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Abstract 

 

The process that occurs as a glassy polymer transitions into an amorphous polymer is 

currently not well understood.  In these materials, two distinct relaxation processes are 

observed: one of which is related to the glass transition and the other that is not.  Previous 

research has hinted that if the strength of non-bonded interactions between atoms is increased, 

the relaxation times of the material respond like the relaxation process related to the glass 

transition, whereas if the torsional barriers of molecules are increased, the relaxation times 

respond like a completely different process unrelated to the glass transition.  This connection of 

physical process like glass transition with relaxation behavior has not been clearly made.  This 

experiment explored how different combinations of strengths of non-bonded and torsional 

forces affected the relation processes of the materials. 

We have found that for simulations with non-bonded forces greater than two times 

chemically realistic values, the polymer transitioned from a fragile to a strong glass.  This 

transition from a fragile to a strong glass with increasing non-bonded interaction strength 

implies that non-bonded interactions are responsible for this fragile to strong transition, which 

is important because the mechanics behind this transition currently are not understood well.  

We have also found that Boland’s hypothesis holds true for the fragile glasses, and that changing 

non-bonded interactions and torsional barriers for fragile glasses results in the same effects on 

molecular behavior (via the diffusion coefficient) and segmental behavior (by the characteristic 

decay time).  More research needs to be conducted investigating the effect of non-bonded 

interactions on the transition from fragile to strong glasses in order to investigate the mechanics 

behind the process. 
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Chapter 1 – INTRODUCTION AND MOTIVATION 

 

 Researchers have made considerable advances on understanding the glass transition in 

the past decades.  An extremely large amount of data now exists showing the dynamic 

properties of glasses over a wide range of materials and time domains, but the mechanisms 

underlying the glass transition of polymers are still not clearly understood or universally 

defined5.  Traditional definitions of the glass transition include a marked increase in viscosity, an 

abrupt change in volume1, and a change in heat capacity of the material2.  Many theories exist 

to explain this behavior, but no single theory addresses all the observed motions of polymers 

over all time scales3.  Creating a universal theory to explain all experimental behavior of 

polymers is the ultimate goal of polymer physics.  

One researcher, Dr. Erin Boland, has made an interesting discovery regarding molecular 

motions by using a seldom-explored feature of computer simulation.  Typically, physical 

parameters of computer simulations are adjusted and tweaked to emulate experimental results 

best.  However, computer simulations are not limited to recreating real-world results.  While 

adjusting physical variables to unrealistic values may seem counterintuitive, it allows one to 

explore the effects that each of these variables has on molecular motions. 

Boland’s research4 found that increasing the torsional barriers in simulations beyond 

real-world barriers, relaxation times increased linearly while when increasing the strength of 

non-bonded interactions in the simulations beyond realistic strengths, relaxation times 

increased in a Vogel mode.  Since these linear and exponential increases in relaxation  times 

mimicked the behavior of β and α relaxation processes, respectively, to decreases in 

temperature, Boland hypothesized that non-bonded interactions contribute to the α relaxation 

while torsional barrier heights contribute to the β relaxation process.  
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However, Boland’s result lacked robustness due to only testing the result in one specific 

set of simulation conditions.  The primary goal of this thesis is to test the validity of this result by 

testing Boland’s hypothesis in multiple scenarios with different combinations of torsional barrier 

heights and non-bonded interaction strengths.  Through this research, we hope to gain more 

insight onto the connections between molecular forces and macroscopic properties of polymers.  
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Chapter 2 – BACKGROUND 

2.1 The Importance of Simulation 

Traditional experiments to explain the properties of crystalline polymers prove difficult.  

Isolating a specific variable that affects structural properties in an experimental setting is 

difficult due to the limited number of variables that a researcher can adjust.  In addition, 

correlating experimental measurements with structural properties on the molecular level 

remains challenging due to the macro-scale nature of experiments.  While experimental 

solutions to this problem have been proposed5, computer simulations present a straightforward 

solution to this problem.  Computer simulations depict the individual positions of atoms and 

thus of molecules allowing a straightforward observation of molecular motions. 

Molecular dynamics, one form of computer simulation, works by emulating molecular 

mechanics.  As such, the total energy of interactions between atoms is computed and energy is 

conserved.  Together, these interactions are knows as a force field. 

While computer simulations do offer many advantages over pure experiment, they do 

have one very important limitation - scale.  Macroscopic properties and motions can only be 

observed in simulations with very large numbers of molecules.  While computational power has 

increased exponentially over the past decades, a modern, moderately sized supercomputer can 

still only handle simulating around 100,000 atoms at a time.  Therefore, much focus has been 

put on improving computational performance through more efficient programming so that 

larger simulations can be created.  One way to improve performance is to utilize a United Atom, 

or UA model.  UA models cluster units of hydrogen atoms together with the carbon atom to 

which they are bonded.  Thus, for example, a methyl group, normally containing 4 atoms, is 

treated as a single UA.  Since in a UA model fewer atoms are simulated per molecule, more 

molecules can be put into a simulation and thus simulation results more closely resemble those 

of experiments. 
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The force field of a molecular dynamics consists of many components.  Bond stretching 

potentials ensure that atoms bound to each other maintain the correct distance between each 

other.  Angle potentials maintain bond angles between two bonds among three atoms.  The 

improper torsional term is added to a prevent umbrella inversions of sp3 bonds at tertiary 

carbon branches. 

The torsional potential barrier in a force field regulates how difficult it is for a molecule 

to rotate along its bonds.  The higher the torsional potential, the harder it is for a bond to pass 

through the torsional angle and thus the less likely that the bond is to rotate through the angle.  

Therefore, the bond is more likely to remain in a certain orientation, not having enough energy 

to pass over the torsional barrier.  Logically, this would mean that the movement of molecules 

with higher torsional barriers would be slower. 

The non-bonded parameters of a force field govern the inter-atomic attractions of 

united atoms not covalently bonded to each other.  Any given atom resides in a “cage” formed 

by its nearest neighbors, some bonded and some not bonded to the atom.  In order for the 

atom to move outside of this cage, it must break the non-bonded interactions holding it to other 

atoms.  When non-bonded interaction strengths are increased, atoms require more energy to 

escape these interactions; therefore, the atoms would stay in the same cage longer thus 

meaning they move more slowly. 

2.2 Modes of polymer relaxation 

In glassy materials, researchers have observed many motional processes that contribute 

to the unique properties of these glasses as they approach the glass transition.  Two processes 

that dominate the research field are the α- and β-relaxations.  The α-relaxation corresponds to 

movement of the entire molecule3
 and occurs on a relatively large time scale.  The β relaxation, 

also known as the Johari-Goldstein process, is faster than the α-relaxation.  The β relaxation 
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corresponds to polymer backbone motion6 and molecules exploring their conformational 

states7. 

 Researchers have observed that at high temperatures, the α- and β-relaxations merge 

into one process.  At a temperature just above Tg the α- and β-relaxations split into motions on 

different time scales.  This is known as the α-β bifurcation, and the temperature at which it 

occurs is known as the characteristic temperature8, usually abbreviated Tc. 

One other previous group of experimenters, Bedrov and Smith, has used 

simulations7,9,10,11 to try adjusting torsional barriers outside of chemically realistic bounds.  Such 

research is based on the premise that changing these barriers can cause the α- and β-relaxations 

to bifurcate even above Tc.  Thus, the α- and β-relaxations could be individually analyzed at 

these higher temperatures.  This is especially useful because at temperatures below Tc, the α 

process occurs on such a slow time scale that it is difficult to measure.9  In one experiment, 

Bedrov and Smith ran a simulation where the molecules had no torsional barriers10.  They found 

that the α-relaxation was unaffected while the β-relaxation sped up significantly.  In further 

research with lowered (but not zero) torsional barriers, Smith and Bedrov suggested that the β-

relaxation is specifically related to dihedrals exploring all their conformational states7. 

Boland’s conclusion came from research to analyze force fields used to simulate 

polyolefins4.  Boland noticed that, comparing three force fields to experimental results, the 

largest differences in the force fields’ parameters involved the non-bonded and torsional 

potentials.  Because of this, she decided to see exactly what effects these parameters had on 

the simulations.  In one set of simulations, she increased the torsional barriers, and in the other 

set, she increased non-bonded interaction strength.  Boland found in that when increasing the 

torsional barriers, relaxation times increased linearly while when increasing the strength of non-

bonded interactions, relaxation times increased exponentially.  These increases in relaxation 

times mimicked the behavior of β and α relaxation processes to the Arrhenius and Vogel 
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dependences, respectively, to changes in temperature of a polymer.  Due to this similarity, 

Boland concluded that the β-relaxation could be related to torsional barriers and the α-

relaxation related to non-bonded interactions.  However, since Boland’s research was focused 

on determining a force field applicable to polyolefins, she only spent a small amount of time on 

this tangent, and thus she does not thoroughly verify the result.  If we can run more simulations 

and verify these results, a new insight may be made into the relaxation behavior of glassy 

polymers. 

2.3 Simulation Analysis 

The raw data output by computer simulations consists solely of the coordinates of 

atoms – a data set that is both impossible for humans to interpret and is impossible to compare 

to experimental results.  Therefore, methods to convert the simulations coordinates into useful 

data are needed. 

The incoherent self-intermediate scattering function, S(q,t), is a self-correlation of 

particle motion and can describe segmental motion of the chain.  When S(q,t) is close to one, 

the particle position is at time t is close to its position at time t0.  When S(q,t) is close to zero, its 

position at time t is uncorrelated to its position at time t0.  The equation used to calculate S(q,t) 

from atomic coordinates is presented below.  N is the total number of atoms in the system, q is 

the wave vector, xi(t) is the x coordinate of atom i at time t, and xi(to) is the x coordinate of atom 

i at the initial time.     

 (   )   
 

 
〈∑   (  |  (    )    (  )|)

 

   

〉 

The incoherent self-intermediate scattering function is fit to Boland’s equation below.  

The equation includes terms for the fast relaxation (τfast) and of the slow relaxation (τslow).  It also 

includes an elastic incoherent structure factor, which partitions the decay between the two 

processes. 
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Instead of plotting all fitting parameters independently, an overall characteristic decay 

time (τc) is created that accounts for the contributions from both relaxations. 
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The diffusion coefficient is a molecular property and is chain length dependent.  It is 

measured using the following equation  
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ri(t)-ri(t0) is the distance vector of molecule i defined by 

[  ( )    (  )]
     

 ( )    
 ( )    

 ( )    
 (  )    

 (  )    
 (  ) 

where x(t), y(t), and z(t) are the centers of mass of the molecule in the x-, y-, and z-axes.  

Centers of mass of each axis is calculated by 

  ( )  
∑        ( )
 
   

∑   
 
   

 

mj is the mass of atom j, and xj is the x coordinate of atom j at time t. 

 

  



 
 

8 

 

Chapter 3 – EXPERIMENTAL METHODS 

3.1 Simulation Parameters 

Simulation methods practiced by Boland were followed as closely as possible for the 

research.  All simulations used the OPLS force field specified in Appendix A.  The Lennard-Jones 

constant ε0 was multiplied by a constant in order to increase or decrease non-bonded 

interaction strengths.  The torsional constants α0- α3 were multiplied by a constant in order to 

increase or decrease torsional barrier heights.  In total, 42 simulations were run consisting of all 

the combinations of torsional multipliers 0.25, 0.5, 1.0, 1.5, 2.0, or 3.0 and non-bonded 

multipliers 0.25, 0.5, 1.0, 1.5, 2.0, 3.0, and 4.0.  The LAMMPS simulation package was used in 

place of Boland’s own simulation code due to the increased computational speed afforded by 

multiprocessing available in LAMMPS.  Due to LAMMPS not including support for the RATTLE 

algorithm used by Boland, simulations used harmonic bond stretching potentials adapted from 

Rappe et al.12.  These potentials maintain the 1.54 Å bond distance specified by Boland.   

All simulations were run at 423K.  25 atactic polypropylene chains with 40 backbone 

units each (aPP40) were inserted into the simulation box, with each chain initially spaced the 

non-bonded cutoff length - 10 Å - from each other.  The simulation box was shrunken to the 

desired box length of 35.86Å over 200ps in 0.05fs time steps.  This box length was determined 

by dividing the total mass of molecules in the box (25 x 828 g mol-1) by the density of the 

polymer (0.7542 g cm-3) and taking the cubic root.  After shrinking to the desired density, the 

simulations were run using 5fs time steps. 
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3.2 Simulation Analysis Parameters 

Equilibrium was determined using Boland’s criteria.  When three consecutive S(q,t) 

snapshots of the same simulation spaced 3ns apart were determined to look the same and were 

no longer shifting to longer decay times, the simulation was declared equilibrated.  A wave 

vector of q=0.99 Å-1 was used for all S(q,t) calculations in order to enable comparison of results 

directly to Boland’s. 
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Chapter 4 – RESULTS AND DISCUSSION 

 

The first goal was to verify the integrity of the experiment by comparing the data to 

previous data obtained in the same conditions, so the results were compared to Boland’s results 

in figure 1.  It is immediately apparent that the τc for the NB=3.0 results is about two orders of 

magnitude shorter than the results obtained by Boland.    

 

Figure 1 - Comparison of our results (A) to those of Boland (B) 

 

Figure 2 shows the presumptive reason for this lower τc value.  The S(q,t) plot shows the 

characteristics of super exponential decay, meaning that in order to generate a reasonable fit to 

the data, the exponent β must be greater than one.  In our fits, β is restricted to less than one 

because the theoretical meaning of β>1 is unclear.  From conversation with Boland, it was 

determined that Boland only ran the simulations 80ns.  Due to the short length of the 

simulations, Boland could not observe the entire S(q,t) plot and thus could not determine that 

the fitting equation did not fit the plot properly .  Fitting the equation to only the first 80ns of 

simulation, shown in Figure 3, creates a τc of 2.7 x 107 ps, which is in line with Boland’s data, 

supporting this hypothesis. 
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Figure 2 – T=1.0 NB=3.0 S(q,t) plot and best fit 

 

 

Figure 3 - T=1.0 NB=3.0 S(q,t) plot and fit to only the first 80ns of data 
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Because the behavior of figure 1 is completely unexpected, we try to determine what is 

actually occurring.  τc is increasing with a Vogel fit with NB until NB=2, after which point it 

continues more of an Arrhenius fit.  The Vogel fit of NB<2 is characteristic of the α-relaxation of 

a fragile glass while the Arrhenius fit of NB>2 is characteristic of the α-relaxation of a strong 

glass.  This is very similar to the type of fragile to strong transition what occurs when 

temperature is raised13, so this behavior seems to indicate that a fragile to strong glass 

transition is occurring around NB=2. 

The S(q,t) plot of NB=3.0 T=1.0 also supports this transition theory.  The plot displays a 

two stage decay – an immediate beta relaxation, a plateau S value for a while, then a rapid, 

super-exponential alpha decay until S=0.  This two-stage decay has previously been observed in 

the fragile to strong transition of boron oxide by Fullerton and Maranas14.  Fullerton and 

Maranas also observed that the strong glass of boron oxide displayed an oscillation around the 

plateau S value, a characteristic that is also present in the S(q,t) plot of T=1.0 NB=3.0. 

Decay plots of all the simulations are presented in figure 4, grouped by NB and in figure 

6, grouped by T.  One can see that the behavior of the T=1.0 NB=3.0 simulation is not limited to 

that case.  Instead, it occurs in all the simulations when NB=3.0 and in the simulations where 

NB<3.0 but T is high.  All simulations decay to S=0 by 5 x 106 ps.  This decay likely corresponds to 

the relaxation time of the entire molecule rather than segmental relaxation of a part of the 

molecule.   
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Figure 4 - S(q,t) decay plots grouped by NB strengths 
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Figure 5 - S(q,t) plots grouped by T barrier heights 

Looking at these plots, we can divide the simulation set into three categories.  The first 

category, the “true” fragile glasses, occur at NB<3 and at low T.  These can be fit nearly perfectly 

to Boland’s equation to calculate characteristic decay time.  The second category is the 

“transition glasses.”  This category encompasses the simulations at NB<3 and high T.  These 

simulations display characteristics between fragile and strong glasses.  They still have a 

stretched decay but they do not have a slope that approaches 0 as S approaches 0.  The final 

category is the “true” strong glasses.  These occur at NB>2 as well as at NB=2 and T>3.  These 

simulations display super exponential decay and lack a stretched exponential plot.  Figure 6 

shows which simulations were fit into which category.   
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Figure 6 - Categorization of Simulations into Fragile, Strong, and Transition Glasses 

 

For all the glasses, a fit is applied to each simulation using Boland’s equation, and the 

characteristic decay time is determined.  In figure 7, the decay times of the fragile glasses are 

plotted against T with constant NB in plot A and against NB with constant T in plot B.  We test 

the validity of Boland’s original hypothesis by applying an Arrhenius fit in plot A and a Vogel fit in 

plot B.  Figure 7 confirms that Boland’s conclusion holds true and increasing NB causes τc to 

increase in a Vogel manner while increasing T causes τc to increase in an Arrhenius manner for 

the fragile glasses.  The data points where T<1 and NB<1 show significant fluctuation in τc thus 

preventing a perfect fit to the data, but τc for all four of these simulations is within the same 

order of magnitude.  

 

Figure 7 – Characteristic decay time of the fragile glasses plotted by constant NB and by constant T 
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In figure 8, the characteristic decay time data is presented for all the glasses but in a 

different manner.  In each graph, one data set has T held constant at one value while NB is 

varied by X, and the other has NB held constant at that same value while T is varied by X.  We 

apply a Vogel fit to the constant T fragile glasses and an Arrhenius fit is applied to the constant 

NB fragile glasses (solid lines).  An Arrhenius fit is applied to the strong and transition glasses  - 

both for constant T (dashed line) and constant NB (dotted line).  There are not enough data 

points to confirm the Arrhenius fit for the strong and transition glasses with NB<1.5.  The fits are 

simply a guide as for what trend the data would be expected to take.   

 

Figure 8 – Characteristic decay times of all glasses plotted by constant multiplier 

One immediately notices that the τc of the strong and transition glasses with NB>1.0 

increase very little with respect to T; τc for all these simulations is around 106 ps.  This behavior 

is possibly due to the short length of the polymer chain.  The relaxation time of the chain in 

these simulations is likely shorter than the segmental relaxation time.  Increasing the length of 

the chain would lengthen the molecular relaxation time and would make τc represent the 

segmental relaxation time, which should increase with increasing T.  Another behavior to note 
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regards the fragile glasses.  As the series of charts progresses, the same X goes from having τc 

higher for NB than for T to having τc higher for T than for NB.  One would suspect that this would 

apply for all values of X should the progression of charts be continued.  This is an interesting 

trend, although its implications are unclear. 

We now analyze the diffusive behavior of the molecules.  The diffusion coefficients of all 

the strong glasses are around 5 x 10-17 m2/s, regardless of T or NB.  This indicates that, once the 

fragile to strong transition has been reached, the glass reaches a maximum viscosity.   

In contrast, the fragile glasses simulations’ diffusion coefficients vary significantly with T 

and NB.  These diffusion coefficients are plotted in figure 9.  Interestingly, the diffusion 

coefficients seem to follow an inverse Arrhenius behavior with respect to T just like the 

characteristic decay times.  To further investigate this, the inverse of the diffusion coefficients 

are plotted against T and NB in figure 10.  The inverse of diffusion is taken to match units with 

the characteristic decay time – time will be in the numerator in both the inverse diffusion 

coefficient and the characteristic decay time.  From this plot, we see a repetition of Arrhenius 

behavior with respect to T.  In figure 10–B, we would expect to see a Vogel fit with respect to 

increasing NB, but a clean Vogel fit does not occur.  This is most likely due to experimental error 

in the data rather than a new result.  
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Figure 9 - Diffusion coefficients of the fragile glasses with respect to T 

 

 

Figure 10 - Inverse diffusion coefficients plotted against T and NB 
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To further confirm that the segmental and diffusive behaviors of the fragile glasses are 

the same, the inverse diffusion coefficients and characteristic decay times are plotted on the 

same graph in figure 11.  Τc is plotted on the left axis and represented by solid points while 

inverse diffusion coefficients are plotted on the right axis and are represented by hollow points.  

The axes are adjusted in scale, and the points are found to overlap confirming this hypothesis. 

 

Figure 11- Inverse diffusion coefficient and τc plotted against T 
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Chapter 5 – CONCLUSION 

 

 It was found that at high NB, the simulation transitions from a fragile to a strong glass.  

This is an important discovery as the exact reason behind this transition is currently unknown 

and this result indicates that non-bonded interactions are responsible for this transition.  More 

research is needed to determine the exact NB strength at which this transition occurs as well as 

the exact dynamics of this transition.  It also was found that Boland’s original conclusion - the 

Arrhenius increase in τc with respect to T and the Vogel increase in τc with respect to NB - holds 

true for all conditions where the glass is fragile.  Finally, it was found that the segmental and 

molecular behavior of the fragile glass with respect to increasing T and NB are the same.  As T is 

increased, both τc and 1/D increase in an Arrhenius fashion while as NB is increased both τc and 

1/D increase in a Vogel manner.  
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Table 1 - Force Field Parameters.  Torsional barriers and non-bonded forces are normal.  

 
 

Bond Bending:           (    )
  

 
Angle Identity    

(kcal/mol rad
2
) 

   
(degrees) 

CHX-CHX-CHX 62.09 
 

114 

 
 

Bond Torsion:             ∑     
   

 
Dihedral Identity    

(kcal/mol) 
   

(kcal/mol) 
   

(kcal/mol) 
   

(kcal/mol) 

CHX-CHX-CHX-CHX 0.814 
 

1.792 
 

0.389 
 

-3.673 
 

 
 

Improper Torsion:                                      (    )
  

 
 

Improper Identity 
                  

(kcal/mol) 

   
(degrees) 

all 40 27.25 
 
 

Lennard-Jones: 

         [(
   

   
)

  

 (
   

   
)

 

] 

    √    ,          (     ) 

 
UA Identity   

(Å) 
  

(kcal/mol) 

CH3 
CH2 
CH 

3.910 
3.905 
3.850 

0.160 
0.118 
0.080 

 
 

Bond Stretching 
                 (    )

  
 

Bond Identity          
(kcal/mol) 

   
(Å) 

CHX-CHX 700 1.54 
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APPENDIX B: Experimental Data 
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Table 2 - Characteristic decay times (including bad fits) 

τc (ps) 
 

Non-bonded multiplier 

0.25 0.5 1 1.5 2 3 

Torsion 
multiplier 

0.25 11.6 7.1 5.0 23.7 261.4 1008219.4 

0.5 11.2 9.4 7.7 46.7 743.3 588997.7 

1 7.1 10.7 19.7 923.2 101834.4 449179.5 

1.5 8.4 22.8 119.9 13304.3 1143818.0 686177.2 

2 16.8 51.9 431.2 257120.8 486430.1 709378.5 

3 36.2 233.1 4538.1 531734.0 497042.8 1004975.7 

4 256.2 1305.7 495452.0 495452.0 1134552.9 612331.7 

 
 
 

 

 

Table 3 - Diffusion Coefficients 

D (m2/s) 
X 1015 

Non-bonded multiplier 

0.25 0.5 1 1.5 2 3 

Torsion 
multiplier 

0.25 57210 57085 32162 5668 936 0.0224 

0.5 71395 30112 21115 3647 198 0.0686 

1 28478 20125 13947 162 2.05 0.0574 

1.5 30602 11954 3932 52.1 0.0259 0.0381 

2 15687 9667 433 0.333 0.0960 0.0471 

3 10911 
 

3377 156 0.0883 0.0691 0.0391 

4 7089 
 

862 1.05 0.0794 0.0453 0.0453 
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