

THE PENNSYLVANIA STATE UNIVERSITY

SCHREYER HONORS COLLEGE

DEPARTMENT OF ELECTRICAL ENGINEERING

MODULATION-BASED SELECTIVE HARMONIC ELIMINATION

FOR DC-TO-AC INVERTERS

JEFFREY CHEN

SPRING 2014

A thesis

submitted in partial fulfillment

of the requirements

for a baccalaureate degree

in Electrical Engineering

with honors in Electrical Engineering

Reviewed and approved* by the following:

Jeffrey Mayer

Associate Professor of Electrical Engineering

Thesis Supervisor

John D. Mitchell

Professor of Electrical Engineering

Honors Adviser

* Signatures are on file in the Schreyer Honors College.

i

ABSTRACT

Selective harmonic elimination (SHE) is a method of generating pulse width modulated

(PWM) signals that do not include low-order harmonics. It is well suited for high power dc-to-ac

inverters that must operate at low switching frequencies due to limitations associated with the

switching devices. While the development of higher speed switching devices had relegated this

method to a small niche, a recent surge in digital implementation of dc-to-ac inverter controllers

has spurred renewed interest in the method.

The implementation of conventional SHE, particularly in real-time applications, remains

challenging due to the need to solve a set of transcendental equations for the switching angles of

the PWM signal. In a 2007 paper, a method that combines SHE with direct modulation was

proposed. This method is referred to as modulation-based harmonic elimination (MBHE). It

offers the possibility of having the advantages of SHE in terms of eliminating low-order

harmonics and the advantages of direct modulation in terms of relative ease of implementation.

This thesis project aims to replicate and evaluate MBHE. The method has been

implemented on an Arduino microprocessor as a proof of concept. The output of the circuit is

evaluated for low-order harmonics for a number of different input parameters.

ii

TABLE OF CONTENTS

List of Figures .. iii

List of Tables ... iv

Chapter 1 Introduction ... 1

1.1 Contributions .. 2
1.2 Thesis Organization ... 2

Chapter 2 Background ... 4

2.1 Sinusoidal Pulse Width Modulation (SPWM) ... 4
2.2 SHE Conventional Implementation ... 6

2.2.1 Derivation of SHE Equations .. 6
2.3 Modulation-Based Harmonic Elimination ... 8

2.3.1 Theory ... 9
2.3.2 Verification of Derived Values ... 11
2.3.3 Verification of Operation .. 13

Chapter 3 Module Design .. 16

3.1 Design Goals .. 16
3.2 Device Choice .. 16
3.3 MHBE C++ Algorithm .. 17

3.3.1 Setup .. 17
3.3.2 Timing and Output .. 17

Chapter 4 Results and Analysis ... 19

Chapter 5 Conclusions and Future Work ... 23

Appendix A MHBE Verification MATLAB Script .. 25
Appendix B Arduino C++ Main Source Code .. 28
Appendix C Arduino C++ Bessel.h .. 35
Appendix D Arduino C++ TimerThree.h .. 38
Appendix E Arduino C++ TimerThree.cpp .. 40
Appendix E Other Arduino Output Waveforms ... 43
REFERENCES... 45

iii

LIST OF FIGURES

Figure 1. SPWM Example. .. 5

Figure 2. Quarter-Wave Symmetric PWM Waveform. ... 7

Figure 3. Derived (). .. 10

Figure 4. Comparison of Provided Shockwave Equation with (). 11

Figure 5. MHBE Simulation .. 13

Figure 6. MHBE Simulation Spectrum .. 14

Figure 7. Oscilloscope Capture of Arduino Output ... 18

Figure 8. Output Waveform and Spectrum for = 0.9, Original 20

Figure 9. Output Waveform and Spectrum for = 0.9 Optimized 21

Figure 10. Output Waveform and Spectrum for = 0.5, Original 42

Figure 11. Output Waveform and Spectrum for = 1.0, Original 43

1

Chapter 1

Introduction

Selective Harmonic Elimination (SHE) is a method of eliminating low-order harmonics

from the output waveform of a Pulse Width Modulated (PWM) dc-to-ac inverter used for an ac

motor drive or uninterruptable power supply. In conventional SHE [2][3], the sequence of

switching angles that define a PWM waveform are calculated by solving a set of transcendental

equations. The size of the set of equations depends on the number of harmonics to be eliminated,

which is related to the ratio of the switching frequency to the output frequency of the inverter.

The desired amplitude of the fundamental component of the output waveform appears as a

parameter in the set of equations. Consequently, the set of equations must be solved for each

desired amplitude. While there has been a great deal of research on SHE [3]-[7], no method for

solving the equations in real time for an arbitrary amplitude has been reported in the literature.

Instead, the method is usually implemented as a two stage process. In the first stage, which

occurs off line, the equations are solved for a set of (normalized) amplitudes ranging from 0 to 1.

The set of amplitudes and the respective resulting sequences of switching angles are stored for

subsequent use. In the second stage, which occurs in real time, a desired amplitude specified by

an end user or the application is compared to the set of stored amplitudes. The sequences of

switching angles associated with the two nearest stored amplitudes are then interpolated. This

interpolated sequence of switching angles can then be used directly or used as high quality initial

estimate for real-time solution of the transcendental equations.

An alternative approach for SHE that utilizes direct modulation was recently proposed by

Wells et al [1]. As with any direct modulation scheme, a (normalized) desired output signal is

compared to a high-frequency carrier signal to determine the instantaneous binary value of the

2

PWM output signal. In the new approach, the usual triangular carrier signal is phase modulated

so that the resulting PWM output signal has transitions that correspond very closely to the

switching angles from conventional SHE. Interestingly, the phase modulation takes the form of

the Bessel-Fubini shockwave in non-linear acoustics.

1.1 Contributions

This thesis covers the theory, design, and physical implementation of a proof-of-concept

for applying the modulation-based harmonic elimination method proposed in [1]. A PWM

generating module created using this method provides a low-cost and flexible PWM output for

use in dc-to-ac inverters. More specifically, a microprocessor-based module has been created to

generate a PWM signal that can be used directly as an input to standard dc-to-ac inverter

switching poles. Simulations and verification testing are used to analyze the effectiveness of the

method and its implementation.

1.2 Thesis Organization

Chapter 2 explains the basic principles of direct modulation and conventional SHE. This

background information will help the reader better understand the derivation of parameters used

in the design as well as the methodology of the design detailed in the design section. The theory

and derivation of the modulation-based harmonic elimination method are then described in detail.

 Simulations as well as the design of the physical module are covered in Chapter 3.

Preliminary MATLAB simulation code serves as the basis for the module design, which is

implemented separately on a microcontroller in C++ code.

3

 Analysis of the test results are described in Chapter 4. These results include the

MATLAB simulations as well as the data gathered from module’s output.

 Chapter 5 concludes with a summary of the results and future improvements to create a

more polished and practical module. The chapter will also cover the effectiveness of the carrier-

modulation based method.

4

Chapter 2

Background

2.1 Sinusoidal Pulse Width Modulation (SPWM)

To understand the different implementations of SHE, it is necessary to first understand

direct modulation, which is a simpler and more widely used approach to generating PWM signals.

For this purpose, we focus on the most common form of direct modulation: Sinusoidal Pulse

Width Modulation (SPWM). A sinusoidal signal with desired amplitude and frequency is

compared with a triangular carrier signal. The frequency of the carrier corresponds to the

switching frequency of the dc-to-ac inverter. In a hardware implementation, the comparison of

the two signals is usually performed directly using a comparator, such as a differential operational

amplifier. Whenever the sinusoidal signal is greater than the carrier signal, the output of the

comparator is high, and whenever the sinusoidal signal is less than the carrier signal, the output of

the comparator is low. Thus, a binary-valued signal with variable pulse widths or a pulse width

modulated signal is generated.

Figure 1 illustrates the operation of a full-bridge inverter with SPWM at a frequency

modulation ratio of 21 and an amplitude modulation ratio of 0.9. The frequency modulation ratio

is the ratio of the carrier or switching frequency to the fundamental frequency of the desired

sinusoid. The amplitude modulation ratio is the ratio of the amplitude of the sinusoid to the

amplitude of the carrier. In the top graph of Figure 1, the green waveform is the desired

sinusoidal waveform, while the blue waveform is the triangular carrier waveform. Each point of

intersection of the two waveforms corresponds to a switching angle and can be traced down to an

edge of the PWM output waveform in the middle graph. The fundamental component of the

5

PWM output waveform extracted via an ideal low pass filter is shown as the dotted blue line in

the middle graph.

Figure 1: SPWM example

With a sufficiently high frequency modulation ratio, harmonics of the output waveform

stemming from the switching process can be pushed outside of the operating bandwidth of an

output filter or a machine supplied by the dc-to-ac inverter. The bottom graph of Figure 1 shows

the spectrum of the output waveform. There is a fundamental component having the desired

amplitude and some high-order harmonics corresponding to the switching frequency and its

harmonics as well as side bands of those frequencies, but no low-order harmonics are present.

The high-order harmonics are readily attenuated by a low-pass filter or motor. It should also be

6

noted that all even harmonics are intrinsically eliminated due to the quarter-wave symmetry of the

waveform, and in three phase systems, triplen harmonics are intrinsically eliminated as well.

2.2 SHE Conventional Implementation

While SPWM is suitable for applications with a frequency modulation ratio that is

relatively high, some applications necessitate an intrinsically low frequency modulation ratio such

as high power motor drives. Originally developed in response to the lack of availability of fast

switching devices, SHE can be used in high power applications where there is a trade-off of

switching speed for power handling. SHE makes use of Fourier series analysis of the periodic

output waveform to establish a set of transcendental equations that can be solved to determine

switching angles that result in selected harmonics having zero amplitude. With this method, it is

possible to eliminate a number of harmonics directly proportional to the frequency modulation

ratio.

2.2.1 Derivation of SHE Equations

Figure 2 shows a generic PWM output where α’s denote the desired switching angles for

the first quarter of the waveform. It is only necessary to solve for these angles, because of the

symmetry of the waveform.

7

Figure 2: Quarter-Wave Symmetric PWM Waveform

For the waveform in Figure 2, the harmonic coefficients are:

∫ () ()

For the sake of simplicity, only three odd harmonics will be considered in this example

analysis, but the method can be applied to any number of harmonics. Evaluating the coefficients

using the waveform as the function yields:

(∫ ()

 ∫ ()

 ∫ ()

)

 () () ()

For more than three switching angles, the equation can be generalized as:

 () () () () ()

The desired modulating amplitude can be defined as a ratio of peak output voltage to

input voltage, further simplifying the equation. With an equation for the odd harmonics, the

harmonics past the first are then set to zero. A system of transcendental equations is then created

by substituting in odd values of k.

 () () ()

8

 () () ()

 () () ()

The above transcendental equations can be solved to determine a sequence of switching

angles that is sufficient to eliminate the low-order harmonics. However, there is currently no

closed form solution for the system of equations. Therefore, the equations must be solved

iteratively using a numerical method such as the Newton-Raphson method. Solving these

equations iteratively requires significant computing power, especially when dealing with a larger

number of switching angles. While there have been a number of different approximations

researched that speed up these calculations, the situation is far from ideal.

For practical applications, switching angles are calculated offline for various amplitude

modulation ratios and stored in a look-up table in the memory of the dc-to-ac inverter controller.

The values are then interpolated depending on the actual value of the amplitude needed. This

method poses the problem of flexibility. Given that there is a look-up table for the switching

angles, the equations must be re-calculated for changes in the switching frequency of the

application. Any re-calculation would require re-coding the controller, leading to higher cost and

more time consumed.

2.3 Modulation-Based Harmonic Elimination

Modulation-based harmonic elimination (MHBE) is a solution proposed by Wells et al

[1] that produces SHE-like switching angles through direct modulation. MHBE operates on the

principle that triangular carrier signal usually used for direct modulation can be phase modulated

so as to produce the same switching angles as SHE. Thus, the method bypasses the need to solve

the set of transcendental equations in conventional SHE.

9

2.3.1 Theory

In SPWM, the triangular carrier waveform and the desired sinusoid can be respectively

represented as:

 ()

 (())

and

 () ()

where is the frequency modulation ratio of the system and is the desired output frequency.

 is a constant phase shift for the carrier. To yield the same switching angles as SHE, it is

necessary to continuously adjust the phase of the carrier waveform such that the intersections

between the carrier and the sinusoid happen at times corresponding to the switching angles

calculated using conventional SHE. This adjustment can be represented by a phase shift in the

argument to the cosine function to yield a modified carrier waveform [1]:

 ()

 ((()))

where () is the amount of phase shift from a regular triangular carrier waveform. An

alternative expression for the carrier waveform as sequence of lines corresponding to each half

period of the carrier during one period of the output waveform is

1

2
() n c

n o n o
c t m t n t

b j
w w

p p

è øå õ
= - - - - Dæ öé ù

ç ÷ê ú

where [0, 1, 2, , 2]
f

n mÍ and

2

2
o

f f

t
m m

p p
wD = =

1

2

c

o n o
t n t

j
w w

p

å õ
= - - Dæ ö
ç ÷

10

1 2
(1)

n

n

o

m
tw

+
= -

D

An expression for β for each half period of the carrier waveform is determined by finding the

intersection of the carrier waveform and the desired sinusoidal output. This is equivalent to

substituting the expression for the desired sinusoid for c(t) and then substituting α for ωot.

Solving for β yields

1

2

1
cos()c a

n n o n

o n

m
n

t m

j
b p a j a

p w

è øå õ
= - - + + -é ùæ ö

Dé ùç ÷ê ú

where each α is obtained from the solution of the conventional SHE problem.

 Once () has been determined over the full range of values for a large number of

eliminated harmonics it can be characterized by the Bessel-Fubini shockwave equation taken

from non-linear acoustics [1]

 () ∑ ()
 (())

 ()
 ((

)

where is a Bessel function of the first kind of order n and () and () are parameters to

be determined via a polynomial curve fit of (). According to [1], it is sufficient to truncate the

series at 15 terms for practical calculations. Expressions for () and () provided in [1]

are:

 ()

 ()

11

2.3.2 Verification of Derived Values

In order to verify the findings of [1], the entire process of applying the SHE method and

characterizing () was implemented in MATLAB. First, the transition angles for a range of

were found using traditional SHE techniques. These transition angles were then plugged into the

equations for the triangular carrier waveform and the desired sinusoid and the equations were

solved for (). The values obtained for ()were plotted for various values in the following

figure

Figure 3: Derived ()

The values provided for the characterization of the shockwave equation were plotted

against the derived ()function in Figure 4.

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

140

160

180

b from PHE (m
a
 = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1)

b ()̄

w
o
t ()̄

12

Figure 4: Comparison of Provided Shockwave Equation with ()

The blue curves represent the () obtained by using the values given in [1]. From the

graph, the shockwave equation provided looks like a good fit for values of lower than 0.9.

Above 0.9, the shockwave equation with provided () and () begins to deviate from the

derived ()values. The effects of this deviation could cause some harmonics to not be

completely eliminated and could cause other distortion in the output.

For further verification, the derived ()values were used to fit values for () and

 () at the same degree as those given in the reference paper. The curve fit yielded:

 ()

 ()

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

140

160

180

b from PHE and MBHE as in [1] (m
a
 = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1)

b ()̄

w
o
t ()̄

13

While the results were different from the provided values of () and () , they were

fairly close and were not believed to yield drastically different PWM waveforms. Going forward,

the provided values of () and () are used in full system simulations as well as in the

physical module.

A best polynomial fit was also performed in order to maximize the potential of the

MHBE method of SHE. Various degrees of polynomials were fitted to the shockwave equation

and compared to find the absolute best fit, regardless of the degree. The result was a 11
th
 degree

polynomial for both () and ().

2.3.3 Verification of Operation

In order to verify operation of the method before time and money were invested into a

physical module, a full MATLAB simulation of the system was created. The script used can be

found in Appendix A. A sample space of 100,000 samples between 0 and was used in so that

the switching angles would be reasonably precise. The frequency modulation ratio was set at

mf = 11 and the amplitude modulation ratio was set at ma = 0.9.

 Figure 5 shows the results of the simulation. The blue waveform is the desired output

sinusoid. That sinusoidal waveform is compared with the modified carrier waveform which is the

colored in green. Finally, the output PWM waveform is generated in red.

14

Figure 5: MHBE Simulation

 Figure 6 shows the PWM output waveform processed through MATLAB’s FFT function

represented in a stem plot. The spectrum confirms that the proposed method eliminates the

specified number of harmonics. The fundamental component has the correct amplitude of 0.9.

The harmonics 2-10 are extremely close to zero and can be considered to be negligible. There are

minor differences from the ideal spectrum.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 p/2 p 3p/2 2p

15

Figure 6: MHBE Simulation Spectrum

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1
|P

|

0 5 10 15 20 25 30 35 40 45 50
-100

-50

0

50

100

16

Chapter 3

Module Design

The advantage of the MHBE method of SHE is that the calculations are relatively simple

and can therefore be performed by lower power devices. In order to prove this concept and

provide a base for further development of the method, a microcontroller module was created.

3.1 Design Goals

The goal of the physical module implementation is to demonstrate that the method can be

implemented on a relatively low power device without the assistance of an offline computer. The

device needed to be low cost because of funding constraints and to prove that the method could

be practical. In addition to being low cost, the module needed to independently perform all

calculations on-the-fly in order to support changes in system parameters. Finally, the module

needed to exhibit an output waveform with a spectrum close to that of the simulations to

demonstrate that low order harmonics could be eliminated.

3.2 Device Choice

Taking all of the design goals into consideration, an Arduino Mega 2560 was selected as

the controller of choice. The Arduino is an open source device that is relatively low cost at around

$60 for the device and cables. It features a 16-MHz clock which is fast enough to allow for

adequate resolution given the low switching speeds that the device is meant to work with. The

Arduino Mega 2560 was selected as opposed to the other Arduino boards due to the higher

17

amount of RAM. The RAM usage of the MHBE implementation was unknown, so the 8 kB of

SRAM allowed for more headroom, preventing potential problems. While there are other boards

with more processing power and higher amounts of RAM, the Mega 2560 was a good

compromise between cost and capability.

3.3 MHBE C++ Algorithm

3.3.1 Setup

In order to minimize processing times and solve for more accurate switching times, a new

algorithm for solving for switching angles was used. The method calculates the peaks of the

modified carrier waveform based on a conventional triangle waveform offset by a set value. It

uses a basic bisection search method to minimize an error function. The peaks are solved in order,

and then the each intersection of the carrier and sinusoid is found using a similar bisection

method. Once all of the switching angles are found for an entire period, they are stored in a

separate array, which is used to assign the appropriate binary value to the output voltage for each

time. The incremental switch times are then calculated and stored in another array so that the

output had less processing to do.

3.3.2 Timing and Output

Because the Arduino PWM did not support the functionality needed to create a variable

PWM waveform with specified switching angles, the output waveform was hard coded using the

internal timer functionality. Using one of the internal PWM timers with a resolution on the

nanosecond scale, an interrupt was attached for the first incremental switching time. At each

18

interrupt, the timer is reset, the digital output was changed, and the next interrupt was attached.

The process was looped such that the output was continuous.

The selected Arduino lacked a negative digital output required for bipolar switching, so

two digital outputs pins were used. At any given time, one pin is at logic level high and the other

at low. Subtracting the two pins creates a positive and negative logic level based on the

orientation of the connection.

The Arduino code used in the MHBE module is included as Appendices B through E.

19

Chapter 4

Results and Analysis

The output of the Arduino based module was collected at various values while

maintaining an value of 11. The base frequency was set at 60 Hz to simulate a typical North

American ac line signal.

Figure 7: Oscilloscope Capture of Arduino Output

 Figure 7 shows an oscilloscope capture for an value of 0.9. The yellow trace is the

PWM output of the Arduino, and the purple trace is the FFT. Looking closely at the PWM trace,

there was noise generated at the switching points and throughout the waveform as well. The noise

20

could have been a result of the Arduino power supply noise, because the Arduino was powered

from a laptop USB port. These ports are generally very noisy and the noise might not have been

filtered out completely. Another possibility is that the noise is a result of quantization issues that

occurred during oscilloscope sampling.

 The FFT performed by the oscilloscope (purple trace) was parameterized with a center

frequency at 640 Hz and a span of 2 kHz using a Hanning window and a scale of 5 dB. The first

peak was confirmed to be at 60 Hz by changing the center frequency to match the peak

temporarily. The FFT clearly showed that there was a dip in harmonics between the center

frequency at the 11
th
 harmonic and the fundamental frequency at 60 Hz.

 The results for each value were then taken from the oscilloscope with a sample size

of 1,000,000 at 10 ms/ horizontal division and loaded into MATLAB for further analysis. The

FFT was taken over one full period of the output waveform and scaled down to account for the

5-V logic of the Arduino output.

21

Figure 8: Output Waveform and Spectrum for = 0.9, Original

 Figure 8 confirms that the harmonics between the fundamental and the 11
th
 harmonic

were essentially eliminated. When compared with Figure 6, there are minor differences in the

magnitude of the eliminated harmonics, but the overall shape is the same. These differences could

be the result of the noise mentioned earlier.

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

|P
|

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
-2

-1

0

1

2

V

t

22

Figure 9: Output Waveform and Spectrum for = 0.9 Optimized

 Figure 9 shows the Arduino output when the values for () and () were changed

to the 11
th
 order best fit characterization of () described earlier. When compared to Figure 8,

one noticeable difference is that the 10
th
 harmonic of the optimized waveform is lower. However,

the unwanted harmonics before the 10
th
 are slightly higher in the optimized waveform, but only

slightly. There is not enough of a difference between one fit of and the other for one to be in

absolute favor and the calculation differences were minimal.

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

|P
|

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
-2

-1

0

1

2

V

t

23

Chapter 5

Conclusions and Future Work

 As a proof of concept for MHBE, the Arduino implementation alone is adequate. The

output waveform showed that the unwanted harmonics were virtually eliminated. However, there

were some inconsistencies between the MATLAB simulation and the measured output caused by

noise in the system. Eliminating this noise would be the first priority for future work to see if the

results can get any closer to the theoretical simulation using a physical implementation. A

possibility for improvement is using an op amp comparator as a buffer to lock the output voltage

to quantized levels, thus stabilizing the output waveform. A separate power supply for the

Arduino could also yield improvements in the output. Being USB powered, noise was introduced

into the system and the Arduino was limited in supply current.

 Another area of exploration would be the output of the modified carrier waveform for use

in direct modulation. While the implementation described in this thesis did the comparison of the

carrier waveform and sinusoid, there may or may not be performance gains by using a physical

comparator. However, because the Arduino selected did not have an analog output, it was not

possible to implement this alternative method.

 Derivation of the parameters revealed that the given parameter values yielded

deviations in as increased in value past 0.9. While an optimized polynomial fit was touched

upon in this paper, the effects of different fits for should be explored further. The shockwave

equation seems to be a practical fit, but the spectrum of the output is still not exactly the same as

the theoretical output spectrum for conventional SHE. Other polynomial fits for the shockwave

as well as a direct fit for using a Fourier series analysis of the curves are possibilities for

future work.

24

 In terms of a SHE module, the project could explore the performance of other devices

such as different microcontrollers as well as an FPGA implementation which were cost

prohibitive for this paper. In addition controls for user input should be added as well as a display

of current values for a true real-time module implementation. The module could then be

connected to gate drives of a dc-to-ac inverter switching pole to implement a full system.

25

Appendix A

MHBE Verification MATLAB Script

%% Definition of System Variables
w = 1; %% Fundamental Frequency
w_sw = 11; %% Base Switching Frequency
M = 15; %% 15 or higher
%M = 50;
m_d = 1; %% Depth of Modulation: 0<= m_d <=1
phi = 0; %% Phase Shift
phi = pi/2;

%% Define test cases.
test = 0

if test == 0 % Figure 3 of [1]
 m_d = 0.95;
 m_d = 0.9
elseif test == 1 % Figure 4 of [1]
 m_d = 1;
 phi = pi/2;
elseif test == 2
 m_d = 1;
 phi = 0;
end

%t = linspace(0, 2*pi, 11000);
t = linspace(0, 2*pi, 100000);

%% Beta parameter functions
sigma = (- 0.1384.*(m_d).^3 + 0.1527.*(m_d).^2 - 0.01358.*(m_d) +

0.0003431) ...
 /((m_d).^3 - 1.948.*(m_d).^2 + 0.7006*m_d + 0.2491);

G = - (0.9992.*(m_d).^4 - 2.399.*(m_d).^3 + 1.426.*(m_d).^2 -

0.02446.*(m_d) + 0.001842) ...
 /((m_d).^2 - 2.124.*(m_d) + 1.125);

%% Construct desired output waveform.
m_t = m_d.*sin(w.*t);
%m_t = m_d.*cos(w.*t);

%% Beta parameter functions
% syms n;
% Beta =

double(symsum(G.*besselj(n,n.*sigma)./(n.*sigma).*sin(2*n.*(w.*t+pi/2))

, n, 1, M));

26

Beta = zeros(s ize(t));

for n = 1:M
 Beta = Beta ...
 + G.*besselj(n,n.*sigma)./(n.*sigma).*sin(2*n.*(w.*t +

pi/2));
end

%% Illustrate beta.
figure(1)
clf

plot(t,Beta);
ylabel(' \ it \ beta \ rm')

%% Construct carrier signal.
c = 1 - 2/pi.*acos(- cos(w_sw.*t + Beta + phi));

%% Construct PWM signal.
p_t = sign(m_t - c);

%% Illustrate desired output, carrier signal, and PWM signal.
figure(2)
clf

hold on

plot(t, m_t, t, c, t, p_t);

xlim([0 2*pi])
ylim([- 2 2])

pretty_xaxis_2pi

%% Illustrate desired output, carrier signal, and PWM signal.
figure(3)
clf

hold on

plot(t, m_t, t, p_t);

xlim([0 2*pi])
ylim([- 5 5])

pretty_xaxis_2pi

%% Construct spectrum of switching waveform.
P_w = fft(p_t)*2/length(p_t);

%% Illustrate spectrum.

27

figure(4)
clf

N = 50;

subplot(2,1,1)
stem(0:N, abs(P_w(1 + (0:N))));

ylim([0, 1.1])

ylabel('|P|')

subplot(2,1,2)
stem(0:N, 180/pi*angle(P_w(1 + (0:N))));

28

Appendix B

Arduino C++ Main Source Code

#include "Bessel.h"

#include "TimerThree.h"

const double pi = 3.14159265359;

const int arraySize = 100;

int arrayFilled;

double switchTimes[arraySize]; // Seconds

double incrementalTimes[arraySize]; // Microseconds

double vo[arraySize]; // 1 = 1, 0 = - 1

int count = 0;

const double to l = 1e - 6;

double f=60;

double m_a = .9;

double w0 = 2 * pi * f;

double mf = 11;

double phc = 0;

int M = 15;

int maxTries = 100;

int offset = 0;

double funcSigma();

double funcG();

double funcBeta(double);

double funcCarrier(double);

double solveTime(doubl e, double);

double solvePeak(double, double, int);

void setup()

{

 Serial.begin(9600);

 // Derived Parameters

 // ------------------

 double dlw0t = pi / mf;

 // Initialize Array

 // ----------------

 for (int i=0; i<arraySize; i++)

 {

 switchTimes[i] = - 1;

 vo[i] = 0;

 incrementalTimes[i] = - 1;

29

 }

 Serial.println("Arrays initialized");

 // Extract phc/offset

 // -------------------

 phc = fmod(phc, (2 * pi));

 if (phc < pi)

 offset = 0;

 else

 {

 phc = phc - (2 * pi);

 offset = - 1;

 }

 // Find each switch time

 // -------------------------

 Serial.println("Finding switching times");

 double w0t = pi / mf * (offset - phc / pi);

 double w0t1 = w0t - 1/mf * funcBeta(w0t) - dlw0t / 8;

 double w0t2 = w0t - 1/mf * funcBeta(w0t) + dlw0t / 8;

 double w0t_a = solvePeak(w0t1,w0t2, 0);

 double w0t_b;

 for(int i=1; i <= 2 * mf; i++)

 {

 w0t = pi / mf * (i + offset - phc / pi);

 w0t1 = w0t - 1/mf * funcBeta(w0t) - dlw0t/4;

 w0t2 = w0t - 1/mf * funcBeta(w0t) + dlw0t/4;

 w0t_b = solvePeak(w0t1,w0t2,i);

 w0t1 = w0t_a + dlw0t/100;

 w0t2 = w0t_b - dlw0t/100;

 switchTimes[i - 1] = solveTime(w0t1,w0t2);

 w0t_a = w0t_b;

 Serial.print(i);

 Serial.print(" Times Solved \ n");

 }

 // Adjustments to ends of array

 // Set first entry

 if (switchTimes[0] < 0)

 switchTimes[0] = 0;

30

 else

 {

 if (switchTimes[0] < 10 * tol)

 switchTimes[0] = 0;

 else

 {

 for(int i=arra ySize - 1; i>0; i --)

 {

 switchTimes[i] = switchTimes[i - 1];

 }

 switchTimes[0] = 0;

 }

 }

 // Set end to 2 pi.

 for (int i=0; i<arraySize; i++)

 {

 if ((switchTimes[i+1] == - 1) && (switchTimes[i] < 2 * pi))

 {

 switchTimes[i+1] = 2 * pi;

 arrayFilled = i+1;

 break;

 }

 }

 // Find vo and create incremental switch times

 // ---

 for (int i=0; i<arrayFilled; i++)

 {

 w0t = 0.5 * (switchTimes[i] + switchTimes[i+1]);

 vo[i] = (m_a * sin(w0t)) > funcCarrier(w0t);

 incrementalTimes[i+1] = (switchTimes[i+1] - switchTimes[i])/w0

* 1e6;

 }

 // Adjust ends of arrays

 incrementalTimes[0] = switchTimes[0]/w0 * 1e6;

 vo[arrayFilled] = vo[array Filled - 1];

 Serial.println("Arrays adjusted and vo found");

 Serial.println(" \ nArray Values");

 Serial.print("Switching times, Increment times, vo \ n");

 for (int i=0; i<=arrayFilled; i++)

 {

 Serial.print(switchTimes[i],4);

 Serial.print(", ");

 Serial.print(incrementalTimes[i]);

 Serial.print(", ");

31

 Serial.print(vo[i]);

 Serial.print(" \ n");

 }

 // Setup Timer

 // ----------------------------------

 Serial.println("Starting Timer...");

 pinMode(10, OUT PUT);

 pinMode(9, OUTPUT);

 Timer3.initialize(2 * pi / w0 * 1e6);

 Timer3.attachInterrupt(callback, incrementalTimes[count]);

}

void callback()

{

 // digitalWrite(10, vo[count]);

 // digitalWrite(9, !vo[count]);

 if (vo[count])

 {

 PORTB | = _BV(PB4);

 PORTH &= ~_BV(PH6);

 }

 else

 {

 PORTB &= ~_BV(PB4);

 PORTH |= _BV(PH6);

 }

 if (count==arrayFilled)

 {

 count = 0;

 }

 else

 {

 count++;

 }

 Timer3.attachInterrupt(callback, incrementalTimes[count]);

}

void loop()

{

}

// Function Definitions

// --------------------

// Returns Beta Parameter Sigma

32

double funcSigma()

{

 // Best fit

 /*

 return (.0081*pow(m_a, 12) - .0479*pow(m_a, 11)+.1118*pow(m_a,

10) - .1342*pow(m_a, 9)+.0885*pow(m_a, 8)

 - .0311*pow(m_a, 7)+.0047*pow(m_a, 6)+.0001*pow(m_a, 5) -

.0001*pow(m_a, 4))/(.0814*pow(m_a, 10) - .4176*pow(m_a, 9)

 +.8851*pow(m_a, 8) - pow(m_a, 7)+.6476*pow(m_a, 6) - .2404*pow(m_a,

5)+.0481*pow(m_a, 4) - .0045*pow(m_a, 3)+.0001*pow(m_a, 1));

 */

 // Orig inal

 return (- .1384*pow(m_a, 3)+.1527*pow(m_a, 2) -

.01358*(m_a)+.0003431)/(pow(m_a,3) - 1.948*pow(m_a,

2)+.7006*m_a+.2491);

}

// Returns Beta parameter G

double funcG()

{

 // Best fit

 /*

 return (.0832*pow(m_a, 12) - .4723*pow(m_a, 11)+1.1263*pow(m_a,

10) - 1.464*pow(m_a, 9)+1.1253*pow(m_a, 8) - .5188*pow(m_a, 7)

 +.1388*pow(m_a, 6) - .0198*pow(m_a, 5)+.0013*pow(m_a,

4))/(.0240*pow(m_a, 12) - .1418*pow(m_a, 11)+.2833*pow(m_a, 10)

 - .0902*pow(m_a, 9) - .5332*pow(m_a, 8)+pow(m_a, 7) - .8557*pow(m_a,

6)+.4097*pow(m_a, 5) - .111*pow(m_a, 4)+.0159*pow(m_a, 3)

 - .001*pow(m_a, 2));

 */

 // Original

 return - (.9992*pow(m_a, 4) - 2.399*pow(m_a, 3)+1.426*pow(m_a, 2) -

.02446*(m_a)+.001842)/(pow(m_a, 2) - 2.124*(m_a)+1.125);

}

// Returns instantaneous value of Beta

double func Beta(double w0t)

{

 double sig = funcSigma();

 double G = funcG();

 double Beta = 0;

 for (int n=1; n<=M; n++)

 {

 Beta += G * bessj(n,n * sig) / (n * sig) * sin(2 * n * (w0t +

pi / 2));

 }

33

 return Beta;

}

// Returns instantaneous value of the carrier waveform

double funcCarrier(double w0t)

{

 return 1 - 2 / pi * acos(- cos(mf * w0t + funcBeta(w0t)+phc));

}

// Implementation of bisection method to solve for single

switching time

double solveTime(double w0t1, double w0t2)

{

 double w0t3; // Midpoint

 double fVal_w0t1;

 double fVal_w0t3;

 for(int i=0; i<maxTries; i++)

 {

 w0t3 = (w0t1 + w0t2)/2;

 fVal_w0t1 = m_a * sin(w0t1) - funcCarrier(w0t1);

 fVal_w0t3 = m_a * sin(w0t3) - funcCarrier(w0t3);

 if (fVal_w0t3 == 0 || (w0t2 - w0t1)/2 < tol) // Solution Found

 return w0t3;

 if ((fVal_w0t3 < 0 && fVal_w0t1 <0) || (fVal_w0t3 > 0 &&

fVal_w0t1 >0))

 w0t1 = w0t3;

 else

 w0t2 = w0t3;

 }

 return 4;

 // Failed to find in max tries

}

// Solves for peak value

double solvePeak(double w0t1, double w0t2, int n)

{

 double w0t3; // Midpoint

 double fVal_w0t1;

 double fVal_w0t3;

 for(int i=0; i<maxTries; i++)

 {

 w0t3 = (w0t1 + w0t2)/2;

 fVal_w0t1 = mf * w0t1 + funcBeta(w 0t1) + phc - (n + offset) *

pi;

 fVal_w0t3 = mf * w0t3 + funcBeta(w0t3) + phc - (n + offset) *

pi;

 if (fVal_w0t3 == 0 || (w0t2 - w0t1)/2 < tol) // Solution Found

34

 return w0t3;

 if ((fVal_w0t3 < 0 && fVal_w0t1 <0) || (fVal_w0t3 > 0 &&

fVal_w0t1 >0))

 w0t1 = w0t3;

 else

 w0t2 = w0t3;

 }

 return - 8;

 // Failed to find in max tries

}

35

Appendix C

Arduino C++ Bessel.h

/* Sourced from

http://www.atnf.csiro.au/computing/software/gipsy/sub/bessel.c */

/* bessel.c

 Copyright (c) 1998

 Kapteyn Institute Groningen

 All Rights Reserved.

*/

#include "math.h"

#define ACC 40.0

#define BIGNO 1.0e10

#define BIGNI 1.0e - 10

static double bessj0(double x)

/* -- */

/* PURPOSE: Evaluate Bessel function of first kind and order */

/* 0 at input x */

/* -- */

{

 double ax,z;

 double xx,y,ans,ans1,ans2;

 if ((ax=fabs(x)) < 8.0) {

 y=x*x ;

 ans1=57568490574.0+y*(- 13362590354.0+y*(651619640.7

 +y*(- 11214424.18+y*(77392.33017+y*(- 184.9052456)))));

 ans2=57568490411.0+y*(1029532985.0+y*(9494680.718

 +y*(59272.64853+y*(267.8532712+y*1.0))));

 ans=ans1/ans2;

 } else {

 z=8.0/ax;

 y=z*z;

 xx=ax - 0.785398164;

 ans1=1.0+y*(- 0.1098628627e - 2+y*(0.2734510407e - 4

 +y*(- 0.2073370639e - 5+y*0.2093887211e - 6)));

 ans2 = - 0.1562499995e - 1+y*(0.1430488765e - 3

 +y*(- 0.6911147651e - 5+y*(0. 7621095161e - 6

 - y*0.934935152e - 7)));

 ans=sqrt(0.636619772/ax)*(cos(xx)*ans1 - z*sin(xx)*ans2);

 }

 return ans;

}

http://www.atnf.csiro.au/computing/software/gipsy/sub/bessel.c%20*/

36

static double bessj1(double x)

/* -- */

/* PURPOSE: Evaluate Bessel function of first kind and order */

/* 1 at input x */

/* -- */

{

 double ax,z;

 double xx,y,ans,ans1,ans2;

 if ((ax=fabs(x)) < 8.0) {

 y=x* x;

 ans1=x*(72362614232.0+y*(- 7895059235.0+y*(242396853.1

 +y*(- 2972611.439+y*(15704.48260+y*(- 30.16036606))))));

 ans2=144725228442.0+y*(2300535178.0+y*(18583304.74

 +y*(99447.43394+y*(376.9991397+y*1.0))));

 ans=ans1/ans2;

 } else {

 z=8.0/ax;

 y=z*z;

 xx=ax - 2.356194491;

 ans1=1.0+y*(0.183105e - 2+y*(- 0.3516396496e - 4

 +y*(0.2457520174e - 5+y*(- 0.240337019e - 6))));

 ans2=0.04687499995+y*(- 0.2002690873e - 3

 +y*(0.8449199096e - 5+y*(- 0.8822898 7e- 6

 +y*0.105787412e - 6)));

 ans=sqrt(0.636619772/ax)*(cos(xx)*ans1 - z*sin(xx)*ans2);

 if (x < 0.0) ans = - ans;

 }

 return ans;

}

double bessj(int n, double x)

/* -- */

/* PURP OSE: Evaluate Bessel function of first kind and order */

/* n at input x */

/* The function can also be called for n = 0 and n = 1. */

/* -- */

{

 int j, jsum, m;

 double ax, bj, bjm, bjp, sum, tox, ans;

 ax=fabs(x);

 if (n == 0)

 return(bessj0(ax));

 if (n == 1)

 return(bessj1(ax));

 if (ax == 0.0)

37

 return 0.0;

 else if (ax > (double) n) {

 tox=2.0/ax;

 bjm=bessj0(ax);

 bj=bessj1(ax);

 for (j=1;j<n;j++) {

 bjp=j*tox*bj - bjm;

 bjm=bj;

 bj=bjp;

 }

 ans=bj;

 } else {

 tox=2.0/ax;

 m=2*((n+(int) sqrt(ACC*n))/2);

 jsum=0;

 bjp=ans=sum=0.0;

 bj=1.0;

 for (j=m;j>0;j --) {

 bjm=j*tox*bj - bjp;

 bjp=bj;

 bj=bjm;

 if (fabs(bj) > BIGNO) {

 bj *= BIGNI;

 bjp *= BIGNI;

 ans *= BIGNI;

 sum *= BIGNI;

 }

 if (jsum) sum += bj;

 jsum=!jsum;

 if (j == n) ans=bjp;

 }

 sum=2.0*sum - bj;

 ans /= sum;

 }

 return x < 0.0 && n%2 == 1 ? - ans : ans;

}

#undef ACC

#undef BIGNO

#undef BIGNI

38

Appendix D

Arduino C++ TimerThree.h

/*

 * Interrupt and PWM utilities for 16 bit Timer3 on

ATmega168/328

 * Original code by Jesse Tane for http://labs.ideo.com August

2008

 * Modified March 2009 by Jérôme Despatis and Jesse Tane for

ATmega328 support

 * Modified June 2009 by Michael Polli and Jesse Tane to fix a

bug in setPeriod() which caused the timer to stop

 *

 * This is free software. You can redistribute it and/or modify

it under

 * the terms of Creative Commons Attribution 3.0 United States

License.

 * To view a copy of this license, visit

http://creativecommons.org/licenses/by/3.0/us/

 * or send a letter to Creative Commons, 171 Second Street,

Suite 300, San Francisco, California, 94105, USA.

 *

 */

#include <avr/io.h>

#include <avr/inte rrupt.h>

#define RESOLUTION 65536 // Timer3 is 16 bit

class TimerThree

{

 public:

 // properties

 unsigned int pwmPeriod;

 unsigned char clockSelectBits;

 // methods

 void initialize(long microseconds=1000000);

 void start();

 void stop();

 void restart();

 void pwm(char pin, int duty, long microseconds= - 1);

 void disablePwm(char pin);

 void attachInterrupt(void (*isr)(), long microseconds= - 1);

 void detachInterrupt();

 void setPeriod(long microseconds);

 void setPwmDuty(char pin, int duty);

39

 void (*isrCallback)();

};

extern TimerThree Timer3;

40

Appendix E

Arduino C++ TimerThree.cpp

/*

 * Interrupt and PWM utilities for 16 bit Timer3 on

ATmega168/328

 * Original code by Jesse Tane for http://labs.ideo.com August

2008

 * Modified March 2009 by Jérôme Despatis and Jesse Tane for

ATmega328 support

 * Modified June 2009 by Michael Polli and Jesse Tane to fix a

bug in setPeriod() which caused the timer t o stop

 * Modified Oct 2009 by Dan Clemens to work with timer3 of the

ATMega1280 or Arduino Mega

 *

 * This is free software. You can redistribute it and/or modify

it under

 * the terms of Creative Commons Attribution 3.0 United States

License.

 * To view a copy of this license, visit

http://creativecommons.org/licenses/by/3.0/us/

 * or send a letter to Creative Commons, 171 Second Street,

Suite 300, San Francisco, California, 94105, USA.

 *

 */

#include "TimerThree.h"

TimerThree Timer3; // preinstatiate

ISR(TIMER3_OVF_vect) // interrupt service routine that

wraps a user defined function supplied by attachInterrupt

{

 Timer3.isrCallback();

}

void TimerThree::initialize(long microseconds)

{

 TCCR3A = 0; // cl ear control register A

 TCCR3B = _BV(WGM13); // set mode as phase and frequency

correct pwm, stop the timer

 setPeriod(microseconds);

}

void TimerThree::setPeriod(long microseconds)

{

41

 long cycles = (F_CPU * microseconds) / 2000000;

// the counter runs backwards after TOP, interrupt is at BOTTOM

so divide microseconds by 2

 if(cycles < RESOLUTION) clockSelectBits =

_BV(CS10); // no prescale, full xtal

 else if((cycles >>= 3) < RESOLUTION) clockSelectBits =

_BV(CS11); // prescale by /8

 else if((cycles >>= 3) < RESOLUTION) clockSelectBits =

_BV(CS11) | _BV(CS10); // prescale by /64

 else if((cycles >>= 2) < RESOLUTION) clockSelectBits =

_BV(CS12); // prescale b y /256

 else if((cycles >>= 2) < RESOLUTION) clockSelectBits =

_BV(CS12) | _BV(CS10); // prescale by /1024

 else cycles = RESOLUTION - 1, clockSelectBits =

_BV(CS12) | _BV(CS10); // request was out of bounds, set as

maximum

 ICR3 = pwmPeriod = cycles;

// ICR1 is TOP in p & f correct pwm mode

 TCCR3B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));

 TCCR3B |= clockSelectBits;

// reset clock select register

}

void TimerThree::setPwmDuty(char pin, int duty)

{

 unsigned long dutyCycle = pwmPeriod;

 dutyCycle *= duty;

 dutyCycle >>= 10;

 if(pin == 5) OCR3A = dutyCycle;

 if(pin == 2) OCR3B = dutyCycle;

 if(pin == 3) OCR3C = dutyCycle;

}

void TimerThree::pwm(char pin, int duty, long microseconds) //

expects duty cycle to be 10 bit (1024)

{

 if(microseconds > 0) setPeriod(microseconds);

 // sets data direction register for pwm output pin

 // activat es the output pin

 if(pin == 5) { DDRE |= _BV(PORTE3); TCCR3A |= _BV(COM3A1); }

 if(pin == 2) { DDRE |= _BV(PORTE4); TCCR3A |= _BV(COM3B1); }

 if(pin == 3) { DDRE |= _BV(PORTE5); TCCR3A |= _BV(COM3C1); }

 setPwmDuty(pin, duty);

 start();

}

void TimerThree::disablePwm(char pin)

{

42

 if(pin == 5) TCCR3A &= ~_BV(COM3A1); // clear the bit that

enables pwm on PE3

 if(pin == 2) TCCR3A &= ~_BV(COM3B1); // clear the bit that

enables pwm on PE4

 if(pin == 3) TCCR3A &= ~_BV(COM3C1); // clear the bit that

enables pwm on PE5

}

void TimerThree::attachInterrupt(void (*isr)(), long

microseconds)

{

 if(microseconds > 0) setPeriod(microseconds);

 isrCallback = isr; //

register the user's callback with the real ISR

 TIMSK3 = _BV(TOIE1); //

sets the timer overflow interrupt enable bit

 sei(); //

ensures that interrupts are globally enabled

 start();

}

void TimerThree::detachInterru pt()

{

 TIMSK3 &= ~_BV(TOIE1); //

clears the timer overflow interrupt enable bit

}

void TimerThree::start()

{

 TCCR3B |= clockSelectBits;

}

void TimerThree::stop()

{

 TCCR3B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12)); //

clears all clock selects bits

}

void TimerThree::restart()

{

 TCNT3 = 0;

}

43

Appendix E

Other Arduino Output Waveforms

Figure 10: Output Waveform and Spectrum for = 0.5, Original

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

|P
|

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
-2

-1

0

1

2

V

t

44

Figure 11: Output Waveform and Spectrum for = 1.0, Original

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

|P
|

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
-2

-1

0

1

2

V

t

REFERENCES

[1] J. R. Wells, X. Geng, P L. Chapman, P. T. Krein, and B. M. Nee, Modulation-Based Harmonic

Elimination, IEEE Transactions on Power Electronics, Vol. 22, No. 1, January 2007.

[2] H.S. Patel and R.G. Hoft, Generalized Techniques of Harmonic Elimination and Voltage Control

in Thyristor Inverters: Part I-Harmonic Elimination, IEEE Transactions on Industry Applications,

Vol. IA-9, No. 3, May 1973.

[3] H.S. Patel and R.G. Hoft, Generalized Techniques of Harmonic Elimination and Voltage Control

 in Thyristor inverters: Part II-Voltage Control Techniques, IEEE Transactions on Industry

 Applications, Vol. IA-10, No. 5, September 1974.

[4] J. Chiasson, L. M. Tolbert, K. McKenzie, and Z. Du, A Complete Solution to the Harmonic

Elimination Problem, IEEE Transactions on Power Electronics, Vol. 19, No. 2, March 2004

[5] L. Li, D. Czarkowski, Y. Liu, and P. Pillay, Multilevel Selective Harmonic Elimination PWM

Technique in Series-Connected Voltage Inverters. IEEE Transactions on Industry

Applications, Vol. 36, No. 1, February 2000.

[6] M. S. Dahidah and V. G. Agelidis, Selective Harmonic Elimination PWM Control for Cascaded

Multilevel Voltage Source Converters: A Generalized Formula, IEEE Transactions on Power

Electronics, Vol. 21, No. 2, March 2006.

[7] J. R.Wells, B. M. Nee, P. L. Chapman, and P. T. Krein, Selective Harmonic Control: A General

Problem Formulation and Selected Solutions, IEEE Transactions on Power Electronics, Vol. 20,

No. 6, November 2005.

Academic Vita

Jeffrey Chen

110 Northbrook Ln, Apt 201 ● State College, PA 16803 (267) 481-5357 ● jeffchen0124@gmail.com

Education

The Pennsylvania State University University Park, PA 2010-2014

¶ B.S. Electrical Engineering

¶ Schreyer Honor College

Pennsylvania State University Abington, PA 2010

Professional Experience

 United States Air Force Canonsburg, PA 2013-Present

¶ Technical Degree Sponsorship Program

¶ Airman First Class

 Penn State Architectural Engineering University Park, PA 2011-2012

¶ Developed 3D energy modeling application in HTML5 and JavaScript

¶ Integrated WebGL technologies using Three.js

¶ Created algorithm for uploading and interfacing Google Sketchup files.

 Penn State IST OIDI University Park, PA 2011

¶ Edited audio and visual media

¶ Interacted with instructors to build out course materials in DRUPAL and ANGEL

¶ Developed DRUPAL modules for site-wide use

¶ Tested virtual labs

¶ Designed graphics for 25+ course websites

 Golden Sources International Inc. San Carlos, California 2010

¶ Designed layout, navigation, and color scheme in HTML and CSS.

¶ Created framework using PHP and MySQL to simplify addition of pages and products.

Awards & Honors

LabVIEW CLAD Certified 2013
Schreyer Honor College Scholar 2010-Present
5ŜŀƴΩǎ [ƛǎǘ 2010-Present
CompTIA A+ Certified 2010

