the algorithms slightly; however, this decrease 
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in computational efficiency would accompany an increase in the accuracy and precision of the 

system when users want to process data with speed.  

While the system does enforce that the robot enters the endzones on each side of the 

arena in order to receive credit for a lap, it does not currently check whether the robot encircles 

the pylons that define the required figure-eight pattern.  Verifying that the operator directs the 

robot in accordance with the test requirements would make the system even more useful as an 

automated way of conducting data collection during NIST robot testing events.   

Another way in which the tracking system could be improved is to model more of the 

geometry of the arena in order to correct measurements for camera perspective.  As discussed in 

section 3.4, if the locations of each ramp segment could be found, the height of the fiducial could 

be estimated and its measured position corrected to account for the angled perspective of the 

cameras.  Mapping the ramps could also allow the algorithms to impose a more consistent 

coordinate frame between cameras, putting less dependency upon users to conduct proper 

calibrations in order to have high levels of accuracy.   

The testing system could be made easier to set up and less intrusive to robots by 

eliminating the need to use a fiducial.  Using a technique called background subtraction, the 

location of a robot within an arena could be found by detecting differences between the current 

images and a reference image.   The reference image would be of the arena with no robots loaded 

in, so that the only difference between the two images is the presence of a robot.     

One final improvement to the testing system is to enable it to track robots in the dark.  

One of the variable conditions imposed by NIST test methods is the presence of light in the arena, 

in the absence of which robots and their drivers must use night vision technology to operate.  The 

tracking system could be adapted to accommodate these conditions by locating robots using 

infrared (IR) light as a fiducial, or by background subtraction using robots’ on-board IR 

headlights.   
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5.2 Recommendations for Future Work on Applications of the System 

As stated throughout Chapter 4, data from many more testing events must be collected in 

order to support the existing evidence that robot operators of “expert” skill level are likely to 

record similar distances traversed and times per lap, but that different robots exhibit very 

dissimilar distances traversed and times per lap.  More data, especially of individuals with no 

prior experience operating robots in the arena, might also reveal trends in operator performance 

over the duration of a test.  Tests of long duration might reveal not only the learning curve for 

effective driving, but also whether operators decrease in performance after extended periods of 

time.  This could suggest an optimal work shift time for emergency response robot technicians.  

 Perhaps the most significant future application for the tracking system is its use in 

connecting a robot’s arena endurance data to its field performance.  This would allow data 

collected in the arenas to comment on performance outside the arena walls, facilitating a goal of 

the NIST Test Methods to improve the understanding of robot deployment capabilities.  

Researchers at the Penn State Applied Research Lab are already incorporating power 

consumption data into the measurements taken of robots within the NIST arena, but testing in 

which both power and distance measurements are made simultaneously has yet to be conducted.  

Combining these two measurements would allow the distance per unit energy to be measured at 

variable robot speeds, which could potentially serve as a scale factor for translating the results of 

NIST testing to performance in the field.   
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5.3 Final Remarks 

Although there is much work still to be done, the goals of this thesis—to develop an 

accurate robot tracking system for the NIST Robot Endurance Test Method and demonstrate its 

applicability to several areas of interest in the emergency response robot domain—have been 

achieved.  These contributions will advance our understanding of robot technology, taking 

additional steps on the path to a future in which robots can perform with increasing effectiveness 

hazardous tasks that humans cannot safely undertake.   

 



68 
 

Appendix A 
 

Instructions for Collecting Data 

A.1 Using Python Code to Save Images to File 

1. Turn on the Ubuntu computer and verify that the correct software is installed.  The code was 

developed for Unbuntu 12.04 running Python 2.7.  GStreamer and v4l2loopback must also be 

installed.   

2. Set the IP configuration of the computer to network with the cameras (camera IP addresses are 

172.16.1.1, 172.16.1.2, and 172.16.1.3).   

2. Plug into the Ethernet switch connected to the cameras and verify proper communications by 

visiting each camera’s IP address in a web browser.   

3. Open “Collect_Test_Images.py” -- there are two variables that can be edited: 

 Freq: The approximate frame rate (in fps) at which you want to record.  You can also 

comment the sleep function at the end of the script to record at the maximum 

possible frame rate.   

BasePath: The directory to which images will be saved. The script automatically creates a 

file for each camera at the end of this path. 

4. Open a new terminal window. 

5. Navigate to the current directory (the location of the code files) by typing:  

 “cd <path to the directory containing the files>” (ex. cd /home/mycomputer/Desktop), and 

pressing enter. 

6. If running for the first time you may also need to make the scripts executable.  Do this by 

running the command: “chmod +x <filename>  
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7. Run the command: "sudo ./MakeVideos.sh" 

8. Run the command "sudo ./Axis_GStreamer_1.sh" 

9. Open a new terminal window, navigate to the current directory (see Step 5) and run the 

command: "sudo ./Axis_GStreamer_2.sh" 

10. Open a new terminal window, navigate to the current directory (see Step 5) and run the 

command: "sudo ./Axis_GStreamer_3.sh" 

11. Open a new terminal window, navigate to the current directory (see Step 5) and run the 

command: "python Collect_Test_Images.py fps" 

12. After a brief pause, images will begin to be saved to file.  The frame rate at which images are 

saved is periodically printed to the terminal window.  To stop collecting images press 

“control” and “c” on the keyboard at the same time.   
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A.2 Using MATLAB Code to Process Images from File 

1. Move the folders with images from each camera into a directory named “images_PY” in the 

MATLAB current directory    

2. Open FcnInitTestConditions.m and check the value of the three flag variables.  To load images 

from file, FlagLive must be 0.   

3. If running for the first time, open ScriptCalibrate.m and follow the on-screen directions to 

create the necessary calibration files.  Barrel distortion parameters must be stored in 

FcnInitCamParams.m in order to conduct distortion calibrations.  Also, distorted images from 

each camera must be in the current directory and titled “calib_im_1” , “calib_im_2” , etc. 

4. If the fiducial is not found, adjust the formula used to make the mask in FcnMask_Color.m   

5. If the camera images need to be cropped differently to remove overlap, this can be adjusted at 

the bottom of FcnUndistort.m if FlagPlot =1, and in FcnGetImage_Select.m if FlagPlot = 0.   
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Appendix B 
 

Python Code 

B.1 Collect_Test_Images.py

1. #!/usr/bin/env.python...
2. ...
3. import.cv...
4. from.time.import.time,.sleep...
5. import.sys...
6. import.os...
7. ...
8. cv.NamedWindow('Fixed',.cv.CV_WINDOW_NORMAL)...
9. ...
10. sleep(1.5)...
11. ...
12. Freq.=.10.0...
13. BasePath.=."/media/UNTITLED/GStreamer/"...
14. ...
15. pathname_1.=.BasePath.+."cam_1/"...
16. if.not.os.path.exists(pathname_1):...
17. ....os.mkdir(pathname_1)...
18. ...
19. pathname_2.=.BasePath.+."cam_2/"...
20. if.not.os.path.exists(pathname_2):...
21. ....os.mkdir(pathname_2)...
22. .......
23. pathname_3.=.BasePath.+."cam_3/"...
24. if.not.os.path.exists(pathname_3):...
25. ....os.mkdir(pathname_3)...
26. ...
27. #@param.argv[1]:.fps.to.show.frame.per.second...
28. if.__name__.==.'__main__':...
29. ....show_fps=False...
30. ....if.len(sys.argv).>=2.and.sys.argv[1].==."fps":...
31. ........show_fps.=.True...
32. ...........
33. ....#See.if.frame.rate.is.shown...
34. ....if.show_fps:...
35. ........frame=0...
36. ........start.=.time()...
37. ...
38. ....#Create.video.capture.devices...........
39. ....capture_1.=.cv.CaptureFromCAM(0)...
40. ....capture_2.=.cv.CaptureFromCAM(1)...
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41. ....capture_3.=.cv.CaptureFromCAM(2)...
42. ...
43. ....Start_Time.=.time()...
44. ....#Run.publishing.image.until.this.package.is.shot.down........
45. ....while.1:...
46. .......
47. ........Current_Time.=.time().h.Start_Time...
48. ........Current_Time_Str.=."%f".%.Current_Time...
49. ...
50. ........New_Image.=.cv.QueryFrame(capture_1)...
51. ........cv.SaveImage(pathname_1+Current_Time_Str+".jpg",New_Image)...
52. ...
53. ........New_Image.=.cv.QueryFrame(capture_2)...
54. ........cv.SaveImage(pathname_2+Current_Time_Str+".jpg",New_Image)...
55. ...
56. ........New_Image.=.cv.QueryFrame(capture_3)...
57. ........cv.SaveImage(pathname_3+Current_Time_Str+".jpg",New_Image)...
58. ...
59. ........#Show.frame.rates...
60. ........if.show_fps:...
61. ............frame=frame+1...
62. ............end.=.time()....
63. ............if.(endhstart).>=.1.0:...
64. ................print.frame/(endhstart)...
65. ................frame=0...
66. ................start=time()...
67. ...
68. . .sleep(1/Freq)...
.

B.2 MakeVideos.sh/

modprobe.v4l2loopback.devices=3.
.

B.3 Axis_GStreamer_1.sh 

gsthlaunch.hvet..souphttpsrc.location=http://172.16.1.1/axish
cgi/mjpg/video.cgi?resolution=480x360.timeout=5.!.jpegdec.!.v4l2sink.device=/d
ev/video0
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B.4 Axis_GStreamer_2.sh 

gsthlaunch.hvet..souphttpsrc.location=http://172.16.1.2/axish
cgi/mjpg/video.cgi?resolution=480x360.timeout=5.!.jpegdec.!.v4l2sink.device=/d
ev/video1
 

B.5 Axis_GStreamer_3.sh 

gsthlaunch.hvet..souphttpsrc.location=http://172.16.1.3/axish
cgi/mjpg/video.cgi?resolution=480x360.timeout=5.!.jpegdec.!.v4l2sink.device=/d
ev/video2
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Appendix C 
 

MATLAB Code 

C.1 ScriptCalibrate.m 

% This script allows users to generate the calibration data files needed for lap and 
distance tracking 
  
  
clear 
clc 
  
% Initialize variables for the code that users may want to modify 
[ FlagLive,FlagPlot,FlagSavePlot,NumCams,Data2File ] = FcnInitTestConditions; 
  
% Initialize parameters for the cameras 
[ IP,CamRes,CamParam ] = FcnInitCamParams(FlagLive); 
  
% Initialize variables for the code 
[ 
Iter,CentroidFT_Last,CentroidPX_Last,CentroidPX_Last_Raw,TotalLaps,TotalDist,LastZone,Fla
gObjFound,DataLog,TimeStamps ] = FcnInitVars( Data2File,FlagLive ); 
  
%% Initialization Procedure 
  
% Conduct and save camera distortion calibrations 
FcnInitDistortCorrection(CamParam,NumCams); 
  
% Conduct and save distance tracking calibrations 
FcnInitDistTrack(IP,FlagLive,TimeStamps,Iter,NumCams,CamRes); 
  
% Conduct and save endzone location calibrations 
FcnInitEndzones(IP,CamRes,FlagLive,TimeStamps,Iter,NumCams); 

C.2 ScriptCollect_Test_Images.m 

% This script collects in real time and saves to file images that can be post-processed 
% to conduct lap counting and distance tracking 
  
% There may be some problems with the string length of the image names 
% generated by this script when they are read in FcnGetTimestamps.  This is 
% because that function was designed to process images generated using 
% Python. 
  
  
clear 
clc 
  
% Initialize parameters for the cameras 
FlagLive = 1; 
[ IP,CamRes,CamParam ] = FcnInitCamParams(FlagLive); 
  
% Define a name for the folder in which to store images 
imagefolder = 'images_MATLAB'; 
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mkdir(imagefolder); 
mkdir('images_MATLAB','cam_1') 
mkdir('images_MATLAB','cam_2') 
mkdir('images_MATLAB','cam_3') 
  
choice = questdlg('START?', ... 
    'START', ... 
    'START','START'); 
  
% Handle response 
switch choice 
    case 'START' 
         
        % Create a timer for iteration times 
        ElapsedTimer = tic; 
         
        % Set up the loop to run forever 
        ImNum = 0; 
        while ImNum > -1 
             
            % Get the elapsed time 
            ElapsedTime = toc(ElapsedTimer); 
             
            % Generate a filename for the image 
            filename=strcat(sprintf('%5.7f',ElapsedTime),'.jpg' ); 
             
            % For every camera 
            for CamNum=1:length(IP) 
                 
                % Get an IP address for the camera 
                name = IP{CamNum}; 
                 
                % Load image from the camera 
                im = imread(name); 
                 
                % Save the file as the fiename 
                imwrite(im,filename,'jpg'); 
                
movefile(filename,strcat('./',imagefolder,'/','cam_',num2str(CamNum),'/',filename)) 
                 
            end 
             
            % Update the iteration counter 
            ImNum = ImNum+1; 
             
            % Print the time in the command window 
            disp(num2str(ElapsedTime)) 
        end 
end 

C.3 ScriptLap_and_Dist_Tracking.m 

% This script conducts lap counting and distance tracking for NIST robot testing methods 
on a green fiducial using IP cameras. 
% A lap is considered to be one full trip about the course, from the starting endzone to 
the other and then back. 
% Note that lap counting only begins when the fiducial enters an endzone for the first 
time. 
% The Matlab Image Processing Toolbox is required to run this code. 
  
% Developed by Herschel Pangborn, Penn State University, 2013, using MATLAB R2011a for 
Mac OSX. 
% Please direct any quesitons to theherschmeister@gmail.com 
% Some algorithms are modified from those written by Professor Sean Brennan and Kevin 
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Swanson, Penn State University, 
% and from the Matlab Camera Calibration Toolbox 
  
clear 
clc 
  
%% Initialize Parameters and Variables 
  
% Initialize variables for the code that users may want to modify 
[ FlagLive,FlagPlot,FlagSavePlot,NumCams,Data2File ] = FcnInitTestConditions; 
  
% Initialize parameters for the cameras 
[ IP,CamRes,CamParam ] = FcnInitCamParams(FlagLive); 
  
% Initialize variables for the code that users don't need to change 
[ 
Iter,CentroidFT_Last,CentroidPX_Last,CentroidPX_Last_Raw,TotalLaps,TotalDist,LastZone,Fla
gObjFound,DataLog,TimeStamps] = FcnInitVars( Data2File,FlagLive ); 
  
%% Load Data Files From Calibration Scripts 
  
[ CalibDistTrack,CalibEndzones,newlocation,DistortionMapping ] = FcnGetCalibrations; 
clc 
  
%% Obtain and Plot the Starting Position and Begin the Loop on Command 
  
% Get the fiducial position in both pixels and real world coordinates 
[ CentroidFT_Last,CentroidPX_Last,CentroidPX_Last_Raw,FlagObjFound ] = FcnGetPosition( 
IP,CamRes,FlagLive,TimeStamps,FlagObjFound,Iter,NumCams,CalibDistTrack,CalibEndzones,Cent
roidFT_Last,CentroidPX_Last,CentroidPX_Last_Raw,FlagPlot,newlocation,DistortionMapping ); 
  
% Set the iteration counter = 1 
Iter = Iter+1; 
  
%% Loop Time! 
  
% Use a dialogue to start 
choice = questdlg('START?', ... 
    'START', ... 
    'START','START'); 
% Handle response 
switch choice 
    case 'START' 
        close(1) 
         
        % Start a timer for finding lap times 
        ElapsedTimer = tic; 
         
        % Loop indefinitely if running in real time, or until end of data if loading 
images from file. 
        Itstop = 1; 
        while Itstop 
             
            % Start a timer for fps timing 
            FpsTimer = tic; 
             
            % Get the fiducial position in both pixels and real world coordinates 
            [ CentroidFT_Current,CentroidPX_Current,CentroidPX_Current_Raw,FlagObjFound ] 
= FcnGetPosition( 
IP,CamRes,FlagLive,TimeStamps,FlagObjFound,Iter,NumCams,CalibDistTrack,CalibEndzones,Cent
roidFT_Last,CentroidPX_Last,CentroidPX_Last_Raw,FlagPlot,newlocation,DistortionMapping ); 
            % Get the total time of the test thus far 
            if FlagLive == 1 
                TotalTime = toc(ElapsedTimer); 
            else 
                TotalTime = TimeStamps(Iter); 
            end 
             
            % Conduct lap counting 
            [ TotalLaps,LastZone ] = FcnCalcLaps( 
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CalibEndzones,TotalLaps,LastZone,CentroidPX_Current ); 
             
            % Conduct distance tracking 
            [ TotalDist ] = FcnCalcDist( TotalDist,CentroidFT_Last,CentroidFT_Current ); 
             
            % Calculate the fps 
            Frame = toc(FpsTimer); 
            FPS = 1/Frame; 
             
            % Print some data to the screen if the object was found this iteration 
            if FlagObjFound == 1 
                fprintf(1,'Iter: %5d Total Laps: %4.1f, Total Distance (ft): %10.2f, X 
Location (ft): %6.2f, Y Location (ft): %6.2f, X Location (px): %6.2f, Y Location (px): 
%6.2f, FPS: %6.2f\n',... 
                    Iter,TotalLaps, TotalDist, CentroidFT_Current(1), 
CentroidFT_Current(2), CentroidPX_Current(1), CentroidPX_Current(2), FPS) 
            else 
                fprintf('OBJECT NOT FOUND\n') 
            end 
             
            % Update data log 
            [DataLog] = FcnLogData( Iter, FlagLive ,TotalLaps, TotalDist, TotalTime, 
CentroidPX_Current, CentroidFT_Current, DataLog, Data2File,length(TimeStamps) ); 
             
            % Save plot window to file 
            if FlagPlot == 1 && FlagSavePlot == 1 
                h = figure(1); 
                title(strcat('Iter: ',num2str(Iter),', TotalLaps: ',num2str(TotalLaps),' 
TotalDist: ',num2str(TotalDist))) 
                print(h,strcat('Iter_',num2str(Iter)),'-djpeg') 
            end 
             
            % If loading images from file, stop the loop 
            if FlagLive == 0 
                if Iter == length(TimeStamps) 
                    Itstop = 0; 
                end 
            end 
             
            % Update centroid locations 
            CentroidFT_Last = CentroidFT_Current; 
            CentroidPX_Last = CentroidPX_Current; 
            CentroidPX_Last_Raw = CentroidPX_Current_Raw; 
            Iter = Iter+1; 
             
        end 
end 

C.4 ScriptSort_Data.m 

% This script sorts data saved to file by ScriptLap_and_Dist_Tracking and 
% displays some useful statistics 
  
clear 
clc 
  
%% Load the data 
  
% Data is stored in this order: 
% 1) Iter, 2+3) CentroidPX_Current 4+5) CentroidFT_Current 6) TotalTime 7) TotalLaps 8) 
TotalDist 
  
% Initialize variables for the code that users may want to modify 
[ FlagLive,FlagPlot,FlagSavePlot,NumCams,Data2File ] = FcnInitTestConditions; 
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% Initialize parameters for the cameras 
[ IP,CamRes,CamParam ] = FcnInitCamParams(FlagLive); 
  
% Get variables from file 
listing = dir('DataLog*.mat'); 
  
% Variable for the iteration we're currently loading 
Iter = 1; 
  
% For every data file 
for n=1:size(listing) 
     
    % Load the data 
    load(listing(n).name) 
     
    % Add its contents to a list 
    size = length(DataLog); 
    DataLog_All(Iter:Iter+size-1,1:8) = DataLog; 
     
    % Update the iteration tracker 
    Iter = Iter+size; 
end 
  
%% Plot the fiducial location for every iteration in pixels and feet 
  
MaxIter = max(DataLog_All(:,1)); 
  
% Prep endzone data 
load('DataCalibEndzones.mat') 
  
% Extract endzone slope and intercept 
Lm = CalibEndzones(1,1); 
Lb = CalibEndzones(1,2); 
Rm = CalibEndzones(2,1); 
Rb = CalibEndzones(2,2); 
  
% Calculate some points for plotting 
X = 1:CamRes(1); 
Lbound = Lm*X+Lb; 
Rbound = Rm*X+Rb; 
  
% Plot the data in pixels 
figure(1) 
subplot(2,1,1) 
hold on 
emptyim = imrotate(ones(CamRes(2)*NumCams,CamRes(1),3),90); 
imagesc(emptyim) 
plot( [0,CamRes(2)*NumCams],[CamRes(1)/2,CamRes(1)/2],'--k'); % Plot the midline of the 
image 
plot( Lbound,X,'b' ); % Plot the endzone locations 
plot( Rbound,X,'r') ; 
plot(DataLog_All(1:MaxIter,2),DataLog_All(1:MaxIter,3),'k') % Plot the data itself 
set(gca,'YDir','reverse') 
axis([1 CamRes(2)*NumCams 1 CamRes(1)]) 
title('Centroid Locations in Pixels','Fontsize',15) 
xlabel('Position along Length (px)','Fontsize',15) 
ylabel('Position along Width (px)','Fontsize',15) 
  
% Plot the data in feet 
subplot(2,1,2) 
hold on 
plot([0 24],[4,4],'--k') % Plot the midline 
plot([4 4],[0 24],'b') % Plot the left endzone 
plot([20 20],[0 24],'r') % Plot te right endzone 
plot(DataLog_All(1:MaxIter,4),DataLog_All(1:MaxIter,5),'k') % Plot the data itself 
axis([0 24 0 8]) 
title('Centroid Locations in Feet','Fontsize',15) 
xlabel('Position along Length (ft)','Fontsize',15) 
ylabel('Position along Width (ft)','Fontsize',15) 
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%% For finding stationary fiducial error 
  
% Get some statistics 
X_PX_mean = mean(DataLog_All(1:MaxIter,2)) 
Y_PX_mean = mean(DataLog_All(1:MaxIter,3)) 
  
X_PX_std = std(DataLog_All(1:MaxIter,2)) 
Y_PX_std = std(DataLog_All(1:MaxIter,3)) 
  
X_FT_mean = mean(DataLog_All(1:MaxIter,4)) 
Y_FT_mean = mean(DataLog_All(1:MaxIter,5)) 
  
X_FT_std = std(DataLog_All(1:MaxIter,4)) 
Y_FT_std = std(DataLog_All(1:MaxIter,5)) 
  
%% Sort the data by time and distance of each lap 
  
% Get the first lap count 
LastLap = DataLog(1,7); 
FlagFirstLap = 0; 
  
% Counter for rows 
m = 1; 
  
% For every iteration 
for n=2:length(DataLog_All) 
     
    % When the first lap is found 
    if DataLog_All(n,7) == 1 && FlagFirstLap == 0 
         
        % Store starting time and distance 
        LastLap = 1; 
        LastTime = DataLog_All(n,6); 
        LastDist = DataLog_All(n,8); 
        FlagFirstLap = 1; 
         
    end 
     
    % If a new lap has been completed 
    if DataLog_All(n,7) > LastLap && rem(DataLog_All(n,7),1) == 0 
         
        % Get elapsed time and distance 
        DataLog_Laps(m,1) = LastLap; 
        DataLog_Laps(m,2) = DataLog_All(n,6)-LastTime; 
        DataLog_Laps(m,3) = DataLog_All(n,8)-LastDist; 
         
        % Update row counter 
        m = m+1; 
         
        % Replace as last time and distance 
        LastTime = DataLog_All(n,6); 
        LastDist = DataLog_All(n,8); 
        LastLap = DataLog_All(n,7); 
    end 
end 
  
%% Plot data by laps 
  
figure(2) 
subplot(2,1,1) 
bar(DataLog_Laps(:,2),'hist'); 
title('Lap Times','Fontsize',15) 
xlabel('Lap Number','Fontsize',15) 
ylabel('Lap Time (s)','Fontsize',15) 
axis([0 length(DataLog_Laps) 0 140]) 
  
subplot(2,1,2) 
bar(DataLog_Laps(:,3),'hist'); 
title('Lap Distances','Fontsize',15) 
xlabel('Lap Number','Fontsize',15) 
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ylabel('Lap Distance (ft)','Fontsize',15) 
axis([0 length(DataLog_Laps) 0 140]) 
  
% Plot best fit lines 
subplot(2,1,1) 
hold on 
p1 = polyfit(DataLog_Laps(:,1),DataLog_Laps(:,2),1); 
y1 = DataLog_Laps(:,1)*p1(1,1) + p1(1,2); 
plot(DataLog_Laps(:,1),y1,'r','linewidth',3) 
  
subplot(2,1,2) 
hold on 
p2 = polyfit(DataLog_Laps(:,1),DataLog_Laps(:,3),1); 
y2 = DataLog_Laps(:,1)*p2(1,1) + p2(1,2); 
plot(DataLog_Laps(:,1),y2,'r','linewidth',3) 
  
  
%% Report some useful numbers 
  
TotalDist = DataLog_All(MaxIter,8) 
TotalLaps = max(DataLog_Laps(:,1)) 
  
corr_laps_dist = corr(DataLog_Laps(:,2),DataLog_Laps(:,3)) 
mean_lap_time = mean(DataLog_Laps(:,2)) 
mean_lap_dist = mean(DataLog_Laps(:,3)) 
  
average_speed = sum(DataLog_Laps(:,3)) / sum(DataLog_Laps(:,2)) 

C.5 FcnCalcDist.m 

function [ TotalDist ] = FcnCalcDist( TotalDist,CentroidFT_Last,CentroidFT_Current ) 
  
% This function uses the distance formula to compute the distance traveled 
% by the fiducial since the last frame. 
% It then adds this to the previous total distance to find a new total. 
  
  
% Calculate the distance traveled between iterations 
DistChange = sqrt( ( CentroidFT_Current(1)-CentroidFT_Last(1) )^2 + ( 
CentroidFT_Current(2)-CentroidFT_Last(2) )^2 ); 
  
% Use for horizontal axis distance calibrations 
%DistChange = abs(CentroidFT_Current(1)-CentroidFT_Last(1)); 
  
% Use for vertical axis distance calibrations 
%DistChange = abs(CentroidFT_Current(2)-CentroidFT_Last(2)); 
  
% Add the distance traveled between iterations to the previous total 
TotalDist = TotalDist + DistChange; 
  
end 
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C.6 FcnCalcLaps.m 

function [ TotalLaps,LastZone ] = FcnCalcLaps( 
CalibEndzones,TotalLaps,LastZone,CentroidPX_Current ) 
  
% This function keeps tracks of laps completed by the fiducial. 
  
  
% Extract endzone parameters; 
Lm = CalibEndzones(1,1); 
Lb = CalibEndzones(1,2); 
Rm = CalibEndzones(2,1); 
Rb = CalibEndzones(2,2); 
  
% When the object is first in an endzone, start lap counting by changing 
% 'LastZone' to 1 or 2 depending on the endzone it is in 
if LastZone == 0 
    if CentroidPX_Current(1) >= CentroidPX_Current(2)*Rm+Rb 
        LastZone = 1; 
    end 
    if CentroidPX_Current(1) <= CentroidPX_Current(2)*Lm+Lb 
        LastZone = 2; 
    end 
end 
  
% Look for the fiducial to enter the opposite endzone from the last it entered 
% and update the lap counter 
if LastZone == 1 
    if CentroidPX_Current(1)<=CentroidPX_Current(2)*Lm+Lb 
        LastZone = 2; 
        TotalLaps = TotalLaps+.5; 
    end 
end 
  
if LastZone==2 
    if CentroidPX_Current(1)>=CentroidPX_Current(2)*Rm+Rb 
        LastZone = 1; 
        TotalLaps = TotalLaps+.5; 
    end 
end 
  
end 

C.7 FcnFixDistort 

function [ im ] = FcnFixDistort( im,Cam ) 
  
% This function corrects for camera barrel distortion.  The algorithm used is taken 
% directly from the Matlab Camera Calibration Toolbox. 
  
  
fc = Cam.fc; 
alpha_c = Cam.alpha_c; 
cc = Cam.cc; 
kc = Cam.kc; 
  
KK = [fc(1) alpha_c*fc(1) cc(1);0 fc(2) cc(2) ; 0 0 1]; 
  
I1 = im(:,:,1); 
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I2 = im(:,:,2); 
I3 = im(:,:,3); 
  
[I11] = FcnFixDistort_Rect(double(I1),eye(3),fc,cc,kc,alpha_c,KK); 
  
[I22] = FcnFixDistort_Rect(double(I2),eye(3),fc,cc,kc,alpha_c,KK); 
  
[I33] = FcnFixDistort_Rect(double(I3),eye(3),fc,cc,kc,alpha_c,KK); 
  
im(:,:,1) = I11; 
im(:,:,2) = I22; 
im(:,:,3) = I33; 
  
im=uint8(im); 
  
end 

C.8 FcnFixDistort_Apply.m 

function [xd,dxddk] = FcnFixDistort_Apply(x,k) 
  
% This function comes directly from the Matlab Camera Calibration Toolbox 
% and is used in the correction of barrel distortions. 
% It is called by FcnFixDistort_Rect. 
  
  
% Complete the distortion vector if you are using the simple distortion model 
length_k = length(k); 
if length_k <5 , 
    k = [k ; zeros(5-length_k,1)]; 
end; 
  
  
[m,n] = size(x); 
  
% Add distortion: 
  
r2 = x(1,:).^2 + x(2,:).^2; 
  
r4 = r2.^2; 
  
r6 = r2.^3; 
  
  
% Radial distortion: 
  
cdist = 1 + k(1) * r2 + k(2) * r4 + k(5) * r6; 
  
if nargout > 1, 
    dcdistdk = [ r2' r4' zeros(n,2) r6']; 
end; 
  
  
xd1 = x .* (ones(2,1)*cdist); 
  
coeff = (reshape([cdist;cdist],2*n,1)*ones(1,3)); 
  
if nargout > 1, 
    dxd1dk = zeros(2*n,5); 
    dxd1dk(1:2:end,:) = (x(1,:)'*ones(1,5)) .* dcdistdk; 
    dxd1dk(2:2:end,:) = (x(2,:)'*ones(1,5)) .* dcdistdk; 
end; 
  
  
% tangential distortion: 
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a1 = 2.*x(1,:).*x(2,:); 
a2 = r2 + 2*x(1,:).^2; 
a3 = r2 + 2*x(2,:).^2; 
  
delta_x = [k(3)*a1 + k(4)*a2 ; 
   k(3) * a3 + k(4)*a1]; 
  
aa = (2*k(3)*x(2,:)+6*k(4)*x(1,:))'*ones(1,3); 
bb = (2*k(3)*x(1,:)+2*k(4)*x(2,:))'*ones(1,3); 
cc = (6*k(3)*x(2,:)+2*k(4)*x(1,:))'*ones(1,3); 
  
if nargout > 1, 
    ddelta_xdk = zeros(2*n,5); 
    ddelta_xdk(1:2:end,3) = a1'; 
    ddelta_xdk(1:2:end,4) = a2'; 
    ddelta_xdk(2:2:end,3) = a3'; 
    ddelta_xdk(2:2:end,4) = a1'; 
end; 
  
xd = xd1 + delta_x; 
  
if nargout > 1, 
    dxddk = dxd1dk + ddelta_xdk ; 
    if length_k < 5, 
        dxddk = dxddk(:,1:length_k); 
    end; 
end; 
  
  
return; 
  
% Test of the Jacobians: 
  
n = 10; 
  
lk = 1; 
  
x = 10*randn(2,n); 
k = 0.5*randn(lk,1); 
  
[xd,dxddk] = apply_distortion(x,k); 
  
  
% Test on k: OK!! 
  
dk = 0.001 * norm(k)*randn(lk,1); 
k2 = k + dk; 
  
[x2] = apply_distortion(x,k2); 
  
x_pred = xd + reshape(dxddk * dk,2,n); 
  
  
norm(x2-xd)/norm(x2 - x_pred) 
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C.9 FcnFixDistort_Rect.m 

function [Irec] = FcnFixDistort_Rect( I,R,f,c,k,alpha,KK_new ) 
  
% This function comes directly from the Matlab Camera Calibration Toolbox 
% and is used in the correction of barrel distortions. 
% It is called by FcnFixDistort and calls FcnFixDistort_Apply 
  
  
if nargin < 5, 
   k = [0;0;0;0;0]; 
   if nargin < 4, 
      c = [0;0]; 
      if nargin < 3, 
         f = [1;1]; 
         if nargin < 2, 
            R = eye(3); 
            if nargin < 1, 
               error('ERROR: Need an image to rectify'); 
            end; 
         end; 
      end; 
   end; 
end; 
  
  
if nargin < 7, 
   if nargin < 6, 
        KK_new = [f(1) 0 c(1);0 f(2) c(2);0 0 1]; 
   else 
    KK_new = alpha; % the 6th argument is actually KK_new    
   end; 
   alpha = 0; 
end; 
  
  
  
% Note: R is the motion of the points in space 
% So: X2 = R*X where X: coord in the old reference frame, X2: coord in the new ref frame. 
  
  
if ~exist('KK_new'), 
   KK_new = [f(1) alpha*f(1) c(1);0 f(2) c(2);0 0 1]; 
end; 
  
  
[nr,nc] = size(I); 
  
Irec = 255*ones(nr,nc); 
  
[mx,my] = meshgrid(1:nc, 1:nr); 
px = reshape(mx',nc*nr,1); 
py = reshape(my',nc*nr,1); 
  
rays = inv(KK_new)*[(px - 1)';(py - 1)';ones(1,length(px))]; 
  
  
% Rotation: (or affine transformation): 
  
rays2 = R'*rays; 
  
x = [rays2(1,:)./rays2(3,:);rays2(2,:)./rays2(3,:)]; 
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% Add distortion: 
xd = FcnFixDistort_Apply(x,k); 
  
  
% Reconvert in pixels: 
  
px2 = f(1)*(xd(1,:)+alpha*xd(2,:))+c(1); 
py2 = f(2)*xd(2,:)+c(2); 
  
  
% Interpolate between the closest pixels: 
  
px_0 = floor(px2); 
  
  
py_0 = floor(py2); 
py_1 = py_0 + 1; 
  
  
good_points = find((px_0 >= 0) & (px_0 <= (nc-2)) & (py_0 >= 0) & (py_0 <= (nr-2))); 
  
px2 = px2(good_points); 
py2 = py2(good_points); 
px_0 = px_0(good_points); 
py_0 = py_0(good_points); 
  
alpha_x = px2 - px_0; 
alpha_y = py2 - py_0; 
  
a1 = (1 - alpha_y).*(1 - alpha_x); 
a2 = (1 - alpha_y).*alpha_x; 
a3 = alpha_y .* (1 - alpha_x); 
a4 = alpha_y .* alpha_x; 
  
ind_lu = px_0 * nr + py_0 + 1; 
ind_ru = (px_0 + 1) * nr + py_0 + 1; 
ind_ld = px_0 * nr + (py_0 + 1) + 1; 
ind_rd = (px_0 + 1) * nr + (py_0 + 1) + 1; 
  
ind_new = (px(good_points)-1)*nr + py(good_points); 
  
  
  
Irec(ind_new) = a1 .* I(ind_lu) + a2 .* I(ind_ru) + a3 .* I(ind_ld) + a4 .* I(ind_rd); 
  
  
  
return; 
  
  
% Convert in indices: 
  
fact = 3; 
  
[XX,YY]= meshgrid(1:nc,1:nr); 
[XXi,YYi]= meshgrid(1:1/fact:nc,1:1/fact:nr); 
  
%tic; 
Iinterp = interp2(XX,YY,I,XXi,YYi);  
%toc 
  
[nri,nci] = size(Iinterp); 
  
  
ind_col = round(fact*(f(1)*xd(1,:)+c(1)))+1; 
ind_row = round(fact*(f(2)*xd(2,:)+c(2)))+1; 
  
good_points = find((ind_col >=1)&(ind_col<=nci)&(ind_row >=1)& (ind_row <=nri)); 
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C.10 FcnGetCalibrations.m 

function [ CalibDistTrack,CalibEndzones,newlocation,DistortionMapping ] = 
FcnGetCalibrations 
  
% This function loads data files for calibrations necessary to the algorithms 
  
  
% Initialize a flag for whether we have all the necessary data files so that the loop 
runs at least once 
Flag = 0; 
  
% While we DON'T have all the data files 
while Flag == 0 
     
    % Try to load all the data files and set Flag = 1 if we make it all the way through 
    try 
        load DataCalibDistTrack.mat   % Creates variable: CalibDistTrack 
        load DataCalibEndzones.mat    % Creates variable: CalibEndzones 
        load DataCalibCamDistort.mat  % Creates variable: CalibDistort 
        Flag = 1; 
    catch fail 
        Flag = 0; 
    end 
     
    % If we DIDN'T find all the data files last iteration, run the calibration script 
    if Flag == 0 
        commandwindow 
        disp('WARNING: One or more of the calibration data files could not be found.  
Check which is missing and press any key to run the calibration script!'); 
        pause; 
        ScriptCalibrate 
        Flag = 0; 
    end   
end 
end 

C.11 FcnGetImage_All.m 

function [ im ] = FcnGetImage_All( IP,CamRes,FlagLive,TimeStamps,Iter,NumCams ) 
  
% This function gets an image from every camera in the system. 
  
  
% Make an empty matrix to hold the camera images 
im = uint8(zeros(CamRes(1),CamRes(2)*NumCams,3)); 
  
% Get an image from each camera and concatenate 
for CamNum=1:NumCams 
    newim = FcnGetImage( IP,FlagLive,TimeStamps,Iter,CamNum ); 
     
    if CamNum == 1 
        im(:,1:CamRes(2),:) = newim; 
    else 
        im(:,(CamRes(2)*(CamNum-1) ) + 1:CamRes(2)*CamNum,:) = newim; 
    end 
end 
  
end 
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C.12 FcnGetImage_Select.m 

function [ im,LeftBound,TopBound ] = FcnGetImage_Select( 
IP,CamRes,FlagLive,TimeStamps,Iter,NumCams,CentroidPX_Last ) 
  
% This function get images from only those cameras within 'MatWidth' pixels of 
% the last fiducial location and crops the image to be more or less 
% centered at that location. 
  
  
% Set the width of the box to search, more or less centered at the previous centroid 
location 
MatWidth = 150;  % The defualt is 300 
  
LeftBound   = CentroidPX_Last(1)-MatWidth/2; % Set the left boundary 
RightBound  = CentroidPX_Last(1)+MatWidth/2; % Set the right boundary 
TopBound    = CentroidPX_Last(2)-MatWidth/2; % Set the top boundary 
BottomBound = CentroidPX_Last(2)+MatWidth/2; % Set the bottom boundary 
  
% If the left boundary is out of bounds, set it as the boundary 
if LeftBound  < 1 
    LeftBound = 1; 
end 
% If the right boundary is out of bounds, set it as the boundary 
if RightBound  > NumCams*CamRes(2) 
    RightBound = NumCams*CamRes(2); 
end 
% If the top boundary is out of bounds, set it as the boundary 
if TopBound  < 1 
    TopBound = 1; 
end 
% If the bottom boundary is out of bounds, set it as the boundary 
if BottomBound  > CamRes(1) 
    BottomBound = CamRes(1); 
end 
  
% Get the number of the camera in which each bound lies 
CamNum_Left     = ceil( LeftBound     / CamRes(2) ); 
CamNum_Right    = ceil( RightBound    / CamRes(2) ); 
  
% Generate a list of the border cameras from from which we need images 
Cams = sort(unique([CamNum_Left,CamNum_Right])); 
  
% If cameras 1 and 3 are needed, add in camera 2 as well 
if Cams == [1 3] 
    Cams = [1 2 3]; 
end 
  
% Make an empty matrix to hold the camera images 
im = uint8(zeros(CamRes(1),CamRes(2)*max(Cams),3)); 
  
% Get an image from each camera 
for CamIndex=1:size(Cams,2) 
    newim = FcnGetImage( IP,FlagLive,TimeStamps,Iter,Cams(CamIndex) ); 
     
    % Crop out overlap in the images 
    % (this is done in FcnUndistort when FlagPlot is on) 
    switch Cams(CamIndex) 
        case 1 
            newim(1:480,330:360,:) = 0; 
        case 2 
            %newim(1:480,1:30,:) = 0; 
        case 3 
            %newim(1:480,330:360,:) = 0; 
        case 4 
            %newim(1:480,1:10,:) = 0; 
    end 
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    if CamIndex == 1 
        im(:,1:CamRes(2),:) = newim; 
    else 
        im(:,(CamRes(2)*Cams(CamIndex-1) ) + 1:CamRes(2)*Cams(CamIndex),:) = newim; 
    end 
end 
  
% Adjust the bounds to refer to the indices of the images we just compiled 
LeftBound_Ref  = LeftBound  - (Cams(1) - 1)*CamRes(2); 
RightBound_Ref = RightBound - (Cams(1) - 1)*CamRes(2); 
  
% Crop the image by taking these bounds 
im = im( TopBound:BottomBound,LeftBound_Ref:RightBound_Ref,: ); 
end 

C.13 FcnGetImage.m 

function [ im ] = FcnGetImage( IP,FlagLive,TimeStamps,Iter,CamNum ) 
  
% This function loads an image from a camera and corrects it for barrel distortion. 
  
  
% If taking images in real time 
if FlagLive == 1 
     
    % Get IP address for the camera 
    name = IP{CamNum}; 
     
    % Load image from the camera 
    im = imread(name); 
     
% If loading image from file 
else 
     
    % Use the first image in the initialiation step 
    if Iter ==0 
        Iter = 1; 
    end 
     
    % Generate the file name for each image to be loaded 
    name = 
strcat('images_PY/','cam_',num2str(CamNum),'/',num2str(TimeStamps(Iter),'%f'),'.jpg' ); 
     
    % Load image from file 
    im = imread(name); 
end 
  
% Rotate the image appropriately 
switch CamNum 
    case 1 
        im = imrotate(im,90); 
    case 2 
        im = imrotate(im,-90); 
    case 3 
        im = imrotate(im,90); 
    case 4 
        im = imrotate(im,-90); 
end 
  
% Crop out the top and bottom of the image 
im(1:50,1:360,:)=0; 
im(450:480,1:360,:)=0; 
  
end 
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C.14 FcnGetPosition.m 

function [ CentroidFT_Current,CentroidPX_Current,CentroidPX_Current_Raw,FlagObjFound ] = 
FcnGetPosition( 
IP,CamRes,FlagLive,TimeStamps,FlagObjFound,Iter,NumCams,CalibDistTrack,CalibEndzones,Cent
roidFT_Last,CentroidPX_Last,CentroidPX_Last_Raw,FlagPlot,newlocation,DistortionMapping ) 
  
% Ths function gets the position of the fiducial in both pixels and feet. 
  
if FlagObjFound == 1 && FlagPlot == 0 
    % If we found the fiducial last iteration AND are NOT plotting every iteration, 
    % get an image from nearby cameras and crop the image around the last known position 
    [ im,LeftBound,TopBound ] = FcnGetImage_Select( 
IP,CamRes,FlagLive,TimeStamps,Iter,NumCams,CentroidPX_Last ); 
    FlagScopeLimited = 1; 
else 
    % If we didn't find the fiducial last time, get an image from every camera 
    im = FcnGetImage_All( IP,CamRes,FlagLive,TimeStamps,Iter,NumCams ); 
    FlagScopeLimited = 0; 
end 
  
% If we're IN the zeroth iteration OR the plot flag is ON... 
if Iter==0 || FlagPlot == 1 
    % Undistort the entire image 
    im = FcnUndistort(im,DistortionMapping,NumCams,CamRes); 
end 
  
% Get the fiducial location in pixels and update FlagObjFound 
[ Mask,FlagObjFound,CentroidPX_Current ] = FcnMask( im,CentroidPX_Last ); 
  
% If the fiducial was found... 
if FlagObjFound == 1 
     
    % If the scope was limited, adjust the centroid locations to refer to 
    % the full range of the camera images 
    if FlagScopeLimited == 1 
        CentroidPX_Current(1) = CentroidPX_Current(1) + LeftBound; 
        CentroidPX_Current(2) = CentroidPX_Current(2) + TopBound; 
    end 
     
    one_sigmaX  = .7;   %= 0.2265; 
    one_sigmaY  = .7;   %= 0.2477; 
    % If we are within the 3-sigma bounds of the expected steady state noise, set the 
position to be equal to the last position 
    if FlagPlot == 1 
        if abs(CentroidPX_Current(1)-CentroidPX_Last(1)) < 3*one_sigmaX 
            CentroidPX_Current(1) = CentroidPX_Last_Raw(1); 
        end 
        if abs(CentroidPX_Current(2)-CentroidPX_Last(2)) < 3*one_sigmaY 
            CentroidPX_Current(2) = CentroidPX_Last_Raw(2); 
        end 
    elseif FlagPlot == 0 
        if abs(CentroidPX_Current(1)-CentroidPX_Last_Raw(1)) < 3*one_sigmaX 
            CentroidPX_Current(1) = CentroidPX_Last_Raw(1); 
        end 
        if abs(CentroidPX_Current(2)-CentroidPX_Last_Raw(2)) < 3*one_sigmaY 
            CentroidPX_Current(2) = CentroidPX_Last_Raw(2); 
        end 
    end 
     
    % Round the centroid locations to integers 
    CentroidPX_Current = round(CentroidPX_Current); 
     
    % Save the pixel position (for when FlagPlot = 0 
    CentroidPX_Current_Raw = CentroidPX_Current; 
     
    % Get the number of the camera in which the fiducial was found 
    CamNum = ceil( CentroidPX_Current(1) / CamRes(2) ); 
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    % Get the X location of fiducial WRT that camera's indices only 
    CentroidPX_Current_Ref = CentroidPX_Current(1) - ( (CamNum-1) * (CamRes(2)) ); 
     
    % If we're AFTER the zeroth iteration and the plot flag is OFF... 
    if Iter~=0 && FlagPlot == 0 
         
        % If we have not undistorted the entire image 
        if FlagScopeLimited == 1 
            % Correct the centroid position only for barrel distortion 
            linearInd = 
sub2ind([CamRes(2),CamRes(1),1],CentroidPX_Current_Ref,CentroidPX_Current(2)); 
            [CentroidPX_Current_Ref, CentroidPX_Current(2)] = 
ind2sub([CamRes(2),CamRes(1),1],newlocation(linearInd,CamNum)); 
        end 
    end 
     
    % Get the real world coordinates of the pixels 
    CentroidFT_Current(1) = CalibDistTrack(CentroidPX_Current_Ref,1,CamNum); 
    CentroidFT_Current(2) = CalibDistTrack(480-CentroidPX_Current(2) ,2,CamNum); 
     
else 
    % Otherwise, position variables don't change 
    CentroidFT_Current = CentroidFT_Last; 
    CentroidPX_Current = CentroidPX_Last; 
    CentroidPX_Current_Raw = CentroidPX_Last_Raw; 
end 
  
% If we're IN the zeroth iteration OR the plot flag is ON... 
if Iter==0 || FlagPlot == 1 
     
    if FlagObjFound == 0 && Iter == 0 
        % If we're in the zeroth iteration and the object is not found, display an error 
message 
        error('Object not found at first check.  Please place it in view of the camera 
and run the script again.') 
    else 
         
        % Clear the figure window 
        if Iter > 1 
            pause(.01) 
            clf(1) 
        end 
         
        % If the object is found, plot it 
        FcnPlot( 
im,Mask,CalibEndzones,CentroidPX_Current,CentroidFT_Current,CamRes(2)*NumCams,CamRes(1),F
lagObjFound ); 
    end 
end 

C.15 FcnGetTimestamps.m 

function [ TimeStamps ] = FcnGetTimestamps() 
  
% This function extracts timestamps from the image filenames 
  
% Check for the necessary file and don't run without it 
while isdir('images_PY') == 0 
    disp('WARNING! The "images_PY" folder was not found in the current directory.  Move 
it there and press any key to continue. '); 
    pause 
end 
while isdir('images_PY/cam_1') == 0 
    disp('WARNING! The "cam_1" folder was not found in the current directory.  Move it 
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there and press any key to continue. '); 
    pause 
end 
while isdir('images_PY/cam_2') == 0 
    disp('WARNING! The "cam_2" folder was not found in the current directory.  Move it 
there and press any key to continue. '); 
    pause 
end 
while isdir('images_PY/cam_3') == 0 
    disp('WARNING! The "cam_3" folder was not found in the current directory.  Move it 
there and press any key to continue. '); 
    pause 
end 
  
% Get the filenames in the images_PY folder 
listing = dir('images_PY/cam_1/*.jpg'); 
  
% Initialze a variable for iteration number 
Iter = 1; 
  
% Cycle through all the files in the folder 
for file=1:length(listing) 
     
    % Get the number of characters in the filename 
    numchars = length(listing(file).name); 
     
    % If it is a valid filename and for camera 1 
    if numchars > 8 
        % Save the timestamps 
        TimeStamps(Iter,1) = str2num(listing(file).name(1:(numchars-4))); 
         
        % Increase the iteration counter 
        Iter = Iter+1; 
    end 
end 
  
TimeStamps = sort(TimeStamps); 
  
end 

C.16 FcnInitCamParams.m 

function [ IP,CamRes,CamParam ] = FcnInitCamParams( FlagLive ) 
  
% This function initializes parameters for all the cameras. 
  
  
% Save URLs for the cameras (also sets their resolutions) 
IP = {'http://172.16.1.01/axis-cgi/jpg/image.cgi?resolution=480X360'; 
      'http://172.16.1.02/axis-cgi/jpg/image.cgi?resolution=480X360'; 
      'http://172.16.1.03/axis-cgi/jpg/image.cgi?resolution=480X360'}; 
  
if FlagLive == 1 
    % Extract and package camera resolutions from URLs above 
    IP1 = IP{1,1}; 
    CamRes  = [str2double(IP1(1,54:56)),str2double(IP1(1,58:60))]; 
else 
    % Set a camera resolution for whne images are loaded from file 
    CamRes = [480,360]; 
    %CamRes = [320,240]; 
end 
  
% Load and organize camera calibraiton parameters 
% --> kc,cc,fc are taken with the OpenCV camera calibration toolbox 
% --> alpha_c is always zero 
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% For Camera 1 (sees the door) 
alpha_c1 = 0; % Skew Coefficient 
fc1 = [343.737030 ; 337.834129]; % Focal lengths for each axis in pixels 
cc1 = [234.556875 ; 199.708871]; % Image center for each axis 
kc1 = [-0.418304 ; 0.192773 ; -0.000486 ; 0.002220 ; 0.000000]; % Distortion matrix 
Cam1 = struct('kc',kc1,'cc',cc1,'fc',fc1,'alpha_c',alpha_c1); 
  
% For Camera 2 (sees the middle of the track) 
alpha_c2 = 0; % Skew Coefficient 
fc2 = [440.187719 ; 392.214480]; % Focal lengths for each axis 
cc2 = [225.518547 ; 176.499447]; % Image center for each axis 
kc2 = [-0.540728 ; 0.250023 ; 0.010247 ; -0.006886 ; 0.000000]; % Distortion matrix 
Cam2 = struct('kc',kc2,'cc',cc2,'fc',fc2,'alpha_c',alpha_c2); 
  
% For Camera 3 (sees the back wall) 
alpha_c3 = 0; % Skew Coefficient 
fc3 = [335.882994 ; 305.973338]; % Focal lengths for each axis 
cc3 = [244.737794 ; 153.294929]; % Image center for each axis 
kc3 = [-0.375910 ; 0.149280 ; 0.008296 ; -0.010249 ; 0.000000]; % Distortion matrix 
Cam3 = struct('kc',kc3,'cc',cc3,'fc',fc3,'alpha_c',alpha_c3); 
  
CamParam=struct('Cam1',Cam1,'Cam2',Cam2,'Cam3',Cam3); 
  
end 

C.17 FcnInitDistortCorrection.m 

function [] = FcnInitDistortCorrection(CamParam,NumCams) 
  
% This function initializes the process of calculating or loading camera distortion 
calibrations. 
  
  
% Use a dialogue to ask whether the user wants to create new calibrations 
choice = questdlg('Load last camera distortion corrections or create new ones?', ... 
    'Camera Distortion Corrections', ... 
    'Use Last','Create New','Create New'); 
% Handle response 
switch choice 
    case 'Create New' 
        FcnInitDistortCorrection_Calib(CamParam,NumCams); % Take new calibrations 
end 
  
end 
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C.18 FcnInitDistortCorrection_Calib.m 

function FcnInitDistortCorrection_Calib(CamParam,NumCams) 
  
% This function conducts calibrations for camera distortion. 
% Distorted images for each camera must be in the current directory and 
% saved as "Calib_im_1" , "Calib_im_2" , etc. 
  
  
commandwindow 
disp('WARNING: This calibration takes a very long time to process (~20 hrs). Press any 
key to run it anyway!'); 
pause; 
  
% Create a place to store where indices move to: 
im_distorted = imread(strcat('Calib_im_1.jpg')); 
greyim_distorted = rgb2gray(im_distorted); 
newlocation = zeros(numel(greyim_distorted),NumCams); 
  
DistortionMapping = ones(length(newlocation),NumCams); 
DistortionMappingSparse = zeros(size(DistortionMapping)); 
  
for CamNum = 1:NumCams 
     
    % Load the cameara calibration parameters 
    name = strcat('Cam',num2str(CamNum)); 
    alpha_c = CamParam.(name).alpha_c; 
    fc = CamParam.(name).fc; 
    cc = CamParam.(name).cc; 
    kc = CamParam.(name).kc; 
    Cam = struct('kc',kc,'cc',cc,'fc',fc,'alpha_c',alpha_c); 
    KK = [fc(1) alpha_c*fc(1) cc(1);0 fc(2) cc(2) ; 0 0 1]; 
     
    % Open an image from that camera from file and make it greyscale 
    im_distorted = imread(strcat('Calib_im_',num2str(CamNum),'.jpg')); 
    greyim_distorted = rgb2gray(im_distorted); 
     
    % Save the number of rows & columns in the original image 
    [rows cols] = size(greyim_distorted); 
     
    % Create a linear array of zeros... many rows, one column 
    zerotemplate_distorted = zeros(numel(greyim_distorted),1); 
     
    for i=1:length(zerotemplate_distorted) 
        % Fill in one pixel with 255, leaving all others to be zeros. 
        template_distorted = zerotemplate_distorted; 
        template_distorted(i) = 255; 
         
        % Convert back to an array 
        matrixtemplate_distorted = reshape(template_distorted,rows,cols); 
         
        % Correct distortion 
        matrixtemplate_undistorted = 
uint8(FcnFixDistort_Rect(double(matrixtemplate_distorted),eye(3),fc,cc,kc,alpha_c,KK)); 
         
        if 1==0 % Change to 1 to see it working live... painfully slow 
            % Plot the distorted and undistorted versions side by side 
            figure(3) 
            subplot(1,2,1) 
            imshow(matrixtemplate_distorted) 
            title('DISTORTED') 
            subplot(1,2,2) 
            imshow(matrixtemplate_undistorted) 
            title('UNDISTORTED') 
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            xlabel(sprintf('%3.2f percent 
complete',i/length(zerotemplate_distorted)*100)); 
            pause(0.01); 
        end 
         
        % Find maximum 
        template_undistorted = reshape(matrixtemplate_undistorted,rows*cols,1); 
        [~,max_ind] = max(template_undistorted); 
         
        % Store resulting index, e.g. where the original pixel moved to 
        newlocation(i,CamNum) = max_ind; 
         
        % Print a percent completion 
        fprintf('Stage 1, Camera %d, %3.2f percent complete 
\n',CamNum,i/length(zerotemplate_distorted)*100) 
         
    end 
    fprintf('100.00 percent complete\n') 
     
     
    % Flip the mapping 
    for i=1:length(newlocation) 
        DistortionMapping(newlocation(i,CamNum),CamNum) = i; 
    end 
     
    % Save results, because it illustrates where interpolation is necessary 
    DistortionMappingSparse(:,CamNum) = DistortionMapping(:,CamNum); 
     
    %% Now, fix locations where mapping is sparse 
    for i=1:length(DistortionMappingSparse) 
        if 1==DistortionMappingSparse(i,CamNum) 
             
            % Identify the pixel values that are adjacent to an empty pixel 
            % Uncomment the one below if need to do corners as well 
            neighbors = [i-rows-1, i-rows, i-rows+1, i-1, i+1, i+rows-1, i+rows, 
i+rows+1]; 
             
            % Grab adjacent rows 
            % neighbors = [i-rows, i-1, i+1, i+rows]; 
             
            % Make sure they are valid neighbors , e.g. they are not hanging over edge of 
image 
            good_neighbors = neighbors(neighbors>0); 
            good_neighbors = good_neighbors(good_neighbors<(rows*cols+1)); 
             
            % Make sure the map isn't = 1 at these locations 
            indices_to_chose_from = 
good_neighbors(DistortionMappingSparse(good_neighbors,CamNum)>1); 
             
            % Pick one at random and assign the gap to this neighbor 
            value = round(rand*(length(indices_to_chose_from)-1))+1; 
            DistortionMapping(i,CamNum) = 
DistortionMappingSparse(indices_to_chose_from(value),CamNum); 
        end 
    end 
     
    %% Now fix missing locations in newlocation matrix 
     
    % First, save sparse version of newlocation 
    newlocationSparse = newlocation; 
     
    % Fill in some arrays 
    good_values = find(newlocationSparse(:,CamNum)>1); 
    [good_rows, good_cols] = ind2sub(size(greyim_distorted),good_values); 
     
    % Define the pixel we are looking for (I do an entire column to illustrate 
    % situations where the pixel is found AND not found) 
    count = 0; 
    for row = 1:rows 
        for col = 1:cols 
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            count = count+1; 
            % First, find the indices of the point inside the distorted image 
            linearInd = sub2ind(size(greyim_distorted),row,col); 
             
            % Below is unnecessary. I used to need it before I fixed the 
            % newlocation array to point to nearest term 
            if 1==1 
                is_good = find(good_values==linearInd); % gives a number if it is good 
                 
                % If you don't find the pixel, we have to search for nearby ones. 
                if isempty(is_good) % Pixel wasn't found! 
                    % Find distances from this row/col to all good rows/cols 
                    distances = (good_rows - row).^2 + (good_cols - col).^2; 
                     
                    % Take minimum... keep only the index of the minimum 
                    [junk,min_i] = min(distances); 
                     
                    % Assign this good index to replace the bad index value 
                    newlocation(linearInd,CamNum) = 
newlocation(good_values(min_i),CamNum); 
                end 
            end 
            fprintf('Stage 2, Camera %d, %0.2f percent complete 
\n',CamNum,100*count/(rows*cols)); 
        end 
    end 
     
    %% Save data from calibration 
    name = strcat('Cam_',num2str(CamNum)); 
    info_newlocation.(name).Cam = Cam; 
    info_newlocation.(name).fc = fc; 
    info_newlocation.(name).alpha_c = alpha_c; 
    info_newlocation.(name).cc = cc; 
    info_newlocation.(name).kc = kc; 
    info_newlocation.(name).KK = KK; 
    info_newlocation.(name).rows = rows; 
    info_newlocation.(name).cols = cols; 
     
    save DataCalibCamDistort.mat newlocationSparse newlocation DistortionMappingSparse 
DistortionMapping info_newlocation 
     
    disp(strcat('Cam ',CamNum,' Complete!')) 
end 

C.19 FcnInitDistTrack.m 

function [] = FcnInitDistTrack( IP,FlagLive,TimeStamps,Iter,NumCams,CamRes ) 
  
% This function initializes the process of calculating or loading distance tracking 
calibrations. 
  
  
% Use a dialogue to ask whether the user wants to create new calibrations 
choice = questdlg('Load last distance tracking calibrations or create new ones?', ... 
    'Distance Tracking Calibrations', ... 
    'Use Last','Create New','Create New'); 
% Handle response 
switch choice 
    case 'Create New' 
        CalibDistTrack = 
FcnInitDistTrack_Calib(IP,FlagLive,TimeStamps,Iter,NumCams,CamRes); % Take new 
calibrations 
        save('DataCalibDistTrack.mat','CalibDistTrack') 
end 
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end 

C.20 FcnInitDistTrack_Calib.m 

function [ CalibDistTrack ] = FcnInitDistTrack_Calib( 
IP,FlagLive,TimeStamps,Iter,NumCams,CamRes ) 
  
% This function allows the user to conduct calibrations for distance tracking. 
  
  
% Load images from each camera, one at at time 
for CamNum=1:3 
     
    calibcheck = 'n'; 
     
    while calibcheck ~= 'y' 
         
        % Read in a camera image 
        im = FcnGetImage( IP,FlagLive,TimeStamps,Iter,CamNum ); 
         
         
        % Undistort the image 
         
        load DataCalibCamDistort.mat 
         
        % Flip the image segment back to how it was originally 
        switch CamNum 
            case 1 
                im = imrotate(im,-90); 
            case 2 
                im = imrotate(im,-90); 
            case 3 
                im = imrotate(im,-90); 
            case 4 
                im = imrotate(im,90); 
        end 
        for Dimension = 1:3 
            imlayer = im(:,:,Dimension); 
            imlayer = reshape(imlayer(DistortionMapping(:,CamNum)),CamRes(2),CamRes(1)); 
            im(:,:,Dimension) = imlayer; 
        end 
        % Re-rotate the image segment 
        switch CamNum 
            case 1 
                im = imrotate(im,90); 
            case 2 
                im = imrotate(im,90); 
            case 3 
                im = imrotate(im,90); 
            case 4 
                im = imrotate(im,-90); 
        end 
         
        commandwindow 
        % Get two vertical points 
        fprintf('Select two points in a vertical line.\n') 
        [pointPX_Vert,pointFT_Vert] = FcnInitDistTrack_Get2Pts(im); 
         
        commandwindow 
        % Get two horizontal points 
        fprintf('Select two points in a horizontal line.\n') 
        [pointPX_Horiz,pointFT_Horiz] = FcnInitDistTrack_Get2Pts(im); 
         
        % Get a scale factor of pixels/feet 
        FTperPX_Vert  = ( pointFT_Vert(1,2)-pointFT_Vert(2,2)   ) / ( pointPX_Vert(1,2)-
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pointPX_Vert(2,2)   ); 
        FTperPX_Horiz = ( pointFT_Horiz(2,1)-pointFT_Horiz(1,1) ) / ( pointPX_Horiz(2,1)-
pointPX_Horiz(1,1) ); 
         
        % Get the length of the longest axis 
        Length=length(im); 
         
        % Get the size of the image 
        Res_Vert  = size(im,1); 
        Res_Horiz = size(im,2); 
         
        % Initialize 1D arrays in which to store real world pixel locations 
        FT_Vert  = zeros(Length,1); 
        FT_Horiz = zeros(Length,1); 
         
        % Initialize 'CalibDistTrack' on the first iteration 
        if CamNum == 1 
            CalibDistTrack=zeros(Length,2,NumCams); 
        end 
         
        % Calculate the real world location of every vertical pixel 
        for Res = 1:Res_Vert 
            FT_Vert(Res)  = pointFT_Vert(1,2)  + FTperPX_Vert  * (Res - pointPX_Vert(1,2)  
); 
        end 
         
        % Calculate the real world location of every horizontal pixel 
        for Res = 1:Res_Horiz 
            FT_Horiz(Res) = pointFT_Horiz(1,1) + FTperPX_Horiz * (Res - 
pointPX_Horiz(1,1) ); 
        end 
         
        figure(1) 
         
        % Set the axes so that the text about to be plotted will be visibile 
        axis([-200 Res_Horiz+200 -200 Res_Vert+200]) 
         
        % Identify some pixel locations at which to plot the calibrated real world points 
        PointsToPlot = 
[1,1;1,Res_Vert;Res_Horiz,1;Res_Horiz,Res_Vert;round(Res_Horiz/2),round(Res_Vert/2)]; 
         
        % Plot and label the real world points on the image 
        for n=1:size(PointsToPlot,1) 
             
            plot( PointsToPlot(n,1),PointsToPlot(n,2),'black.-','markersize', 30 ); 
            plot( PointsToPlot(n,1),PointsToPlot(n,2),'red+','markersize', 10 ); 
            text(PointsToPlot(n,1), PointsToPlot(n,2),horzcat(... 
                '  ',num2str(FT_Horiz(PointsToPlot(n,1))),' , ',... 
                '  ',num2str(FT_Vert (PointsToPlot(n,2)))), 'FontSize',18); 
        end 
         
        % Verify with the user that the calibration for this camera is okay 
        commandwindow 
        calibcheck = input('Calibration okay (y/n)?  ', 's'); 
         
        if calibcheck ~= 'y' 
            fprintf('Restarting calibration for this camera...\n') 
        end 
         
        % Clear the command window and close the figure 
        close(1) 
    end 
     
    clc 
     
    %Package and return CalibDistTrack 
    CalibDistTrack(:,:,CamNum)= [FT_Horiz,FT_Vert]; 
end 
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C.21 FcnInitDistTrack_Get2Pts.m 

function [ pointPX,pointFT ] = FcnInitDistTrack_Get2Pts( im ) 
  
% This function allows the user to select two pixel locations on the image and 
% enter their real world locations. 
  
  
% Prepare the figure 
hold on 
figure(1) 
imagesc(im) 
axis tight 
  
for PointNum=1:2 
     
    pointcheck = 'n'; 
     
    while pointcheck ~= 'y' 
         
        figure(1) 
         
        % Have user input a point 
        pointPX(PointNum,:) = ginput(1); 
         
        % Show the point on the figure 
        h(1) = plot( pointPX(PointNum,1),pointPX(PointNum,2),'black.-','markersize', 30 
); 
        h(2) = plot( pointPX(PointNum,1),pointPX(PointNum,2),'red+','markersize', 10 ); 
         
        commandwindow 
         
        % Verify that the point is okay 
        pointcheck = input('Point okay (y/n)?  ', 's'); 
         
        if pointcheck ~= 'y' 
            delete(h(1)); 
            delete(h(2)); 
            fprintf('Select a new point.\n') 
        end 
    end 
     
    % Obtain and store the real world point locations 
    pointX = str2num( input('Enter X location (ft):  ', 's') ); 
    pointY = str2num( input('Enter Y location (ft):  ', 's') ); 
    pointFT(PointNum,:)=[pointX,pointY]; 
     
end 
  
delete(h(1)); 
delete(h(2)); 
  
end 

C.22 FcnInitEndzones.m 

function [] = FcnInitEndzones( IP,CamRes,FlagLive,TimeStamps,Iter,NumCams ) 
  
% This function initializes the process of calculating or loading endzone calibrations. 
  
% Use a dialogue to ask whether the user wants to create new calibrations 
choice = questdlg('Load last endzone calibrations or create new ones?', ... 
    'Endzone Calibrations', ... 
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    'Use Last','Create New','Create New'); 
% Handle response 
switch choice 
    case 'Create New' 
        CalibEndzones = 
FcnInitEndzones_Calib(IP,CamRes,FlagLive,TimeStamps,Iter,NumCams); % Take new 
calibrations 
        save('DataCalibEndzones.mat','CalibEndzones') 
end 
  
end 

C.23 FcnInitEndzones_Calib.m 

function [ CalibEndzones ] = FcnInitEndzones_Calib( 
IP,CamRes,FlagLive,TimeStamps,Iter,NumCams ) 
  
% This function allows the user to conduct calibrations for lap tracking. 
  
  
% Get an image for each camera 
im = FcnGetImage_All( IP,CamRes,FlagLive,TimeStamps,Iter,NumCams); 
  
% Undistort the images 
load DataCalibCamDistort.mat 
im = FcnUndistort(im,DistortionMapping,NumCams,CamRes); 
  
figure (1) 
imshow(im) 
  
hold on; 
  
Lpoints = zeros(2,2); 
Rpoints = zeros(2,2); 
  
% Draw a line between two points on the screen selected by the user 
% (store this as the left endzone for now) 
for i = 1:2 
    Lpoints(i,:) = ginput(1); 
    plot(Lpoints(1:i,1),Lpoints(1:i,2),'b-') 
    drawnow 
end 
  
% Draw the slope and intercept for this endzone 
Lm = ( Lpoints(2,1) - Lpoints(1,1) ) / ( Lpoints(2,2) - Lpoints(1,2) ); 
Lb = Lpoints(1,1) - Lm*Lpoints(1,2); 
  
% Superimpose this endzone on the image 
for x=1:size(im,1); 
    plot(Lm*x+Lb,x) 
end 
  
% Connect a line between two points on the screen selected by the user 
% (store this as the right endzone for now) 
for i = 1:2 
    Rpoints(i,:) = ginput(1); 
    plot(Rpoints(1:i,1),Rpoints(1:i,2),'r-') 
    drawnow 
end 
  
% Calculate the slope and intercept for this endzone 
Rm = ( Rpoints(2,1) - Rpoints(1,1) ) / ( Rpoints(2,2) - Rpoints(1,2) ); 
Rb = Rpoints(1,1) - Rm*Rpoints(1,2); 
  
% Superimpose this endzone on the image 
for x=1:size(im,1); 
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    plot(Rm*x+Rb,x,'r-') 
end 
  
%% Ensure that the left and right endzones are actually located on the left and right 
respectively 
  
yL = 250*Lm + Lb; % Calculate the y value of the LEFT endzone line for an x value of 250 
yR = 250*Rm + Rb; % Calculate the y value of the RIGHT endzone line for an x value of 250 
  
% Compare the y values 
if yR > yL % Endzones are are correct 
    CalibEndzones=[ Lm,Lb;Rm,Rb ]; 
else % Endzones are switched, so reverse them when forming the matrix 
    CalibEndzones=[ Rm,Rb;Lm,Lb ]; 
end 
  
close(1) 
  
% For debugging the above code - allows you to observe the endzones being switched 
  
% Lm=CalibEndzones(1,1); 
% Lb=CalibEndzones(1,2); 
% Rm=CalibEndzones(2,1); 
% Rb=CalibEndzones(2,2); 
% 
% hold off 
% imagesc(im); 
% hold on 
% 
% for x=1:size(im,1); 
%     plot(Lm*x+Lb,x,'b-') 
% end 
% 
% for x=1:size(im,1); 
%     plot(Rm*x+Rb,x,'r-') 
% end 
  
end 

C.24 FcnInitTestConditions.m 

function [ FlagLive,FlagPlot,FlagSavePlot,NumCams,Data2File ] = FcnInitTestConditions 
  
% This function initializes all necessary variables for the lap counting and distance 
tracking that users may need to change. 
  
% Flag for image collection 
% --> 1 to collect data in real time 
% --> 0 to load images from file (the default basenames are: im_1_, im_2_ and im_3) 
% REMEMBER THAT YOU HAVE TO MANUALLY SAVE DATA FOR THE LAST int(Iter/Dat2File) 
% ITERATIONS WHEN RUNNING LIVE 
FlagLive = 0; 
  
% Flag for continuously plotting the camera images 
% --> 1 to plot (better for debugging) 
% --> 0 to NOT plot (runs faster) 
FlagPlot = 1; 
  
% Flag for saving te plots of camera images 
% --> 1 to save 
% --> 0 to NOT save (runs faster) 
FlagSavePlot = 0; 
  
% Number of cameras to be used for data collection 
NumCams = 3; 
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% Script saves data to file every 'Data2File' iterations if we are running live 
% If we are not running live, it saves data to file once all images from file have been 
processed 
% Make this really big (~1 million) if not running live so the variable 
% does not run out of space for storing data, otherwise ~300 should be good 
Data2File = 1000000; 
  
end 

C.25 FcnInitVars.m 

function [ 
Iter,CentroidFT_Last,CentroidPX_Last,CentroidPX_Last_Raw,TotalLaps,TotalDist,LastZone,Fla
gObjFound,DataLog,TimeStamps ] = FcnInitVars( Data2File,FlagLive ) 
  
% This function initializes all necessary variables for the main script that users don't 
need to change. 
  
Iter = 0;                    % Counter for the number of iterations 
CentroidPX_Last = [0,0];     % Pixel location of the fiducial at previous iteration 
CentroidFT_Last = [0,0];     % Real world location of the fiducial at previous iteration 
CentroidPX_Last_Raw = [0,0]; % This is used in a trehshold against noise when FlagPlot = 
0 
TotalLaps = 0;               % Number of laps completed 
TotalDist = 0;               % Distance traveled 
  
% Last endzone the fiducial was in 
LastZone = 0; 
% --> 0 before the object ever enters an endzone 
% --> 1 if the object was last in the right endzone 
% --> 2 if the object was last in the left endzone 
  
% Variable for whether we know where the fiducial is 
FlagObjFound = 0; 
% --> 1 if we know where the object is 
% --> 0 if we don't know where the object is 
  
% Variables for storing data 
DataLog = zeros(Data2File,8); 
  
% If loading images from file, extract timestamps from the filenames 
if FlagLive == 0 
    TimeStamps = FcnGetTimestamps; 
else 
    TimeStamps = 0; 
end 
  
end 

C.26 FcnLogData.m 

function [DataLog] = FcnLogData( Iter, FlagLive ,TotalLaps, TotalDist, TotalTime, 
CentroidPX_Current, CentroidFT_Current, DataLog, Data2File,TimeStampLength ) 
  
% This function saves data to 'DataLog' 
% If running live, it does this every 'Data2File' iterations. 
  
  
% Get the number of iterations since the last time 'DataLog' was saved to file 
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Line = rem(Iter,Data2File); 
  
if Line == 0 
    Line = Data2File; 
end 
  
% Update 'DataLog' 
DataLog(Line,:) = [ 
Iter,CentroidPX_Current,CentroidFT_Current,TotalTime,TotalLaps,TotalDist ]; 
  
% If 'DataLog' is full and we are obtaining images live 
if FlagLive == 1 && Line == Data2File 
    
    % Save 'DataLog' to file with a unique postscript 
    NameExtension = num2str(Iter/Data2File); 
    Name=strcat( 'DataLog_',NameExtension,'.mat' ); 
    save( Name,'DataLog' ); 
     
    % Empty the 'DataLog' matrix so we can start filling it all over again 
    DataLog = zeros(Data2File,8); 
end 
  
% If we are obtaining images from file and have reached the last one 
if FlagLive == 0 && Iter == TimeStampLength 
    
    % Save 'DataLog' to file with a unique postscript 
    Name=strcat( 'DataLog','.mat' ); 
    save( Name,'DataLog' ); 
     
end 
  
    % Also create one big file with all the data in one, named 'DataLog_Continuous' 
    myformat = '%7d %4.4f %4.4f %3.2f %3.2 %10.2f %5d %10.2f\n'; 
    fid = fopen('DataLog_Continuous.txt','a'); 
    fprintf(fid, 
myformat,[Iter,CentroidPX_Current,CentroidFT_Current,TotalTime,TotalLaps,TotalDist]); 
    fclose(fid); 

C.27 FcnMask.m 

function [ Mask,UpdatedFlagObjFound,CentroidPX_Current ] = FcnMask( im,CentroidPX_Current 
) 
  
% This function makes a mask based on color and object size in HSV space for a green 
fiducial. 
  
  
% Define the minimum pixel area of the fiducial expected 
MinSize = 180; 
  
% Make a mask based on color only 
Mask = FcnMask_Color( im ); 
  
% Filter out small objects 
Mask = bwareaopen( Mask,MinSize ); 
  
% Smooth the border using a morphological closing operation 
structuringElement = strel( 'disk', 4 ); 
Mask = imclose( Mask, structuringElement ); 
  
% Fill in holes 
Mask = uint8( imfill(Mask, 'holes') ); 
  
% Get region properties for all components 
CC = bwconncomp(Mask); 
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props = regionprops( CC,Mask,'Area','Centroid','Eccentricity' ); 
  
% Use the below for debugging the mask 
%figure(3) 
%imagesc(Mask) 
  
% Find the fiducial out of the existing components 
for n=1:size(props,1) 
    if props(n).Eccentricity < 0.95 && props(n).Area < 2000 
        ObjectIndex = n; %store the index of the object we want 
         
        ObjectArea = props(n).Area; 
         
        % Use the below for debugging the mask 
        %disp(props(n).Eccentricity) 
        %disp(props(n).Area) 
         
        % Update FlagObjFound since we know where the object is 
        UpdatedFlagObjFound = 1; 
    end 
end 
  
% If the object was not found 
if exist('ObjectIndex','var') == 0 
        UpdatedFlagObjFound = 0; 
        return 
end 
  
% Remove objects smaller than the size of the largest object 
Mask = bwareaopen(Mask,ObjectArea-1); 
  
% Store the location of centroid 
CentroidPX_Current(1) = props(ObjectIndex).Centroid(1); 
CentroidPX_Current(2) = props(ObjectIndex).Centroid(2); 
  
% Overlay the mask - useful for debugging 
%mask = cast(mask, class(im)); 
%maskr = mask.*im(:,:,1); 
%maskg = mask.*im(:,:,2); 
%maskb = mask.*im(:,:,3); 
%maskedim = cat(3,maskr,maskg,maskb); 
  
% Plot the mask 
%imagesc(maskedim); 
  
end 

C.28 FcnMask_Color.m 

function Mask = FcnMask_Color(im) 
  
% This function creates a mask used to find for a pink fiducial 
im = rgb2hsv(im); 
  
% Good for low light 
%I = -20*(im(:,:,1)-10*im(:,:,2)); 
%Mask = I/160>.80; 
  
% Good for bright light 
I = -5*(im(:,:,1))+(8*im(:,:,2))+5*(im(:,:,3)); 
Mask = (I/8)>0.90; 
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C.29 FcnPlot.m 

function [] = FcnPlot( 
im,mask,CalibEndzones,CentroidPX_Current,CentroidFT_Current,Xres,Yres,FlagObjFound ) 
  
% This function plots the image from the cameras and highlights the 
% location of the fiducial by enclosing it with a green line and placing a 
% crosshair at the centroid.  It also shows the locations of the left and 
% right endzones. 
  
% Extract endzone slope and intercept 
Lm = CalibEndzones(1,1); 
Lb = CalibEndzones(1,2); 
Rm = CalibEndzones(2,1); 
Rb = CalibEndzones(2,2); 
  
% Calculate some points for plotting 
X = 1:Yres; 
Lbound = Lm*X+Lb; 
Rbound = Rm*X+Rb; 
  
% Show the image 
figure(1) 
imshow(im); 
hold on 
  
% If the object was found 
if FlagObjFound == 1 
     
% Plot the boundary of the object 
Boundaries = bwboundaries(mask); 
NumberOfBoundaries = size(Boundaries); 
for k = 1 : NumberOfBoundaries 
    ThisBoundary = Boundaries{k}; 
    plot( ThisBoundary(:,2), ThisBoundary(:,1), 'y', 'LineWidth', 4 ); 
end 
  
% Place a crosshair on the centroid of the object 
plot( CentroidPX_Current(1),CentroidPX_Current(2),'k.-','markersize', 30 ); 
plot( CentroidPX_Current(1),CentroidPX_Current(2),'r+','markersize', 10 ); 
  
% Display the fiducial location in ft 
text(CentroidPX_Current(1)+40, CentroidPX_Current(2),horzcat(... 
    '  ',num2str(CentroidFT_Current(1)),2,' , ',... 
    '  ',num2str(CentroidFT_Current(2)),2),'FontSize',14,'BackgroundColor',[.7 .9 .7],... 
    'Margin',3); 
  
end 
  
% Plot the midline of the image 
plot( (1:Xres),(Yres/2:Yres/2) ); 
  
% Plot the endzone locations 
plot( Lbound,X ); 
plot( Rbound,X,'r') ; 
  
end 



105 

C.30 FcnUndisort.m 

function im = FcnUndistort( im,DistortionMapping,NumCams,CamRes ) 
  
% This function corrects  an image for barrel distorted using a 
% pre-computed distortion matrix 
  
% For all three dimensions 
for Dimension = 1:3 
     
    % Extract a dimension of the image 
    imlayer = im(:,:,Dimension); 
     
    % For all the cameras 
    for CamNum = 1:NumCams 
         
        % Get the segment of the image to undistort 
        imsegment = imlayer(1:CamRes(1),1+CamRes(2)*(CamNum-1):CamRes(2)*CamNum); 
         
        % Flip the image segment back to how it was originally 
        switch CamNum 
            case 1 
                imsegment = imrotate(imsegment,-90); 
            case 2 
                imsegment = imrotate(imsegment,-90); 
            case 3 
                imsegment = imrotate(imsegment,-90); 
            case 4 
                imsegment = imrotate(imsegment,90); 
        end 
         
        % Undistort the image segment 
        imsegment = reshape(imsegment(DistortionMapping(:,CamNum)),CamRes(2),CamRes(1)); 
         
        % Re-rotate the image segment 
        switch CamNum 
            case 1 
                imsegment = imrotate(imsegment,90); 
            case 2 
                imsegment = imrotate(imsegment,90); 
            case 3 
                imsegment = imrotate(imsegment,90); 
            case 4 
                imsegment = imrotate(imsegment,-90); 
        end 
         
        % Place the image segment back in the matrix 
        imlayer(1:CamRes(1),1+CamRes(2)*(CamNum-1):CamRes(2)*CamNum) = imsegment; 
    end 
     
    im(:,:,Dimension) = imlayer; 
     
end 
  
% Crop out overlap in the images 
% (this is done in FcnGetImage_Select when FlagPlot is on) 
im(1:480,340:360,:) = 0; 
im(1:480,620:720,:) = 0; 
  
  
end
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