
THE PENNSYLVANIA STATE UNIVERSITY
SCHREYER HONORS COLLEGE

DEPARTMENT OF ENGINEERING SCIENCE AND MECHANICS

A MATHEMATICAL MODEL FOR BRAIN TISSUE

BRADFORD JOSEPH LAPSANSKY
SPRING 2014

A thesis
submitted in partial fulfillment

of the requirements
for a baccalaureate degree
in Engineering Science

with honors in Engineering Science

Reviewed and approved* by the following:

Corina S. Drapaca
Assistant Professor, Department of Engineering Science and Mechanics

Thesis Supervisor/Honors Advisor

Francesco Costanzo
Professor, Department of Engineering Science and Mechanics

Faculty Reader

Judith A. Todd
P. B. Breneman Department Head Chair

Professor, Department of Engineering Science and Mechanics

∗Signatures are on file in the Schreyer Honors College and The Engineering Science
and Mechanics Office

Abstract

Brain tissue is very sensitive to both mechanical forces and chemical imbalances.
These imbalances can cause functional and/or structural changes of the tissue
which can lead to the onset and evolution of neurological diseases. Accurate math-
ematical models of brain chemo-biomechanics that increase our understanding of
both healthy tissue and disease mechanisms in the brain greatly aid the develop-
ment of better diagnostic and therapeutic tools and protocols. This thesis models
the brain as a mixture material made of three phases: solid, fluid, and ionic.
The equations that govern the chemo-biomechanics of the brain are linearized and
considered in a limiting one-dimensional case so that the accuracy of numerical
solutions developed for these equations may be verified by using an analytic so-
lutions represented as Fourier series. The model is then coupled to the classic
Hodgkin-Huxley equations to predict the displacement field of neurons as a result
of an applied electric potential.

i

Table of Contents

List of Figures iv

List of Tables v

Acknowledgments vi

Chapter 1
Introduction 1

Chapter 2
Brief Review of the Triphasic Mixture Theory 4
2.1 Balance of Mass . 4
2.2 Electroneutrality Condition . 5
2.3 Volume Fluxes . 7
2.4 Momentum Equations . 8
2.5 Constitutive Equations . 9
2.6 Governing Equations . 11

Chapter 3
A Linearized Triphasic Model 13
3.1 Equations of the Linear Model . 13
3.2 Analytical Solution . 14
3.3 Numerical Solution . 16

3.3.1 Justification for the Numerical Solution 16
3.3.2 Crank-Nicholson Method . 17
3.3.3 Numerical Solution using Crank-Nicholson Method 21

3.4 Comparison Between the Analytical and Numeric Solutions 22

Chapter 4
Hodgkin-Huxley Model 26
4.1 Model for Membrane Potential . 26
4.2 Derivation of the Hodgkin Huxley Equations 27
4.3 Action Potential Equations . 28

ii

4.4 Numerical Solution . 31

Chapter 5
Linearization of the Governing Equations 33
5.1 Balance of Momentum . 33
5.2 Balance of Mass for the Fluid Phase 34
5.3 Balance of Mass for the Ionic Phase 36

Chapter 6
Brain Chemo-Mechanics 38
6.1 Solution Domain . 38
6.2 Ionic Concentration Boundary/Initial Conditions 40
6.3 Membrane Displacement Conditions 41
6.4 Numerical Methods . 45

6.4.1 Ionic Concentrations . 45
6.4.2 Membrane Displacement . 47

6.5 Numerical Results . 49

Chapter 7
Discussion 56
7.1 Concentration . 56
7.2 Displacement . 58
7.3 Conclusion . 59

Appendix A
MATLAB Code for Chapters 4 and 6 61

Appendix B
MATLAB Code for Chapter 3 84
B.1 Numerical Solution . 84
B.2 Analytic Solution . 97
B.3 Error Analysis . 102

Appendix C
Broader Impacts 111

Bibliography 112

iii

List of Figures

2.1 Representation of Brain Tissue . 8

3.1 Dilatation versus Time . 24
3.2 Gamma versus Time . 24

4.1 Equivalent Circuit Model . 26
4.2 Lipid Bilayer and Ion Channel . 27
4.3 Membrane Voltage . 32

6.1 Boundary-Value Problem Domain 39
6.2 Temporal change of Membrane Displacement 48
6.3 Ionic Concentrations at z = 0.15µm 50
6.4 Ionic Concentrations at z = 0.40µm 51
6.5 Ionic Concentrations at z = 0.50µm 52
6.6 Ionic Concentrations at z = 0.75µm 53
6.7 Ionic Concentrations at z = 1µm = ` 54
6.8 Membrane Displacement . 55

iv

List of Tables

3.1 Parameters Used in Analytical and Numeric Solution 23
3.2 Relative Error . 25

4.1 HH-Parameters . 30

6.1 Brain Parameters . 49

v

Acknowledgments

First, I would like to greatly thank Dr. Corina Drapaca for her guidance, patience,
and knowledge in helping me complete my research. In addition, I would like
to thank Dr. Francesco Costanzo for his assistance on the mathematics involved
and Dr. Patrick Drew for his assistance on the biology involved in my research.
Without their help, this thesis would not be as well developed as it is.

I would also like to thank Dr. Thomas Winter of Penn State Wilkes-Barre for
his guidance and support along with some of the code used to create the pictures
present in this thesis. I would also like to thank Dr. Joseph Jumpeter of Penn State
Wilkes-Barre for his guidance and support over the last four years. I would also
like to thank Dr. Judith Todd, Ms. Melissa Fink, Ms. Emily Gallagher, and the
rest of the faculty and staff in the Engineering Science and Mechanics department
for their help and assistance with both this thesis and my education over the last
two years. Lastly, I would like to thank my parents and family for their support
they have given me throughout college and life.

vi

Chapter 1 |
Introduction

Brain is a soft biological tissue that is electrically active (Kandel et al., 2012). Con-
tinuum models for soft biological tissues have been developed for charged porous
media by Lai et al. (1991); Malakpoor et al. (2006); Sun et al. (1999), and they
have been successfully used to simulate the behavior of cartilage (Gu et al., 1998;
Lai et al., 1991). Mathematical modeling is a tool that can be useful for making
predictions about an observed system as well as providing guidance for better ex-
periments. The models by Gu et al. (1999); Lai et al. (1991); Sun et al. (1999) are
attractive for use in brain research because, like cartilage, the microstructure of
the brain can be modeled as a charged porous medium (Drapaca and Fritz, 2012;
Elkin et al., 2010). This type of continuum model that is called triphasic, since
the brain tissue is modeled as a mixture of three phases: solid (cell membranes of
the neuron and glial cells), fluid (cerebrospinal fluid (CSF) and blood), and ionic
(charged particles that flow between the intracellular and extracellular space of
the tissue) (Bowen, 1976; Kandel et al., 2012; Sun et al., 1999). Such a model has
the potential to predict the brain tissue response to traumatic brain injury, tumor
growth, and neurodegenerative diseases. More specifically, the model in question
can provides insight into how mechanical loading affects brain response as well as
how chemical imbalances change the brain’s mechanical response. These insights
can lead to improved diagnostic and treatment protocols. For instance, the model
can be used to study cortical spreading depression (CSD), a condition associated
with a noticeable decline in local random electrical activity caused by an electrical
or mechanical stimulation (Leao, 1944). It has been observed by Grafstein (1956);
Obrenovitch and Zilkha (1995) that potassium (K+) concentrations in the cortex
influence the spread of CSD. Since the model takes potassium and other ions into

1

account, it would be suited for studying this phenomenon. The study of the me-
chanics of brain tissue in response to changing chemical concentrations could lead
to an improved understanding of this disease.

Drapaca and Fritz (2012); Elkin et al. (2010) have successfully modeled chemo-
mechanical interactions in the brain. The development of our model follows the
one by Gu et al. (1998, 1999) since it takes into account an arbitrary number
of species in the ionic phase. The ions that are active in the processes of brain
tissue are potassium, sodium, calcium, and chlorine (Kandel et al., 2012) and any
accurate model of brain should be able to account for all four. For simplicity, the
model developed in this thesis only accounts for potassium, sodium, and chlorine
since we are not modeling the synapses of neurons. At the synapse of a neuron,
calcium plays a significant role in neurotransmitter release (Kandel et al., 2012).
The equations for a triphasic model with a general number of ions in the ionic
phase is presented in chapter 2 so that it can be adapted for any possible scenario.

The equations presented in chapter 2 need to be utilized to solve any boundary-
value problem pertaining to different situations in the brain. Therefore a numerical
solver needs to be developed since it is not always possible to develop an analytical
solution to a set of boundary conditions. A one-dimensional numerical solution to
the linearized triphasic model by Lu et al. (2010), which has already been used to
model brain mechanics by Drapaca and Fritz (2012), has been developed since the
numerical solution can be compared to one possible analytical solution for accuracy.
While comparing the numerical solution to an analytical solution is not the only
way to verify the accuracy of the numerical solver, it is the way that was chosen out
of convenience. The results of a one-dimensional numerical solution obtained via
the finite-difference method are verified in chapter 3 against one possible analytical
solution.

In chapter 4, the equations of the Hodgkin-Huxley model (Hodgkin and Huxley,
1952a,b) are presented so that the cell membrane potential (voltage) of an axon
could be calculated. A depolarization of an axon causes a change in the axon’s
membrane potential which leads to a flow of ions through the membrane (Kandel
et al., 2012). In order to model the flow of ions through the membrane, along with
the displacement of the membrane itself, another set of one-dimensional governing
equations are derived to account for both the motion of ions inside the neuron and
the neuron’s membrane displacement.

2

Using the derived governing equations presented in chapter 5, the concentration
of all ions along with the membrane displacement were calculated for a set of
specific boundary and initial conditions. The values of various parameters were
chosen from Kandel et al. (2012); Lide (2007); Medvedev (2005); Weiss (1996) in
order to best model a normal, healthy neuron. The behaviors of the membrane
displacement and ionic concentrations can be determined in response to the applied
(cell) membrane potential. The results are shown in chapter 6. The mechanical
behavior of a neuron’s membrane, which will be assumed to be the solid phase of the
model mixture, due to an applied electrical stimulus has been investigated through
computer simulations via a developed numerical solver in MATLAB, assuming the
intracellular space and membrane of a neuron to be a triphasic mixture. The
proposed model has not been validated experimentally yet. The results presented
in chapter 6 do not actually model natural phenomena in brain. However, the
results should show “proof-of-concept” that the triphasic model can be adapted in
the future for use in modeling brain phenomena.

3

Chapter 2 |
Brief Review of the Triphasic
Mixture Theory

2.1 Balance of Mass
Following Gu et al. (1998), the volume fraction of each of the three phases that
constitute a triphasic mixture will be denoted as follows: φβ for β = s, w, I where
s, w, I represent the solid, fluid, and ionic phase, respectively. In particular the
volume fraction of the ionic phase is given by φI = ∑n

α=1 φ
α where φα is the volume

fraction of each ion species. The saturation condition states that the sum of all of
the volume fractions for all phases in the mixture is equal to one (Gu et al., 1998;
Sun et al., 1999):

φs + φw +
n∑

α=1
φα = 1. (2.1)

The volume fraction of each constituent of the mixture relates the bulk density,
ρβ of that constituent to the constituent’s respective true density, ρβT (Sun et al.,
1999). The true densities of the solid and fluid phases can be thought of as: ρsT =
ms/Vs for the solid phase and ρwT = mw/Vw for the fluid phase where ms,w and Vs,w
are respectively the mass and volume of the solid and fluid phases (Bowen, 2010,
1980). The true densities of the ionic species are related to the molar concentrations
and the molecular weights of each ion in the mixture (Sun et al., 1999). Following
Sun et al. (1999):

4

ρs = φsρsT, (2.2)
ρw = φwρwT, (2.3)
ρα = φαραT = φwcαM

α, (2.4)

for α = 1, 2, . . . , n. The volume fractions of the ionic species are negligible
compared to the volume fractions of the solid and fluid phases

(
φI � 1

)
, so the

saturation condition can be rewritten as (Gu et al., 1998; Sun et al., 1999):

φs + φw ∼= 1. (2.5)

According to Gu et al. (1999); Sun et al. (1999), the local form of the balance
of mass for each species in the mixture when chemical reactions are neglected is:

∂ρβ

∂t
+ div(ρβvβ) = 0; β = s, w, 1, 2, . . . , n. (2.6)

In equation (2.6), vβ is the velocity of the βth phase (Bowen, 2010, 1976, 1980).
Using the relations in equations (2.2) – (2.4) and the assumption that the mixture
is incompressible yields:

∂φs

∂t
+ div(φsvs) = 0, (2.7)

∂φw

∂t
+ div(φwvw) = 0, (2.8)

for the solid and fluid phases of the mixture (Gu et al., 1999). Since the concentra-
tions of each ion can change, the balance of mass of the ions will take on a different
form (Sun et al., 1999):

∂ (φwcα)
∂t

+ div(φwcαvα) = 0; α = 1, 2, . . . , n. (2.9)

2.2 Electroneutrality Condition
The solid phase of the mixture has an electric charge which is measured by a
quantity called the fixed charge density (FCD) denoted by cF (Gu et al., 1998; Sun

5

et al., 1999). Gu et al. (1999) defines cF as the “equivalent moles of mono-valent
ions per unit of water volume in the mixture.” The electroneutrality condition,
which states that there is a zero net charge at all material points in the mixture,
is defined by Gu et al. (1999) as:

n∑
α=1

zαcα + ωcF = 0. (2.10)

In equation (2.10), zα is the valence of the αth species in the mixture and the
quantity ω denotes the valence of the FCD (Gu et al., 1999; Sun et al., 1999).

Elkin et al. (2010) showed experimentally that brain tissue has an FCD with a
negative valence (ω = −1). The value of the FCD of the solid phase changes as a
result of deformation, the fluid volume fraction, and other factors such as changes
in pH levels of the mixture (Gu et al., 1998; Lai et al., 1991). For simplicity in the
derivations that follow, the FCD will only depend on the deformation and fluid
volume fraction (Gu et al., 1998; Sun et al., 1999):

cF = cFr

1 + tr(ε)
φw

r

∼= cFr

(
1− tr(ε)

φwr

)
; tr(ε)

φwr
� 1. (2.11)

In equation (2.11), ε is the infinitesimal strain of the mixture and tr(ε) is the
dilatation (Lai et al., 1991). cFr and φwr are respectively the FCD and the fluid
volume fraction in the reference configuration (Gu et al., 1998; Lai et al., 1991;
Sun et al., 1999). According to Sun et al. (1999), the volume fraction of the solid
phase can be represented in a similar form as equation (2.11) due to the intrinsic
incompressibility of the mixture:

φs = φsr
1 + tr(ε) ,

∼= φsr
(
1− tr(ε)

)
; tr(ε)� 0. (2.12)

By invoking equation (2.5) and equation (2.12), the volume fraction of the fluid
phase can be represented as a function of the fluid volume fraction in the reference
configuration, φwr , and dilatation, tr(ε) as (Gu et al., 1998):

φw = φwr + tr(ε)
1 + tr(ε) ,

6

∼= φwr +
(
1− φwr

)
tr(ε); tr(ε)� 0. (2.13)

The FCD, cF , must be conserved during deformation according to Sun et al. (1999):

∂
(
φwcF

)
∂t

+ div(φwcFvs) = 0. (2.14)

2.3 Volume Fluxes
The volume flux of the fluid phase and the ionic molar fluxes can be written with
respect to the solid phase since the volume fraction of the ionic phase is negligible
(Gu et al., 1999). According to Gu et al. (1999); Sun et al. (1999), the volume flux
of the fluid and the ionic molar fluxes of the αth ionic species can be represented
as:

Jw = φw (vw − vs) , (2.15)
Jα = φwcα (vα − vs) . (2.16)

When ions move in a mixture, an electric current is generated that accompanies
each ion. In Figure 2.1, ions move in and out of brain cells through ion channels
(and pumps which are not pictured in Figure 2.1) and generate an electric current
(Kandel et al., 2012). The current density associated with each ionic species can
be represented as (Gu et al., 1999):

(
Ie
)
α

= FczαJα; α = 1, 2, . . . , n, (2.17)

where Fc is Faraday’s Constant. The definition provided by Gu et al. (1999) for
the electric current density carried by all ions and fixed charges is:

Ie = Fc

n∑
α=1

zαJα. (2.18)

Using equation (2.9), equation (2.14), and equation (2.10), it can be shown that
(Sun et al., 1999):

div Ie = 0. (2.19)

7

����6 ����
?

����
?

����6

����+

����−

����−����−

����+

����+
����+

����−Extracellular Space

Intracellular Space

CSF

Membrane�

Ion Channel
��	

Ion

Figure 2.1. Visual representation of neurons: the inner square represents a neuron and
the space outside of the inner square represents the extracellular space

2.4 Momentum Equations
The balance of momentum of the mixture when various approximations in Gu
et al. (1998, 1999); Lai et al. (1991); Sun et al. (1999) are applied is:

divσ = 0. (2.20)

The momentum equations for the fluid phase and ionic species (α = 1, 2, . . . , n)
are (Gu et al., 1998, 1999):

−ρw grad (µw) +
n∑

β=s,w,1
fwβ

(
vβ − vw

)
= 0, (2.21)

−ρα grad (µα) +
n∑

β=s,w,1
fαβ

(
vβ − vα

)
= 0, (2.22)

where µw and µα are the chemical potentials of the fluid and ionic phases respec-

8

tively. The scalar values fαβ and fwβ are frictional coefficients between the two
components of the mixture denoted by subscripts α, β, w (Gu et al., 1999; Lai
et al., 1991; Sun et al., 1999). Equation (2.22) can be used to solve for the relative
velocities of the fluid and ionic species with respect to the velocity of the solid
phase and all ionic species α = 1, 2, . . . , n as (Gu et al., 1999):

vw − vs =
n∑

β=w,1
Bwβρ

β grad (µw), (2.23)

vα − vs =
n∑

β=w,1
Bαβρ

β grad (µα). (2.24)

The coefficients Bwβ and Bαβ are given by (Gu et al., 1998, 1999):

Bwβ = − 1
fws

; β = w, 1, 2, . . . , n, (2.25)

Bαβ = − 1
fws
− δαβ
fwα

;
 β = 1, 2, . . . , n
α = 1, 2, . . . , n

, (2.26)

where δαβ is the Kronecker delta. According to Gu et al. (1998, 1999); Lai et al.
(1991); Sun et al. (1999), the frictional coefficients have the properties:

fij = fji;


i = s, w, 1, 2, . . . , n
j = s, w, 1, 2, . . . , n
i 6= j

, (2.27)

and

fii = 0; i = s, w, 1, 2, . . . , n. (2.28)

2.5 Constitutive Equations
As in Sun et al. (1999), the constitutive equation of an “isotropic hydrated charged
mixture with infinitesimal deformation” (Sun et al., 1999) is:

σ = −pI − TcI + λstr(ε)I + 2µsε, (2.29)

where p is the hydrostatic pressure, λs and µs are the Lamè coefficients of the solid

9

phase, and Tc is the chemical expansion stress (Gu et al., 1999; Lai et al., 1991).
The constitutive equations for the fluid chemical potential and ionic electro-

chemical potentials can be adapted from previous triphasic theories (Gu et al.,
1998, 1999; Sun et al., 1999). The constitutive equation for the chemical potential
of the fluid is (Gu et al., 1999):

µw = µwr + 1
ρwT

(
p−RT

n∑
α=1

(Φαcα) + Ξwtr(ε)
)
, (2.30)

where R is the universal gas constant, T is the absolute temperature (in Kelvins),
and Ξw is a coupling coefficient associated with the fluid phase (Gu et al., 1999).
The electro-chemical potentials of the ions (α = 1, 2, . . . , n) are (Gu et al., 1998,
1999; Sun et al., 1999):

µα = µαr +
(
RT

Mα

)
ln (γαcα) + zαFcψ

Mα
, (2.31)

where γα are the activity coefficients for the αth ionic species and ψ is the electrical
potential of the tissue (Gu et al., 1999; Sun et al., 1999). The constitutive relation
for the volume flux, obtained from combining equation (2.15) with equations (2.23)
and (2.30) is:

Jw = −k0

(
grad (p) +RT

n∑
α=1

(1− Φα) grad (cα)

+ Ξw grad (tr(ε))− ωFcc
F grad (ψ)

)
, (2.32)

where k0 = (φw)2/fws (Gu et al., 1998, 1999). The ionic molar flux for the αth ion
can be redefined in a similar manner as the fluid volume flux using the constitutive
equations for the ionic electro-chemical potential, equation (2.31), as (Gu et al.,
1999; Sun et al., 1999):

Jα = cαJw − φwDα grad (cα)− φwDαcα

(
zαFc

RT

)
grad (ψ), (2.33)

where:

Dα = RTφwcα
fwα

, (2.34)

10

are the ionic diffusitivities for each ion species in the mixture (Gu et al., 1999).

2.6 Governing Equations
By applying the local form of the balance of momentum, equation (2.20), to the
definition for the stress given in equation (2.29), the governing equation for the
balance of momentum can be stated as (Sun et al., 1999):

div (λstr(ε)I + 2µsε)− grad (p)− grad (Tc) = 0. (2.35)

The balance of mass for the fluid phase, equation (2.8), can be represented in
terms of the volume flux of the fluid, equation (2.15) as:

div (Jw) + div (vs) = 0. (2.36)

The divergence of the fluid volume flux can be obtained as:

div (Jw) = −k0

∇2 (p) +RT
n∑

α=1
(1− Φα)∇2 (cα) + Ξw∇2 (tr(ε))

− ωFc
(
grad

(
cF
)
· grad (ψ) + cF∇2 (ψ)

), (2.37)

where ∇2 (·) = div (grad (·)). Using the form of div (Jw) in equation (2.37), equa-
tion (2.36) can be rewritten as:

div (vs)− k0

∇2 (p) +RT
n∑

α=1
(1− Φα)∇2 (cα) + Ξw∇2 (tr(ε))

− ωFc
(
grad

(
cF
)
· grad (ψ) + cF∇2 (ψ)

) = 0. (2.38)

Following the same derivation which led to the result in equation (2.36), equa-
tion (2.9) can be combined with the definition of the ionic molar flux, equa-
tion (2.16), to result in (Sun et al., 1999):

∂ (φwcα)
∂t

+ div (φwcαvs) + div (Jα) = 0; α = 1, 2, . . . , n. (2.39)

11

Using equation (2.19), an expression analogous to equation 41 in Sun et al. (1999)
can be written as:

n∑
α=1

zα div (Jα) = 0, (2.40)

which states how the ionic molar fluxes for each species are related. For simplicity,
the following notation is introduced (Lu et al., 2010; Sun et al., 1999):

ck =
n∑

α=1
cα. (2.41)

By taking a sum over all values of α in equation (2.39), an expression involving ck

can be obtained (Sun et al., 1999) as:

∂
(
φwck

)
∂t

+ div
(
φwckvs

)
+ div

(
n∑

α=1
Jα

)
= 0. (2.42)

12

Chapter 3 |
A Linearized Triphasic Model

3.1 Equations of the Linear Model
Lu et al. (2010) linearized the governing equations of the triphasic model proposed
by Gu et al. (1999); Lai et al. (1991). The exact method of linearization along
with exact definitions of various quantities are described in the supplementary
material of Lu et al. (2010). The linear system results from applying the equations
developed in chapter 2 to a mixture of two ionic species (n = 2). The two ionic
species have valances of z± = ±1 for the positive and the negative species. It
should also be noted that the valence of the FCD is negative (Lu et al., 2010).
The following system of parabolic partial differential equations is then obtained
(Lu et al., 2010):

∂

∂t

e
γ

 = [A]∇2

e
γ

, (3.1)

where the unknowns are:

e = tr(ε), (3.2)

γ =
RT

(
δck

)
λs + 2µs

. (3.3)

(3.4)

The matrix [A] is a combination of all the physical parameters introduced
earlier in the triphasic theory with entries:

13

[A] =
 A1 −A2

−A5 A4

 . (3.5)

Due to the complexity of this matrix, the method of obtaining the values of the
entries of [A] will not be presented.1

The quantity e is the dilatation of the mixture and γ is a term that is proportional
to the sum of the concentrations, ck, of both ionic species (Gu et al., 1999; Lu
et al., 2010). The quantity, ck, is the sum of the concentrations of all ionic species
in the mixture and is defined as (Lu et al., 2010; Sun et al., 1999):

ck =
n=2∑
α=1

cα = c+ + c−. (3.6)

In equation (3.3), δck is a small perturbation of ck from its original value: δck =
ck − ck0. Equation (3.1) in one-dimension has an analytical solution:

∂

∂t

e
γ

 = [A] ∂
2

∂z2

e
γ

 . (3.7)

3.2 Analytical Solution
The matrix [A] can be represented as a product of three different matrices [A] =
[M] [Λ] [M]−1 where the columns of [M] are the eigenvectors of [A] and [Λ] is a
diagonal matrix in which the elements on the main diagonal are the eigenvalues of
[A] (Abdi, 2007). It should be noted that: dim ([M]) = dim ([Λ]) = dim ([A]) = 2
and the three matrices, {[A] , [M] , [Λ]}, are invertible. Using the matrix [M],
equation (3.7) becomes:

∂

∂t

e
γ

 = [M] [Λ] [M]−1 ∂2

∂z2

e
γ

 . (3.8)

Since [A] is a constant matrix, the eigenvalues and eigenvectors of [A] will also be
constant. Knowing this, another column vector can be defined as:

1The reader is directed to the supplementary material of Lu et al. (2010).

14

f
g

 = [M]−1

e
γ

 . (3.9)

Using this relation, equation (3.8) can be transformed such that a solution can be
found for the column vector (f, g)T as:

∂

∂t

f
g

 = [Λ] ∂
2

∂z2

f
g

 . (3.10)

Equation (3.10) can be solved using the method of separation of variables, but
only for favorable boundary conditions. The boundary and initial conditions that
were chosen are similar to the ones given by Malakpoor et al. (2006), namely:

e (0, t)
γ (0, t)

 =
0

0

 ,
∂

∂z

e (`, t)
γ (`, t)

 =
0

0

 , (3.11)
e (z, 0)
γ (z, 0)

 =
e0

γ0

 , (3.12)

where ` is the length of the one-dimensional domain occupied by the mixture
(` > 0) and (e0, γ0)T are constant values for e and γ at time t = 0. Equation (3.12)
means that there is a nonzero, constant dilatation and combined ion concentration
throughout the domain at t = 0. Equation (3.11) state that there is no dilatation
or net combined ionic concentration at z = 0, and the dilatation and ionic concen-
trations only change as a function of time at z = `. The boundary conditions in
equation (3.11) were chosen so that a Fourier series analytical solution can be eas-
ily obtained and their physical significance is not important for this purpose. The
conditions in equations (3.11) and (3.12) can be transformed into values defined
for (f, g)T using equation (3.9) in order to form a solution to equation (3.10).

The solution to equation (3.10) can then be transformed by equation (3.9) in
order to obtain the (analytical) Fourier-series solution to equation (3.7) as:

e
γ

 = 4
π

∞∑
n=0

sin (ωnz)
2n+ 1 [M] [Rn] [M]−1

e0

γ0

 , (3.13)

15

where [Rn] and ωn are defined as:

[Rn] =
exp (−ω2

nλ11t) 0
0 exp (−ω2

nλ22t)

 , (3.14)

ωn = (2n+ 1) π2`. (3.15)

This analytical solution is only permissible under the specified conditions in
equations (3.11) and (3.12) and if these conditions are not met, then the solution
to equation (3.7) described by equation (3.13) is not valid. The analytical solution
is very similar to the one obtained by Malakpoor et al. (2006) for a similar system
of parabolic partial differential equations (but for different parameters of the mix-
ture). The solution obtained in equation (3.13) is one possible analytical solution
to the system in equation (3.7).

3.3 Numerical Solution

3.3.1 Justification for the Numerical Solution

In order to obtain solutions with arbitrary boundary conditions, numerical meth-
ods must be implemented to solve the system in equation (3.7). The method
that was chosen to solve for (e, γ)T in equation (3.7) was the Crank-Nicholson
method, which is a finite difference method for solving parabolic partial differen-
tial equations (Smith, 1986). The finite difference algorithm solves the system in
equation (3.10), which can be written as two separate equations:

∂f

∂t
= λ11

∂2f

∂z2 , (3.16)

∂g

∂t
= λ22

∂2g

∂z2 . (3.17)

The important thing to note about equations (3.16) and (3.17) is that they can be
solved independently of one another. This means that a standard Crank-Nicholson
method for a scalar parabolic PDE can be implemented for solving both equa-
tions (3.16) and (3.17).

16

3.3.2 Crank-Nicholson Method

The standard Crank-Nicholson method as described in Smith (1986) (using nota-
tion found in Harder (2012)) will be adapted for use to solve Equations (3.16) and
(3.17). Both equations (3.16) and (3.17) can be solved numerically using the same
algorithm since only the parameter λii; i = 1, 2 is different between them. In
order to demonstrate how the Crank-Nicholson method works, define a function a
such that:

∂a

∂t
= λii

∂2a

∂z2 . (3.18)

Numerically, the function a (zi, tn) can be represented by discrete values ani where
the ith index indicates a point in space, while n indicates the time interval. The
size of the grid is (Nz ×Nt) where Nz is the number of points in the spatial domain
and Nt is the number of points in the time domain. Equation (3.18) can be written
in the Crank-Nicholson method as follows:

an+1
i − ani

∆t = λii

2 (∆z)2

(
an+1
i+1 − 2an+1

i + an+1
i−1 + ani+1 − 2ani + ani−1

)
, (3.19)

over i = 1, 2, . . . , Nz and n = 1, 2, . . . , Nt. Defining the quantity:

r (λii) = λii∆t
(∆z)2 , (3.20)

the generic parabolic PDE in equation (3.18) can be simplified to (Smith, 1986):

−ran+1
i+1 + 2 (1 + r) an+1

i − ran+1
i−1 = rani+1 + 2 (1− r) ani + rani−1. (3.21)

The quantities in equation (3.21) can be represented as a matrix-vector system
in which:

17

{
an+1

}
=



an+1
1

an+1
2
...

an+1
Nz−1

an+1
Nz


and {an} =



an1

an2
...

anNz−1

anNz


. (3.22)

Since the entries at i = 1 and i = Nz in equation (3.22) are represented by bound-
ary conditions, the matrix-vector system that is employed to solve equation (3.21)
is:

[J]
{
an+1
mod

}
= [K]

{
anmod

}
+



ran1

0
...
0

ranNz


, (3.23)

where the vectors
{
an+1
mod

}
and

{
anmod

}
are defined as:

{
an+1
mod

}
=



an+1
2

an+1
3
...

an+1
Nz−2

an+1
Nz−1


and

{
anmod

}
=



an2

an3
...

anNz−2

anNz−1


. (3.24)

The matrices [J] and [K] are tridiagonal matrices whose entries are (Smith,
1986):

[J] =



2 (1 + r) −r 0 0 . . . 0 0
−r 2 (1 + r) −r 0 . . . 0 0
0 −r
... 0 0 0
... −r 0
0 . . . 0 −r 2 (1 + r) −r
0 . . . 0 0 −r 2 (1 + r)


, (3.25)

18

[K] =



2 (1− r) r 0 0 . . . 0 0
r 2 (1− r) r 0 . . . 0 0
0 r

.
... 0 0 0
... r 0
0 . . . 0 r 2 (1− r) r

0 . . . 0 0 r 2 (1− r)


. (3.26)

To obtain a proper solution for a, equation (3.23) must be solved for every iteration
n = 1, . . . , Nt. At n = 1, the initial condition can be applied as:

{
a1
mod

}
=


a (z, 0)

...
a (z, 0)

 , (3.27)

and then the following algorithm is employed for pure Dirichlet boundary con-
ditions:

1. Modify entries in [J] or
{
an+1
mod

}
according to the boundary conditions

2. Solve for
{
an+1
mod

}
in equation (3.23)

3. Apply the lower boundary condition to an+1
1

4. Apply the upper boundary condition to an+1
Nz

Every value of ani can be solved by repeating the above steps for n = 2, . . . , Nt−1
(Smith, 1986). Note that in both Appendix B, the Thomas algorithm is employed
to invert some matrices involving terms in equation (3.23) (Chapra, Stephen C.
and Canale, Raymond P., 2010). Resolving as Dirichlet boundary condition in-
volves simply replacing the value of an+1

i with the given boundary condition and
accounting for it on the right hand side of equation (3.23) as a known quantity as:

[J]
{
an+1
mod

}
= [K]

{
anmod

}
+



ran1 + ra (z1, tn)
0
...
0

ranNz
+ ra (zNz , tn)


, (3.28)

19

where a (z1, tn) is a Dirichlet boundary condition at z = 0 and a (zNz , tn) is a
Dirichlet boundary condition at z = `.

Incorporating a Neumann boundary condition in the Crank-Nicholson method
involves approximating the first order derivative at a boundary (Smith, 1986). It is
advantageous to adopt a Neumann boundary condition that employs a higher-order
approximation for the first derivative since the error is of a higher order (O [∆z]2 .
as opposed to O [∆z]) (Harder, 2012). For problems where the z = ` boundary
condition is a Neumann boundary condition, the numeric finite difference for the
first derivative is:

∂a

∂z

∣∣∣∣∣
z=`

∼=
3an+1

Nz
− 4an+1

Nz−1 + an+1
Nz−2

2∆z . (3.29)

Likewise for a Neumann boundary condition at z = 0:

∂a

∂z

∣∣∣∣∣
z=0

∼=
−3an+1

1 + 4an+1
2 − an+1

3
2∆z . (3.30)

The matrix [J] needs to be modified in the following manner if the Neumann
boundary condition is at z = `:

[J] =



2 (1 + r) −r 0 0 . . . 0 0
−r 2 (1 + r) −r 0 . . . 0 0
0 −r
... 0 0 0
... −r 0
0 . . . 0 −r 2 (1 + r) −r
0 . . . 0 0 −2

3r 2 + 2
3r


. (3.31)

If the Neumann boundary condition were on the lower limit at z = 0, then [J] is
modified as:

20

[J] =



2 + 2
3r −2

3r 0 0 . . . 0 0
−r 2 (1 + r) −r 0 . . . 0 0
0 −r
... 0 0 0
... −r 0
0 . . . 0 −r 2 (1 + r) −r
0 . . . 0 0 −r 2 (1− r)


. (3.32)

Implementing the boundary conditions in equations (3.31) and (3.32) satisfy
step one of the algorithm if there is one or more Neumann boundary condition
present. Solving for an+1

1 and an+1
Nz

using equation (3.30) satisfies step three and
step four in the algorithm. Steps one through four in the algorithm must be
repeated in order to obtain an entire grid of values for ani ; i = 1, . . . , Nz & n =
1, . . . , Nt.

3.3.3 Numerical Solution using Crank-Nicholson Method

The Crank-Nicholson method was used to solve equations (3.16) and (3.17) inde-
pendently of one another. What must be kept in mind though is that while the
equations for f and g can be solved independently of one another, what is ulti-
mately desired is a finite difference solution for e and γ. This means that some
constraints must be placed on how the temporal and spatial sizes of the grid are
chosen. The first constraint is that Nz and Nt must be the same for both the
solutions to fni and gni . The Crank-Nicholson method is (semi) implicit and it
converges for any size ∆z and ∆t, but in order to prevent some oscillations/errors
in the solution, another constraint in the form of a CFL stability condition:

∆t ≤ 1
2

(∆z)2

max |λii|
, (3.33)

for i = 1, 2 can be imposed to choose the size of ∆t. The CFL condition is
not necessary in using the Crank-Nicholson method, but it does provide a good
estimate for the size of ∆t. In equation (3.33), max |λii| is the largest of the
absolute values of the entries of [Λ]. After the solutions for all values of fni and gni

21

have been calculated, they must be mapped to (e, γ)T using [M] in order to solve
equation (3.7). Both e and γ can be calculated point-wise from f and g using:

eni
γni

 = [M]
fni
gni

 ;
i = 1, 2, . . . , Nz

n = 1, 2, . . . , Nt

. (3.34)

The values of (e, γ)T can then be compared to the analytic solution in equa-
tion (3.13).

3.4 Comparison Between the Analytical and Numeric
Solutions
The code for generating solutions to the analytic and numeric solutions to equa-
tion (3.8) was implemented in MATLAB and given in appendix B. The parameters
used in the numerical simulations were taken from Lu et al. (2010); Malakpoor et al.
(2006) and are displayed in Table 3.1.

In addition to the parameters in Table 3.1, the length of time chosen was
arbitrarily set at 3600 seconds in order to observe a long-term, steady-state solution
to equation (3.7). The number of steps in space, Nz, was also arbitrarily set at
Nz = 100 in order to give enough grid points for an accurate solution. The step size
in space was set by ∆z = (`− 0) /Nz and ∆t was determined by equation (3.33).
Nt was calculated by:

Nt = ceil
(
tf − 0

∆t

)
, (3.35)

where ceil () means round up to the greater integer value. Using the value of Nt

in equation (3.35), ∆t was recalculated as:

∆t = tf − 0
Nt

. (3.36)

By rounding up the value of Nt in equation (3.35), it is not possible to violate the
CFL condition, equation (3.33), when recalculating ∆t. Equation (3.35) must be
rounded up sinceNt must be an integer. The graphs in Figures 3.1 and 3.2 show the
results of solving the system in equation (3.7) both analytically and numerically.

Graphically Figures 3.1 and 3.2 show outstanding agreement between the nu-

22

Parameters Used in the Analysis

Diffusion Coefficient of + Ion: D+ = 13.3 ∗ 10−10 [m2/s]
Diffusion Coefficient of − Ion: D− = 20.3 ∗ 10−10 [m2/s]
Added Lame Coefficients: λs + 2µs = 4 ∗ 109 [Pa]
Hydraulic Permeability: k0 = 10−18 [m4/ (Ns)]
Initial Concentration of + Ion: c+

0 = 102 [mol/m3]
Initial Concentration of − Ion: c−0 = 102 [mol/m3]
Initial Concentration of FCD: cF0 = −2 ∗ 102 [mol/m3]
Universal Gas Constant: R = 8.3145 [J/ (molK)]
Tissue Temperature: T = 293 [K]
Initial Fluid Volume Fraction: φw0 = 0.2 [−]
Final Length:† ` = 10−3 [m]
Initial Length:† z0 = 0 [m]
Initial Dilatation:∗ e0 = 10−4 [−]
Initial γ∗: γ0 = 1.2181× 10−4 [−]
Quantity in [A]†: A1 = 4.00× 10−9 [m2/s]
Quantity in [A]†: A2 = 6.90× 10−10 [m2/s]
Quantity in [A]†: A4 = 1.33× 10−9 [m2/s]
Quantity in [A]†: A5 = 4.80× 10−14 [m2/s]

Table 3.1. Physical and derived parameters used in the analysis. The parameters
denoted by † were taken or derived from (Lu et al., 2010), the parameters denoted by
∗ were arbitrarily chosen, and all other parameters were taken from (Malakpoor et al.,
2006).

meric and the analytic solutions. The plots in Figures 3.1 and 3.2 agree very well
with one another and the relative errors displayed in Table 3.2 are at least three
orders of magnitude smaller than the actual values of e and γ at the corresponding
times.

It should be noted from Table 3.2 that the relative errors are systematic in that
the values obtained for both e and γ of the numeric solution is consistently less
than the values obtained from the corresponding analytic solution at any time t.
As the number of spatial points, Nz, increases, the relative errors in both e and γ
decrease over all points in time. So the numeric solution of both e and γ converges
to the analytical solution as Nz increases.

The entire point of developing both an analytic and numeric solution to equa-
tion (3.7) was to verify that an accurate numerical solver to the linear triphasic
model in Lu et al. (2010) had been developed. Figures 3.1 and 3.2 illustrate that

23

Figure 3.1. Graph of the dilatation, e, versus time at z = `.

Figure 3.2. Graph of γ versus time at z = `.

the algorithm developed for solving equation (3.7) numerically is valid. So the
same code can be employed to accurately solve the system in Lu et al. (2010) for
any boundary/initial conditions.

The equations developed in chapter 2 can be linearized in situations where
more than two ionic species are present. The model can be used to track the
deformation of the mixture and changes in ionic concentrations in the brain where

24

Relative Errors
Time (s) Error in e Error in γ

10 -8.4×10−9 -1.4×10−14

20 -1.3×10−7 -8.7×10−10

30 -2.9×10−7 -1.5×10−8

100 -8.0×10−7 -5.9×10−7

500 -3.1×10−7 -9.8×10−7

1000 -9.8×10−8 -3.8×10−7

1500 -2.8×10−8 -1.1×10−7

2000 -7.0×10−9 -2.7×10−8

3000 -3.8×10−10 -1.5×10−9

3600 -6.3×10−11 -2.4×10−10

Table 3.2. The relative error calculated as: (·)Error = (·)Numeric− (·)Analytic for both e
and γ. The relative error shows how much the numeric solution lags or leads the analytic
solution to equation (3.7).

the ionic phase contains at least three ionic species (K+, Na+, and Cl−) (Kandel
et al., 2012). Gu et al. (1999); Lu et al. (2010); Sun et al. (1999) have shown that
a triphasic model can track the chemo-mechanics of porous biological material and
Figures 3.1–3.2 have shown that a successful finite difference program for mixtures
of two ionic species had been developed.

The infrastructure developed for solving equation (3.7) numerically can also be
employed to solve the equations of the triphasic model where there are more than
two ionic species. If similar methods of linearization as Lu et al. (2010) can be
employed, then the finite difference method used in this analysis can be adapted for
use in mixtures of more than two ionic species. Since the accuracy of our numerical
method has been verified against one possible analytic solution, any adaptation of
the numerical solution should yield results that are fairly accurate.

25

Chapter 4 |
Hodgkin-Huxley Model

4.1 Model for Membrane Potential
Previous studies by Hodgkin and Huxley (1952a,b) present a model for calculating
the membrane potential across an axon. The circuit model in Figure 4.1 is an
extension of the model described in Hodgkin and Huxley (1952b) to allow for the
passing of an arbitrary number of ions though the cell membrane.

. . .

. . .

��
��
6 I0 rrψm

N1 N2 Nn

Cm g1
��
HH
��
HH
��
HH

g2
��
HH
��
HH
��
HH

gn
��
HH
��
HH
��
HH

Intracellular Space

Extracellular Space

ψin

ψex

r

r
r
r

Figure 4.1. Equivalent circuit model for the Hodgkin-Huxley Equations extended for
an arbitrary number of ion species which have channels in the membrane of the cell;
inspired by Ermentrout and Terman (2010); Hodgkin and Huxley (1952b).

The equivalent circuit model has three main parts: conductance of each ionic
species per unit area, gα, that model the effect of open ion channels for each indi-
vidual ion species (Na+, K+, Cl−, etc...); a DC voltage source for each ion species
which represents the corresponding reversal potential, Nα; and a capacitor which

26

�
�
�
�
�
�
�
�
. . .

. . .

gggggggg
ggggggggLipid Bilayer Ion Channel
��
HH
��
HH
��
HH

Figure 4.2. Representation of how a capacitor and resistor in parallel model the bio-
logical structure of a cell; inspired by Ermentrout and Terman (2010).

models the effect of the lipid bilayer (Ermentrout and Terman, 2010; Hodgkin and
Huxley, 1952a) on the membrane potential. The quantity, I0 is some externally
applied, constant DC current per unit area which is used to model the depolar-
ization of the axon which initiates an action potential (Ermentrout and Terman,
2010; Kandel et al., 2012; Medvedev, 2005). Figure 4.2 illustrates the connection
between the biology of the cell and the circuit model in Figure 4.1 (Ermentrout and
Terman, 2010). The reversal potentials, Nα can be represented using the famous
Nernst equation as (Ermentrout and Terman, 2010; Gu et al., 1999):

Nα = − RT

zαFc
ln
(

[γαcα]in
[γαcα]ex

)
, (4.1)

for α = 1, 2, . . . , n where “in” stands for the intracellular quantities and “ex”
stands for the extracellular quantities.

It should be noted that in Figure 4.1, Hodgkin and Huxley (1952b) explicitly
states three ion channels for K+, Na+, and other ionic species (assumed by the
author to be only Cl−). The notation for “other species” is denoted in Hodgkin
and Huxley (1952b) as “l”. To keep a general number of ions present in the deriva-
tion, the equations presented in Hodgkin and Huxley (1952b) and Ermentrout and
Terman (2010) were derived using the circuit in Figure 4.1.

4.2 Derivation of the Hodgkin Huxley Equations
To obtain the membrane potential, ψm, the circuit in Figure 4.1 must be solved
using Kirchoff’s second law (Ermentrout and Terman, 2010; Irwin, J. David and

27

Nelms, R. Mark, 2011):

∑
(I)out −

∑
(I)in = 0. (4.2)

Equation (4.2) can be applied to the circuit in Figure 4.1 which leads to:

Cm
d (ψex − ψin)

dt
− I0 +

N∑
i=1

gi {ψex − (Ni + ψin)} = 0. (4.3)

The voltage, ψex is the difference between the electric potential in the extracellular
space and some reference electric potential called ground (represented by the three
lines on the middle-right of Figure 4.1). Likewise, ψin is the difference between the
electric potential of the intracellular space and ground. The membrane potential,
ψm, which is the difference between the potential of the intracellular space and
extracellular space is defined as:

ψm = ψin − ψex. (4.4)

Equation (4.3) can be rewritten using the quantity ψm as:

Cm
dψm
dt
− I0 +

N∑
i=1

gi (ψm −Ni) = 0, (4.5)

which is an ordinary differential equation that can be used to solve for ψm, the
quantity that is desired.

4.3 Action Potential Equations
The membrane potential can be calculated for an action potential (Dayan and Ab-
bott, 2001; Ermentrout and Terman, 2010; Hodgkin and Huxley, 1952a,b). This
involves choosing n = 3 ionic constituents with (Dayan and Abbott, 2001; Ermen-
trout and Terman, 2010; Hodgkin and Huxley, 1952b):

• α = 1, Potassium, K+

• α = 2 , Sodium, Na+

• α = 3, “Leak” (l) which consists of all other ions present in the axon

28

Using these ionic constituents, equation (4.5) can be modified according to Dayan
and Abbott (2001); Ermentrout and Terman (2010); Hodgkin and Huxley (1952b)
as:

Cm
dψm
dt
− I0

A
+ ḡkn

4 (ψm −Nk) + ḡNam
3h (ψm −NNa) + ḡl (ψm −Nl) = 0 (4.6)

The values of n, m and h are given by Dayan and Abbott (2001) as:

dn

dt
= αn (1− n)− βnn, (4.7)

dm

dt
= αm (1−m)− βmm, (4.8)

dh

dt
= αh (1− h)− βhh, (4.9)

αn = 0.01 (ψm + 55)
1− exp

(
−ψm+55

10

) , (4.10)

βn = 0.125 exp
(
−ψm + 65

80

)
, (4.11)

αm = 0.1 (ψm + 40)
1− exp

(
−ψm+40

10

) , (4.12)

βm = 4 exp
(
−ψm + 65

18

)
, (4.13)

αh = 0.07 exp
(
−ψm + 65

20

)
, (4.14)

βh = 1
1 + exp

(
−ψm+35

10

) . (4.15)

The parameters, α and β, in equations (4.10) and (4.15) are derived via exper-
iment on the squid giant axon and are explicitly stated by Dayan and Abbott
(2001) and are strictly functions of the membrane potential. The definitions of
equations (4.10) – (4.15) are originally given in Hodgkin and Huxley (1952b).
However, the parameters defined by Dayan and Abbott (2001) solve directly for
the membrane potential while the definitions for equations (4.10) – (4.15) given in
Hodgkin and Huxley (1952b) solve for a displacement from a reference potential.
The rest potential of a neuron, which is the membrane potential present when no
external electrical stimuli is applied to it, is between −70mV and −60mV (Kandel

29

et al., 2012). The parameters, n, m, and h in equation (4.6) are dimensionless
parameters that range between 0 and 1 (Hodgkin and Huxley, 1952b). The values
for various constants used in equations (4.6) – (4.15) are shown in Table 4.1.

Hodgkin-Huxley Equation Parameters
Max. Conductance/ unit area, K+:4 ḡk = 36 [mS/cm2]
Max. Conductance/ unit area, Na+:4 ḡNa = 120 [mS/cm2]
Max. Conductance/ unit area, l:4 ḡl = 0.3 [mS/cm2]
Capacitance/ unit area:4 Cm = 1 [µF/cm2]
Reversal Potential, K+:1 N̄k = −77 [mV]
Reversal Potential, Na+:1 N̄Na = 50 [mV]
Reversal Potential, l:1 N̄l = −54.387 [mV]
Initial Voltage at t = 0:2 V0 = −60 [mV]
Initial value of n at t = 0:3 n0 = 0.3208 [−]
Initial value of m at t = 0:3 m0 = 0.0513 [−]
Initial value of h at t = 0: 3 h0 = 0.5841 [−]
Applied Current Intensity:3 I0/A = 0.1 [A/m2]
Current Duration:3 tDuration = 2× 10−3 [s]
Action Potential Delay:3 tDelay = 10−2 [s]

Table 4.1. Values used for the various parameters in equation (4.6). The values asso-
ciated with 1 were taken from Dayan and Abbott (2001); values associated with 2 were
taken from Kandel et al. (2012); values associated with 3 were taken from Medvedev
(2005); values associated with 4 were taken from Hodgkin and Huxley (1952b).

The values N̄i; i = k, Na, l are reversal potentials for each ion species because
when ψm > N̄i; i = k, Na, l, the current associated with that ion species changes
sign (Dayan and Abbott, 2001). The reversal potentials for the K+ and Na+

channels stem directly from the Nernst equation, equation (4.1), while the reversal
potential of the leak channel was chosen to make the total ionic current zero at the
resting membrane potential of a typical neuron (Dayan and Abbott, 2001; Hodgkin
and Huxley, 1952b). It should be noted that as the ion channels in neurons open
and close, the concentrations of ion species extracellular and intracellular to the
neurons change. This leads to changes in Nα according to equation (4.1). The
reversal potentials, N̄i; i = k, Na, l, chosen in Table 4.1 are sufficient though for
approximating the membrane potential in equation (4.6) such that equation (4.6)
can now be written as (Dayan and Abbott, 2001; Ermentrout and Terman, 2010;
Hodgkin and Huxley, 1952b):

30

Cm
dψm
dt
− I0

A
+ ḡkn4

(
ψm − N̄k

)
+ ḡNam3h

(
ψm − N̄Na

)
+ ḡl

(
ψm − N̄l

)
= 0. (4.16)

The parameters given in Table 4.1 can be coupled with equation (4.16) and
equations (4.7) – (4.15) in order to solve for the membrane potential, ψm. These
equations cannot be solved analytically, so a numeric solver is employed to obtain
values of ψm for all time t ≥ 0.

4.4 Numerical Solution
Using code adapted from Medvedev (2005) a solution to equation (4.16) and equa-
tions (4.7) – (4.9) can be obtained. For the purposes of finding a suitable membrane
potential for use in the governing equations listed in section 2.6, external stimuli
of I0 = 10µA/cm2 will be applied for a period of 2ms every t = 5ms. Using the
parameters in Table 4.1, a “train” of action potentials can be generated and the
membrane voltage over time is shown in Figure 4.3.

The membrane potential in Figure 4.3 is the standard form of an action po-
tential (Kandel et al., 2012). The membrane voltage, ψm can be used directly in
the governing equations for the triphasic model to determine chemo-mechanical
properties of the tissue such as ionic concentrations or deformation behaviors.

31

Figure 4.3. Membrane voltage obtained by solving the equations of the Hodgkin-Huxley
model. The code used to obtain this particular solution was adapted from Medvedev
(2005).

32

Chapter 5 |
Linearization of the Governing
Equations

5.1 Balance of Momentum
The governing equations for the balance of mass and balance of momentum can be
simplified to a one-dimensional case so that the balance laws, combined with the
Hodgkin-Huxley model for the membrane potential, can be linearized. Creating
one-dimensional versions of the governing equations given in section 2.6 are nec-
essary in order to obtain an easily implementable solution for the concentrations
of the ions and membrane displacement. The infinitesimal strain tensor, ε, can be
defined in Cartesian coordinates as:

ε =
3∑

i,j=1
εijei ⊗ ej , (5.1)

where x corresponds to index 1, y corresponds to index 2, and z corresponds to
index 3. Also, ei defines a unit vector in the ith-direction. In one-dimension, the
components of the strain tensor can be represented in matrix form as:

[ε] =


0 0 0
0 0 0
0 0 εzz

 , (5.2)

33

so the dilatation, tr(ε) = ∑3
i=1 εii, is equal to the normal strain in the z-direction:

e = tr(ε) = εzz. (5.3)

An equivalent expression of the one-dimensional strain tensor can be defined as:

ε = tr(ε)I, (5.4)

which leads to the conclusion that:

ε = eI. (5.5)

The chemical expansion stress, Tc, will be ignored (Gu et al., 1999; Lu et al.,
2010; Sun et al., 1999). Equation (2.35) reduces to:

(
Ha

∂

∂z
(e− p)

)
ez = 0, (5.6)

Ha = λs + 2µs. (5.7)

The constant Ha was originally defined in Lu et al. (2010). Taking the divergence
of equation (5.6) results in:

Ha
∂2e

∂z2 −
∂2p

∂z2 = 0, (5.8)

which matches the result obtained by Lu et al. (2010).

5.2 Balance of Mass for the Fluid Phase
The balance of mass for the fluid phase is given in equation (2.36). There is an
assumption made by Lu et al. (2010) that the osmotic coefficients for all of the
ion species are: Φα = 1 ∀ α = 1, 2, . . . , n. This assumption results in a one-
dimensional form of the balance of mass:

∂vs

∂z
− k0

{
∂2p

∂z2 + Ξw
∂2e

∂z2 − ωFc

(
∂cF

∂z

∂ψ

∂z
+ cF

∂2ψ

∂z2

)}
= 0. (5.9)

The hydrostatic fluid pressure, p, can be eliminated using equation (5.6):

34

∂vs

∂z
− k0 (Ha + Ξw) ∂

2e

∂z2 + ωFck0
∂

∂z

(
cF
∂ψ

∂z

)
= 0. (5.10)

The quantity ∂vs/∂z is related to the dilatation by equations (2.7) and (2.12) as:

∂φs

∂t
+ div (φsvs) = ∂φs

∂t
+ gradφs · vs + φs div vs = 0. (5.11)

Second order terms such as grad (φs)·vs can be omitted in the linearization process
(Lu et al., 2010) which results in:

div vs = − 1
φs
∂φs

∂t
. (5.12)

Combining equation (2.12) with equation (5.12) gives:

div vs = 1
1− e

∂e

∂t
, (5.13)

where the nonlinear term 1/ (1− e) can be represented as the first two terms of a
Maclaurin series:

1
1− e

∼= 1 + e for e� 1,

applying this approximation to equation (5.14) yields:

div vs ∼=
∂e

∂t
+ e

∂e

∂t
. (5.14)

By eliminating the second order term e∂e/∂t, a linear expression for the divergence
of the solid phase velocity can be obtained as:

div vs ∼=
∂e

∂t
. (5.15)

In one dimension, divw = ∂ (wz) /∂z. So an expression for the one-dimensional
divergence of the solid phase velocity can be obtained as:

∂vs

∂z
= ∂e

∂t
. (5.16)

Using equation (5.16), the governing equation for the balance of mass of the
mixture can be stated as:

35

(Ha + Ξw) ∂
2e

∂z2 + 1
k0

∂e

∂t
− ωFc

∂

∂z

(
cF
∂ψ

∂z

)
= 0. (5.17)

5.3 Balance of Mass for the Ionic Phase
Equation (2.9) can be expanded as:

φw
∂cα
∂t

+ cα
∂φw

∂t
+ cα div φwvα + φwvα · grad cα = 0. (5.18)

which can be combined with equation (2.8) and multiplied with cα to result in:

cα
∂φw

∂t
+ cα div φwvw = 0, (5.19)

to form an equivalent form of equation (2.9) as:

φw
∂cα
∂t

+ div (cαφwvα − cαφwvw) + φwvw · grad cα = 0. (5.20)

By ignoring the higher order term, φwvw·grad cα, and employing equation (2.15)
and equation (2.16), the governing equation of the balance of mass of the ionic
phase becomes:

φw
∂cα
∂t

+ div (Jα − cαJw) = 0. (5.21)

Combining this relation with equation (2.33) and noting that Dα is assumed to be
constant results in:

φw
∂cα
∂t
−Dα div

(
φw grad (cα) + φwcα

(
zαFc

RT

)
grad (ψ)

)
= 0. (5.22)

This is the full form of the combined governing equations for the fluid and ionic
balance of masses. The one-dimensional form of equation (5.22) is:

φw
∂cα
∂t
−Dα

∂

∂z

{
φw
∂cα
∂z

+ φwcα

(
zαFc

RT

)
∂ψ

∂z

}
= 0, (5.23)

which can be further simplified by separating the portions that depend on φw and

36

the portions that depend on ∂φw/∂z as:

φw

 1
Dα

∂cα
∂t
− ∂2cα

∂z2 −
zαFc

RT

∂

∂z

(
cα
∂ψ

∂z

)
− ∂φw

∂z

∂φw∂z ∂cα
∂z

+ zαFc

RT
cα
∂ψ

∂z

 = 0. (5.24)

Since the variations in ∂φw/∂z depend on the infinitesimal variations of the di-
latation of the tissue, the terms associated with ∂φw/∂z can be ignored in this
linearization procedure. This means that the one dimensional governing equation
equation (5.22) can be simplified to:

∂2cα
∂z2 −

1
Dα

∂cα
∂t

+ zαFc

RT

∂

∂z

(
cα
∂ψ

∂z

)
= 0. (5.25)

It should be noted that a term associated with cα∂ψ/∂z has not been eliminated
which creates a nonlinear term in z. This inconsistency in the linearization will
be eliminated because ∂ψ/∂z is only a function of t when combined with the
membrane potential of the neuron calculated in chapter 4. The fact that the
cα∂ψ/∂z term is linear in z is only a result of the particular way in which ψ

was calculated. It should also be noted that equation (5.25) is the same equation
obtained by Weiss (1996)1 using a different approach in deriving it.

1The equation is found on page 471

37

Chapter 6 |
Brain Chemo-Mechanics

6.1 Solution Domain
The domain of the problem will be defined over z ∈ [0, `] which is shown in
Figure 6.1. This chosen domain covers the intracellular space of the axon which is
a sub-domain of the entire positive real z-axis, but the values of quantities in the
extracellular space must be considered in deriving the values of parameters used in
this analysis. The membrane that divides the intracellular from the extracellular
sides of the neuron is located between ` < z < `+h with a thickness of h. It should
be noted that the chosen problem domain does not cover ion concentrations inside
the space ` < z < ` + h which make up the membrane, but the displacement of
the membrane will be modeled using the concentration of the ions at z = `.

The area shown in Figure 6.1 can be split into three separate domains titled:
Intracellular, Membrane, and Extracellular. These domains can be defined as:

• Intracellular: {z ∈ R | 0 ≤ z ≤ `}

• Membrane: {z ∈ R | ` < z ≤ `+ h}

• Extracellular: {z ∈ R | z > `}

Note that the Intracellular and Membrane domains are the domains which will
be modeled by the equations developed in chapters 2 and 5. The electric potential
ψ need to be defined over: {z ∈ R | z ≥ 0}. However, only the membrane potential,
ψm, is known for t ≥ 0 through solving the Hodgkin-Huxley equations in section
4.4 (Dayan and Abbott, 2001; Hodgkin and Huxley, 1952a), not ψ. So ψ will need

38

- z

` `+ h0

Intracellular Extracellular

Membrane

Figure 6.1. Simple drawing of the Intracellular, Membrane, and Extracellular domains
on the z-axis (note that the boundary-value problem will be solved only for the Intra-
cellular domain)

to be defined in terms of ψin, ψex, and ψm. The value of ψ takes on the following
form:

ψ =


ψin; 0 ≤ z < `

ψm; ` ≤ z < `+ h

ψex; z ≥ `+ h

. (6.1)

Applying equation (4.4) to equation (6.1) results in:

ψ =


ψm + ψex; 0 ≤ z < `

ψm; ` ≤ z < `+ h

ψex; z ≥ `+ h

. (6.2)

It will be assumed that the potential of the extracellular space varies minimally
with respect to position: ∂ψex/∂z � 1. Taking the first derivative with respect to
z of equation (6.2) results in:

∂ψ

∂z
∼=


∂ψ
∂z
|z=` ; 0 ≤ z < `+ h

0 z ≥ `+ h
. (6.3)

The quantity ∂ψ/∂z |z=` can be approximated using the definition of the first

39

derivative about z = ` and equation (4.4) as:

∂ψm
∂z

= lim
h→0

{
ψ (`+ h)− ψ (`)

`+ h− `

}
,

∂ψm
∂z

= lim
h→0

{
ψex − ψin

h

}
,

∂ψm
∂z

= − lim
h→0

{
ψm
h

}
, (6.4)

if h is sufficiently small (h� 1) then:

∂ψm
∂z
∼= −

ψm
h
. (6.5)

Using this approximation, the derivative of the electric potential with respect to z
can be represented as:

∂ψ

∂z
∼=

 −
ψm

h
; 0 ≤ z < `+ h

0 z ≥ `+ h
. (6.6)

Thus equation (5.25) can be represented in the Intracellular Domain as:

∂2cα
∂z2 −

1
Dα

∂cα
∂t
−
(
zαFc

RT

ψm
h

)
∂cα
∂z

= 0. (6.7)

Note that ∂2ψ/∂z2 = 0; 0 ≤ z ≤ ` since ψm = ψm (t) according to equa-
tion (4.16). Therefore all terms in equation (6.7) are linear with respect to z.

6.2 Ionic Concentration Boundary/Initial Conditions
Equation (6.7) needs two boundary conditions and one initial condition to be
solved. Since the domain only includes the intracellular portion of the neuron, then
only the concentrations of ions located inside the neuron need to be considered at
t = 0. The concentration of the ions in the Intracellular domain at t = 0 are:

cα (z, 0) = (c0)α , (6.8)

for α = 1, 2, . . . , n where (c0)α is constant. At distances sufficiently far enough
from the membrane, the concentration of ions should not vary over time. The

40

movement of ions inside the tissue should occur mainly near the membrane. So at
z = 0, it will be assumed that the concentration of ions will remain constant at:

cα (0, t) = (c0)α . (6.9)

Note that at z = `, the movement of ions is significant. The boundary conditions at
this point may be “jump” conditions since the concentrations of ions on either side
of the membrane may be significantly different. As a first approximation for this
analysis, it will be assumed that the net flux of each ionic species, α = 1, 2, . . . , n,
through the membrane is equal to zero:

∂cα
∂z

(`, t) + ∂cα
∂z

(`+ h, t) = 0.

For membranes that are sufficiently thin (h� 1):

∂cα
∂z

(`, t) ∼=
∂cα
∂z

(`+ h, t) .

Therefore the boundary condition at z = ` is defined as:

∂cα
∂z

(`, t) = 0. (6.10)

This boundary condition is at odds with the statement that the movement of
ions at z = ` is significant. The reason that this boundary condition is being
considered is so that a numerical solution can be easily implemented without the
need to develop a model of ion movement at the membrane.

6.3 Membrane Displacement Conditions
The membrane motion is governed by equation (5.17). In the theory of linear
elasticity, the displacement is related to the infinitesimal strain by (Gurtin et al.,
2010):

ε = 1
2
(
gradu+ (gradu)T

)
. (6.11)

In one dimension, the only change in displacement that is significant is the dis-
placement in the z-direction. So the components of the displacement gradient can
be represented in matrix form as:

41

[gradu] =


0 0 0
0 0 0
0 0 ∂uz

∂z

 . (6.12)

Using equation (5.3), a link between the displacement gradient and the dilatation
can be established:

e = εzz = ∂uz
∂z

. (6.13)

Combining this result with equation (5.17) gives:

(Ha + Ξw) ∂2

∂z2

(
∂uz
∂z

)
+ 1
k0

∂

∂t

(
∂uz
∂z

)
− ωFc

∂

∂z

(
cF
∂ψ

∂z

)
= 0. (6.14)

The third order derivative in displacement will be ignored since the membrane is
thin and its displacement is assumed to be small (gradu� 1). Equation (5.17)
can now be approximated as:

1
k0

∂

∂t

(
∂uz
∂z

)
− ωFc

∂

∂z

(
cF
∂ψ

∂z

)
= 0. (6.15)

The approximation of ∂ψ/∂z in equation (6.6) at z = ` can be applied to equa-
tion (5.17) which results in:

1
k0

∂

∂t

(
∂uz
∂z

)
+ ωFc

ψm
h

∂cF

∂z
= 0. (6.16)

Assuming that the spatial and time domains of uz (z, t) are smooth, then:

∂2uz
∂z∂t

= ∂2uz
∂t∂z

.

Factoring out ∂/∂z from equation (6.16) and multiplying through by k0 results in:

∂

∂z

(
∂uz
∂t

+ ωFck0
ψm
h
cF
)

= 0. (6.17)

Since ∂ (·) /∂z = 0, then the quantity in parenthesis is purely a function of time.
Therefore, ∂uz/∂t = duz/dt and equation (6.17) can be represented as:

42

duz
dt

+ ωFck0
ψm
h
cF = Θ (t) . (6.18)

The quantity cF can be calculated from the electroneutrality condition, equa-
tion (2.10), using the concentrations of all ions at z = `. Since cF and ψm are
known for t ≥ 0, the displacement of the membrane in the z-direction at z = ` can
be readily solved after stating an initial condition and form for Θ (t). The initial
condition will be assumed to be:

uz (0) = 0, (6.19)

as the membrane should have no change from its original value at t = 0. Equa-
tion (6.18) can be rewritten as:

duz
dt

= Θ (t)− ωFck0
ψm
h
cF . (6.20)

For simplicity in notation, let:

g (t) = −ωFck0
ψm
h
cF . (6.21)

Previous research by Tasaki and Iwasa (1981); Yao et al. (2003) have shown that
the membrane displacement and electric potential of the neuron are loosely related
to one another. This means that the membrane displacement can be assumed to
have some periodic form like the electric potential. So uz can be represented as
some Fourier series, and the value of Θ (t) needs to be chosen to reflect some
periodic behavior. Using a Fourier series expansion of g (t), equation (6.20) can be
written as:

duz
dt

= Θ (t) + g (t) ,

duz
dt

= Θ (t) + a0 +
∞∑
n=1

(an cos (ωt) + bn sin (ωt)) . (6.22)

Integrating this result gives an expression for uz (t) as:

uz (t) =
∫ t

0
Θ
(
t̃
)
dt̃+ a0t+ 1

ω

∞∑
n=1

(an sin (ωt)− bn cos (ωt)) . (6.23)

This displacement, uz, can be represented as its own unique Fourier series:

43

uz (t) = â0 +
∞∑
n=1

(
ân cos (ωt) + b̂n sin (ωt)

)
. (6.24)

The quantity Θ (t) must be able to resolve equation (6.23) into equation (6.24). A
possible representation of Θ (t) can be:

Θ (t) = Γ +mg (t) ,

Θ (t) = Γ +m

(∞∑
n=1

an cos (ωt) + bn sin (ωt)
)
, (6.25)

where Γ and m are both constants. Equations (6.23) and (6.24) can be equated
using the definition of Θ (t) given in equation (6.25):

∫ t

0
Θ
(
t̃
)
dt̃+ a0t = â0,

Γt+ma0t+ a0t+ (m+ 1)
∫ t

0

(∞∑
n=1

an cos
(
ωt̃
)

+ bn sin
(
ωt̃
))

dt̃ =

â0 +
∞∑
n=1

(
ân cos (ωt) + b̂n sin (ωt)

)
,

Γt+ma0t+ a0t+ (m+ 1)
∞∑
n=1

(
an
ω

sin (ωt)− bn
ω

sin (ωt)− bn
ω

)
=

â0 +
∞∑
n=1

(
ân cos (ωt) + b̂n sin (ωt)

)
.

In order to eliminate the linear term, a0t, in equation (6.23), the value of Γ needs
to solve the following equation for all time t:

Γt+ (m+ 1) a0t− (m+ 1)
∞∑
n=0

bn
ω

= â0,

(Γ + (m+ 1) a0) t− (m+ 1)
∞∑
n=0

bn
ω

= â0.

For the following relation to be valid for all time t:

Γ = − (m+ 1) a0. (6.26)

44

Combining this relation with equation (6.25) results in one possible definition of
Θ (t) as:

Θ (t) = − (m+ 1) a0 +mg (t) . (6.27)

The constant m will be used to scale the value of uz (t) in order for the cal-
culated value from equation (6.20) to make physical sense. Since m controls the
“amplitude” of the displacement, its value was chosen to bring the membrane dis-
placement on the same scale as the one reported by Tasaki and Iwasa (1981). It
should be noted that m is not a physical parameter, but a mathematical tool since
Θ (t) is an unknown function.

6.4 Numerical Methods

6.4.1 Ionic Concentrations

The Crank-Nicholson method by Smith (1986) was again employed to solve equa-
tion (6.7). This method was modified to account for the ∂cα/∂z term. A center
finite difference of the first-order (Iskandarani, 2010) was employed to discretize
∂cα/∂z in order to write equation (6.7) as:

cn+1
i − cni

∆t = D

2 (∆z)2

(
cn+1
i+1 − 2cn+1

i + cn+1
i−1 + cni+1 − 2cni + cni−1

)
−

zFcDψ
n+1
m

4 (∆z)RTh
(
cn+1
i+1 − cn+1

i−1

)
− zFcDψ

n
m

4 (∆z)RTh
(
cni+1 − cni−1

)
. (6.28)

Note that the α subscript was dropped for simplicity in the notation. Also note
that z represents the valence of the ionic species and ∆z represents the discrete
spatial step. The ionic concentration was represented in discreet form as cni = cα

at step zi in space and step tn in time. The system in equation (6.28) can be
combined into the following:

−θn+1cn+1
i+1 + (1 + 2λ) cn+1

i − ϕn+1cn+1
i−1 = θncni+1 + (1− 2λ) cni + ϕncni−1, (6.29)

45

where the coefficients θn,λ, and ϕn are defined as:

λ = D∆t
2 (∆z)2 , (6.30)

θn = ∆t
2∆z

(
D

∆z −
zFcDψ

n
m

2RTh

)
, (6.31)

ϕn = ∆t
2∆z

(
D

∆z + zFcDψ
n
m

2RTh

)
. (6.32)

Equation (6.29) can be written as a matrix vector system:

[
Jn+1

] {
cn+1
mod

}
= [Kn]

{
cnmod

}
+



ϕncn1 + ϕn+1cn+1
1

0
...
0

θncnNz


, (6.33)

where the matrices [Jn+1] and [Kn] are tridiagonal matrices similar to the matrices
defined in equations (3.25) and (3.26):

[
Jn+1

]
=



1 + 2λ −θn+1 0 0 . . . 0 0
−ϕn+1 1 + 2λ −θn+1 0 . . . 0 0

0 −ϕn+1
... 0 0 0
... −θn+1 0
0 . . . 0 −ϕn+1 1 + 2λ −θn+1

0 . . . 0 0 −ϕn+1 1 + 2λ


, (6.34)

[Kn] =



1− 2λ θn 0 0 . . . 0 0
ϕn 1− 2λ θn 0 . . . 0 0
0 ϕn

.
... 0 0 0
... θn 0
0 . . . 0 ϕn 1− 2λ θn

0 . . . 0 0 ϕn 1− 2λ


. (6.35)

46

The column vectors cnmod and cn+1
mod are defined similar to equation (3.24) as:

{
cn+1
mod

}
=



cn+1
2

cn+1
3
...

cn+1
Nz−2

cn+1
Nz−1


and

{
cnmod

}
=



cn2

cn3
...

cnNz−2

cnNz−1


. (6.36)

To account for the Neumann boundary condition in equation (6.10), equa-
tion (3.29) can be employed to calculate the value of cn+1

Nz
. The matrix in equa-

tion (6.34) must be modified in a similar manner as equation (3.31) to account for
the boundary condition in equation (6.10) (Harder, 2012):

Jn+1
Nz ,Nz−1 = −ϕn+1 + 1

3θ
n+1,

Jn+1
Nz ,Nz

= 1 + 2λ− 4
3θ

n+1. (6.37)

Equation (6.33) was solved numerically via Crank-Nicholson using the same algo-
rithm in chapter 3.

6.4.2 Membrane Displacement

The displacement, uz, was calculated from equation (6.20) using the MATLAB
built-in function, ode15s, to solve the stiff ordinary differential equation (The Math-
Works Inc., 2013). Before solving equation (6.20) numerically, the coefficients a0

and m need to be specified. The coefficient m was chosen as:

m =
(
10−5

)
h− 1, (6.38)

which rescales the membrane displacement. The coefficient a0 was calculated as
(Kumaresan, 2012):

a0 = 1
T

∫ t0+T

t0
g (t) dt, (6.39)

where T defines the period of integration and t0 account for the integration begin-
ning at a time t0 6= 0. Because of the nature of g (t), a0 needed to be calculated
numerically. In order to attempt to make a0 as accurate as possible, many separate

47

Figure 6.2. Graph of duz/dt, which is the rate of change of the membrane displacement
with respect to time

values of a0 were calculated over different periods. The periods, T k, where k desig-
nates the 1st, 2nd, 3rd, . . . local maxima, in which g (t) > 0. These local maxima can
be seen in Figure 6.2, and code was implemented to calculate the precise locations
of these local maxima. The code is given in Appendix A. The time tk0 define the
location of the kth local maxima and T k defines the difference between tk+1

0 and tk0
or more directly: T k = tk+1

0 − tk0.
Each value of ak0 was calculated using equation (6.39) for each tk0 and T k us-

ing the trapz numerical integration function in MATLAB (The MathWorks Inc.,
2013) and averaged over the number of local maxima minus one. The minus one
accounts for the fact that no more values of ak0 are calculated when the final local
maxima is reached. So the practical value of a0 that is used in numerically solving
equation (6.20) can be calculated as:

a0 = 1
Nmax − 1

Nmax−1∑
k=1

(∫ tk0+Tk

tk0

g (t) dt
)
, (6.40)

where Nmax is the number of local maxima and k = 1, 2, . . . Nmax.

48

Parameters used in the Numerical Analysis
Domain Parameters

Length of the Domain: ` = 10−6 [m]
Initial Time: t0 = 0 [s]
Final Time: tf = 60 [s]

Temperature:1 T = 25 [◦C]
Universal Gas Constant:4 R = 8.314472 [J/ (molK)]

Faraday’s Constant:4 Fc = 96485.3383 [C/mol]
Spatial Grid Size: Nz = 100 [−]
Time Grid Size: Nt = 105 [−]

Spatial Step: ∆z = 10−8 [m]
Time Step: ∆t = 6× 10−4 [s]

Membrane Thickness:1 h = 10−8 [m]
Hydraulic Permeability:3 k0 = 7.5× 10−12 [m4/ (Ns)]

Ionic Parameters
Ion Name: Valence: Diffusivity:1 [m2/s] Initial Concentration:2 [mol/m3]
Sodium: +1 1.33× 10−9 50

Potassium: +1 1.96× 10−9 400
Chlorine: −1 2.03× 10−9 52

Table 6.1. Values of the parameters in equations (6.7) and (6.20) that would typically be
found in the brain. Parameters denoted by 1 were taken from Weiss (1996); parameters
denoted by 2 were taken from Kandel et al. (2012); parameters denoted by 3 were taken
from Basser (1992); parameters denoted by 4 were taken from Lide (2007); all other
parameters were defined by the author.

6.5 Numerical Results
In order for the results to make physical sense, the values of various parameters
were chosen so that they would be close to what one might find in the brain. In
addition to the values described in Table 6.1, the values employed in Table 4.1
were used to calculate ψm. The concentrations of the K+, Na+, and Cl− ions
along with the concentration of the fixed charge density of the tissue are described
in Figures 6.3–6.7.

49

Figure 6.3. Graph of the concentrations of potassium, sodium, chlorine, and the FCD
of the axon at z = 0.15µm from t = 0 to t = 60 seconds.

50

Figure 6.4. Graph of the concentrations of potassium, sodium, chlorine, and the FCD
of the axon at z = 0.40µm from t = 0 to t = 60 seconds.

51

Figure 6.5. Graph of the concentrations of potassium, sodium, chlorine, and the FCD
of the axon at z = 0.50µm from t = 0 to t = 60 seconds.

52

Figure 6.6. Graph of the concentrations of potassium, sodium, chlorine, and the FCD
of the axon at z = 0.75µm from t = 0 to t = 60 seconds.

53

Figure 6.7. Graph of the concentrations of potassium, sodium, chlorine, and the FCD
of the axon at z = 1µm = ` from t = 0 to t = 60 seconds.

54

The ionic concentration values shown in Figures 6.3–6.7 are scaled according to
each ion’s initial concentration (and the FCD with the initial FCD concentration
at t = 0) given in Table 6.1 as:

cscaled = cα
(c0)α

,

cFscaled = cF

cF0
, (6.41)

for α = K+, Na+, Cl−. All of the lines overlap with one another.
The membrane displacement, uz, was calculated using the ionic concentration

values described at z = ` which are displayed in Figure 6.7 along with the param-
eters described in Table 6.1. The values of the membrane displacement are shown
in Figure 6.8.

Figure 6.8. Displacement of the axon’s membrane, located at z = `, from t = 0 to
t = 60 seconds. The membrane displacement is scaled in nanometers (nm).

55

Chapter 7 |
Discussion

7.1 Concentration
The results displayed in Figures 6.3–6.7 should be an accurate numerical solution
to equation (6.7). The code employed in solving equation (3.7) (Lu et al., 2010)
was only slightly modified to account for the ∂cα/∂z term in equation (6.7). Since
the numerical accuracy of the solution to equation (3.7) was verified in chapter
3, then the obtained solutions to equation (6.7) can be expected to accurately
describe the changing concentrations of each ionic species.

What can be observed from Figures 6.3–6.7 is that the concentrations of the
ions do not change with time at all. Since the FCD can be calculated as a linear
combination of all of the ionic concentrations in the mixture according to equa-
tion (2.10), the behavior of the FCD over the domain should follow that of the
ions themselves. This behavior is, in fact, observed in Figures 6.3–6.7 since the
FCD does not change with time at all. The behavior of the FCD can be explained
by equation (2.10). Since there are no changes in the concentrations of K+, Na+,
or Cl− over time, there is no reason that the FCD of the neuron would change
according to equation (2.10). In fact, at any value of z in the Intracellular space,
there is no change in the concentration of either K+, Na+, or Cl−. Therefore,
it can be said that the concentration: cα (z, t) remains constant for any value of
z or t. This result is expected since the model assumes that the concentration
of all of the ions remains constant at z = 0. At z = `, the boundary condition
implies that c`,t = η (t) where η (t) is a function of time only. Since the boundary
condition described in equation (6.10) specifically states that the ion flux across

56

the membrane is zero for all ions, no ions flow in or out of the Intracellular space
of the neuron. Therefore, the concentration of all of the ions stays constant at the
value of their respective initial concentrations which are (c0)α for α =K+, Na+,
Cl−. This means that the steady-state value of the concentration of all of the ions
is (c0)α which is already reached at t = 0. Therefore, there is no reason at all for
the concentrations of any ion to change with time.

The boundary condition described in equation (6.9) and the initial condition
described in equation (6.8) are approximations that make physical sense. However,
the boundary condition at z = ` described in equation (6.10) is not physically
permissible. Ions need to move through the membrane in order for action potentials
to occur (Hodgkin and Huxley, 1952a; Kandel et al., 2012). An indirect measure of
how many ions flow across the membrane is the total conductance of all of the ion
channels of a specific ion: gα for α = K+, Na+, Cl−. A large total conductance of
an ion correlates to a high amount of that ion species flowing though the membrane
(Kandel et al., 2012). Since the membrane has (virtually) zero conductance, it can
be reasonably assumed that ion transport only occurs through the various ion
channels and pumps in the membrane (Kandel et al., 2012). When those channels
(and pumps) are not functioning, it can be reasonably assumed that no ions are
flowing across the membrane (Kandel et al., 2012), hence: ∂cα/∂z = 0.

For this analysis, the lack of ion flux through the membrane will be accepted
since the scope of this thesis was to develop a numerical solver for further study of
brain biomechanics. For accurate modeling of the flux across the membrane, the
true rate of ion flux across the membrane needs to be calculated with respect to
time for all ions inside and outside of the neurons. Since no ions are allowed to leave
the intracellular space then the ionic concentrations should not change with time,
which is evident in Figures 6.3–6.7. The importance of the numerical analysis is
to show the inherent relationship of membrane potential and ionic concentration,
and Figures 6.3–6.7 shows this relationship. The next logical step in modeling
true brain behavior is to perform an analysis with the same parameters in Table
6.1, only with a different boundary condition at z = ` that accurately models
the physics of an action potential. For instance, one might model the boundary
condition at z = ` as:

∂cα (`, t)
∂z

= ζαgα (t) , (7.1)

where gα (t) is the total conductance of all ion channels of ion α at time t and ζα is

57

a proportionality constant associated with ion species α. Ion channel conductances
can be readily calculated using equations (4.6) – (4.15), and ζα may be chosen in a
manner similar to m so that it properly scales gα to make physical sense of ∂cα/∂z
at z = `. Further investigation will be required into finding the most optimal
model of ion flux through the membrane during an action potential.

7.2 Displacement
The membrane displacement for 0 ≤ t ≤ 60 s is shown in Figure 6.8. The mem-
brane can become positively or negatively displaced where a positive displacement
is defined as a “stretching” of the membrane in the positive z direction (swelling)
following the definition of the z-axis in Figure 6.1. The membrane displacement
does not appear to have a direct correlation to the action potential since the dis-
placement begins to become more positive before the action potential occurs. In
fact, the membrane displacement has a negative rate of change with respect to
time when the last action potential occurs. This behavior is in stark contrast to
the highly correlated behavior between duz/dt and ψm shown in Figure 6.2. A
reason for the non-correlated behavior may rest with the method by which Θ (t)
was determined. Θ (t) was determined by the argument that it needed to prevent
any dominant linear behavior in uz while making sure that the scale of uz was
correct.

The value of Θ (t) in equation (6.25) is essentially a hypothesis which is used to
make equation (6.20) able to accurately model physical changes in the membrane
displacement with respect to time. The behavior of the membrane displacement
shown in Figure 6.8 can be considered accurate for the electric potential that is
being considered since the method of integration is based on a MATLAB built in
function (The MathWorks Inc., 2013). Because the numerical methods used to
calculate uz yield no significant errors, it can be said that the membrane displace-
ment displayed in Figure 6.8 is expected to be accurate according to the proposed
model and developed numerical method.

Tasaki and Iwasa (1981); Yao et al. (2003) have experimentally measured mem-
brane displacement for different biological materials. Yao et al. (2003) used an
optical lever to measure the membrane displacement of Lobster nerve bundles,
and Tasaki and Iwasa (1981) measured the membrane displacement of the squid

58

giant axon using a device that measured rapid pressure changes. There appeared
to be no significant correlation between the membrane displacement and electric
potential of the tissue in either Tasaki and Iwasa (1981) or Yao et al. (2003). The
results in Tasaki and Iwasa (1981); Yao et al. (2003) show that a non-correlation
between membrane displacement and electric potential can exist, so it can be said
that the membrane displacement in Figure 6.8 is accurate for the parameters given
in Table 6.1.

The membrane displacement is related to the ionic concentrations though the
FCD and thus related to the concentrations of all of the ions in the neuron through
equation (2.10). The membrane displacement results in Figure 6.8 do not truly
represent membrane behavior during an action potential since the concentrations
of the ions do not change as they should during an action potential. A much
better description of the membrane motion during an action potential can be
achieved by modeling the ionic concentrations with the boundary condition in
equation (7.1). If the solution to equation (6.7) properly accounts for the flux of
ions through the membrane in an action potential, then by extension, the solution
to equation (6.20) should accurately model the displacement of the membrane
during an action potential.

7.3 Conclusion
The numerical solutions to the governing equations, equations (6.7) and (6.14), are
accurate for the boundary and initial conditions stated in equations (6.8) – (6.10),
equation (6.19), and equation (6.25). Suggested modifications include modeling
the ion flux through the membrane using a boundary condition at z = ` such as
the one proposed in equation (7.1).

Equations (6.7) and (6.20) resulted from a linearizion procedure that neglected
the effects of certain terms. These terms could have a tremendous impact on the
state of the mixture, but were ignored since they were determined to be non-linear
and the scope of this thesis was to investigate the effects of governing equations
linear in z. Future work should include investigating how the non-linear terms in
the governing equations affect the concentration and membrane displacement.

Accurately modeling of normal brain activity must be achieved before this
model can be used in cases of abnormal brain activity such as CSD or Traumatic

59

Brain Injury (Drapaca and Fritz, 2012; Leao, 1944). If this model is accurate in
modeling normal brain activity such as the propagation of action potentials, it
should be able to produce results similar to Bennett et al. (2008); Chang et al.
(2013) for CSD. The developed linear model in this thesis is only a “proof of
concept” that the equations of the triphasic model in chapter 2 can accuratly
model phenomena in the brain. However, further work on this model will serve to
make the model more adaptable to modeling both healthy and diseased tissue in
the brain. Accurate modeling of brain activity will yield a better understanding
of how the mechanics of brain tissue affect the movement of ions and electrical
activity associated with conditions such as CSD and hopefully lead to a better
understanding into how the mechanics, chemistry, and electrical activity influence
one another in the brain.

60

Appendix A|
MATLAB Code for Chapters 4
and 6

1 %%%

2 %

3 % FULL DRIVER MATLAB EXECUTABLE FILE FOR SOLVING FOR THE CHEMO−
4 % MECHANICS OF THE BRAIN TISSUE SPECIFIED IN THE DOMAIN FILE

5 % WITH IONIC DATA SPECIFIED IN THE INDIVIDUAL ION PARAMETER FILES,

6 % BOTH OF WHICH ARE DETERMINED BY THE USER

7 %

8 % AUTHOR: BRADFORD JOSEPH LAPSANSKY

9 % EMAIL: bradjlap@comcast.net

10 %

11 %

12 clc

13 clear all

14 %%%

15 %%

16 fprintf('Begin Driver\n');

17 tic

18 DIRECTORY = pwd;

19 s=0;

20

21 %Determine if you want plots: ifPlot = 1 for Plot Creation

22 ifPlot = 1;

23

24 %Points on the nz grid on which you want to plot

25 plotPoints = [1, 15, 40, 50, 75, 100];

61

26

27 %ID Number for the Saved Files:

28 ID = '003';

29

30 %Filenames

31 %For Concentration

32 % domainFile = 'INTRACELLULAR_INPUT_DATA'; %Domain

33 domainFile = strcat('INTRACELLULAR_INPUT_DATA_',ID); %Domain

34 sodiumFile = 'SODIUM_INPUT';

35 potassiumFile = 'POTASSIUM_INPUT';

36 chlorineFile = 'CHLORINE_INPUT';

37

38 %Check if the Domain Exists; if not, create it:

39 cd('Files')

40 domainExist = exist(strcat(domainFile,'.mat'),'file');

41

42 if domainExist == 2

43 fprintf('\nDomain Exists\n');

44 else

45 cd(DIRECTORY);

46 %Name the Type of Domain

47 DOMAIN_DATA_DRIVER()

48 cd('Files')

49 end

50

51

52 %For Displacement

53 %Names of the files that will be used

54 NA_NAME = strcat('SODIUM_INTRACELLULAR_CONCENTRATION_RESULTS_', ...

ID);

55 K_NAME ...

=strcat('POTASSIUM_INTRACELLULAR_CONCENTRATION_RESULTS_', ID);

56 CL_NAME=strcat('CHLORINE_INTRACELLULAR_CONCENTRATION_RESULTS_', ...

ID);

57

58 %Check the Existence of the Chosen Filenames

59 NaExist = exist(strcat(NA_NAME,'.mat'),'file');

60 KExist = exist(strcat(K_NAME,'.mat'),'file');

61 ClExist = exist(strcat(CL_NAME,'.mat'),'file');

62 cd(DIRECTORY);

63

62

64 %%%

65 %%

66 %Concentration Data

67 s=s+1;

68 fprintf('Sodium Concentration Calculation, Driver Step %1.0f',s);

69 fprintf('\n−−\n');
70

71 %Sodium

72 if NaExist == 2 && domainExist == 2

73 fprintf(' Sodium Previously Calculated\n');

74 else

75 CONCENTRATION(sodiumFile,domainFile, ifPlot, plotPoints, ID);

76 end

77

78 s=s+1;

79 fprintf('Potassium Concentration Calculation, Driver Step ...

%1.0f',s);

80 fprintf('\n−−\n');
81 %

82 %Potassium

83 if KExist ==2 && domainExist == 2

84 fprintf(' Potassium Previously Calculated\n');

85 else

86 CONCENTRATION(potassiumFile,domainFile, ifPlot, plotPoints, ...

ID);

87 end

88 %

89 s=s+1;

90 fprintf('Chlorine Concentration Calculation, Driver Step %1.0f',s);

91 fprintf('\n−−\n');
92

93 if ClExist ==2 && domainExist == 2

94 fprintf(' Chlorine Previously Calculated\n');

95 else

96 CONCENTRATION(chlorineFile,domainFile, ifPlot, plotPoints, ID);

97 end

98

99 %%%

100 %%

101 % Calculate Displacements:

102 fprintf('\n−−');

63

103 fprintf('\nDisplacement Calculation, Driver Step %1.0f', s);

104 fprintf('\n−−\n');
105 %Calculate Displacement:

106 DISPLACEMENT(NA_NAME,K_NAME,CL_NAME,domainFile,ifPlot,ID);

107

108 s=s+1;

109 fprintf('\n−−\n');
110 fprintf('Plot Concentrations on One Graph, Driver Step %1.0f', s);

111

112 %Plot All 3 Ionic Concentrations on One Common Graph:

113 PLOT_COMBINED(K_NAME, NA_NAME, CL_NAME, domainFile,...

114 plotPoints, ID);

115

116 fprintf('\n−−\n');
117 fprintf('End Driver; Time: %6.2f\n', toc);

1 %%%

2 %

3 %Domain Information − This program writes a file that contains ...

all of the

4 % information about the domain and ...

physical

5 % parameters of the space:

6 %

7 %Author: Bradford Lapsansky

8 %

9 %

10 %

11 %%

12 function []=DOMAIN_DATA_DRIVER()

13 %Creates the Domain of the BVP:

14 fprintf('Begin Domain Creation\n');

15 s = 0; %Begin Step Counter:

16 tic %Start Timer

17

18 DIRECTORY = pwd;

19 %Make a Files folder if there is none already

20 fileExist = exist('Files','file');

21 if fileExist 6= 7

22 mkdir('Files')

64

23 end

24 cd('Files');

25

26 %Name the file for the current domain:

27 ID = '003';

28 FILENAME = strcat('INTRACELLULAR_INPUT_DATA_',ID); %Domain

29 DOMAIN = 'INTRACELLULAR';

30

31 %Open a txt file to save all of the data:

32 ntxt = strcat(FILENAME,'_VALUES.txt');

33 writefile = fopen(ntxt,'wt');

34

35 %Location of the Membrane/Length of Space [m]:

36 L=10^−6; %1 micro meter;

37 fprintf(writefile,'Scalar Parameters for the Domain: \n');

38 fprintf(writefile,'−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n');
39 fprintf(writefile,'Length of the Domain, L: %dm\n',L);

40

41 %Temperature of the Tissue [K]:

42 T = 293;

43 fprintf(writefile,'Temperature, T: %dK\n',T);

44

45 %Assign a "Stimulation Frequency/Intensity" for the HH Equations:

46 intensity = 10;

47 duration = 2;

48 delaytime = 10;

49

50 fprintf(writefile,'Hodgkin−Huxley Parameters: \n');

51 fprintf(writefile,'\tIntensity: %d\n',intensity);

52 fprintf(writefile,'\tDuration: %d\n',duration);

53 fprintf(writefile,'\tDelay Time: %d\n',delaytime);

54

55 %Choose the Grid Size in the Spatial Domain:

56 nz = 100;

57 fprintf(writefile,'Spatial Grid Size, nz: %d\n', nz);

58

59 %Initial Time − Keep at 0s ALWAYS

60 t0 = 0;

61 fprintf(writefile,'Initial Time, t0: %ds\n', t0);

62

63 %Choose an Ending Time for the Simulation [s]:

65

64 tf = 60;

65 fprintf(writefile,'End Time, tf: %ds\n', tf);

66

67 %Choose a CFL Condition such that

68 % CFL > D_a FOR ALL of the ions:

69 CFL = 10^−8;
70 fprintf(writefile,'CFL Condition: %d\n', CFL);

71

72 %%

73 %%%

74

75

76 %Define the Spatial Step dz:

77 dz = L/nz;

78 fprintf(writefile,'Spatial Step, dz: %dm\n', dz);

79

80 %Define a cutoff for number of timesteps:

81 test = 10^5;

82 fprintf(writefile,'Cutoff Number, test: %d\n',test);

83

84 %Define the TimeStep dt by the CFL condition

85 dt = dz^2/CFL;

86

87 %Define the Grid Size nt from dt

88 nt = ceil((tf − t0)/dt);

89 fprintf(writefile,'Time Grid Size, nt: %d\n',nt);

90

91 if nt < test

92 %FIX dt TO CONFORM TO THE ROUNDED VALUE OF nt

93 dt = (tf − t0) / nt;

94 else

95 %Define the number of spatial steps if nt>cutoff value

96 nt = test;

97 dt = tf/nt;

98 end

99 fprintf(writefile,'Time Step, dt: %ds\n',dt);

100

101 %Create an Array of Time Steps

102 time = 0:(tf−0)/(nt−1):tf;
103 time = transpose(time); %Make time a column vector

104

66

105 %Choose the size of the membrane

106 h = 10^−8;
107 fprintf(writefile,'Membrane Thickness, h: %dm\n',h);

108

109 %Hydraulic Permeability:

110 k0 = 7.5*10^−12; %White_Mater from Basser

111 fprintf(writefile,'Hydraulic Permiability, k0: %dm^4/(Ns)\n',k0);

112

113 s=s+1;

114 fprintf('Step %1.0f, Assigned Parameters, Time Elapsed: ...

%7.4fs\n',...

115 s, toc);

116 %%

117 %%%

118 %Perform Stimulation to Obtain HH Results

119 v = HH_STIMULATE(intensity, duration, delaytime, dt, tf);

120 %Convert v from [mV] to [V]

121 v = 10^−3*v;
122

123 s=s+1;

124 fprintf('Step %1.0f, Performed HH Stimulation, Time Elapsed: ...

%7.4fs\n',...

125 s, toc);

126 %%

127 %%

128 %Create the Correct Voltage Distribution over the Domain

129 dv = zeros(nz, nt);

130 for i=1:nz

131 for j=1:nt

132 dv(i,j) = −v(j)/h;
133 end

134 end

135

136 s=s+1;

137 fprintf('Step %1.0f, Calculated dv/dz, Time Elapsed: %7.4fs\n',...

138 s, toc);

139

140 %%

141 %%%

142 save(FILENAME, 'L', 'T','DOMAIN','intensity',...

143 'duration','delaytime','nz','tf','CFL', 'dz', 'dt',...

67

144 'nt', 'time','t0','h', 'dv','k0');

145

146 %Change back to working Directory:

147 cd(DIRECTORY);

148 fclose('all');

149 fprintf('Step %1.0f, Wrote File, Time Elapsed: %7.4fs\n',...

150 s, toc);

151 fprintf('\nEnd Domain Creation\n');

152

153 end

1 %%

2 % SOLVER FOR THE LINEAR TRIPHASIC MODEL IN TERMS OF

3 % CONCENTRATIONS AND DILATATION OF THE MIXTURE FOR BRAIN

4 %

5 %AUTHOR: BRADFORD JOSEPH LAPSANSKY

6 %CREATION DATE: 2/12/2014

7 %

8 %

9 %

10 %%

11 function [] = CONCENTRATION(nameION, nameDOMAIN, ifPlots, ...

points, ID)

12 fprintf('\nBegin Concentration\n');

13 tic; %Start Timer

14 s = 0; %Begin Step Counter:

15

16 %Make a Files folder if there is none already

17 fileExist = exist('Files','file');

18 if fileExist 6= 7

19 mkdir('Files')

20 end

21 addpath('Files');

22

23 %Load Data Files

24 DIRECTORY = pwd;

25 ion = load(nameION);

26 domain = load(nameDOMAIN);

27 %%

28 %%

68

29

30 %Obtain Necessary Quantities from the Files:

31 %Ion File

32 Da = ion.Da; %Diffusivity

33 za = ion.za; %Valence

34 c0 = ion.c0; %BC at z=0

35 ION = ion.ION; %Name of the Ion

36 ABBRV = ion.ABBRV; %Abbreviation of the Ion Name

37

38 %Domain File:

39 T = domain.T; %Tissue Temp

40 DOMAIN = domain.DOMAIN; %Domain Name

41

42 %Grid Parameters

43 nz = domain.nz; %Grid Size

44 dz = domain.dz; %∆ z

45 dt = domain.dt; %∆ t

46 nt = domain.nt; %# of timesteps

47 time = domain.time; %Array of Timesteps

48 dv = domain.dv; %dv/dz at all space and time

49

50 s=s+1;

51 fprintf('Step %1.0f, Imported Files, Time Elapsed: %7.4fs\n', ...

s, toc);

52 %%

53 %%

54 %Define Universal Constants

55 R = 8.314472; %Universal Gas Constant [J/(mol−K)]:
56 Fc = 96485.3383; %Faraday [C/mol] (CRC Handbook)

57

58 %%

59 %%

60 %Loop to find the remaining solutions:

61 %Create Constant Combinations

62 lambda = Da*dt/(2*dz^2);

63 Zeta = za*Fc*Da*dt/(4*dz*R*T)*dv;

64

65 %Form Phi and Theta:

66 theta = zeros(nz,nt);

67 phi=zeros(nz,nt);

68 ones = zeros(nz,1);

69

69

70 for i=1:nz

71 for j=1:nt

72 theta(i,j) = lambda − Zeta(i,j);

73 phi(i,j) = lambda + Zeta(i,j);

74 end

75 ones(i) = 1;

76 end

77

78 s=s+1;

79 fprintf('Step %1.0f, Begin Building Solution, Time Elapsed: ...

%7.4fs\n',...

80 s, toc);

81

82 %Build Solution Function

83 ca = zeros(nz, nt);

84 [ca] = BUILD_SOLUTION(ca, dz, nz, nt, c0, lambda, theta, phi, ...

ones);

85

86 s=s+1;

87 fprintf('Step %1.0f, Finished Building Solution, Time Elapsed: ...

%7.4fs\n',...

88 s, toc);

89 %%

90 %%%

91 %Plot the and save data at various values of z:

92 %

93 %Cut the number of timesteps in order to make the graphs

94 % look neater

95 if ifPlots == 1

96 PLOT_CONCENTRATION(ca, time, dz, nz, points, ION, ID);

97

98 s=s+1;

99 fprintf('Step %1.0f, Plotted Solution, Time Elapsed: ...

%7.4fs\n',...

100 s, toc);

101 end

102 %%

103 %%

104 %Save Solution Data:

105 %Save Concentration Data for the Ion.

70

106 %Change to the Files Folder

107 cd('Files');

108

109 %Save Files

110 FILENAME = strcat(ION, '_',DOMAIN,'_CONCENTRATION_RESULTS_', ID);

111 save(FILENAME, 'ca', 'za','ABBRV','c0');

112

113 %Change the Directory Back:

114 cd(DIRECTORY);

115

116 s=s+1;

117 fprintf('Step %1.0f, Saved Data, Time Elapsed: %7.4fs\n', s, toc);

118

119 fprintf('End Concentration\n');

120 end

121

122 function [u] = BUILD_SOLUTION(u, dz, nz, nt, c0, lambda, theta, ...

phi, ones)

123 %BUILD_SOLUTION: CREATES THE FULL GRID FOR THE INPUTTED ARGUMENTS

124 %%

125 %Create the Initial Solution:

126 u(:,1) = BUILD_INITIAL_SOLUTION(nz, dz, c0);

127

128 %Create the Matrix of Known Values: B

129

130 %FORM THE LOOP THAT ULTIMATELY BUILDS THE GRID:

131 minusLambda = (1−2*lambda)*ones;
132 plusLambda = (1+2*lambda)*ones;

133 B_temp = zeros(nz,1); %Initialize B_temp

134

135 for n = 1:nt−1
136 %Form the Diagonals of the Matrix B:

137 B(:,1) = phi(:,n);

138 B(:,2) = minusLambda;

139 B(:,3) = theta(:,n);

140 B_temp= TDMULT(B,u(:,n));

141

142

143 %Form the Diagonals of A

144 Adiag(:,1) = −phi(:,n+1);
145 Adiag(:,2) = plusLambda;

71

146 Adiag(:,3) = −theta(:,n+1);
147

148 %Form the Tri−Diagonal Matrix A:

149 A = TRI_DIAG_MATVAR(Adiag,nz);

150

151 %MARCH AHEAD ONE TIME STEP:

152 % EQUATION TO SOLVE IS u(n+1) = [A]^−1*[B]*u(n) USING LU ...

DECOMP.

153 u(:,n+1) = SPEC_SOLVER(A, B_temp, nz, c0, theta, phi,n);

154

155 %CURRENT ENDPOINTS OF u(n+1) ARE GARBAGE, FIX

156 % THE SOLUTION TO TAKE INTO ACCOUNT THE BOUNDARY CONDITIONS:

157 u(:,n+1) = COND_BOUNDARY(1, 1, u(:,n+1), dz,c0,0); %LOWER

158 u(:,n+1) = COND_BOUNDARY(3, 3, u(:,n+1), dz,0,0); %UPPER

159 end %for

160

161 end

162

163 function [uOut] = SPEC_SOLVER(A, Bu, nz, c0, theta, phi,n)

164 %SPEC_SOLVER: THIS WILL SOLVE THE CRANK NICHOLSON METHOD USING ...

THE VECTOR

165 % u WITHOUT THE u(1) or u(nz) TERMS IN ORDER TO CORRECTLY USE ...

THE NEUMANN

166 %B.C.

167

168 %COPY THE 2 THROUGH nz−1 TERMS INTO A TEMP VARIABLE TO SOLVE USING

169 %INVERSION:

170 matA = zeros(nz−2);
171

172 %FORM A TRUNCATED VERSION OF THE MATRIX OF u(n) VALUES IN ORDER

173 %TO PROPERLY USE THE CN−METHOD IN SPEC_SOLVER:

174 count = 0;

175 temp = zeros(nz−2,1);
176 for i=2:nz−1
177 for j=2:nz−1
178 matA(i−1,j−1) = A(i,j); %Smaller Matrix (nz−1)x(nz−1)
179 end

180 temp(i−1,1) = Bu(i,1); %Cutoff first and last values of {u}

181 count = count +1;

182 end %for

183

72

184 %Correct for the Dir. Boundary Conditions at the End:

185 temp(1,1) = temp(1,1) + phi(1,n+1)*c0;

186 % temp(nz−2,nz−2) = temp(nz−2,nz−2) + theta(nz,n)*cl;

187

188 %MODIFY THE LAST ENTRY OF matA TO SOLVE THE NEUMANN CONDITION ...

AS SPECIFIED

189 % BY DOUGLASS HARDER

190 matA(count,count) = matA(count,count)−4/3*theta(nz, n+1);

191 matA(count,count−1) = matA(count, count−1) +1/3*theta(nz,n+1);

192

193 %%

194 %%

195 %Solve for the temp matrix at step n+1:

196 temp2 =matA\temp;

197

198 %%

199 %%

200 %BUILD THE uOut VECTOR WITH THE FIRST AND LAST ENTRIES BEING ...

GARBAGE:

201 uOut = zeros(nz,1);

202 for i=1:nz−2
203 uOut(i+1,1) = temp2(i,1);

204 end

205

206

207 %DECLARE THE LAST TWO ENTIRES TO BE GARBAGE, WHICH THEY ARE AT ...

THIS MOMENT

208 uOut(1,1) = NaN;

209 uOut(nz,1) = NaN;

210

211 end

212

213 function [MAT] = TRI_DIAG_MATVAR(entry,N)

214 %TRI_DIAG: CREATES A TRIDIAGONAL MATRIX OF SIZE "N" FOR THE ...

GIVEN INPUTS

215

216 %INITIALIZE A MATRIX OF ZEROS OF SIZE N

217 MAT = zeros(N);

218

219 %PULL INFORMATION FROM THE ENTRIES

220

73

221 for i = 2:N−1
222 MAT(i,i) = entry(i,2); %MAIN DIAG

223 MAT(i,i−1) = entry(i,1); %LOWER DIAG

224 MAT(i,i+1) = entry(i,3); %UPPER DIAG

225 end %for

226

227 %FILL IN THE REMAINING SPOTS OF THE MATRIX:

228 %MAIN DIAG SPOTS:

229 MAT(1,1) = entry(1,2);

230 MAT(N,N) = entry(N,2);

231

232 %LOWER DIAG SPOTS:

233 MAT(N,N−1) = entry(N,1);

234

235 %UPPER DIAG SPOTS:

236 MAT(1,2) = entry(1,3);

237

238 end

239

240 function [v] = TDMULT(diag, u)

241 %T_DIAG_MULT: PROVIDES A QUICK WAY TO MULTIPLY A TRI−DIAG ...

MATRIX WITH

242 % A CONSTANT ARGUMENT ON THE DIAGONAL

243

244

245 %OBTAIN THE LENGTH OF THE VECTOR BEING MULTIPLIED:

246 n = length(u);

247 v = zeros(n,1);

248

249 %SET THE FIRST AND LAST TERMS OF THE MULTIPLICATIONS:

250 v(1,1) = diag(1,2)*u(1,1) + diag(1,3) * u(2,1);

251 v(n,1) = diag(n,1)*u(n−1,1) + diag(n,2)*u(n,1);

252

253 %%

254 %LOOP TO OBTAIN THE REST OF THE MULTIPLICATION:

255 for i = 2:(n−1)
256 v(i,1) = diag(i,1)*u(i−1,1) + ...

diag(i,2)*u(i,1)+diag(i,3)*u(i+1,1);

257 end

258

259 end

74

260

261 function [u] = BUILD_INITIAL_SOLUTION(nz, dz, c0)

262 %BUILD INITIAL SOLUTION: CREATES THE INITIAL MATRIX u THAT ...

COMPRISES THE

263 %ENTIRE GRID OF POINTS THAT WILL BE MADE USING THE CN METHOD. ...

THE FIRST

264 %ENTRY INTO THIS MATRIX WILL CONSIST OF THE SYSTEM STATE AT t = ...

t0. USING

265 %THE INITIAL CONDITIONS OF THE PROBLEM

266

267 %%CREATE THE MATRIX u USING THE CHOSEN SPACING:

268 u = zeros(nz,1);

269

270 %FORM THE MATRIX AT TIME t=t0 USING THE INITIAL CONDITIONS:

271 for i = 1:nz

272 u(i,1) = COND_INITIAL(c0);

273 end %for

274

275 %Fix the first and last boundary conditions, I WILL NOT apply ...

treatment to

276 % the center boundary condition since the motion of the ions ...

did not

277 % begin yet and the condition comes into play when the ions move

278 u(:,1) = COND_BOUNDARY(1,1,u(:,1),dz, c0,0);

279 u(:,1) = COND_BOUNDARY(3,0,u(:,1),dz, 0,0);

280 end

281

282 function [init] = COND_INITIAL(c0)

283 %COND_INITIAL: THIS FUNCTION SERVES AS THE INITIAL CONDITION ...

FOR e, AND

284 %gamma FOR THE PARAMETERS (Z, t0), IN MOST CASES THOUGH, t0 = ...

0, BUT t0

285 %WILL BE USED IN CASE A TIME OTHER THAN ZERO IS USED FOR AN INITIAL

286 %CONDITION.

287 init = 100*c0;

288 end

289

290 function [u] = COND_BOUNDARY(IS_LOWER, IS_DIRICHLET, u, dz, ...

importDir,...

291 importNeumann)

292 %COND_BOUNDARY: CALCULATES THE BOUNDARY CONDITION VALUE FOR THE ...

75

GRID. BOTH

293 % BOUNDARY CONDITIONS ARE LOCATED HERE AND ARE ...

CORRECTLY

294 % OUTPUT TO THE CODE USING A FLAG FOR UPPER OR ...

LOWER B.C.

295 %

296 % IS_LOWER: IS THE B.C. THE LOWER ONE, IF SO THEN ...

IS_LOWER IS

297 % FLAG

298 % IS_DIRICHLET: IS THE B.C. A DIRICHLET ONE, IF ...

SO THEN

299 % IS_DIRICHLET = TRUE

300

301 %BOUNDARY CONDITION SPECIFICS:

302 % LOWER B.C: DIRICHLET

303 % UPPER B.C: NEUMANN

304 %

305 %LOWER B.C. VALUE/ u(z0,t) = ?

306 u_z0_t = importDir; %DIR. COND

307 h_z0 = importNeumann; %NEU COND.

308

309 %UPPER B.C. VALUE/ u_x(zL,t) = ?

310 u_zL_t = importDir; %DIR. COND

311 h_zL = importNeumann; %NEU. COND

312

313

314 %%LOWER BOUNDARY CONDITION u(z0,t):

315 %THIS BOUNDARY CONDITION WILL ACTIVATE IF IS_LOWER = FLAG == 1:

316 FLAG = 1;

317

318 if IS_LOWER == FLAG

319 %LOWER BOUNDARY CONDITION:

320 if IS_DIRICHLET == FLAG

321 u(1,1) = u_z0_t;

322 else

323 u(1,1) = 4/3*u(2,1) − 1/3*u(3,1); %+ 2*dz*h_z0

324 end %if DIRICHLET

325 else

326 %%UPPER BOUNDARY CONDITION:

327 gridLen = length(u);

328 if IS_DIRICHLET == FLAG

76

329 u(gridLen,1) = u_zL_t;

330 else

331 u(gridLen,1) = 4/3*u(gridLen−1, ...

1)−1/3*u(gridLen−2,1)+2*dz*h_zL;
332 end %if DIRICHLET

333 end %if LOWER

334

335 end

336 %%

337

338

339 %Plot Concentrations:

340 function [] = PLOT_CONCENTRATION(c, time, dz, nz, points, ION, ID)

341 %PLOTS: Plots the concentration over time at specified points

342 backDir = pwd; %Save Current Directory

343

344 %Check to see if the folder's name exists:

345 figExist = exist('Figures', 'file');

346 if figExist 6= 7

347 mkdir('Figures');

348 end

349 cd('Figures'); %Change Directory to Figures

350

351 figExistIon = exist(ION,'file');

352 if figExistIon 6= 7

353 mkdir(ION);

354 end

355 cd(ION);

356

357 %Fix the c vector to plot properly

358 c=transpose(c);

359

360 for k=1:length(points)

361 %Test if the passed point is in the array:

362 if points(k) > nz || points(k) < 1

363 %Continue to next point in the vector

364 continue

365 end

366

367 dblLocation = dz*double(points(k))*10^6; %MicroMeters

368 points(k) = uint64(points(k)); %Convert point to an ...

77

integer value

369

370 %Create a Title

371 strTitle = strcat(ION,': Concentration versus time at z= ',...

372 num2str(dblLocation),'micro meters');

373 %Plot the Function

374 FIGURE = figure('Visible','off');

375 plot(time, c(:,points(k)),'k');

376 xlabel('Time (s)');

377 strLabelY = strcat(ION,' Concentration (mol/m^3)');

378 ylabel(strLabelY);

379

380 %%

381 %%

382 %Create Filename:

383 ION_UCASE = upper(ION);

384 FILENAME = strcat(ION_UCASE,'_AT_Z',num2str(points(k)),'_',ID);

385

386

387 %Change Directories

388 %This block saves the MATLAB figure in .fig and .pdf in a ...

folder called

389 % "Figures".

390 %

391

392 filenameExist = exist(FILENAME,'file');

393 if filenameExist 6= 7

394 mkdir(FILENAME); %Create New Folder

395 end

396 cd(FILENAME)

397 %Save the MATLAB Figure as a .fig file:

398 saveas(FIGURE, FILENAME,'fig');

399

400 %Save the same MATLAB Figure as a .pdf file"

401 saveas(FIGURE, FILENAME, 'pdf');

402

403 %Save the same MATLAB Figure as a .png file"

404 saveas(FIGURE, FILENAME, 'png');

405

406 txtFile = fopen(FILENAME,'wt');

407 strTxtInfo = strcat('Info. for ',ION,' Concentration\n');

78

408 fprintf(txtFile,strTxtInfo);

409 fprintf(txtFile,strTitle);

410 fclose('all');

411 cd ..

412 end

413

414 %Change back to current directory

415 cd(backDir);

416 end

1 %%

2 %Ion Specific File

3 %Author: Bradford Lapsansky

4 %

5 %This file contains all of the necessary information to solve for

6 % the changing concentrations of ions over time.

7 %

8 %%

9 clc

10 clear all

11 %%

12 fprintf('Begin Program\n');

13 DIRECTORY = pwd;

14 %Make a Files folder if there is none already

15 fileExist = exist('Files','file');

16 if fileExist 6= 7

17 mkdir('Files')

18 end

19 cd('Files');

20

21 %−−−−−−−−−−−−−−−−−−−−−−−−−−−Ion ...

Names−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22 ION ='SODIUM';

23 ABBRV = 'Na';

24

25 % ION ='POTASSIUM';

26 % ABBRV = 'K';

27

28 % ION ='CHLORINE';

29 % ABBRV = 'Cl';

79

30

31 %

32 %

33 %

34 %%

35 %%

36 %Define the Diffusion Coefficient of the Ion [m^2/s]:

37 Da = 13.3*10^−10; %Sodium

38 % Da = 1.96*10^−9; %Potassium

39 % Da = 2.03*10^−9; %Chlorine

40

41 % Define the Valence of the Ion:

42 za = 1; %Sodium/Potassium

43 % za = −1; %Chlorine

44

45 %Initial Quantities of the Ion at t=0 in [mol/m^3]

46 %From Kandel et al. (2012) in mM data page 129

47 c0 = 50; %Sodium

48 % c0 = 400; %Potassium

49 % c0 = 52; %Chlorine

50

51 %Create the Filename:

52 FILENAME = strcat(ION,'_INPUT');

53 save(FILENAME,'Da','za','c0','ION','ABBRV');

54

55 cd(DIRECTORY); %Change back to the working directory

56

57 %Display Closing Information

58 fprintf(' Ion Name: ');

59 fprintf(ION);

60 fprintf('\nWrote File, End Program\n');

1 function [] = PLOT_COMBINED(kName, naName, clName, domainName, ...

points, ID)

2 %PLOTS: Plots the concentration over time at specified points ...

for all

3 % Ions and the FCD

4 backDir = pwd; %Save Current Directory

5

6 %Load Concentration Files:

80

7 cd('Files');

8 na = load(naName);

9 k = load(kName);

10 cl = load(clName);

11 domain = load(domainName);

12 cd(backDir);

13

14 %Pick Necessary Info. from the various files:

15 %Domain:

16 dz = domain.dz;

17 nz = domain.nz;

18 time = domain.time;

19

20 %Concentrations:

21 cna = na.ca; %Sodium

22 ck = k.ca; %Potassium

23 ccl = cl.ca; %Chlorine

24

25 %Initial Concentrations:

26 cna0 = na.c0;

27 ck0 = k.c0;

28 ccl0 = cl.c0;

29

30 %Scaled Concentration Values by c0:

31 % c_ION/c0_ION:

32 sna = cna./cna0;

33 sk = ck./ck0;

34 scl = ccl./ccl0;

35

36 %Create a Folder for the Figures:

37 figExist = exist('Figures', 'file');

38 if figExist 6= 7

39 mkdir('Figures');

40 end

41 cd('Figures'); %Change Directory to Figures

42

43 figExistIon = exist('Combined','file');

44 if figExistIon 6= 7

45 mkdir('Combined');

46 end

47 cd('Combined');

81

48

49

50 for k=1:length(points)

51 %Test if the passed point is in the array:

52 if points(k) > nz || points(k) < 1

53 %Continue to next point in the vector

54 continue

55 end

56 %Location in the Domain of the Plot:

57 dblLocation = dz*double(points(k))*10^6; %MicroMeters

58 points(k) = uint64(points(k)); %Convert point to an ...

integer value

59

60 %Limit the Number of Sodium Points so that it doesn't ...

overlap with

61 % the Potassium Plot:

62 skip = 600;

63 n = 0;

64 for i=1:skip:length(time);

65 n=n+1;

66 limNa(points(k),n) = sna(points(k),i);

67 limTime(n) = time(i);

68 end

69

70 %Create a Title

71 strTitle = strcat('All Ionic Concentrations versus time at ...

z= ',...

72 num2str(dblLocation),'micro meters');

73

74

75 %Plot the Function

76 FIGURE = figure('Visible','off');

77 hold on

78 % Note the Limited Points of Sodium/Na that are being ...

plotted

79 plot(time, sk(points(k),:),'k', limTime, limNa(points(k),:),...

80 'xk',time, scl(points(k),:),'−−k', time, ...

scF(points(k),:), ':k');

81 axis([0, 60, 0.998, 1.0025]);

82 xlabel('Time (s)');

83 legend('K^+','Na^+', 'Cl^−','FCD','Location','Southwest');

82

84 ylabel('Scaled Concentration: c/c_0');

85 hold off

86

87 %%

88 %%

89 %Create Filename:

90 FILENAME = strcat('COMBINED_AT_Z',num2str(points(k)),'_',ID);

91

92

93 %Change Directories

94 %This block saves the MATLAB figure in .fig and .pdf in a ...

folder called

95 % "Figures".

96 filenameExist = exist(FILENAME,'file');

97 if filenameExist 6= 7

98 mkdir(FILENAME); %Create New Folder

99 end

100 cd(FILENAME)

101 %Save the MATLAB Figure as a .fig file:

102 saveas(FIGURE, FILENAME,'fig');

103

104 %Save the same MATLAB Figure as a .pdf file"

105 saveas(FIGURE, FILENAME, 'pdf');

106

107 txtFile = fopen(FILENAME,'wt');

108 strTxtInfo = strcat('Info. for Combined Ionic ...

Concentrations\n');

109 fprintf(txtFile,strTxtInfo);

110 fprintf(txtFile,strTitle);

111 fprintf(txtFile,'c0 for Na: %d\n', cna0);

112 fprintf(txtFile,'c0 for K: %d\n', ck0);

113 fprintf(txtFile,'c0 for Cl: %d\n', ccl0);

114 fclose('all');

115 cd ..

116 end

117

118 %Change back to current directory

119 cd(backDir);

120 end

83

Appendix B|
MATLAB Code for Chapter 3

B.1 Numerical Solution

1 %NAME: NUMERIC SOLUTION TO EQUATIONS 1 AND 2 IN LU ET. AL.

2 %AUTHOR: BRADFORD LAPSANSKY

3 %

4 %DESCRIPTION: THIS CODE WILL USE THE CRANK−NICHOLSON METHOD IN ...

ORDER TO

5 % PERFORM A NUMERICAL SOLUTION TO EQUATIONS 1 AND 2 ...

IN LU ET.

6 % AL. THE PURPOSE OF THE NUMERICAL SOLVER IS TO ...

ALLOW THE USER

7 % TO IMPLEMENT ARBITRARY BOUNDARY CONDITIONS FOR ...

THE SOLUTION

8 % AND TO COMPARE THE SOLUTION DERIVED IN THIS ...

PROBLEM TO THE

9 % ALREADY DERIVED FOURIER SERIES SOLUTION TO THESE ...

EQUATIONS.

10 %

11 %%%

12 %%IMPORT DATA AND FORM THE MATRICES [A], [M], AND [LAMBDA]

13 %

14 %LOAD INPUT PARAMETERS FROM A MATLAB FILE:

15 clc

16 clear all

17

18 WORKING_DIR = pwd;

84

19

20 fprintf('CURRENT DIRECTORY = ')

21 disp(WORKING_DIR);

22 ls DATA* %DISPLAY CONTENTS OF CURRENT DIRECTORY

23 fprintf('\n−−\n');
24

25 % FILENAME = input('Please Enter a Filename for Input: ','s');

26 FILENAME = 'DATA_MALAKPOOR.mat';

27 fprintf('\n');

28

29 LOADED_DATA = load(FILENAME);

30 inp = LOADED_DATA.inp; %DATA POINTS

31 AUTHOR = LOADED_DATA.LEAD_AUTHOR; %AUTHOR OF DATA

32

33 %DISPLAY AUTHOR OF INPUT DATA ON THE SCREEN

34 fprintf('Author of Data: ');

35 disp(AUTHOR)

36 fprintf('\n\n')

37

38 %FORM THE MATRICES [A], [M], AND [LAMBDA]

39 [A, M, LAMBDA] = FORM_A(inp);

40

41 %Display the Values of [A]

42 fprintf('\nMatrix A: \n');

43 for i=1:length(A)

44 for j=1:length(A)

45 scale = ORDER_MAGNITUDE(A(i,j));

46 fprintf('a(%1.0f,%1.0f) = %4.2f x 10^(%3.0f)\n', i,...

47 j, A(i,j)/(10^scale), scale);

48 end

49 end

50 fprintf('\n\n');

51 %%

52 %%DETERMINE THE GRID SPACING FOR DELTA_Z AND DELTA_t

53 nz = 100; %NUMBER OF SPACES TO CREATE THE DELTA_Z GRID

54

55 %STARTING AND ENDING TIME IN SECONDS

56 t0 = 0;

57 endT = 3600; %1 Hour

58

59 %VALUE OF r USED TO DETERMINE THE CONVERGENCE CONDITION:

85

60 r = 0.5; %NOTE: r<1/2 FOR NON−OSCILLATING GRIDS

61

62 %FOR THE GRID SPACING

63 [dz, dt, nt, endT] = GRID_SPACING(inp, LAMBDA, nz, endT, t0, r);

64

65 fprintf('1) GRID SPACING COMPLETED \n');

66 fprintf(' dz = %7.6f', dz);

67 fprintf('\n dt = %7.6f', dt);

68 fprintf('\n nz = %6.0f', nz);

69 fprintf('\n nt = %6.0f', nt);

70 fprintf('\n');

71 %%

72 %%%

73 %BUILD THE INITIAL SOLUTION TO THE PROBLEM:

74 %NOTE: varCoice = 1 for "f", varChoice = 2 for "g"

75 f0 = BUILD_INITIAL_SOLUTION(M, nz, nt, 1, inp, dz);

76 g0 = BUILD_INITIAL_SOLUTION(M, nz, nt, 2, inp, dz);

77 fprintf('2) INITIAL VALUES FOR f AND g ARE NOW CREATED \n');

78 %%

79 %CALCULATE THE LOWER−DIRICHLET BOUNDARY CONDITIONS FOR f AND g:

80 e_lDir = 0;

81 gamma_lDir = 0;

82 vect_fg_lDir = pinv(M)*[e_lDir;gamma_lDir];

83

84 f_lDir = vect_fg_lDir(1);

85 g_lDir = vect_fg_lDir(2);

86 %%

87

88 %BUILD THE FULL GRIDS FOR BOTH uf and ug

89 f = BUILD_SOLUTION(f0, dz, dt, nz, nt, 1, LAMBDA, f_lDir);

90 g = BUILD_SOLUTION(g0, dz, dt, nz, nt, 2, LAMBDA, g_lDir);

91 fprintf('3) THE GRIDS FOR f AND g ARE NOW CREATED \n');

92

93 %TRANSFORM (f,g) into (e,gamma) using the matrix [M]:

94 [e, gamma] = TRANSFORM_GRID(f, g, M, nz, nt);

95 fprintf('4) THE GRIDS FOR e AND gamma ARE NOW CREATED \n');

96 fprintf(' WITH A NUMBER OF TIME STEPS nt = %6.0f', nt);

97 fprintf('\n');

98

99 %%

100 %SAVE PROGRAM DATA:

86

101 %TO THE MOW_ERROR FOLDER:

102 %DETERMINE THE SPOT AT WHICH TO COMPARE THE TWO ARRAYS

103 MULTIPLE = 1; %MUST BE 0≤ MULTIPLE ≤ 1

104 z_Reach = MULTIPLE*(inp(11)−inp(12));
105

106 FILENAME = strcat('RESULTS_NUMERIC_', AUTHOR);

107 save(FILENAME, 'e', 'gamma','dz','dt','nt','nz','z_Reach');

108

109 FILENAME2 = strcat('RESULTS_FROM_NUMERIC_',AUTHOR);

110 save(FILENAME2, 'dz', 'dt', 'nt', 'nz','z_Reach', 't0','endT');

111 endProgram=strcat('5) SAVE RESULTS AS: ', FILENAME,' AND END ...

PROGRAM \n');

112

113 fprintf(endProgram);

1 function [A, M, Lambda] = FORM_A(input)

2 %THIS FUNCTION FORMS THE MATRIX A FROM A1, A2, A4, AND A5 AS ...

SPECIFIED IN

3 % LU ET. AL.

4 %

5 %THIS FUNCTION ALSO DEFINES THE PARAMETERS OF A1, A2, A4, AND A5

6

7 %%%%%%%THIS SECTION CONTAINS INPUT TO SYSTEM%%%%%%%%%%%%%%%%

8

9

10 %%%%%%%%%%%%%%%%FORMED QUANTITIES%%%%%%%%%%%%%%%%

11 %THESE QUANTITIES ARE FORMED FROM THE input QUANTITIES ABOVE

12 %THEY SHOULD NEVER! BE EDITED

13 %

14 %

15 %c0^k:

16 c0k = input(5) + input(6);

17

18 %VARIOUS D^ QUANTITIES:

19 Da = 0.5*(input(1)+input(2)); %(D^+ + D^−)/2
20 Db = input(3)*input(4); %Ha/k

21 Dd = 0.5*(input(1)−input(2)); %(D^+ − D^−)/2
22 Dk = Da + c0k/input(7)*Dd; %Da + (c0^k/c0^F)*Dd

23 DF = c0k/input(7)*Da + Dd; %Dd + (c0^k/c0^F)*Da

24

87

25 %Quantities A1, A2, A4, and A5:

26 %A(1,1) = A1

27 %A(1,2) = −A2
28 %A(2,1) = −A5
29 %A(2,2) = A4

30

31 %For ease of editing, let "exTerms = R*T*c0^F*phi0w*k:

32 exTerms = input(8)*input(9)*input(7)*input(10)*input(4);

33

34 %A1

35 A(1,1) = Db − (Db − Da)*(1+DF/exTerms)^−1;
36

37 %−A2
38 A(1,2) = −(Db*Dd/DF)*(1+exTerms/DF)^−1;
39

40 %−A5
41 A(2,1) = Dk/Db*(A(1,1) − (Db + exTerms*Dd/DF));

42

43 %A4

44 A(2,2) = Da + Dk/Db*(A(1,2));

45

46 %%%

47 %FORM THE EIGENVECTOR MATRIX OF A AND THE DIAGONAL MATRIX OF A's

48 %EIGENVALUES FOR USE IN THE PROBLEM SOLUTION

49

50 [M, Lambda] = eig(A);

51 end

1 function [order] = ORDER_MAGNITUDE(testNum)

2 %ORDER_MAGNITUDE: CALCULATES THE ORDER OF MAGNITUDE OF A NUMBER

3 %THAT IS PASSED TO THE FUNCTION

4

5 %TEST IF THE NUMBER IS >1 OR <1

6 if abs(testNum)>1

7 flag = 1;

8 elseif abs(testNum) == 1

9 flag = 0;

10 order = 1;

11 else

12 flag = −1;

88

13 end

14 %VARIABLE TO END THE TEST AT:

15 killTest = 99;

16 logTest = log10(testNum);

17

18 %PERFORM THE TEST

19 if flag 6= 0

20 for k=0:flag:flag*killTest

21 if(logTest≥k && logTest<k+1)

22 order = k;

23 break

24 end

25 end

26 end

27 end

1 function [dZ, dt, nt, endT] = GRID_SPACING(inp, LAMBDA, ...

nz, endT, t0, r)

2 %GRID_SPACING: THIS FUNCTION RETURNS THE SPACING DELTA_Z AND ...

DELTA_t SO

3 % THAT THE SPACING SATISFIES THE STABILITY CONDITION:

4 % ri = (LAMBDA(i,i)*DELTA_t)/(DELTA_Z)^2 ≤ 0.5

5

6 %%CHOOSE THE DELTA_X SPACING BASED ON THE

7 dZ = (inp(11)−inp(12))/nz;
8

9 %CREATE A DELTA_t BASED ON THE LARGER EIGENVALUE IN LAMBDA

10 l = 0;

11 for k = 1:length(LAMBDA)

12 if LAMBDA(k,k) − l > 0

13 l = LAMBDA(k,k);

14 end %if

15 end %for

16

17

18 %DETERMINE THE SPACING FOR DELTA_T USING THE VALUE CONDITION:

19 %[l*DELTA_t)/(DELTA_Z)^2 = H] ≤ 0.5

20 dt = dZ^2*r/l;

21

22 %%DETERMINE THE VALUE OF nt TO THE CLOSEST INTEGER WITH ...

89

TRUNCATION USING

23 %THE ENDING TIME endT

24 nt = ceil((endT − t0)/dt);

25

26 %FIX dt TO CONFORM TO THE ROUNDED VALUE OF nt

27 dt = (endT − t0) / nt;

28 end

1 function [u] = BUILD_INITIAL_SOLUTION(M, nz, nt, varChoice, ...

inp, dz)

2 %BUILD INITIAL SOLUTION: CREATES THE INITIAL MATRIX u THAT ...

COMPRISES THE

3 %ENTIRE GRID OF POINTS THAT WILL BE MADE USING THE CN METHOD. ...

THE FIRST

4 %ENTRY INTO THIS MATRIX WILL CONSIST OF THE SYSTEM STATE AT t = ...

t0. USING

5 %THE INITIAL CONDITIONS OF THE PROBLEM

6

7 %%CREATE THE MATRIX u USING THE CHOSEN SPACING:

8 u = zeros(nz,1);

9

10

11 %DETERMINE THE t0 CONDITION FROM THE INITIAL CONDITIONS OF THE ...

PROBLEM:

12 ut0 = COND_INITIAL(0,0,inp);

13

14 %PLACE THE B.C. IN TERMS OF (f;g) INSTEAD OF (e; gamma)

15 ut0 = pinv(M)*ut0;

16

17 %%FORM THE MATRIX AT TIME t=t0 USING THE INITIAL CONDITIONS:

18 for i = 1: nz

19 u(i,1) = ut0(varChoice);

20 end %for

21

22 %%OVERRIDE THE INITIAL AND FINAL VALUES OF u(i,1) TO COINCIDE ...

WITH THE

23 %STATED BOUNDARY CONDITIONS FOR THE PROBLEM:

24 %NOTE: COND_BOUNDARY(IS_LOWER, IS_DIRICHLET, uMod, dz)

25

26 u(:,1) = COND_BOUNDARY(1,1, u(:,1), dz); %LOWER

90

27 u(:,1) = COND_BOUNDARY(0,0, u(:,1), dz); %UPPER

28 end

29

30 function [v_t0] = COND_INITIAL(z, t0, inp)

31 %COND_INITIAL: THIS FUNCTION SERVES AS THE INITIAL CONDITION ...

FOR e, AND

32 %gamma FOR THE PARAMETERS (Z, t0), IN MOST CASES THOUGH, t0 = ...

0, BUT t0

33 %WILL BE USED IN CASE A TIME OTHER THAN ZERO IS USED FOR AN INITIAL

34 %CONDITION.

35

36 %RETURN v0 AS A COLUMN VECTOR OF e AND gamma

37 e0 = 10^−4;
38 gamma0 = inp(8)*inp(9)/inp(3)*(inp(5)+inp(6));

39

40 v_t0 = [e0; gamma0];

41 end

42

43 function [u] = COND_BOUNDARY(IS_LOWER, IS_DIRICHLET, u, dz)

44 %COND_BOUNDARY: CALCULATES THE BOUNDARY CONDITION VALUE FOR THE ...

GRID. BOTH

45 % BOUNDARY CONDITIONS ARE LOCATED HERE AND ARE ...

CORRECTLY

46 % OUTPUT TO THE CODE USING A FLAG FOR UPPER OR ...

LOWER B.C.

47 %

48 % IS_LOWER: IS THE B.C. THE LOWER ONE, IF SO THEN ...

IS_LOWER IS

49 % FLAG

50 % IS_DIRICHLET: IS THE B.C. A DIRICHLET ONE, IF ...

SO THEN

51 % IS_DIRICHLET = TRUE

52

53 %BOUNDARY CONDITION SPECIFICS:

54 % LOWER B.C: DIRICHLET

55 % UPPER B.C: NEUMANN

56 %

57 %LOWER B.C. VALUE/ u(z0,t) = ?

58 u_z0_t = 0; %DIR. COND

59 h_z0 = 0; %NEU COND.

60

91

61 %UPPER B.C. VALUE/ u_x(zL,t) = ?

62 u_zL_t = 0; %DIR. COND

63 h_zL = 0; %NEU. COND

64

65

66 %%LOWER BOUNDARY CONDITION u(z0,t):

67 %THIS BOUNDARY CONDITION WILL ACTIVATE IF IS_LOWER = FLAG == 1:

68 FLAG = 1;

69

70 if IS_LOWER == FLAG

71 %LOWER BOUNDARY CONDITION:

72 if IS_DIRICHLET == FLAG

73 u(1,1) = u_z0_t;

74 else

75 u(1,1) = 4/3*u(2,1) − 1/3*u(3,1); %+ 2*dz*h_z0

76 end %if DIRICHLET

77 else

78 %%UPPER BOUNDARY CONDITION:

79 gridLen = length(u);

80 if IS_DIRICHLET == FLAG

81 u(gridLen,1) = u_zL_t;

82 else

83 u(gridLen,1) = 4/3*u(gridLen−1, ...

1)−1/3*u(gridLen−2,1)+2*dz*h_zL;
84 end %if DIRICHLET

85 end %if LOWER

86 end

1 function [u] = BUILD_SOLUTION(u0, dz, dt, nz, nt, ...

varChoice,LAMBDA, u_lDir)

2 %BUILD_SOLUTION: CREATES THE FULL GRID FOR THE INPUTTED ARGUMENTS

3

4 %INITIALIZE THE GRID TO BE ALL VALUES OF ZERO

5 u = zeros(nz, nt);

6

7 %INITIALIZE THE FIRST COLUMN OF u TO BE u0:

8 u(:,1) = u0(:,1);

9

10 %FORM THE VALUE OF r USED BASED ON THE SELECTION INDICATED IN ...

varChoice AND

92

11 %THE EIGENVALUE BASED ON varChoice:

12

13 %CALCULATE THE VALUE OF r USED IN THE PROBLEM:

14 r = LAMBDA(varChoice, varChoice) * dt / (dz)^2;

15

16 %FORM THE MATRICES [A], AND [B] ACCORDING TO THE CN CONVENTION

17 A = [−r,2*(1+r), −r];
18 B = [r,2*(1−r), r];

19

20 %%

21 %FORM THE LOOP THAT ULTIMATELY BUILDS THE GRID:

22 for n = 1:nt−1
23 %FORM B*temp IN THE CN METHOD

24 B_temp= TDMULT(B,u(:,n));

25

26 %MARCH AHEAD ONE TIME STEP:

27 % EQUATION TO SOLVE IS u(n+1) = [A]^−1*[B]*u(n) USING LU ...

DECOMP.

28 u(:,n+1) = SPEC_SOLVER(A, B_temp, nz, r, u_lDir);

29

30 %CURRENT ENDPOINTS OF u(n+1) ARE GARBAGE, FIX

31 % THE SOLUTION TO TAKE INTO ACCOUNT THE BOUNDARY CONDITIONS:

32 u(:,n+1) = COND_BOUNDARY(1, 1, u(:,n+1), dz); %LOWER

33 u(:,n+1) = COND_BOUNDARY(0, 0, u(:,n+1), dz); %UPPER

34 end %for

35 end

36

37 function [v] = TDMULT(diag, u)

38 %T_DIAG_MULT: PROVIDES A QUICK WAY TO MULTIPLY A TRI−DIAG ...

MATRIX WITH

39 % A CONSTANT ARGUMENT ON THE DIAGONAL

40

41

42 %OBTAIN THE LENGTH OF THE VECTOR BEING MULTIPLIED:

43 n = length(u);

44 v = zeros(n,1);

45

46 %SET THE FIRST AND LAST TERMS OF THE MULTIPLICATIONS:

47 v(1,1) = diag(2)*u(1,1) + diag(3) * u(2,1);

48 v(n,1) = diag(1)*u(n−1,1) + diag(2)*u(n,1);

49

93

50 %%

51 %LOOP TO OBTAIN THE REST OF THE MULTIPLICATION:

52 for i = 2:(n−1)
53 v(i,1) = diag(1)*u(i−1,1) + diag(2)*u(i,1)+diag(3)*u(i+1,1);

54 end

55 end

56

57 function [uOut] = SPEC_SOLVER(A, Bu, nz, r, u_lDir)

58 %SPEC_SOLVER: THIS WILL SOLVE THE CRANK NICHOLSON METHOD USING ...

THE VECTOR

59 % u WITHOUT THE u(1) or u(nz) TERMS IN ORDER TO CORRECTLY USE ...

THE NEUMANN

60 %B.C.

61

62 %COPY THE 2 THROUGH nz−1 TERMS INTO A TEMP VARIABLE TO SOLVE USING

63 %INVERSION:

64 matA = zeros(nz−2,3);
65 count = 0;

66

67 %FORM A TRUNCATED VERSION OF THE MATRIX OF u(n) VALUES IN ORDER

68 %TO PROPERLY USE THE CN−METHOD IN SPEC_SOLVER:

69 temp = zeros(nz−2,1);
70 for i=2:nz−1
71 temp(i−1,1) = Bu(i,1);

72 %FORM THE TRI−DIAGONAL PORTIONS OF THE MATRIX SO THAT THE ...

BOUNDARY

73 %CONDITIONS ARE SET−UP FOR A NEUMANN CONDITION AT z=L:

74 matA(i−1,1) = A(1);

75 matA(i−1,2) = A(2);

76 matA(i−1,3) = A(3);

77 count = count +1;

78 end %for

79

80 temp(1,1) = temp(1,1) + r*u_lDir;

81 %MODIFY THE LAST ENTRY OF matA TO SOLVE THE NEUMANN CONDITION ...

AS SPECIFIED

82 % BY DOUGLASS HARDER

83 matA(count,1) = −2*r/3;
84 matA(count,2) = 2+2*r/3;

85

86 %%

94

87 %INVERT THE temp MATRIX USING THE THOMAS ALGORITHM:

88 temp2 = THOMASVAR(matA, temp);

89

90 %%

91 %BUILD THE uOut VECTOR WITH THE FIRST AND LAST ENTRIES BEING ...

GARBAGE:

92 uOut = zeros(nz,1);

93 for i=1:nz−2
94 uOut(i+1,1) = temp2(i,1);

95 end

96

97 %DECLARE THE LAST TWO ENTIRES TO BE GARBAGE, WHICH THEY ARE

98 uOut(1,1) = NaN;

99 uOut(nz,1) = NaN;

100 end

101

102 function [invTri] = THOMASVAR(triMat, vect)

103 %THOMAS: USES THE THOMAS ALGORITHM TO SOLVE FOR THE VECTOR x IN THE

104 % SYSTEM: [A]x = y WHERE [A] IS A TRI−DIAGONAL MATRIX:

105 %NOTE:

106 %triMat = [A]

107 %vect = {y}

108 %invTri = {x}

109

110 %CALCULATE THE SIZE OF THE SYSTEM:

111 nz = length(vect);

112 invTri = zeros(nz,1); %INITIALIZE

113

114 %%

115 %OBTAIN VALUES FOR THE INTERMEDIATE VARIABLES:

116

117 a = triMat(:,1);

118 b = triMat(:,2);

119 c = triMat(:,3);

120

121 %INITIALIZE THE INTERMEDIATE VARIABLES:

122 cPr = zeros(nz,1);

123 dPr = zeros(nz,1);

124

125 %FOR i=1:

126 cPr(1) = c(1)/b(1);

95

127 dPr(1) = vect(1)/b(1);

128

129 for i=2:nz

130 cPr(i) = c(i)/(b(i)−cPr(i−1)*a(i)); %c' Values

131 dPr(i) = (vect(i)−dPr(i−1)*a(i))/(b(i)−cPr(i−1)*a(i)); %d' ...

Values

132 end %for i

133

134 %%

135 %CALCULATE THE VALUES OF invTri USING BACK−SUBSTITUTION:
136 invTri(nz) = dPr(nz);

137

138 for i=nz−1:−1:1
139 invTri(i) = dPr(i) − cPr(i)*invTri(i+1);

140 end %For i

141 end %Function

1 function [e, gamma] = TRANSFORM_GRID(f,g,M,nz,nt)

2 %TRANSFORM_GRID: TRANSFORMS EACH COUPLED POINT [f(i,n);g(i,n)] ...

INTO THEIR

3 %CORRESPONDING VALUES OF [e(i,n); gamma(i,n)] FOR ALL POINTS IN ...

THE GRIDS:

4

5 %INITIALIZE THE GRID OF e AND gamma BASED ON THE SIZES OF nz ...

and nt

6 e = zeros(nz, nt);

7 gamma = zeros(nz, nt);

8

9 for i=1:nz

10 for n = 1:nt

11

12 %DEFINE THE VECTOR OF (f,g)in TO BE vm_in

13 vm_in = [f(i,n); g(i,n)];

14

15 %CALCULATE THE TRANSFORMATION OF THESE POINTS THROUGH ...

THE MATRIX

16 %[M] FOR ALL POINTS IN THE GRID TO FORM v_in = [e; ...

gamma]in:

17 v_in(:,1) = M*vm_in;

18

96

19 %POPULATE THE GRIDS OF e AND gamma:

20 e(i,n) = v_in(1,1);

21 gamma(i,n) = v_in(2,1);

22 end %for n

23 end %for i

B.2 Analytic Solution

1 %%

2 %%%%%%%%%%%%%%%%A TRIPHASIC MODEL FOR BRAIN MATERIAL%%%%%%%%%%%

3 %%%%%%%%%%%%%%%%%%%%ANALYTICAL SOLUTION%%%%%%%%%%%%%%%%

4 %CODE AUTHOR: BRADFORD JOSEPH LAPSANSKY

5 %CODE SPECIFICS: ANALYTIC SOLUTION TO THE SYSTEM OF EQUATIONS 1 ...

AND 2 IN

6 % "A LINEARIZED FORMULATION OF TRIPHASIC MIXTURE THEORY FOR ...

ARTICULAR

7 % CARTILAGE AND ITS APPLICATION TO INDENTATION ANALYSIS" BY ...

LU ET. AL.

8 % FOR A 1−DIMENSION IN SPACE AND TIME

9 %

10 %VERSION: 0.01

11 %RELEASE DATE:

12 %

13 %%

14 %%MATLAB SCREEN COMMANDS

15 clc

16 clear all

17

18 % cd('X:\Thesis\Thesis_Material\Code\Mow_Analytic');

19 WORKING_DIR = pwd;

20

21 fprintf('CURRENT DIRECTORY = ')

22 disp(WORKING_DIR);

23 ls DATA* %DISPLAY CONTENTS OF CURRENT DIRECTORY

24 fprintf('\n−−\n');
25

26 % %%%%%%%%%%%%%%%%%%%VARIOUS INPUT ARGUMENTS:%%%%%%%%%%%%%%

27 % %%%%%% GUIDE TO INPUT VECTOR IS BELOW%%%%%%%%%%%%%%%%%%%%%%%%

97

28 % inp(1) %D+ in m^2 s^−1
29 % inp(2) %D− in m^2 s^−1
30 % inp(3) %Ha in Pa

31 % inp(4) %k in m^4 N^−1 s^−1
32 % inp(5) %c0^+ in mol m^−3
33 % inp(6) %c0^− in mol m^−3
34 % inp(7) %c0^F in mol m^−3
35 % inp(8) %R in J mol^−1 K^−1
36 % inp(9) %T in K

37 % inp(10)%phi0w in [−]
38 % inp(11)%L − Height of Sample

39

40 %LOAD INPUT PARAMETERS FROM A MATLAB FILE:

41 %FILENAME = input('Please Enter a Filename for Input: ','s');

42 FILENAME = 'DATA_MALAKPOOR.mat';

43 fprintf('\n');

44 FILENAME2 = 'RESULTS_FROM_NUMERIC_MALAKPOOR.mat';

45 fprintf('\n')

46

47 %FROM THE FILE WITH THE EXPERIMENT PARAMETERS

48 LOADED_DATA = load(FILENAME);

49 inp = LOADED_DATA.inp; %DATA POINTS

50 AUTHOR = LOADED_DATA.LEAD_AUTHOR; %AUTHOR OF DATA

51

52 %FROM THE NUMERIC SOLUTION PARAMETERS

53 LOADED_DATA = load(FILENAME2);

54 nt = LOADED_DATA.nt;

55 dt = LOADED_DATA.dt;

56 z_Reach = LOADED_DATA.z_Reach;

57 endT = LOADED_DATA.endT;

58 startT = LOADED_DATA.t0;

59

60 fprintf('\nFile Loaded\n');

61

62 %DISPLAY AUTHOR OF INPUT DATA ON THE SCREEN

63 fprintf('Author of Data: ');

64 disp(AUTHOR)

65 fprintf('\n')

66

67 %%%%%%%%%%%%%%%%%%%%%FORM NECESSARY MATRICES%%%%%%%%%%%%%%

98

68 %FORM THE MATRIX [A] FROM A1, A2, A4, AND A5 IN ORDER TO TURN ...

THE SYSTEM

69 % INTO A TRADITIONAL SYSTEM OF EQUATIONS AND PERFORM THE

70 % EIGEN−DECOMPOSITION OF THE MATRIX TO RETURN A MATRIX OF THE ...

EIGENVALUES

71 % OF [A] AND THE EIGENVECTORS OF [A]

72 %

73 %LET: [L] = diag(lambda1, lambda2)

74 % [M] = EIGENVECTOR MATRIX

75

76 [A, M, L] = FORM_A(inp); %[A], [M], [L]

77

78 %%

79 %%%%%%%%%%%%%%%%FORM ANALYTICAL SOLUTION OF THE MATRIX%%%%%%%%%%%

80 %

81 %

82 %−−−−−−−−−−−−−−−−BOUNDARY CONDITIONS−−−−−−−−−−−−−−−−−−−−−−−−−
83 %Let v = [e; gamma]

84 %DEFINE v0:

85 v0(1,1) = 10^−4; %e0

86 v0(2,1) = inp(8)*inp(9)/inp(3)*(inp(5)+inp(6)); ...

%gamma0=RT/Ha*(c0^k)

87

88 fprintf('\ne_0 = \n');

89 disp(v0(1));

90 fprintf('\n\gamma_0 = \n');

91 disp(v0(2));

92 fprintf('\n');

93 %%%%%%%%%%%%%%%%%%SOLVE THE DERIVED ANALYTICAL SYSTEM%%%%%%%%%%%%

94 %%%%%%%%%%%%%%%%%%%%%%FOR AN ARRAY OF z AND t VALUES%%%%%%%%%%%

95 %

96 %OBTAIN THE zArr AND tArr VALUES FROM A WRITTEN FUNCTION:

97 %SET THE VALUES OF N, (NUMBER OF DISCREET POINTS IN SPACE AND ...

TIME):

98 [zArr, tArr] = INIT_Z_T(z_Reach, nt, startT, endT);

99

100 %FIND THE ARRAY OF v VALUES

101 [vArr] = SOLVE_ARRAY(M, L, v0, inp(11), zArr, tArr);

102

103 %%%%%%%%%%%%%%%%%%PLOT THE SOLUTIONS TO [e; gamma]%%%%%%%%%%%

104 FILENAME = strcat('RESULTS_ANALYTIC_', AUTHOR);

99

105 save(FILENAME, 'vArr','zArr','tArr', 'AUTHOR');

106 fprintf('\nEND PROGRAM \n');

1 function [zArr, tArr] = INIT_Z_T(len, N,tStart, tEnd)

2 %INIT_Z_T: THIS FUNCTION INITIALIZES THE VALUES OF z AND t FOR ...

USE IN THE

3 %ANALYTICAL SOLUTION

4 %

5 %THE ARRAYS ARE SET BY PICKING RANGES [a,b] FOR POSITION AND ...

TIME AND

6 %CREATING AN ARRAY BASED ON A DIVISION OF THE NUMBER OF POINTS, N:

7 %

8

9

10 %%%%%%%%%%%%%%%%%%SET TIME ARRAY%%%%%%%%%%%%%%%%%%%%%%%%%%

11 %SINCE THE BEGINNING TIME IS t = 0, t is in range [0, b]

12 %

13 %SET THE VALUE OF [at, bt] (in seconds)

14 at = tStart;

15 bt = tEnd; %2 Hours

16

17 tArr = at:(bt−at)/(N−1):bt; %ARRAY OF t−Values
18

19 %%%%%%%%%%%%%%%SET POSITION ARRAY%%%%%%%%%%%%%%%%%%%%%%%%%

20 %POSITION ARRAY BASED ON THE LENGTH L

21 %

22 %SET THE VALUE OF [az, bz] (in meters)

23 %

24 %SET THE VALUES OF THE zArr TO ALL BE EQUAL TO len

25 for i = 1:length(tArr)

26 zArr(i) = len;

27 end

28 end

1 function [vArr] = SOLVE_ARRAY(M, L, v0, len, zArr, tArr)

2 %SOLVE_ARRAY: SOLVES THE ANALYTICAL SOLUTION FOR THE STATED ...

B.C. FOR THE

3 %SYSTEM IN LU. ET. AL. FOR AN ARRAY OF Z AND t VALUES

100

4

5 %%%%CHECK TO SEE IF length(zArr) = length(tArr)

6 if length(zArr) == length(tArr)

7 ARR_LEN = length(zArr); %Set ARR_Length = length(z)

8 else

9 vArr = 'error';

10 end %if

11

12 %%%%%%%%INITIALIZE THE VALUE OF v with respect to ARR_LENGTH

13 vArr = zeros(2,ARR_LEN);

14

15 %%%%%SOLVE FOR THE VARIOUS SOLUTIONS OF vArr

16 for i = 1:ARR_LEN

17 vArr(:,i) = SOLVE_SYS(M, L, v0, len, zArr(i), tArr(i));

18 end %for

19 end

20

21 function [v] = SOLVE_SYS(M,L,v0, len, z, t)

22 %SOLVE_SYS: Solves the Analytical Solution as Derived by ...

Lapsansky from

23 %Equations 1 and 2 by Lu Et. Al.

24

25 %DEFINE NECESSARY CONSTANTS TO BE USED IN THE PROBLEM

26 Minv = pinv(M); %[Minv] = [M]^−1
27

28 %STOPPING CONDITIONS

29 CLOSE_COND = 10 ^−50; %How Close sum(v) − sum(vOld) must be for ...

series

30 %to sufficiently converge

31 N_MAX = 10^6 ; %How many iterations n should go increase ...

to prevent

32 %the program from crashing

33

34 %INITIALIZATION OF VALUES

35 n = 0; %Initialize n to zero

36 vOLD = [10; 10]; %Initial value of vOld

37 FLAG = 1; %Initial value for the FLAG

38 R = zeros(2); %Form an initial zero matrix for R

39 v = [0;0]; %Initialize the value of v for use in summing

40 %COLVE FOR v(z,t) USING A WHILE LOOP

41 while FLAG > CLOSE_COND

101

42 wn = 0.5*pi*(2*n+1)/len; %w for specified value of n

43

44 %Calculate values of b(i) * t for use in [R]

45 for i = 1:2

46 R(i,i) = exp(−wn^2*L(i,i)*t);
47 end %for

48

49 %Calculate v for a specific z and t

50 v = v + (2*n+1)^−1*sin(wn*z)*M*R*Minv*v0;
51

52 %Form the FLAG variable

53 FLAG = norm(v− vOLD);

54

55 %Check to see in n>N_MAX

56 if n > N_MAX

57 break

58 end %if

59

60 %Increase the value of n

61 n=n+1;

62

63 %Set vOLD = v for the next loop iteration

64 vOLD = v;

65 end %while

66

67 %Multiply by the final 4/pi

68 v = v*4/pi;

69 end

B.3 Error Analysis

1 %TITLE: ERROR ANALYSIS FOR MOW'S EQUATIONS

2 %AUTHOR: BRADFORD JOSEPH LAPSANSKY

3 %PURPOSE: THE PURPOSE OF THIS PROGRAM IS TO POINTWISE COMPARE ...

THE VALUES OF

4 % e AND gamma IN BOTH THE ANALYTICAL AND NUMERIC ...

SOLUTION AND TO

5 % COMPUTE THE RELATIVE AND ABSOLUTE ERROR BETWEEN THESE TWO

102

6 % SOLUTIONS IN ORDER TO DETERMINE THE ACCURACY OF THE ...

NUMERIC

7 % SOLVER.

8 %

9 %

10

11 clc

12 clear all

13 %%

14 %DISPLAY DIRECTORY INFORMATION:

15 fprintf('Current Directory = ');

16 disp(pwd);

17

18 %DISPLAY CURRENT RESULTS FILES IN CURRENT DIRECTORY

19 ls RESULTS_ANALYTIC*

20 fprintf('\n');

21

22 %IMPORT DATA:

23 fprintf('\n');

24 ls RESULTS_NUMERIC*

25 fprintf('\n\n');

26

27

28 clc

29

30 %%

31 %LOAD DATA

32 aFilename = 'RESULTS_ANALYTIC_MALAKPOOR.mat';

33 nFilename = 'RESULTS_NUMERIC_MALAKPOOR.mat';

34

35 aFile = load(aFilename);

36 nFile = load(nFilename);

37

38 %OBTAIN THE NAME OF THE AUTHOR OF THE ORIGINAL DATA SET:

39 AUTHOR = aFile.AUTHOR;

40 %AUTHOR = 'MALAKPOOR_TEST';

41

42 %SET VARIABLES OF THE ANALYTICAL SOLUTION USING A "_a" FLAG:

43 vArr_a= aFile.vArr;

44 zArr_a = aFile.zArr;

45 tArr_a = aFile.tArr;

103

46

47 %SEPARATE vArr_a INTO e AND gamma

48 vArr_a = transpose(vArr_a);

49 e_a = vArr_a(:,1);

50 g_a = vArr_a(:,2);

51

52 %SET VARIABLES OF THE ANALYTICAL SOLUTION USING A "_n" FLAG:

53 e_n = nFile.e;

54 g_n = nFile.gamma;

55 dz_n = nFile.dz;

56 dt_n = nFile.dt;

57 nt_n = nFile.nt;

58 nz_n = nFile.nz;

59

60 %SET THE POINT OF z IN WHICH YOU WANT TO COMPARE OVER

61 %THE DESIRED TIME DOMAIN

62 z_Reach = nFile.z_Reach;

63

64 %FIX zReach SO THAT IT IS A WHOLE NUMBER

65 zReach = z_Reach/dz_n;

66

67 %%

68 %CHECK TO MAKE SURE THAT THE TIMESTEPS IN BOTH SOLUTIONS IS ...

EQUAL IN

69 % ORDER TO PROPERLY, POINTWISE, COMPARE BOTH SOLUTIONS

70 tLen_a = length(tArr_a);

71 tLen_n = nt_n;

72

73 %%

74 if tLen_a 6= tLen_n

75 fprintf('The discreet number of time points is not equal, \n');

76 fprintf(' this program will not run.');

77 else %CALCULATE ERRORS IN e AND gamma

78 tLen = tLen_n; %SHORTEN THE NAME OF tLen FOR CONVINCE

79

80 %CALCULATE THE SIZE OF e (ALSO EQUAL TO THE SIZE OF gamma)

81 sizeNum_n = size(e_n);

82 zLen_n = sizeNum_n(1);

83

84 %CALCULATE ERRORS IN e (DENOTED BY "_e" VARIABLE NAME ENDING):

104

85 [relV_e,relS_e,absV_e,absS_e]=CALCULATE_ERROR(e_a, e_n, ...

tLen, zReach);

86

87 %CALCULATE ERRORS IN gamma (DENOTED BY "_g" VARIABLE NAME ...

ENDING):

88 [relV_g,relS_g,absV_g,absS_g]=CALCULATE_ERROR(g_a, g_n, ...

tLen, zReach);

89

90 %COMBINE THE e AND gamma REL AND ABS ERROR VECTORS INTO A ...

MATRIX FOR

91 % EASY PLOTTING

92 relV(:,1) = relV_e; %COLUMN 1 IS e

93 relV(:,2) = relV_g; %COLUMN 2 IS gamma

94

95 absV(:,1) = absV_e; %COLUMN 1 IS e

96 absV(:,2) = absV_g; %COLUMN 2 IS gamma

97

98

99 %DISPLAY THE ERROR SUMS ON THE SCREEN:

100 fprintf('Point of Interest on the Spatial Grid ...

(z_measured/L): %4.3f \n', z_Reach/(dz_n*nz_n))

101 fprintf('\n\n−−−−−−−−−−−SUM OF ERRORS IN ...

"e"−−−−−−−−−−−−−−−\n');
102 fprintf('RELATIVE: %10.6f', max(relV_e));

103 fprintf('\n');

104 fprintf('ABSOLUTE: %20.6f', max(absV_e));

105

106 fprintf('\n\n−−−−−−−−−−−SUM OF ERRORS IN ...

"gamma"−−−−−−−−−−−−−−−\n');
107 fprintf('RELATIVE: %10.6f', max(relV_g));

108 fprintf('\n');

109 fprintf('ABSOLUTE: %20.6f', max(absV_g));

110 fprintf('\n\n')

111

112 fprintf('\n\n−−−−−−−−−−−MAX ERRORS IN "e"−−−−−−−−−−−−−−−\n');
113 fprintf('RELATIVE: %10.6f', max(relV_e));

114 fprintf('\n');

115 fprintf('ABSOLUTE: %20.6f', max(absV_e));

116 fprintf('\n\n')

117

105

118 fprintf('\n\n−−−−−−−−−−−MAX ERRORS IN ...

"gamma"−−−−−−−−−−−−−−−\n');
119 fprintf('RELATIVE: %10.6f', max(relV_g));

120 fprintf('\n');

121 fprintf('ABSOLUTE: %20.6f', max(absV_g));

122 fprintf('\n\n')

123

124

125 %DISPLAY A TABLE OF POINTWISE RELATIVE ERRORS

126 FILENAME = strcat('ERROR_DATA_',AUTHOR);

127

128 % excelFilename = strcat(FILENAME,'.xlsm');

129

130 %FILE WRITTEN WITH COLUMNS AS:

131 %

132 %zArr.....tArr.....rel_error_e.....rel_error_gamma

133 % xlswrite(excelFilename, xlDisplay,strcat('Error_in_', ...

AUTHOR),COLS);

134

135 %SAVE DATA AS A .mat FILE

136 save(FILENAME,'AUTHOR', 'zArr_a', 'tArr_a', ...

'relV_e','relV_g','absV_e','absV_g', 'nt_n', 'dt_n');

137

138 %SEND FUNCTIONS TO BE PLOTTED

139 %NOTE: z_Reach ISTHE ACTUAL VALUE (NOT PART OF THE NUMERIC ...

ARRAY)

140 % THAT WE ARE COMPARING OUR ANSWERS ON.

141 FUNCTION_PLOT(e_a, e_n, g_a, g_n, tArr_a, zReach, 0, ...

z_Reach, dt_n);

142 end %IF

143

144 fprintf('\n\n END PROGRAM \n');

1 function ...

[relV,relS,absV,absS]=CALCULATE_ERROR(res_a,res_n,tLen,zReach)

2 %CALCULATE_ERROR: THIS FUNCTION COMPARES THE VALUES IN BOTH e ...

AND gamma

3 % FOR BOTH THE ANALYTICAL AND NUMERIC SOLUTION ...

AND RETURNS

4 % AN ARRAY OF RELATIVE ERRORS IN e AND gamma ...

106

ALONG WITH THE

5 % SUM OF THE RELATIVE ERRORS IN BOTH e AND gamma

6 %

7

8 %%

9 %CALCULATE THE RELATIVE ERROR BETWEEN THE ANALYTIC AND NUMERIC ...

SOLUTION

10 % AT z = zReach (z−VALUE AT WHICH THE FUNCTION IS BEING ...

COMPARED)

11

12 %DECLARE THE ERROR VECTORS

13 relV = zeros(tLen,1); %POINTWISE RELATIVE ERROR

14 absV = relV; %POINTWISE ABSOLUTE ERROR

15 relS = 0; %SUM OF REL. ERRORS

16 absS = 0; %SUM OF ABSOLUTE ERRORS

17

18 for i = 1:tLen

19 %POINTWISE ERRORS

20 relV(i,1) = res_n(zReach, i) − res_a(i);

21 absV(i,1) = abs(relV(i,1)/res_n(zReach,i));

22

23 %SUM OF ERRORS:

24 relS = relS + abs(relV(i,1));

25 absS = absS + absV(i,1);

26 end %for

27

28 end

1 function []=FUNCTION_PLOT(e_a, e_n, g_a, g_n,tArrOrig, zReach,...

2 figEnd, z_Reach, dt)

3 %FUNCTION_PLOT: PLOTS A COMPARISON OF THE ANALYSIS AND ...

NUMERICAL SOLUTION

4 % GRAPHS THAT APPEAR RIGHT OVER EACH OTHER:

5

6 %FORM COLUMN MATRICES OUT OF e, gamma, AND time DATUM:

7 e_n = transpose(e_n);

8 g_n = transpose(g_n);

9 tArr = transpose(tArrOrig);

10

11 %FORM MATRICES FROM THE INPUTS TO FIT THE PLOT ALGORITHM

107

12 ua(:,1) = e_a;

13 unFull(:,1) = e_n(:,zReach);

14 ua(:,2) = g_a;

15 unFull(:,2) = g_n(:,zReach);

16

17 %Limit the Display of the Numeric Solution

18 % Determine the Order of Magnitude of a Time Step.

19 order = ORDER_MAGNITUDE(dt);

20 SKIP = 10^(2+abs(order));

21

22 i = 0;

23 for count=1:SKIP:length(tArr)

24 i=i+1;

25 for j=1:2

26 if count < length(tArr)

27 un(i, j) = unFull(count,j);

28 end

29 end

30 if count < length(tArr)

31 tArrSkip(i,1) = tArr(count);

32 else

33 break

34 end

35 end

36

37

38 for k=1:2

39 figure(k+figEnd) %FIGURE NUMBER

40

41 %DETERMINE FIGURE TITLE

42 switch k

43 case 1

44 varName = 'Dilatation';

45 otherwise

46 varName = 'Gamma';

47 end %switch

48

49 %PLOT THE VARIOUS PLOTS:

50 %Analytic + Numeric

51 plot(tArr,ua(:,k),'k',tArrSkip,un(:,k),'xk');

52 xlabel('Time (s)');

108

53 strLabel = varName;

54 ylabel(strLabel);

55 legend('Analytic', 'Numeric');

56 end

57 end

1 %NAME: MAIN_PICK_ERROR

2 %AUTHOR: BRADFORD LAPSANSKY

3 %DESCRIPTION: ALLOWS THE USER TO PICK ERRORS FROM THE

4 % TRIPHASIC MODEL PROGRAM TO BUILD THE TABLE OF ERRORS

5 %

6 %

7 %%%

8 clc

9 clear all

10 %%

11 %DISPLAY DIRECTORY INFORMATION:

12 fprintf('Current Directory = ');

13 disp(pwd);

14

15 %DISPLAY CURRENT RESULTS FILES IN CURRENT DIRECTORY

16 ls ERROR_DATA*

17 fprintf('\n');

18

19 %%

20 %LOAD DATA

21 FILENAME = 'ERROR_DATA_MALAKPOOR';

22 file = load(FILENAME); %Load Filename

23

24 %Load Saved Data

25 author = file.AUTHOR;

26 relVe = file.relV_e;

27 relVg = file.relV_g;

28 absVe = file.absV_e;

29 absVg = file.absV_g;

30 zarr = file.zArr_a;

31 tarr = file.tArr_a;

32 nt = file.nt_n;

33 dt = file.dt_n;

34

109

35 %%

36 %Chosen Times in an Array:

37 ctimes = [10, 20, 30, 100, 500, 1000, 1500, 2000, 3000, 3600];

38

39 %Find the Errors at These Time−Staps
40 format shortEng

41

42 %Perform an Interpolation Query for the correct time

43 rele = interp1(tarr,relVe, ctimes);

44 relg = interp1(tarr,relVg, ctimes);

45 abse = interp1(tarr,absVe, ctimes);

46 absg = interp1(tarr,absVg, ctimes);

47

48 xlDisplay(:,1) = ctimes';

49 xlDisplay(:,2) = rele';

50 xlDisplay(:,3) = relg';

51 xlDisplay(:,4) = abse';

52 xlDisplay(:,5) = absg';

53

54 %Save as an Excel File:

55 COLS = strcat('A2:E',num2str(length(ctimes)+1));

56 xlFilename = strcat('SELECTED_ERROR_DATA_',author,'.xlsm');

57 xlswrite(xlFilename, xlDisplay,'Selected_Error',COLS);

58

59 fprintf('\nEnd Program\n');

110

Bibliography

Hervé Abdi. The Eigen-Decomposition: Eigenvalues and Eigenvectors. In En-
cyclopedia of measurement and statistics, pages 304–308. 2007. URL http:
//ftp.utdallas.edu/~herve/Abdi-EVD2007-pretty.pdf.

P J Basser. Interstitial Pressure, Volume, and Flow during Infusion into Brain
Tissue. Microvascular research, 44(2):143–65, September 1992. ISSN 0026-2862.
URL http://www.ncbi.nlm.nih.gov/pubmed/1474925.

Max R Bennett, Les Farnell, and William G Gibson. A quantita-
tive model of cortical spreading depression due to purinergic and gap-
junction transmission in astrocyte networks. Biophysical journal, 95(12):
5648–60, December 2008. ISSN 1542-0086. doi: 10.1529/biophysj.108.
137190. URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=2599846\&tool=pmcentrez\&rendertype=abstract.

Raymond Bowen. Porous elasticity. 2010. URL http://repository.tamu.edu/
handle/1969.1/2500/browse?value=Bowen\%2C+Ray+M.\&type=author.

RM Bowen. Theory of Mixtures. In Continuum Physics Volume III. 1976.
URL http://link.springer.com/chapter/10.1007/978-94-015-9327-
4_2http://scholar.google.com/scholar?hl=en\&btnG=Search\&q=
intitle:Continuum+Physics\#6.

RM Bowen. Incompressible porous media models by use of the theory of mixtures.
International Journal of Engineering Science, 18:1129–1148, 1980. URL http:
//www.sciencedirect.com/science/article/pii/0020722580901147.

Joshua C Chang, Kevin C Brennan, Dongdong He, Huaxiong Huang, Robert M
Miura, Phillip L Wilson, and Jonathan J Wylie. A mathematical model of
the metabolic and perfusion effects on cortical spreading depression. PloS
one, 8(8), January 2013. ISSN 1932-6203. doi: 10.1371/journal.pone.
0070469. URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=3743836\&tool=pmcentrez\&rendertype=abstract.

112

Chapra, Stephen C. and Canale, Raymond P. Numerical Methods for Engineers.
McGraw-Hill, New York, NY, sixth edition edition, 2010.

Peter Dayan and L.F. Abbott. Theoretical Neuroscience Computational and Math-
ematical Modeling of Neural Systems. The M.I.T Press, London, England, 2001.

Corina S Drapaca and Jason S Fritz. A Mechano-Electrochemical Model of Brain
Neuro-Mechanics: Application to Normal Pressure Hydrocephalus. International
Journal of Numerical Analysis and Modeling, Series B, 3(1):82–93, 2012.

Benjamin S Elkin, Mohammed A Shaik, and Barclay Morrison. Fixed neg-
ative charge and the Donnan effect: a description of the driving forces
associated with brain tissue swelling and oedema. Philosophical trans-
actions. Series A, Mathematical, physical, and engineering sciences, 368
(1912):585–603, February 2010. ISSN 1364-503X. doi: 10.1098/rsta.
2009.0223. URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=2944388\&tool=pmcentrez\&rendertype=abstract.

G. Bard Ermentrout and David H. Terman. The Hodgkin-Huxley Equations. In
Mathematical Foundations of Neuroscience, volume 35 of Interdisciplinary Ap-
plied Mathematics. Springer New York, New York, NY, 2010. ISBN 978-0-387-
87707-5. doi: 10.1007/978-0-387-87708-2. URL http://link.springer.com/
10.1007/978-0-387-87708-2.

B Grafstein. Mechanism of Spreading Cortical Depression. Journal of neurophys-
iology, 19(2):154–171, 1956.

W Y Gu, W M Lai, and V C Mow. A mixture theory for charged-hydrated soft
tissues containing multi-electrolytes: passive transport and swelling behaviors.
Journal of biomechanical engineering, 120(2):169–80, April 1998. ISSN 0148-
0731. URL http://www.ncbi.nlm.nih.gov/pubmed/10412377.

WY Gu, WM Lai, and VC Mow. Transport of multi-electrolytes in charged hy-
drated biological soft tissues. Transport in Porous Media, 34:143–157, 1999.
URL http://link.springer.com/article/10.1023/A:1006561408186.

Morton Gurtin, Eliot Fried, and Lallit Anand. The Mechanics and Thermodynam-
ics of Continua. Cambridge University Press, New York, NY, 2010.

Douglas Wilhelm Harder. The Crank-Nicolson Method and Insulated Bound-
aries, 2012. URL https://ece.uwaterloo.ca/~math212/Laboratories/03/
3.CrankNicolson.pptx?

AL Hodgkin and AF Huxley. Currents carried by sodium and potassium ions
through the membrane of the giant axon of Loligo. The Journal of physiol-
ogy, 116:449–472, 1952a. URL http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC1392213/.

113

AL Hodgkin and AF Huxley. A quantitative description of membrane current
and its application to conduction and excitation in nerve. The Journal of
physiology, 117:500–544, 1952b. URL http://www.ncbi.nlm.nih.gov/pmc/
articles/pmc1392413/.

Irwin, J. David and Nelms, R. Mark. Basic Engineering Circuit Analysis. John
Wiley & Sons, tenth edition edition, 2011.

Mohamed Iskandarani. Chapter 11 Finite Difference Approximation of Derivatives,
2010.

Eric R. Kandel, James H. Schwartz, Thomas M. Jessell, Steven A. Siegelbaum,
and A. J Hudspeth. Principles of Neural Science. 2012.

Ramdas Kumaresan. Fourier Series, 2012.

W M Lai, J S Hou, and V C Mow. A triphasic theory for the swelling and deforma-
tion behaviors of articular cartilage. Journal of biomechanical engineering, 113
(3):245–58, August 1991. ISSN 0148-0731. URL http://www.ncbi.nlm.nih.
gov/pubmed/1921350.

A.A.P. Leao. Spreading depression of activity in the cerebral cortex. Jour-
nal of Neurophysiology, 7(6):359–390, 1944. URL http://psycnet.apa.org/
psycinfo/1945-01398-001.

David R. Lide. CRC Handbook of Chemistry and Physics, 88th Edition (CRC
Handbook of Chemistry & Physics). CRC Press, 88 edition, June 2007. ISBN
0849304881. URL http://www.worldcat.org/isbn/0849304881.

Xin L Lu, Leo Q Wan, X Edward Guo, and Van C Mow. A linearized for-
mulation of triphasic mixture theory for articular cartilage, and its applica-
tion to indentation analysis. Journal of Biomechanics, 43(4):673–9, March
2010. ISSN 1873-2380. doi: 10.1016/j.jbiomech.2009.10.026. URL http:
//www.ncbi.nlm.nih.gov/pubmed/19896670.

K. Malakpoor, E.F. Kaasschieter, and J.M. Huyghe. An analytical solution of
incompressible charged porous media. Zamm, 86(9):667–681, September 2006.
ISSN 0044-2267. doi: 10.1002/zamm.200510269. URL http://doi.wiley.com/
10.1002/zamm.200510269.

Georgi Medvedev. MATH 680: Introduction to Computational Neuroscience, 2005.
URL http://www.math.drexel.edu/~medvedev/classes/2005/math680/.

T P Obrenovitch and E Zilkha. High extracellular potassium, and not extracellular
glutamate, is required for the propagation of spreading depression. Journal
of neurophysiology, 73(5):2107–14, May 1995. ISSN 0022-3077. URL http:
//www.ncbi.nlm.nih.gov/pubmed/7623102.

114

G.D. Smith. Numerical Solution of Partial Differential Equations: Finite Differ-
ence Methods. Oxford University Press, 3rd edition edition, 1986.

D N Sun, W Y Gu, X E Guo, W M Lai, and V C Mow. A Mixed Finite Element
Formulation of the Triphasic Mehano-Electrochemical Theory for Charged, Hy-
drated Biological Soft Tissue. International Journal for Numerical Methods in
Engineering, 1402(January 1998):97–119, 1999.

I Tasaki and K Iwasa. Further Studies of Rapid Mechanical Changes in Squid
Giant Axon Associated with Action Potential Production. The Japanese journal
of physiology, 32:505–518, 1981. URL http://europepmc.org/abstract/MED/
7176207.

The MathWorks Inc. MATLAB and Statistics Toolbox Release 2013b, 2013.

Thomas F. Weiss. Cellular Biophysics Volume 1 Transport. The M.I.T Press,
London, England, 1996.

Xin-Cheng Yao, David M Rector, and John S George. Optical lever recording
of displacements from activated lobster nerve bundles and Nitella internodes.
Applied optics, 42(16):2972–8, June 2003. ISSN 0003-6935. URL http://www.
ncbi.nlm.nih.gov/pubmed/12790447.

115

Academic Vita
Bradford Joseph Lapsansky

E-Mail: bradjlap@comcast.net

Address: 16 Hilldale Ave.
Plains, PA 18705

Education
• B.S. (Honors) in Engineering Science, Student Marshall

Minor in Engineering Mechanics
The Pennsylvania State University (University Park, PA), May 2014
Scholar in the Schreyer Honors College

Presentations
• B. J. Lapsansky and C. S. Drapaca. A Model of Brain Neuro-Mechanics.

Abstract accepted to the SIAM Annual Meeting. Chicago, IL. July 2014.

Professional Experience
• PPL Susquehanna LLC - Berwick, PA

In-Service Inspection Cooperative Associate (May 2013 – Aug. 2013)

– Created a Program that Collected and Summarized Inspection Results
for the PPL Susquehanna Nuclear Plant

– Assisted with an Institute of Nuclear Power Operations Jet Pump Re-
view

• Pride Mobility Products - Duryea, PA
Manufacturing Engineering Intern (May 2012 – Aug. 2012)

– Designed and Built an Electronics Testing Fixture for the “Maxima”
Power Scooter which Saved the Company more than $1400

– Designed and Built a Battery Storage Cart for the “Maxima” Scooter
to Reduce Ergonomic Issues and Decrease Wasted Time

– Analyzed and Made Suggestions for the Proper Placement of the anti-
tip brackets on the “Litestream” Manual Wheelchair

Honors and Awards
• S.M.A.R.T. Scholarship – Awarded Aug. 2013

• Tau Beta Pi Record Scholarship – Awarded Jul. 2013

• Robert and Myrtle Vierck Scholarship – Awarded Jul. 2013

• Evan Pugh Scholar Award – Awarded April 2013

• Sam Y. and Myrna R. Zamrik Scholarship – Awarded Jul. 2012

Association Memberships/Activities
• Tau Beta Pi (Pennsylvania Beta Chapter)

Member: Dec. 2012 – Present

• Penn State Society of Engineering Science
Member: Aug. 2012 – May 2014
Treasurer: Aug. 2013 – May 2014

– Managed the Society’s Website
– Managed Club Funding

• Penn State Wilkes-Barre Honor Society
Member: Aug. 2010 – May. 2011

• Penn State Wilkes-Barre Blue and White Society
Member: Aug. 2010 – Dec. 2011
President: Aug. 2011 – Dec. 2011
Vice-President: Jan. 2011 – Aug. 2011

– Helped Plan and Organize a “Blue and White” Tailgate
– Initiated Preparations on the “Blue and White Ball”

Skills
• C++

• Advanced Excel

• VBA

• MATLAB

• LaTeX

