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ABSTRACT 
  

 The current generation of smartphones allows for the creation of novel applications that can take 

advantage of a variety of wireless communication interfaces. However, because many applications require 

internet connectivity, users must rely on cellular data networks using technologies like 3G. For some, 3G 

may be cost prohibitive or otherwise unusable. For those that do have 3G access, normal internet usage 

and web browsing may cause the 3G interface to incur significant delay and unnecessary energy 

consumption, degrading the user experience and shortening the battery life of the smartphone. To address 

these issues, nearby smartphones can be leveraged through ad hoc communication to work together to 

access data more energy and delay efficiently. Two hybrid data access schemes are proposed; in the first 

scheme, smartphones without 3G leverage cooperative cache-based ad hoc networking to request data 

from nearby smartphones that can access 3G. Not only can they access data without an active internet 

connection, but the data access delay is reduced through cooperative caching. In the second scheme, data 

requests of nearby 3G-enabled smartphones are forwarded to a single smartphone that performs the 

requests over its own 3G interface. By aggregating requests, this approach significantly reduces the 

average access delay and energy consumption among the smartphones in the cluster by reducing 

unnecessary tail energies and 3G network connection delays. 
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Chapter 1  
 

Introduction 

 

In recent years, the introduction and proliferation of mobile smartphones have created new levels 

of connectivity and significant opportunities for novel mobile computing applications. Applications that 

were once relegated to higher-powered devices like laptop and desktop computers can now seamlessly 

run on equally-powered, yet smaller and more mobile smartphone platforms. In addition to functioning as 

mobile telephones that are able to access the mobile 3G/4G networks for telephony, modern smartphones 

come equipped with powerful processors and storage, and specially-designed operating systems tuned for 

mobile performance, such as Android and iOS. In addition, most full-featured smartphones come 

equipped with a variety of sensors and communication interfaces that allow applications to fully take 

advantage of the phone’s mobility.  

The combination of processing power and a variety of hardware capabilities allow smartphones to 

be used for exciting and novel purposes, ranging from social networking to battlefield communication and 

management. This new technology has allowed researchers to design novel systems that, until recently, 

were not feasible. In [1], Lu et al. present a framework for sensing and classifying sound events, 

implemented for the iPhone. The system uses the built-in microphone to capture sound, and the sound 

data undergoes multi-stage processing and classification. The iPhone enables a novel application such as 

this, due to the API support for manipulating sensors like the microphone, and for the processing power 

necessary to perform this type of signal processing on-demand. In [2], Koukoumidis, Peh, and Martonosi 

develop an application that allows users running window-mounted iPhones to collaboratively predict 

traffic light schedules, in the aim of influencing driving patterns to decrease vehicle fuel consumption. 

The application takes advantage of the iPhone’s built-in video camera for determining traffic light status, 
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and communication interfaces for collaborative sharing of traffic light schedules among nearby vehicles. 

In [3],Yan, Kumar, and Ganesan leverage the internet connectivity and camera hardware of the iPhone to 

implement a system that allows smartphone users to crowd source image recognition. The user is able to 

record a photo and, through the CrowdSearch service, request human workers through Amazon’s 

Mechanical Turk program to identify the picture. This system demonstrates the potential for smartphones 

to gather data and offload work via internet connectivity. 

However, the ability to take advantage of new hardware and software features creates some 

additional challenges. While processors and related hardware have gotten smaller and faster, energy 

management has become an increasingly important challenge. Today, most smartphones use Lithium-ion-

based batteries, and as a result, battery capacity for smartphones has not improved significantly over the 

years. Because of this, battery capacity and energy consumption severely limit the capabilities of devices 

to run many processor or hardware-intensive operations [4]. While research like [5], [6], and [7] try to 

tackle the problem, application developers across platforms are not even given a standard means of 

determining the energy usage patterns and behaviors of their applications. As such, there have been 

methods and techniques devised to reduce energy consumption. In [8], energy-intensive code is offloaded 

to a remote server, processed, and sent back to the phone – with the goal to avoid performing some 

energy inefficient tasks on the phone. Still, there are very few standard ways for developers to adequately 

estimate and manage energy consumption. 

Connectivity and communication delay represent additional challenges facing smartphones and 

application developers. Most smartphones come equipped with multiple communication interfaces that 

can take advantage of various pieces of communication infrastructure. The radio interface allows 

smartphones users to communicate via the cellular infrastructure (3G/4G) data networks. In locations with 

strong cellular infrastructure and little interference, cellular data networks can provide a stable and fast 

connection. However, in a location with sparse cellular base station coverage or significant radio 

interference, cellular data connections can be unreliable. This provides unique challenges for travelers and 
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other highly mobile smartphone users, for example. In addition, cellular data plans cost average users a 

significant amount of money for usually only a limited amount of network bandwidth.  

For communication over 802.11 WiFi, many smartphones include a WiFi interface. Using WiFi, 

users can connect to infrastructure such as routers or wireless access points (APs) with generally greater 

connectivity and data rates than 3G. In many cases, WiFi access is offered as a free service. However, the 

range of wireless APs or routers is generally limited to tens or the low hundreds of meters and the highest 

concentration of APs is generally found in more urban, populated areas. Those looking to rely only on 

WiFi access for internet connectivity may have trouble staying connected as they travel or move from 

location to location.  

For shorter range communication and file sharing, many smartphones also possess a Bluetooth 

interface. Using the Bluetooth protocol, users can pair with each other and exchange data over several 

meters [9]. However, this is not commonly used for internet connectivity; rather, it is used for simple file-

sharing applications, for example. In addition to connectivity challenges, using the 3G/4G, WiFi, and 

Bluetooth interfaces also introduces additional challenges regarding energy consumption and properly 

managing the duration and effectiveness of the hardware interfaces. 

 While most smartphones have at least a few communication interfaces (3G, WiFi and Bluetooth) 

the ability to access data over the internet depends largely upon the network infrastructure available. 

Cellular data (for example, 3G) is in many cases nearly ubiquitous: in many urban and highly populated 

suburban areas, 3G coverage can be extremely strong. In traces collected in [10], for example, it was 

found that mobile phone users in Houston, Texas were covered by cellular networks 99% of the time. The 

percentage of the time that users had access to a WiFi AP was only 49%, and can be much lower 

depending upon the specific location. Similarly, many metropolitan and other highly populated areas have 

good cellular network 3G coverage, while in general users may only intermittently (depending on 

geography and mobility patterns) have access to a wireless AP. While 3G coverage may usually be 

available, cellular data plans remain expensive and lack flexibility. If a user cannot afford or otherwise 
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chooses not to purchase a 3G data plan, then the user must rely on WiFi coverage. However, WiFi AP 

coverage can be sporadic at best. In many situations, users without 3G access cannot access the internet. 

With today’s smartphone applications becoming increasingly reliant on internet connectivity, a lack of 

internet connectivity can make a user’s most critical applications useless.  

Even when smartphone users have access to 3G coverage and possess the necessary data plan, 

there are still 3G usage challenges that users face – many times without being aware. These challenges 

stem from the way in which the 3G backbone network configures the 3G interface’s energy state. If a 

smartphone user does not access cellular data frequently, then every time the user wishes to access the 

internet the device incurs a large 3G connection delay (up to 2 seconds), as well as unnecessary energy 

usage. This is known as the tail energy, and the management of this energy is frequently termed the “tail 

energy problem”. For many users that browse the web, for example, they may spend a minute or several 

minutes before browsing to a new page. Every subsequent request can incur this two second delay and 

this wasteful tail energy. Research on the 3G interface has resulted in numerous proposals and protocols 

for mitigating the tail energy, but it still remains a challenge facing many smartphone users. 

When smartphone users congregate in close proximity, ad hoc networking can be leveraged to 

create hybrid data access schemes to address the challenges described. In this thesis, two specific 

problems are addressed: the inability of smartphone users without 3G data plans to access data over the 

internet, and the delay and energy efficiency of requesting data over 3G. This thesis makes two 

contributions by addressing these problems in two different parts. In the first part, an ad hoc networking 

scheme using cooperative caching is designed and implemented to allow smartphone users without 3G 

access to request data from a nearby 3G-enabled smartphone, and to reduce their access delays with 

caching. In the second part, a scheme allowing smartphones in a cluster to offload their data requests to a 

designated smartphone, significantly reducing average energy consumption and data access delay, is 

proposed and evaluated through simulation. 
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The remainder of the thesis is organized as follows: in Chapter 2, the design and implementation 

of the cooperative-cached based data access scheme is presented and evaluated. The smartphone-based 

request aggregation scheme is proposed and evaluated through simulation in Chapter 3. Chapter 4 

includes the conclusion and future work. 
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Chapter 2  
 

Cooperative Cache for Smartphones 

2.1 Background and Related Work 

Suppose many smartphone users are in a group in close proximity, such as in a shopping mall or 

lecture hall. Imagine that the number of smartphone users with 3G data plans is relatively small, and the 

3G users are spread out among the crowd. Furthermore, there are no open WiFi access points that can 

allow the non-3G users access to the internet. In this situation, the non-3G users have limited 

opportunities to access the internet. One option is for the non-3G users to befriend a 3G user and ask to 

request some data, and then transfer this data over a protocol such as Bluetooth. While this may be simple 

enough for 1 or 2 non-3G users, this solution can quickly become burdensome and unmanageable with 

many non-3G users. Another similar option is use tethering to gain connectivity from a 3G smartphone 

user through WiFi. While this may be an easier and more automated solution, it still requires manual steps 

on behalf of the smartphone users to set up. In addition, many smartphone carriers do not support 

tethering. Even if the carrier does allow some limited tethering, there are usually bandwidth restrictions 

and the number of simultaneous allowed devices can also be severely limited. Finally, because the 3G 

devices are located sporadically among the non-WiFi devices, some devices may not be within tether 

range to allow for tethering. 

Instead, the smartphones can form an ad hoc network over WiFi. Using this network, non-3G 

smartphones can request data from the 3G smartphones. The requests can be delivered to the 3G 

smartphones via the ad hoc network, and the response can be returned to the requesting smartphones via 

the ad hoc network. If the network has large data access delays, they can be substantially reduced by 

using cooperative caching.  
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While it is most common for smartphones to participate in infrastructure-based IEEE 802.11 

networks via a wireless AP or client-server communication via the cellular data network, a wireless ad 

hoc network does not rely on an existing infrastructure to facilitate communication. In an IEEE 802.11 ad 

hoc network, the connected devices (nodes) of the network dynamically create the network infrastructure 

by acting as routers. Instead of relying on fixed infrastructure to forward packets, nodes participating in 

the network forward data amongst themselves, either to other nodes or to internet-connected devices. In 

this way, nodes rely on their neighboring nodes for requesting remote data. In an ad hoc network, nodes 

have a shared responsibility for ensuring that other nodes are properly serviced; if one node does not 

forward data, for example, this could create a network bottleneck and decrease the connectivity for the 

other nodes in the network. Therefore, one of the principle research topics for ad hoc networks is routing. 

Specialized routing protocols have to be developed for ad hoc networks. Unlike infrastructure-based 

networks, such as the internet, ad hoc network devices are not devices dedicated to routing, so routing 

protocols for ad hoc networks have to be designed for different network topology and condition 

requirements. Some of the popular routing protocols for ad hoc networks include Ad hoc On-Demand 

Distance Vector Routing (AODV) and Dynamic Source Routing (DSR). In contrast to other routing 

protocols popular in the internet, AODV and DSR are reactive protocols – they only find routes upon 

request, versus proactively finding routes before they are needed. 

Ad hoc networks receive significant research attention because they allow network 

communication in unique and challenged environments, and provide some distinct benefits over 

infrastructure-based network communication. For one, ad hoc networks do not require time consuming or 

expensive investments in network hardware, such as routers and base stations, for network infrastructure. 

In addition, other challenges that could plague fixed infrastructure, such as network bottlenecks at key 

routers or base stations, do not inherently affect ad hoc networks. The cost of fixing such issues in an ad 

hoc network is generally less than in a traditional fixed-infrastructure network. While ad hoc networks 
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alleviate such problems, different types of ad hoc networks introduce additional challenges due to added 

needs and requirements, especially related to mobility and delay tolerance.  

Mobile ad hoc networks (MANETs) are a specific type of ad hoc network in which the nodes of 

the network maintain varying degrees of mobility. The node mobility introduces additional challenges in 

regards to routing, mobility, and dealing with delay, as well as more general challenges including 

managing bandwidth and energy consumption for mobile devices. In particular, mobile ad hoc networks 

can address a range of unique situations in which ad hoc network communication is advantageous or even 

vital. Mobile ad hoc networks have applications as diverse as mobile social networking [11], military 

battlefield logistics, and sensing applications [12]. Concepts from mobile ad hoc networks are frequently 

used to address a similar type of networking environment – delay tolerant networks (DTNs). DTNs add 

another dimension to ad hoc networking – in many challenged environments, nodes that form the network 

may only experience intermittent and brief contact time (periods of time in which they are in wireless 

range to exchange data.) In this case, the chief challenge becomes designing protocols and schemes (in 

many cases, store-and-forward techniques) to route data, since there may be considerable delays until a 

given node can forward data. Research like [13] addresses topics for these challenged networks. 

Because bandwidth and connectivity are often significant challenges in ad hoc networks, the 

accessibility of data can become limited if there is network congestion or high levels of mobility. One of 

the central technologies of this thesis, cooperative caching, addresses the problem of data accessibility. 

 

2.1.1 Cooperative Caching in Mobile Ad Hoc Networks 

 As a general concept, caching has a broad and important role in various aspects of computing. 

The main goal of caching is to serve future requests for data more efficiently by storing certain data in a 

cache. Various caching techniques are employed through hardware and software at the kernel level, for 
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example, to make common operations such as disk reads more efficient. A key example of the need for 

caching is seen through the increased network demands on the internet, particularly through the World 

Wide Web. For serving HTTP and other internet-related requests faster, caching is employed to bring the 

relevant data closer to the user, such that the delay to deliver the response is reduced. This broad type of 

caching is called web cache. Similarly, content distribution networks (CDNs) are essentially distributed 

web caches that serve content across geographies, so that many geographically-diverse users can 

experience similar, low delays when accessing web resources. 

 Some caching technologies work cooperatively among caches or network devices, for example, to 

coordinate the caching of data of shared interest. In the Internet Cache Protocol, for example, network 

nodes communicate directly to discover and request data that has been cached by nearby nodes. This type 

of caching is known as cooperative caching. Most of the cooperative caching technology has been 

designed for fixed, wired networks. However, L. Yin and G. Cao have proposed cooperative caching 

schemes in [14] and [15] specifically for wireless P2P networks. Ad hoc networks can benefit from the 

advantages cooperative caching brings to traditional wired networks. With nodes coordinating in an ad 

hoc network, data accessibility can be increased by carefully caching interesting data among select nodes 

of the network. Figure 1 is used to illustrate a typical scenario that could occur in an ad hoc network that 

leverages cooperative caching: 

 

 

 

 

 

 

 

 

 

Figure 1 Example of an ad hoc network in which cooperative caching can be used. 
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In figure 1, node 1 (N1) is interested in a specific piece of data called D1. In an ad hoc network 

without cooperative caching, N1 may use a routing protocol such as AODV to request a routing path to 

the data server (the node that possesses and serves D1), N6. Once N1 receives the next hop information 

from the routing request, it may use an application-specific protocol to forward the request for D1 to N6, 

traversing the path N2, N3, N4, N6. At each hop, the node consults its routing table and forwards the 

request to the appropriate next hop. Once the request arrives at the data server, N6 responds with the data 

and it is forwarded back to N1. In an ad hoc network using cooperative caching, requests for data can be 

served by intermediate nodes along the forwarding path that have been chosen to cache the data. In figure 

1, imagine that N3 has been chosen to cache D1. Instead of the request being forwarded all the way to N6, 

N3 receives the forwarded requests, observes that it contains the requested data in its cache, and sends the 

data back to N1. Because the request did not have to traverse the full path, the latency of the request was 

decreased – N1 was able to receive a response with less delay. In networks with mobility, there is also a 

greater chance that a request can be served when the number of hops to the data server is decreased.  

In [14], L. Yin and G. Cao proposed different schemes for coordinating cooperative cache in 

wireless ad hoc networks. In [15], a cooperative cache middleware was proposed to fulfill the 

requirements of the ad hoc cooperative cache. An algorithm for placing the caching nodes to minimize the 

aggregate delay in the cooperative cache was designed, and heuristics were developed to calculate this 

placement at the data server. In addition, a novel asymmetric approach was developed, such that 

processing delays on the data response path are avoided by tunneling the reply and having only the 

caching nodes process the data at the cache layer. Simulation results verified that this asymmetric 

approach outperforms other approaches due to the benefits of data pipelining.  
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2.1.2 Challenges and Opportunities 

While cooperative caching has successfully been implemented on laptops, there appears to be 

little or no work on implementing cooperative caching on smartphones. One of the reasons for this may 

be due to the unique challenges that current smartphone platforms pose for cooperative caching. For one, 

little work has been done specifically on smartphone peer-to-peer, ad hoc networking. While there is great 

potential to create applications that leverage the computing power of nearby smartphones, little progress 

has been made in this area for namely one reason: as of May 2013, the most popular smartphone 

platforms (Android and iPhone, with 75.0% and 17.3% market share, respectively [16]) do not natively 

support creating 802.11 WiFi-based ad hoc networks. Many Android versions that manufacturers ship do 

not come with the capability to even join an existing ad hoc network. Many Android devices require the 

user to gain root privileges or manually overwrite the wpa_supplicant system file in order to be able to 

connect to ad hoc networks. 

Therefore, for the majority of applications that would benefit from P2P networking, developers 

have to rely on Bluetooth or adopt a client-server architecture that seeks to mimic P2P functionality. For 

example, the popular smartphone application Bump enables users across smartphone platforms to 

physically “bump” their devices to trigger the exchange of user contact information and for sharing files. 

While it may make sense intuitively for the user devices to share data directly via a P2P communication 

protocol, Bump actually monitors the phone sensors to determine the physical “bump”, and then it 

uploads the data to be shared to a cloud server. Once the server determines the two pairing devices (based 

upon timing and device location information, requiring user GPS data), the server sends the data to the 

intended client [17]. Even though Bump appears to be a P2P application, the application requires existing 

communication infrastructure, user location information, and a complex client-server architecture 

requiring internet connectivity. 

 Alternatively, Bump could have attempted to use Bluetooth to do the P2P communication without 

the complex infrastructure. However, a solution like Bluetooth requires a lengthy, manual device pairing 
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and bonding process, and low communication bandwidth (720 kbps, compared to speeds of up to 54 mbps 

for WiFi) [9]. And, users across platforms and devices would most likely encounter a variety of device 

incompatibilities that plague Bluetooth-enabled applications. Bluetooth is limited to a range generally 

within ten meters. For other applications requiring ad hoc networking and communication with multiple 

devices simultaneously, many Bluetooth devices are limited to bonding with only a single device at a 

time. Therefore, in order to implement ad hoc routing, additional complexity would need to be added to 

force devices to continuously form new pairs and to avoid dropping data when a new bonding occurs, 

potentially adding considerable delay to any routing protocol. It is for these reasons that Bluetooth makes 

a poor protocol for more demanding applications running on mobile ad hoc networks. 

Due to the inherent ad hoc communication limitation on modern smartphones, there has been 

some work done to communicate in an ad hoc fashion without relying on ad hoc WiFi or Bluetooth, as in 

[18]. In this work, Trifunovic et al. use a few approaches, such as randomly scanning for open APs and 

other smartphones acting as mobile hotspots, to perform the opportunistic communication. However, 

WiFi-Opp still requires some infrastructure, such as WiFi APs. In addition, for the Android platform, 

tethering is not available on all versions and models. Finally, ad hoc WiFi has better throughput than 

WiFi-Opp. While WiFi-Opp acknowledges that Android does not universally support 802.11 ad hoc WiFi 

networking and that it may never, it does not provide an alternative that truly satisfies the requirement for 

an infrastructure-free solution. WiFi Direct, an emerging new protocol that allows devices to 

communicate via a pairing mechanism similar to Bluetooth, may offer some promise for P2P applications 

in the future. However, WiFi Direct adoption and application development has been slow, and it remains 

to be seen whether device manufacturers will embrace it. 
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2.2 Cooperative Cache for Smartphones 

 To solve the problem of data access for smartphones without 3G connectivity, a hybrid data 

access scheme called Cooperative Cache for Smartphones (CCS) is proposed. Assuming that an ad hoc 

network can be established among the nearby smartphone nodes, cooperative caching can be employed to 

enable data access via nearby 3G nodes, and to reduce the data access delays from far away 3G nodes by 

caching data throughout the ad hoc network.  

2.2.1 Cooperative Caching Schemes 

 This chapter is intended to provide a review of the current cooperative caching technologies for 

wireless P2P networks proposed by Cao et al. in [14] and [15]. In [14], the authors present the first 

cooperative caching schemes for wireless networks. At that time, cooperative caching had been employed 

to improve the data access characteristics of the web. However, cooperative caching technologies 

assumed a fixed network topology, and static bandwidth on the network links – characteristics that cannot 

necessarily be assumed in wireless ad hoc networks. Three schemes were proposed to specifically address 

cooperative caching in wireless P2P networks: CacheData, CachePath, and HybridCache. These are all 

passive caching schemes. There are two types of cooperative caching: active and passive. In active 

caching, nodes actively communicate amongst one another to share and manage their cached data lists. In 

passive caching, nodes are not required to send additional control messages – instead, nodes passively 

inspect forwarded packets and can chose (or be instructed) to cache the data. Unlike active caching, 

passive caching does not add additional traffic burdens to the network. However, passive caching requires 

the ability to inspect passing-by packets.  

In CacheData, intermediate nodes along the forwarding path cache data that has common interest 

among nearby nodes in the network. This way, future requests for the data can be served more efficiently 
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by nodes that have a shorter hop distance from the requesting node. Data is cached either when the 

intermediate node is interested in the data, or when the data server chooses the specific node to cache. 

This computation at the data server is reviewed in the cache placement section. An example of CacheData 

follows in figure 2 (i). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 An example of the (i) CacheData and (ii) CachePath caching schemes. 

 

The data request originates at N1. Assuming that the same data has been requested previously, the 

caching node N3 has been selected by the data server N7. Upon the data request by N1, the data has 

already been cached at N3, and when the request is received along the forwarding path to N7 by N3, N3 is 

able to check its cache and respond directly to N1. In this way, even though the original server of the data 

is N7, the request does not need to traverse the full path to find the node that has the data. It is this central 

premise that allows the data accessibility for commonly-requested data to be improved significantly. 
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In CachePath, path information is cached in nodes that meet a certain criteria, such that additional 

requests for the data can be rerouted to a node that is closer by that has the data, instead of the data server. 

Consider the example in figure 2 (ii). When the data request from N1 is received by N7, N7 responds by 

sending back the data along the forwarding path N6, N5, N4, N3, and N3 forwards the data back to N1. 

For example, suppose N3 decides to cache the path information. N3 records that D1 was sent back to N1. 

Now, suppose N2 requests D1, and sends a request on the forwarding path to N7. When the message is 

received by N3, N3 checks the path information that it has cached, and observes that it contains path 

information for D1 that points to N1. Instead of forwarding the request along the path to N7, N3 forwards 

the request on to N1 because it knows that N2 is closer to N1 than to N7. In general, a node caches path 

information when that node (in this case, N3) is closer to the caching node (N1) than it is to the data 

server (N7). 

HybridCache is a mixed form of cooperative caching in which the methods from CacheData and 

CachePath are combined, such that both the data and path information can be cached simultaneously 

given certain criteria. This is based upon the following observations: based upon simulation and prototype 

results, CacheData and CachePath perform differently depending upon a variety of factors. In general, 

CachePath performs better when there is a smaller sized cache and when the data validity is longer (the 

data is not repeatedly updated, and the data remains valid). When more items are able to be cached, 

CacheData performs better. HybridCache takes into account these factors, and when passing-by data is 

processed, makes a decision to either cache the data or cache the path information. The decision process 

is more thoroughly described in [14]. 

 



16 

2.2.2 Cache Placement 

In the CacheData scheme, a node can cache data when either (i) it is personally interested in 

caching data and it has the available cache space, or (ii) it is chosen to be a caching node by the data 

server. In the case of (ii), when a data server receives a request, it computes a list of intermediate nodes 

along the path back to the requesting node to cache the data as it is forwarded. This computation is 

performed for the benefit of the entire ad hoc network participating in the cooperative cache, using global 

information and the path list (intermediate nodes that the request traversed). The goal of the data server is 

to compute an optimal cache placement, defined such that it must chose a list of nodes along the path list 

that produces a minimum aggregate delay. Here, the aggregate delay is defined as “the time to serve the 

current client request and the delay to serve future data requests coming from the same path”. A greedy 

algorithm to solve this problem is presented in [15]. 

2.2.3 Layered Design and Asymmetric Approach 

In [15], the authors propose a layered design for the cooperative cache system. Between choosing 

to modify the kernel to add cooperative caching functionality at the network layer and implementing the 

cooperative cache as its own layer (user-level process), the authors choose to implement it as its own 

layer. The authors note that modifying the kernel would create a number of limitations, required kernel-

level memory increases due to CacheData, and the tight coupling of the cooperative cache and a routing 

protocol (since there is no default routing protocol used for 802.11 ad hoc mode). In designing the user 

space layered approach, the authors choose to implement the cooperative caching functionality such that 

the layer sits between the application layer and the network layer, and operates such that there is clear 

separation between the layered communications. One significant challenge that arises in this approach, 

however, is the potential to lose the benefits of data pipelining. 
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The current layered architecture of the internet protocol (IP) suite allows for large packets to be 

fragmented, such that a large packet is instead broken up into small packets. Packets can be broken up and 

sent, one by one, to the destination. In an ad hoc network, these smaller fragmented packets are sent from 

hop to hop, until they reach the destination node. At each node, the fragmented packet is examined at the 

network (routing) layer, and then sent to the next node. The packet does not have to be copied to the user 

space, and does not incur any additional delays by being processed by the upper networking layers. In this 

case, data transmission can benefit from data pipelining, such that the entire packet need not be assembled 

at each node before it is forwarded to the next node. This is because the intermediate nodes do not require 

the entire packet. If the cooperative caching layer of every intermediate node requires access to the 

packet, then any data pipelining cannot occur. This is because the cooperative caching layer, located 

below the application layer, would require the entire packet to be assembled from its fragments and 

copied to the user space for examination. This is illustrated in figure 3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 The layered design. 
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Figure 4 The asymmetric approach. 

 

The authors propose an asymmetric cache approach to solve this problem. When a data request is 

sent, the cooperative caching layer needs to inspect the request in order to check if the node has a cached 

copy of the data that was requested. Once the request reaches the data server, a response message is sent 

with the data. In the proposed solution, the response packet only needs to be inspected by the cooperative 

caching layer at the intermediate nodes that have been chosen to cache the data. Therefore, data pipelining 

can still occur between nodes that are not required to cache the data. The authors refer to this as the 

asymmetric approach [15]. The data reply includes a list of the nodes to cache. This list is encapsulated, 

along with the data, in an application-layer packet. The data server sends the packet with the first 

intermediate node in this list as the destination. At this caching layer, the node removes itself from this 

list and sends to the next node in the list. Therefore, the intermediate nodes are not directly addressed, and 

only serve as intermediate routers, allowing data pipelining to occur between the caching nodes. 
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2.2.4 Current Design and Implementation 

As previously stated, the cooperative caching functionality is encapsulated and implemented as a 

separate cooperative caching middleware layer between the application and network layers. This 

middleware is illustrated in figure 5.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 System architecture proposed in [15]. 

 

 The Cooperative Cache Supporting Library (CCSL) is the component that provides interfaces to 

the generic cooperative caching functionality. It manages communication with the kernel routing table so 

that the cooperative cache schemes have access to the routing information. It is responsible for checking 

the passing-by packets, and manages the actual caching of data. The cache table stores the data access 

information (such as data, access frequency, etc.) and the data cache is responsible for storing the actual 

data. It is implemented as a separate user space process. The Cooperative Cache Daemon (CCD) is a 

component that implements the specific caching scheme, such as CacheData or CachePath. There is one 
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CCD per cooperative caching scheme, and each is implemented as a separate user space process. The 

Cooperative Cache Agent (CCA) is the component that facilitates communication between the CCSL and 

the user application. It is responsible for mapping application-level messages to cooperative cache 

messages. For example, when an application would like to request data, this is translated into a 

cooperative cache-level message by the CCA. Then, the CCA makes this request through socket 

communication to the CCSL. There is one CCA for each user application, with each one implemented as 

a separate user space process. 

The core communication model of the cooperative caching system is the data discovery protocol. 

This protocol is used by the CCSL to communicate between the nodes participating in the cooperative 

cache. Chiefly, it allows a node to request specific data from the cooperative cache. When a node wishes 

to receive some specific piece of data, it generates a data request packet. A data request packet contains 

the following important fields: 

 

{source address, request id, data id, target address} 

 

The source address corresponds to the address of the node requesting the data. The request id is a 

sequence number for the data request. The data id is a unique identifier for the specific data. In the 

implementation, each data is keyed by a unique string. The target address is the address of the node 

known to be the data server. After the data request packet is generated, it is sent to the next hop on the 

path to the data server. That node’s CCSL consults its cache to check if it contains the data. This process 

continues until the data is found at an intermediate node, or the data request packet reaches the data 

server. Once a node is reached that has the data specified by data id, the node responds with a data 

response packet. The data response packet contains the following important fields: 

  

 {source address, request id, data id, target address, data size, lifetime, data version, data} 
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The source address is the address of the node that has requested data. The request id corresponds 

to the request id contained in the respective request packet. The data id is the unique id of the data. The 

target address is the address of the data server. The data size is the size of the response data in bytes. The 

lifetime refers to the length of validity of the data, giving the receiver a sense of how long the data will 

remain valid. The data version is a record of the current version of this data. The data field itself is the 

actual response data. In addition, the data response packet also contains an optional cache_list field, 

which is a list of the caching nodes that were selected by the data server. Upon arrival of the data 

response packet at each of the intermediate caching nodes, the caching node removes its address from the 

cache_list field and forwards the packet to the next node address in the list. 

If no data called data id can be found in the cooperative cache, or there is some other processing 

error at an intermediate node or the data server, a data error packet is generated and transmitted back to 

the requesting node. This packet contains fields identifying the request (ie. request id, data id) and 

information regarding the nature of the error, such as error type, description, and the node reporting the 

error.   

2.3 System Architecture

2.3.1 Architecture 

The system architecture of the proposed cooperative cache layer for smartphones remains similar 

to the proposed architecture in [15]. We continue to use the layered approach, such that the cooperative 

cache behaves as its own self-contained layer between the application and network layers. The significant 

components of the cooperative cache layer include the Application Agent (AA), the Cooperative Cache 

Service (CS), the Interface Selector (IS), and the AODV Routing Module (RM). There are some 
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architectural changes proposed due to the difference in target platform which will be introduced here, and 

expanded upon in Section 2.4.  

Chiefly, the library that implements the cooperative cache schemes, logic, caching, and so on has 

been consolidated into a single component called the Cooperative Cache Service. The interface selector 

has been introduced to allow the service to switch between 3G and WiFi, depending upon the available 

network. To realize this implementation, the platform must offer interfaces to the communication 

hardware – this has been represented as the Android Application Framework (but could also be the 

platform/framework for another smartphone platform such as iOS.) Finally, due to the challenges of 

performing ad hoc routing on the Android platform, we include a component that implements AODV ad 

hoc routing. The advantages of this approach will be addressed in Section 2.3.5. While the basic 

architecture remains very similar to the system architecture of [15], the implementation details and some 

design challenges differ due to the Android smartphone platform and hybrid data access.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Cooperative cache for smartphones system architecture. 
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2.3.2 Application Agent 

The application agent’s role is to facilitate communication between the applications and the 

cooperative caching service. The AA meets three basic requirements for properly facilitating this 

communication: first, it offers an interface to the application (through the Cooperative Cache Helper 

Library, discussed in Section 2.4.4) to request data from the CS. Second, it stores and manages the 

applications using the cooperative caching by recording application package names, socket information 

(if still valid), and active status. Using this information, it can route the data response back to the 

appropriate application. Finally, it maintains an active connection with the CS to request and receive data.  

 

2.3.3 Cooperative Cache Service 

The Cooperative Cache Service is responsible for implementing the logic pertaining to the 

cooperative caching, as well as the storage and management of the cache itself. This includes 

implementing the CacheData, CachePath, and HybridCache schemes. The CS offers an interface to the 

application agent to request data from the cooperative cache.  With the exception of hybrid data access via 

the interface selector, the CS is functionally-equivalent to the combined roles of the Cooperative Cache 

Daemon and the Cooperative Cache Support Library in [15]. Similarly, the CS maintains the cache table 

and data cache, checks passing-by packets, and interfaces with the routing module to obtain routing 

information. The interface that it provides to the applications is via the AA. The CS allows the AA to 

request data via a simple request_data function, and routes data to the application by calling a 

receive_data function that the user application can listen on. 
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2.3.4 Interface Selector 

The Interface Selector’s purpose is to select an interface to request data on demand. If 3G is 

available, the interface selector will select 3G and the request will be performed over 3G. However, in the 

case when the user does not have a 3G plan or otherwise cannot access 3G, the interface selector is 

responsible for switching interfaces to ad hoc WiFi. 

 

2.3.5 AODV Routing Module 

 Due to implementation constraints, a necessary tradeoff to support ad hoc networking is to 

include the routing at the application layer. This way, the kernel does not need to be modified to support 

ad hoc routing. In addition, the ad hoc network can function as an overlay – only including nearby nodes 

that are participating in the ad hoc network for the specific application, for example. Finally, the routing 

module can be customized and extended to specifically support the needs of the cooperative cache, such 

as adding additional protocol messages if desired.

 

2.4 Design and Implementation 

2.4.1 Previous Design Issues 

 In [15], a number of design issues are presented when considering the design of a dedicated 

cooperative caching layer. The design decisions made there are consistent with the considerations made 

for the smartphone implementation. In this implementation, the layer is again implemented in the user 

space for similar reasons – it allows greater flexibility, and does not violate the layered approach. The 
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data discovery protocol is consistent with the data discovery protocol in [15], such that smartphones and 

other devices can participate in the same cooperative cache. Finally, the asymmetric approach is again 

used to reduce the time spent in the intermediate nodes copying messages between the kernel and user 

space. 

2.4.2 Implementation 

The smartphone cooperative cache layer is implemented specifically for Android, although there 

may be some similar abstractions for operating system constructs that can be leveraged for other 

platforms. 

Figure 7 Component diagram of the cooperative cache service for smartphones. 
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2.4.3 Cooperative Cache Service 

The cooperative cache layer is implemented as a persistent Android Service. A Service [19] is an 

abstraction for a long-running task or series of tasks. In this case, the Service utilizes a single thread in a 

separate process to perform the chief cooperative cache functionality, communicate with the user 

applications, and use the communication interfaces. While a Service shares similarities with a thread or 

process, the lifetime is largely controlled by the operating system. If the operating system is running low 

on memory, it can kill the service – therefore, data stored in memory is periodically serialized to disk to 

ensure that no data is lost. The Service architecture and related components are illustrated in figure 7. 

Cached data is stored in a Content Provider [20], which is an Android abstraction for a file-backed 

database. The AODV Routing module implements the AODV routing at the application layer, since 

AODV is not natively implemented for Android. This component has been adapted from [21]. 

2.4.4 Cooperative Cache Helper Library 

The library that is distributed to build applications leveraging the cooperative cache layer is called 

the Cooperative Cache Helper Library. The helper library can be instantiated and embedded into the user 

application, and provides a simple interface for requesting and receiving data. It runs within its own 

thread in the user application. For the lifetime of the user application, the helper library maintains an open 

socket connection with the Cooperative Cache Service’s Application Agent. The chief function exposed 

to the application developer is request_data(id), which allows the user application to asynchronously 

request data from the cooperative cache. Extra parameters are available, allowing the user application to 

specify the communication interface, destination device, a timeout period, a server URL (for 3G access), 

and so on. In addition, the user application can register a callback function for two events: 

on_data_received(id, data) and on_error(id, error). These functions are called asynchronously in a 
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separate thread when either data is delivered back to the application, or there was an error in retrieving the 

requested data. 

2.4.5 Application Agent 

The Application Agent manages the communication between the applications (more specifically, 

the instantiated helper libraries) and the Cooperative Cache Service. It facilitates this communication by 

managing a list of socket connections between the applications and the Service, keyed by the unique 

Android application package name such as “cse.psu.freilich.myapplication”. When a user application 

finishes and the socket connection is closed, it can still deliver data to the application. If the socket 

connection has been closed, it constructs an Android Intent [22] with the URI [23] pointing to the Content 

Provider location with the received data. When this Intent is fired, the operating system can trigger the 

user application to start and retrieve the data. 

2.4.6 Interface Selector  

The Interface Selector component is responsible for choosing the interface, as well as managing 

the active communication interface. A BroadcastReceiver [24] is registered to be able to learn about 

connectivity changes and act upon these changes. The two important actions that are registered are 

NETWORK_STATE_CHANGED_ACTION and CONNECTIVITY_ACTION. 

NETWORK_STATE_CHANGED_ACTION notifies the receiver that the state of WiFi connectivity has 

changed, and we can check if a new network has been connected to. The CONNECTIVITY_ACTION is 

a generic action indicating that some connectivity state has changed. Here, we can check if the network 

type is of TYPE_MOBILE and that the network is connected. Upon either connecting to 3G or WiFi, an 
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event is generated and sent to be received by the event loop. Then, the appropriate action is taken, such as 

using 3G to request the data, for example.  

2.5 Evaluation 

 A test bed has been constructed to evaluate the CCS scheme in comparison with the regular ad 

hoc data access. The test bed is composed of five Samsung Nexus S (GSM version) smartphones running 

Android 4.0.4. Each device has a 1 GHz single-core processor, with 512 MB RAM and 16 GB internal 

storage. The batteries are 1,500 mAh rechargeable Lithium-ion batteries, consistent with other 

contemporary smartphone batteries. The five smartphones have been arranged in a fixed ad hoc network 

with the network topology shown in figure 8.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Test bed topology. 
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 The test bed is performed by initiating a fixed schedule of requests at node N1, and the data 

center with 3G access is node N5. In addition to this fixed schedule, requests are randomly generated at 

N2 to simulate additional cooperative caching activity in the network. Before the test bed is run, 100 

unique pieces of data have been generated with random sizes ranging from 1 KB to 50 KB. 80 requests 

are assigned to N5, and the remaining 20 requests are randomly assigned to the other nodes. Next, 5 

procedures have been randomly generated as follows: for each procedure, we generate 50 random data 

requests that are to be performed in sequence. Between each request, there is a short, random waiting 

period of between 1 to 5 seconds. These 5 procedures (250 requests in total) are run for each of the 

schemes that are evaluated. Because smartphones are likely to be mobile, we focus the evaluation on the 

CacheData scheme. In the following tests, the regular scheme refers to retrieving the data from N5 

through the ad hoc network without caching. Measurements are gathered on the requests initiated at N1. 

In the given topology, data can be retrieved from up to 3 hops away. For N1, retrieving data 

directly from N5 requires the request and response to travel 3 hops. If data is retrieved from the cache of a 

closer node like N3 or N4, the number of hops is reduced. Intuitively, each additional hop to retrieve the 

data incurs an additional access delay penalty. While data can be retrieved at a shorter distance when 

using the cooperative cache, without the cooperative cache the data can only be retrieved from a distance 

of 3 hops (N1 to N5). Although, the delay for N5 without using cooperative caching is slightly smaller 

than with using cooperative caching, since there is less cache layer processing overhead.  

Figure 9 shows the average data access delay of the regular scheme compared to using 

cooperative caching. In this case, each cooperative cache node is given enough cache space to store all of 

the data without evicting any cache entries.  
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Figure 9 Access delay as the data size varies. 

 

 

Because each node has adequate space, the cache hit rate in these tests is between 40% and 50%. 

Regardless of the data size, the CCS method consistently saves between 25% and 30% of the delay over 

the regular method for the given topology and workload. The measurement of delay for the regular 

approach also assumes that the 3G node (N5) possesses the data before it receives the request from N1. In 

practice, if N5 does not possess the data, then significant additional delay could be added since N5 would 

have to request the data over 3G before it can send it back to N1. Because the cooperative cache 

technique reduces the number of requests that must arrive at N5, cooperative caching would reduce delay 

even further in practice than has been measured here. 

While both the regular and CCS method increase delay when the data size increases, the CCS 

increases delay about 22% less than the regular scheme over the interval from 1 KB to 50 KB data size. 

This is because, as demonstrated in table 1, the effect of increasing the data size is amplified as the 

number of hops to the data is increased. When there are additional hops to retrieve the data, it must incur 

additional processing and transmission delays according to the number of hops. Conversely, when the 
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cooperative caching is used with adequate cache space, increasing the data size does not increase the 

number of hops required to retrieve the data. Therefore, cooperative caching benefits even more when 

data can be retrieved with fewer hops, even when the data size increases. 

 

 

Table 1 Cooperative cache access delay when hop count and data size vary. 

Cooperative Cache Access Delay (ms) 

 1 KB 10 KB 20 KB 30 KB 40 KB 50 KB 

1 hop 410.6 416.2 428.8 476 521.4 595.33 

2 hops 782.3 806.4 954 980.2 1005.8 1189.4 

3 hops 990.7 1112.2 1237.1 1342.3 1414.7 1568 

 

 

 

In the test cases where adequate caching space was allowed, about 30% of data was retrieved 

within one hop, 50% within two hops, and the remaining data was retrieved from the data server N5. 

When the cache size is restricted, data must be evicted and the cache hit rate is reduced. Therefore, the 

access delay depends strongly upon the ability of the nodes to cache the data. In figure 10, the access 

delay is shown for varying cache sizes when data items of size 50 KB are requested and cached 

throughout the network. 
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Figure 10 Access delay as the cache size varies. 

 

 

As the cache size increases, the hit rate increases (from a few percent to upwards of 50% as all of 

the data of common interest can be cached.) When the cache size is the smallest, only 200 KB or 4 data 

items can be cached at each node. As a result, the cache hit rate is very small and the cooperative cache 

overhead outweighs any of the small benefits from caching. When the cache is of adequate size when it is 

larger than 1.2 MB, all of the needed data can be cached without evicting any of the data that N1 was 

interested in. In that case, accessing data from the cooperative cache is much likelier to produce a cache 

hit and a smaller access delay. In this case of relatively small data items and number of requests in the 

network, the cache size can be relatively small and still be very effective. An effective cache size depends 

upon the application requirements and activity within the network. When the cache data is persisted to 

disk, then the cache size can be adjusted to fit applications with large data requirements, since many 
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modern smartphones contain relatively large amounts of storage. Common applications on Android 

routinely cache megabytes of data, and contain even more data stored in databases. 
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Chapter 3  
 

Request Aggregation-Based Scheme 

 

While we can address situations in which smartphone users do not have mobile data plans or are 

otherwise unable to use 3G data, there are also times when many smartphone users have access to 3G data 

and are in close proximity. Consider an example of a group of students on a long, five hour bus ride for a 

field trip. Each student has his or her own 3G data plan and a 3G enabled smartphone. On this bus ride, 

each of the students wishes to use his or her smartphone to work on homework and browse the web. 

Unfortunately, because there are no power sources on the bus, the students must consider how 3G usage 

will affect the battery lives of their smartphones. The typical web browsing habits, for example, can be 

very energy and delay inefficient. If a user requests data somewhat frequently (for example, every 30 

seconds), then every request can suffer from high tail energy consumption and repeated 3G network 

connection delays of up to 2 seconds. 

To avoid these energy and delay problems, the students decide that they can work together. They 

choose to elect a student (perhaps the one with the smartphone that has the most battery) to act as the 

“leader”. The leader communicates with the other students, writes down the data that the students want, 

performs all of the requests on his or her smartphone, and then transmits the data back to the student that 

originally requested it - over Bluetooth, for example. This way, the other students can avoid having their 

devices consume energy using their energy-heavy 3G interfaces, and the leader can perform all of the 

requests and then quickly get back to work. 

However, there are some severe limitations with this otherwise intelligent approach. First, how 

many students could this strategy support without overwhelming the leader? With more students, the 

coordination becomes more complicated, and it will take longer for each student to receive his or her 

requested data. In addition, how can the leader manage the status of all of the requests – if a student asks 
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how long his or her request will take, how can the leader know this? How can the student make a 

judgment about whether or not it would be helpful to have the leader perform the request instead of the 

student performing it? 

To address the energy and delay problems discussed above, a method is proposed for aggregating 

smartphone data requests to reduce the data access delay and the energy consumption of the requesting 

devices. In this request aggregation scheme, a cluster of smartphones leverages a clusterhead to perform 

the requests on behalf of the smartphones. The smartphone nodes in this one-hop ad hoc network ping the 

clusterhead for its interface state and request queue time; if energy and delay can be saved, then the 

requests are forwarded to the clusterhead to be fulfilled over 3G. This approach has two distinct 

advantages; first, the network nodes can benefit from better data access delays by leveraging the 3G 

interface state of the clusterhead and can avoid wasting energy on their own 3G interface usage. Second, 

because the clusterhead is performing the requests for the other nodes, it experiences less delay and less 

wasted tail energy for its own requests since it is more likely to already be in the high energy state. Using 

this approach, both the network nodes and the clusterhead benefit from the aggregation of requests. 

 

 

3.1 Background and Related Work 

Effective management of the 3G radio is one of the leading challenges for improving smartphone 

battery life and reducing internet access delays. When used incorrectly, the 3G interface can be a 

significant source of unnecessary energy consumption and delays. The power and delay characteristics of 

3G depend on two main aspects: the 3G Radio Resource Control protocol and the transmission delay and 

energy. The 3G Radio Resource Control protocol defines how the device and cellular backbone network 

can efficiently use the network resources. As a result, three energy states are defined for the device – 

typical energy state times and values are displayed in figure 11. 
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Figure 11 Typical mean power usage for the 3G interface. 

 

In the IDLE state, the device does not have a connection to the backbone network. From the 

backbone network’s point of view, no significant resources are being consumed by this device. However, 

a device cannot perform any signaling or data transfer when in the IDLE state. In the FACH state, the 

device can access the network via low-speed, common shared transmission channels. In the DCH state, a 

dedicated channel is utilized by the device to transfer data. The DCH state is required to create the 

connection necessary for user data transmission. In addition to these requirements, the different channels 

also consume energy at different levels. The IDLE state is a low-power state. The DCH state requires 

significant power to hold the dedicated channel, and uses the most power of the states. Finally, the FACH 

state is a mid-level power state that requires about half the energy used in DCH. The interface 

automatically transitions between the three states based upon the level of transmission activity. 
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To control how the interface state transitions, inactivity timers T1 and T2 are defined. T1 is the 

timer that moves the interface state from DCH to FACH. This timer is reset to 0 whenever a data 

transmission begins, and starts when a data transmission ends. If the timer reaches its threshold value, it 

switches the state from DCH to FACH to signify that transmission of data has stopped and that the 

dedicated channel may no longer be needed. When the FACH state is entered, T2 begins. When T2 

expires, the state is moved from FACH to IDLE. This period of inactivity is known as the tail time. While 

different networks may have different values for the T1 and T2 inactivity timers, T1 and T2 are 

commonly triggered at 4 and 15 seconds, respectively.  

The behavior of these state transitions can become a significant source of delay. This is primarily 

due to the delay incurred from connection establishment. When moving from IDLE to DCH, data cannot 

be transmitted immediately. First, the connection must be made with the backbone network and the 

various resources acquired in order to begin transmission. This process usually takes between 1 and 2 

seconds. Similarly, to move from the FACH to DCH state, there is about a 1.5 second connection delay. 

However, when the device is already in the DCH state there is no connection delay since there is already a 

connection established with the backbone network. Therefore, in the DCH state data can be transmitted 

immediately. 

The state transitions can also incur significant, commonly unnecessary energy consumption. One 

especially important issue is known as the tail energy problem. The energy consumed over the duration of 

T2 is referred to as the tail energy, since it is the energy used at the end of the request. On the one hand, 

this state is useful for the backbone network, as it keeps the device in a medium power state that can 

perform the network connection faster. From the device perspective, however, the tail energy is often 

wasted energy. Once the transmission is complete and T1 is triggered, another data transmission may not 

take place for a significant amount of time. For a value of T2 such as 15 seconds, this means that the 

device may spend 15 seconds in a medium power state with no added benefit. For typical data transfers, 
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the tail energy can consume upwards of 60% of the total energy used for a 3G transmission, often with no 

benefit to the user. 

For many users, their behaviors cause the 3G interface to behave inefficiently. For example, if a 

user requests data over 3G every 30 seconds, then each request can require a full promotion from IDLE to 

DCH, which causes the 2 second connection delay and will most likely incur the full tail energy. If the 

user requests 5 pieces of data – 1 piece every 30 seconds - there would be 5 connection delays and 5 full 

tail energy consumptions incurred. If the user were able to aggregate these requests and perform them all 

at once, then only a single connection delay and one energy tail would occur.  

Much research has been done to improve the energy and delay performance of the 3G interface 

and backbone network. In [25], the TOP protocol is proposed to have the handset notify the network to 

release resources on an idle tail. In this way, TOP modifies the inactivity timers to reduce the tail time. It 

uses a related modification of 3G called fast dormancy [26] to reduce the tail time. However, this 

approach requires a network that supports fast dormancy and the ability to modify the inactivity timers. In 

[27], TailEnder is proposed to reduce the 3G energy consumption. It requires some delay tolerance to 

aggregate and schedule requests so as to use the 3G interface more efficiently. 

 

 

3.2 Request Aggregation-Based Scheme 

To alleviate the high delays and largely unnecessary high-energy tails that occur during the 

normal operation of 3G, the Smartphone Request Aggregation Scheme (SRAS) is proposed. When 

smartphones are arranged in a cluster (every node is within 1 hop of another), we can leverage an ad hoc 

network of smartphones to offload requests to a clusterhead. To start, a node is chosen by some process 

(for example, voting or random selection) to become the clusterhead (CH). As the CH, the node’s 

responsibility is to perform requests that the other nodes send to it over ad hoc WiFi. Therefore, the CH 
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keeps its WiFi interface on and is ready to receive data. The other nodes in the cluster are called cluster 

nodes (CN). Once a CH has retrieved the requested data over 3G, it can forward the data back to the 

requesting CN. 

3.2.1 Decision Phase 

Before  a node is ready to request data from the CH, it needs to determine if it is favorable to do 

so. The first part of the SRAS scheme is when the CN sends the CH a message called a ping request. The 

purpose of the message is to inform the CH that the particular CN is interested in offloading a data 

request, and would like to ping the CH so it can determine if it should send the CH the data request. In 

response, the CH sends a ping reply with the current 3G interface state, the values of T1 and T2, the 

expected request waiting time, and the time that the ping reply was transmitted.  

When the CN receives a ping reply packet from the CH, it can choose either to offload its request 

to the CH, or use its own 3G interface to perform the request itself. There are two aspects to consider: 

whether offloading the request will save access delay, and whether offloading will save energy 

consumption. Besides abnormal cases of extremely large or long requests (such that the CN has to 

maintain its WiFi interface for long periods of time while waiting for a reply), it is usually more energy 

efficient to offload the data request. 

Cluster node local request 

The cluster node local delay is the delay the CN would incur to request the data over its own 3G 

interface.  

Delay = connection delay + data transfer delay 
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The connection delay is 1.5 seconds if the current state is FACH, and 2 seconds if IDLE. The data 

transfer delay can be calculated given the 3G rate and the size of the requested data, by 

 

Data transfer delay = data size/3G rate 

 

Additionally, network conditions such as round-trip time can also be factored into the data 

transfer delay. To calculate the energy required to perform the 3G transfer locally, the model from [27] 

can be used. Specifically, the 3G transfer energy for a transfer of x bytes can be calculated by 

 

R(x) = 0.025(x) + 3.5 

 

where R(x) includes the energy required to bring the interface up to the high energy state, the transfer 

energy, and the tail energy.  

 

Forwarding to the clusterhead 

To forward the request to the CH, the total delay incurred includes the delay for the ping 

messaging, the delay for the CH to perform the request over 3G, and the time to transmit the data back 

over the WiFi interface to the CN. Processing delay for the CH is also considered. In addition, because 

the CH must perform 3G requests one-by-one, there may be queued requests waiting to be performed, 

creating a waiting period before the given request can be completed. 

 

Total delay = ping delay + waiting time + connection delay + data transfer delay + reply delay 
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The ping delay is the delay to transmit, process, and receive the ping response. 

 

Ping delay = ping request size/WiFi rate + ping processing delay + ping response size/WiFi rate 

 

The waiting time is the time that it will take to fulfill the queued requests before the current 

request can be performed. This is the summation of the data transfer delays for the queued requests. The 

connection delay depends upon the state of the CH’s 3G interface. If it is IDLE, then the delay is 2 

seconds. If it is FACH, then the delay is 1.5 seconds. If the state is DCH, the connection delay is 0 

seconds. Or, it could be the time remaining if the connection has already initiated. 

 

Data transfer = data size/3G rate 

 

The reply delay is the delay incurred from transmitting the data request packet, the request 

processing delay at the CH, and the delay to transmit the data back to the requesting CN. 

 

Reply delay = data request size/WiFi rate + request processing + data reply size/WiFi rate 

 

To calculate the energy required for the CN to offload the request, the WiFi data transfer and 

maintenance energy must be calculated. The model from [27] can be used to calculate these. For the 

transfer energy, 

 

R(x) = 0.007(x) + 5.9 
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where R(x) is the energy due to data transfer and scanning/associating for WiFi. To be precise, the energy 

component for scanning and associating can be removed from this calculation. In addition, the 

maintenance energy was measured to be 0.05 J/sec. To calculate the maintenance energy: 

 

WiFi Maintenance Energy = WiFi On Duration x 0.05 J/sec 

 

where the WiFi on duration is the time that the WiFi interface is left on. Specifically, this is the time 

between sending the ping request and receiving the ping reply, and the time between sending the data 

request and receiving the data reply. This can be calculated using results from the CH request delay. To 

calculate the entire WiFi energy, 

 

WiFi energy = ping transfer energy + data transfer energy + maintenance energy 

 

The CN makes the decision whether or not to offload the request by comparing the expected 

delay to offload with the computed delay to perform the request locally. If the delay to forward the 

request to the CH is less than the local delay, it constructs a packet to forward this request to the CH. In 

addition, if the CN only wishes to save power and can tolerate some additional delay, the CN can choose 

the most energy efficient method. 

3.2.2 Request Phase 

If the CN decides to offload the request to the CH, the CN sends a data request to the CH 

indicating the particular CN wishes for the CH to request the data on its behalf. On receipt, the CH saves 

the CN’s address so that it can return the response back to it. Next, if the CH is not in the DCH state, it 

moves to this state and begins to request the data over 3G. If there are queued requests, the request is 
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added to a queue of waiting requests. Once it reaches the head of the queue, the request for the given URL 

is performed over 3G. When the CH has the data, it constructs a data reply packet and transmits the data 

back to the CN over ad hoc WiFi. 

 

3.3 Evaluation 

To assess the performance of the proposed scheme, SRAS has been implemented and evaluated 

via simulation. For the tests, requests are generated randomly every 15 to 25 seconds at each node. Each 

test is a simulated run of the system for 10 minutes. An ad hoc WiFi rate of 54 Mbps is assumed, and the 

3G rate is varied between 1 and 3 Mbps. The processing delay at the CH is 50 milliseconds for a ping 

request, and 100 milliseconds for a data request. The network round trip time for requests over 3G is 100 

milliseconds. For the 3G Radio Resource Control protocol, it is assumed that there is a 2 second delay to 

connect when moving from IDLE to DCH, and a 1.5 second delay when moving from FACH to DCH. T1 

triggers at 4 seconds, and T2 triggers at 15 seconds. SRAS is compared against the regular data access, 

where each node independently switches to 3G to request its own data. 

3.3.1 Cluster Nodes 

As the number of CNs increases, the delay to access data from the CH decreases, as long as the 

CH’s request queue remains short. When there are more CNs, there are a greater number of requests 

arriving at the CH. When the number of requests reaches the frequency such that the CH’s 3G interface 

remains in the DCH state, every request is able to be retrieved very quickly – as the CH’s interface 

remains connected to the cellular network and does not require any connection delay. Therefore, the only 

delay for a request depends upon the data size, data rate, and the network round trip times. In the 

following analysis, the performance of SRAS is compared with the performance of the CNs when they do 
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not use a CH to offload requests. Figure 12 shows the average access delay for requests as the number of 

CNs increase. 

 

 

Figure 12 Average delay per request at the cluster nodes. 

 

In figure 12, the average request delay is measured as additional CNs are added to the cluster, 

where the 3G rate is 3 Mbps and the data being requested is 50 KB. Between 1 and 10 cluster nodes, the 

access delay varies significantly. When there are few nodes, the CH frequently moves from the DCH to 

the FACH state, since the T1 timer threshold is only 4 seconds. Once this move occurs, there is a delay 

penalty for the CH – it takes 1.5 seconds to switch from FACH to DCH. However, even when there are 

few nodes and the 1.5 second FACH to DCH delay is incurred, it is still advantageous for the CNs to 

offload requests to the CH. This is because, unless the CNs are requesting over 3G fast enough, they will 

experience a similar delay to switch from IDLE or FACH to DCH. Once a CN starts offloading requests 
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to the CH, it will likely experience the full 2 second connection delay if it decides not to offload because 

its 3G interface is in the IDLE state. As long as queue times do not overly burden the CH and the CH’s 

3G state remains in DCH, it is always favorable for the CNs to offload their requests to the CH. 

It is important to note that for the CNs, SRAS will always perform better than not using SRAS. 

This assumes that the CH can accurately calculate its queue time. Even if the queue time of the CH is 

large, a CN can perform the request on its own and still do just as well if SRAS is not used, which is the 

purpose of using the ping request/reply to inform the CN of the CH status and queue time. Still, if it 

offloads any of its requests to the CH, it will perform better than if SRAS were not used at all.  

 

 

Figure 13 Average energy consumed per request at the cluster nodes. 

 

In figure 13, the average energy per request for the cluster nodes is shown as more CNs are added 

to the cluster. It is compared against the average energy per request for when instead the nodes make 
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requests over their own 3G interfaces. In this case, once more than a single CN is in the cluster, the CNs 

can safely offload all of their requests to the CH (since the queue length never becomes to large). 

Therefore, the CNs never have to use their own 3G interfaces, and the only energy used is for WiFi 

interface maintenance and WiFi data transfer. At 2 nodes, the average energy used for a request is 3.98 

Joules, and the average decreases by about 17% to 3.3 Joules per request when there are 20 CNs in the 

cluster. This decrease can be attributed to the decrease in delay per request that is experienced when 

additional nodes are added to the cluster. Because it takes less time to deliver a data response, the WiFi 

interface is maintained for a shorter amount of time, leading to a small reduction in energy usage. 

Similarly, once a CH is introduced, SRAS always uses significantly less energy than if it were not used – 

in this case, between a 73% to 78% energy reduction over the regular 3G energy consumption. 

 

Table 2 Average energy per request when varying the 3G rate and data size. 

Average Energy Per Request (J) 

 
1 KB 10 KB 100 KB 

1 Mbps 3.33 3.45 4.01 

2 Mbps 3.40 3.44 3.93 

3 Mbps 3.32 3.53 3.99 

 

Table 2 shows how data size and 3G data rate impacts the average energy per request. Since all of 

the requests are being offloaded to the CH, the source of this energy consumption is the CN maintaining 

its WiFi interface, waiting for the data reply to arrive from the CH. Therefore, with larger data, it will take 

longer for the CH to retrieve the data, so the CN must keep its WiFi interface on longer while waiting for 

the reply. 



47 

3.3.2 Clusterhead 

In the same tests as held in the previous section, the delay and energy measurements of the CH 

were collected separately. Since the CH performs the requests on behalf of the CNs, only a fraction of the 

requests it performs are for it exclusively. Because it is performing more requests, and at a high 

frequency, its own requests should benefit from less energy consumption (since it requires less 3G state 

promotions and less unnecessary tail energy) and smaller delay (since there are fewer 3G connection 

delays incurred) as the number of CNs increases. For the following results, the energy consumption and 

delays for the CH’s own (self-initiated) requests are analyzed. Figure 14 shows how the delay of the CH’s 

requests varies as the number of CNs is increased.  

 

 

Figure 14 Average delay per request at the clusterhead 

 

In figure 14, the increase in the number of CNs leads to a dramatic decrease in the average 

request delay for the CH’s requests. As expected, the CH’s own requests benefit even more from the CNs 

than vice versa. While both the CNs and the CH benefit from the CH’s 3G state and rates, the CH’s own 
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requests do not suffer from the initial delay of the ping request/response, or from having to transmit the 

reply data back to the requesting node, since the CH’s own requests originate locally. With this particular 

3G rate of 3 Mbps and 50 KB requests, the CH’s request delay improves 85% over not using SRAS. The 

delay for the regular access scheme again shows that, with the increase in nodes, the access delay does not 

improve since each node is using its own 3G interface independently. 

 

 

Figure 15 Average energy consumed per request at the clusterhead 

 

The average energy consumption per request for the clusterhead’s requests is shown in figure 15. 

While the CH will use more total energy since it is performing many more requests, the energy per 

request becomes very low as the number of CNs increases. The energy per request measurement is simply 

the total energy used divided over the total number of requests (both its own and the requests it performs 

for the other nodes). As the number of nodes increases, the frequency of request arrivals increases. In 

turn, this causes the CH’s interface to remain in DCH and be able to perform requests without a 
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connection delay. And, if the node remains in DCH indefinitely, there is no tail energy. For even 1 cluster 

node, the energy efficiency of the CH improves 25% because it is able to benefit from less 3G state 

promotions and less tail energy. On average, the CH does use more energy per request than the CNs: 6.38 

J compared with 3.92 J on average for the CNs. However, this is because the vast majority of the time the 

CNs are not using 3G at all. Still, both use only a small fraction of the greater than 14 J average used per 

request when each node requests data without SRAS. 

 

Table 3 Average clusterhead energy per request when the 3G rate and data size vary. 

Average Energy Per Request (J) 

 
1KB 10KB 100KB 

1 Mbps 5.82 6.12 8.92 

2 Mbps 5.81 6.06 8.85 

3 Mbps 5.81 6.05 8.83 

 

Table 3 shows the average energy consumed per request as the 3G rate and data sizes vary. This 

data demonstrates that the energy used varies more with the size of the data, while increasing the rate only 

marginally improves the energy use. When the data size increases, both the time spent using 3G increases 

as well as the time and energy spent transmitting the request over WiFi.   
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Chapter 4  
 

Conclusion 

 

Increasingly, many interesting and important mobile applications require an active connection to 

the internet. In many cases, smartphones can only access data over the internet by using their 3G 

interfaces, especially when no WiFi infrastructure exists in the user’s location. However, this can be cost 

prohibitive for some users. In addition, infrequent internet usage over 3G can incur significant delay and 

energy overheads. To address these challenges, we can develop hybrid data access schemes that allow 

smartphone users to access internet data without an active 3G connection, or even aggregate requests to 

reduce access delays and use less energy. 

In part 1, the first design and implementation was presented for cooperative caching on Android-

based smartphones, using the cooperative caching schemes presented in [14]. The proposed system is 

based upon the work done in [15], and builds upon the passive protocol and asymmetric design presented 

by Cao et al. It is implemented as an Android Service, and uses 802.11 ad hoc WiFi to facilitate the ad 

hoc networking. By using an ad hoc network to access data through a nearby 3G-enabled smartphone, 

users can still access the internet without a 3G data plan. By using cooperative caching, popular data 

items are cached throughout this ad hoc network and the delay to access the data is significantly reduced. 

In the test bed evaluation, it was shown that access delays can be reduced by 25% to 30%, while not 

requiring large cache sizes. 

In part 2, a hybrid scheme for request aggregation in a cluster of smartphones was presented. In 

this scheme, the cluster nodes intelligently forward requests for data to a clusterhead that performs the 

requests over 3G on their behalf. As the number of cluster nodes increases, the average access delay and 

energy consumption per request is reduced significantly. While the clusterhead incurs higher total energy 

consumption, the delay and energy consumptions for its own requests are significantly reduced because it 
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can benefit from fewer 3G interface state promotions and fewer connection delays. Through simulation, 

the hybrid scheme was shown to significantly reduce delays and energy consumption over the regular 

access scheme. 

 4.1 Future Work 

 In the cooperative caching scheme for part 1, we assume that the nodes in the network have 

knowledge of the location of the nearest 3G node. To improve this work, we should take into account 

node mobility, and determine if another nearby 3G node must be found if the current 3G node has moved 

or turned off 3G. In addition, an appropriate incentive model could be developed to help motivate 3G 

users to offer their service to the other non-3G devices, since the 3G device will use more energy and 

bandwidth by fulfilling the other node’s requests. Finally, additional interfaces could be explored, such as 

Bluetooth, to offer a lower power ad hoc solution. 

 In part 2, there are a few conditions that could negatively affect how the clusterhead performs. 

First, if there are too many nodes in the cluster, or if the frequency of cluster requests to the clusterhead is 

too large, then the clusterhead’s request queue may become large and the clusterhead could become a 

bottleneck. This problem can be alleviated by choosing another node to act as the clusterhead to forward 

future requests to. Similarly, another potential problem is the large amount of energy required of the 

clusterhead when there are many requests and it operates over a long period of time. The clusterhead 

should be rotated based upon some scheme, for example by rotating to the node with the largest amount 

of battery life remaining. In addition, this will require some additional messaging or a modification of the 

current messaging to support. For example, the current clusterhead may ping the other cluster nodes to 

find the device with the largest remaining energy. Then, the current clusterhead may select this new node 

as the new clusterhead. Similarly, future ping requests to the old clusterhead can inform the cluster nodes 

of the new clusterhead, without adding significant additional messaging overhead. 
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 In addition, more work can be done to determine the best way to schedule the ping request. 

Instead of sending it every time before the cluster node wants to request data, it can be sent regularly. 

This rate can be adjusted depending upon the frequency of requests, conditions of the 3G coverage, and 

node mobility. If it is sent regularly, then the cluster node does not need to incur any delay before 

deciding whether or not to send its request to the clusterhead, since it can use the information from the 

previous ping reply to make the decision. 
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