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ABSTRACT 
 

Selective harmonic elimination (SHE) is a method of generating pulse width modulated 

(PWM) signals that do not include low-order harmonics. It is well suited for high power dc-to-ac 

inverters that must operate at low switching frequencies due to limitations associated with the 

switching devices. While the development of higher speed switching devices had relegated this 

method to a small niche, a recent surge in digital implementation of dc-to-ac inverter controllers 

has spurred renewed interest in the method. 

The implementation of conventional SHE, particularly in real-time applications, remains 

challenging due to the need to solve a set of transcendental equations for the switching angles of 

the PWM signal.  In a 2007 paper, a method that combines SHE with direct modulation was 

proposed.  This method is referred to as modulation-based harmonic elimination (MBHE).  It 

offers the possibility of having the advantages of SHE in terms of eliminating low-order 

harmonics and the advantages of direct modulation in terms of relative ease of implementation. 

This thesis project aims to replicate and evaluate MBHE. The method has been 

implemented on an Arduino microprocessor as a proof of concept. The output of the circuit is 

evaluated for low-order harmonics for a number of different input parameters. 
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Chapter 1  
 

Introduction 

Selective Harmonic Elimination (SHE) is a method of eliminating low-order harmonics 

from the output waveform of a Pulse Width Modulated (PWM) dc-to-ac inverter used for an ac 

motor drive or uninterruptable power supply.  In conventional SHE [2][3], the sequence of 

switching angles that define a PWM waveform are calculated by solving a set of transcendental 

equations. The size of the set of equations depends on the number of harmonics to be eliminated, 

which is related to the ratio of the switching frequency to the output frequency of the inverter.  

The desired amplitude of the fundamental component of the output waveform appears as a 

parameter in the set of equations.  Consequently, the set of equations must be solved for each 

desired amplitude.  While there has been a great deal of research on SHE [3]-[7], no method for 

solving the equations in real time for an arbitrary amplitude has been reported in the literature.  

Instead, the method is usually implemented as a two stage process.  In the first stage, which 

occurs off line, the equations are solved for a set of (normalized) amplitudes ranging from 0 to 1.  

The set of amplitudes and the respective resulting sequences of switching angles are stored for 

subsequent use.  In the second stage, which occurs in real time, a desired amplitude specified by 

an end user or the application is compared to the set of stored amplitudes.  The sequences of 

switching angles associated with the two nearest stored amplitudes are then interpolated.  This 

interpolated sequence of switching angles can then be used directly or used as high quality initial 

estimate for real-time solution of the transcendental equations. 

An alternative approach for SHE that utilizes direct modulation was recently proposed by 

Wells et al [1].  As with any direct modulation scheme, a (normalized) desired output signal is 

compared to a high-frequency carrier signal to determine the instantaneous binary value of the 
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PWM output signal.  In the new approach, the usual triangular carrier signal is phase modulated 

so that the resulting PWM output signal has transitions that correspond very closely to the 

switching angles from conventional SHE.  Interestingly, the phase modulation takes the form of 

the Bessel-Fubini shockwave in non-linear acoustics.  

1.1 Contributions 

This thesis covers the theory, design, and physical implementation of a proof-of-concept 

for applying the modulation-based harmonic elimination method proposed in [1]. A PWM 

generating module created using this method provides a low-cost and flexible PWM output for 

use in dc-to-ac inverters. More specifically, a microprocessor-based module has been created to 

generate a PWM signal that can be used directly as an input to standard dc-to-ac inverter 

switching poles. Simulations and verification testing are used to analyze the effectiveness of the 

method and its implementation. 

1.2 Thesis Organization 

Chapter 2 explains the basic principles of direct modulation and conventional SHE. This 

background information will help the reader better understand the derivation of parameters used 

in the design as well as the methodology of the design detailed in the design section. The theory 

and derivation of the modulation-based harmonic elimination method are then described in detail. 

 Simulations as well as the design of the physical module are covered in Chapter 3. 

Preliminary MATLAB simulation code serves as the basis for the module design, which is 

implemented separately on a microcontroller in C++ code. 



3 

 Analysis of the test results are described in Chapter 4. These results include the 

MATLAB simulations as well as the data gathered from module’s output. 

 Chapter 5 concludes with a summary of the results and future improvements to create a 

more polished and practical module. The chapter will also cover the effectiveness of the carrier-

modulation based method. 
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Chapter 2  
 

Background 

2.1 Sinusoidal Pulse Width Modulation (SPWM) 

To understand the different implementations of SHE, it is necessary to first understand 

direct modulation, which is a simpler and more widely used approach to generating PWM signals.  

For this purpose, we focus on the most common form of direct modulation: Sinusoidal Pulse 

Width Modulation (SPWM).  A sinusoidal signal with desired amplitude and frequency is 

compared with a triangular carrier signal. The frequency of the carrier corresponds to the 

switching frequency of the dc-to-ac inverter.  In a hardware implementation, the comparison of 

the two signals is usually performed directly using a comparator, such as a differential operational 

amplifier.  Whenever the sinusoidal signal is greater than the carrier signal, the output of the 

comparator is high, and whenever the sinusoidal signal is less than the carrier signal, the output of 

the comparator is low.  Thus, a binary-valued signal with variable pulse widths or a pulse width 

modulated signal is generated. 

Figure 1 illustrates the operation of a full-bridge inverter with SPWM at a frequency 

modulation ratio of 21 and an amplitude modulation ratio of 0.9.  The frequency modulation ratio 

is the ratio of the carrier or switching frequency to the fundamental frequency of the desired 

sinusoid.  The amplitude modulation ratio is the ratio of the amplitude of the sinusoid to the 

amplitude of the carrier.  In the top graph of Figure 1, the green waveform is the desired 

sinusoidal waveform, while the blue waveform is the triangular carrier waveform.  Each point of 

intersection of the two waveforms corresponds to a switching angle and can be traced down to an 

edge of the PWM output waveform in the middle graph. The fundamental component of the 
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PWM output waveform extracted via an ideal low pass filter is shown as the dotted blue line in 

the middle graph. 

 

Figure 1: SPWM example 

With a sufficiently high frequency modulation ratio, harmonics of the output waveform 

stemming from the switching process can be pushed outside of the operating bandwidth of an 

output filter or a machine supplied by the dc-to-ac inverter. The bottom graph of Figure 1 shows 

the spectrum of the output waveform. There is a fundamental component having the desired 

amplitude and some high-order harmonics corresponding to the switching frequency and its 

harmonics as well as side bands of those frequencies, but no low-order harmonics are present. 

The high-order harmonics are readily attenuated by a low-pass filter or motor.  It should also be 



6 

noted that all even harmonics are intrinsically eliminated due to the quarter-wave symmetry of the 

waveform, and in three phase systems, triplen harmonics are intrinsically eliminated as well. 

2.2 SHE Conventional Implementation 

While SPWM is suitable for applications with a frequency modulation ratio that is 

relatively high, some applications necessitate an intrinsically low frequency modulation ratio such 

as high power motor drives. Originally developed in response to the lack of availability of fast 

switching devices, SHE can be used in high power applications where there is a trade-off of 

switching speed for power handling. SHE makes use of Fourier series analysis of the periodic 

output waveform to establish a set of transcendental equations that can be solved to determine 

switching angles that result in selected harmonics having zero amplitude. With this method, it is 

possible to eliminate a number of harmonics directly proportional to the frequency modulation 

ratio. 

2.2.1 Derivation of SHE Equations 

Figure 2 shows a generic PWM output where α’s denote the desired switching angles for 

the first quarter of the waveform.  It is only necessary to solve for these angles, because of the 

symmetry of the waveform. 
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Figure 2: Quarter-Wave Symmetric PWM Waveform 

For the waveform in Figure 2, the harmonic coefficients are: 
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For more than three switching angles, the equation can be generalized as: 
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The desired modulating amplitude can be defined as a ratio of peak output voltage to 

input voltage, further simplifying the equation. With an equation for the odd harmonics, the 

harmonics past the first are then set to zero. A system of transcendental equations is then created 

by substituting in odd values of k. 
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The above transcendental equations can be solved to determine a sequence of switching 

angles that is sufficient to eliminate the low-order harmonics. However, there is currently no 

closed form solution for the system of equations. Therefore, the equations must be solved 

iteratively using a numerical method such as the Newton-Raphson method. Solving these 

equations iteratively requires significant computing power, especially when dealing with a larger 

number of switching angles. While there have been a number of different approximations 

researched that speed up these calculations, the situation is far from ideal. 

For practical applications, switching angles are calculated offline for various amplitude 

modulation ratios and stored in a look-up table in the memory of the dc-to-ac inverter controller. 

The values are then interpolated depending on the actual value of the amplitude needed. This 

method poses the problem of flexibility. Given that there is a look-up table for the switching 

angles, the equations must be re-calculated for changes in the switching frequency of the 

application. Any re-calculation would require re-coding the controller, leading to higher cost and 

more time consumed. 

2.3 Modulation-Based Harmonic Elimination 

Modulation-based harmonic elimination (MHBE) is a solution proposed by Wells et al 

[1] that produces SHE-like switching angles through direct modulation. MHBE operates on the 

principle that triangular carrier signal usually used for direct modulation can be phase modulated 

so as to produce the same switching angles as SHE.  Thus, the method bypasses the need to solve 

the set of transcendental equations in conventional SHE. 



9 

2.3.1 Theory 

In SPWM, the triangular carrier waveform and the desired sinusoid can be respectively 

represented as: 

  ( )    
 

 
     (    (        )) 

and 

 ( )        (   ) 

where    is the frequency modulation ratio of the system and    is the desired output frequency. 

  is a constant phase shift for the carrier. To yield the same switching angles as SHE, it is 

necessary to continuously adjust the phase of the carrier waveform such that the intersections 

between the carrier and the sinusoid happen at times corresponding to the switching angles 

calculated using conventional SHE. This adjustment can be represented by a phase shift in the 

argument to the cosine function to yield a modified carrier waveform [1]: 
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An expression for β for each half period of the carrier waveform is determined by finding the 

intersection of the carrier waveform and the desired sinusoidal output.  This is equivalent to 

substituting the expression for the desired sinusoid for c(t) and then substituting α for ωot.  

Solving for β yields 
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where each α is obtained from the solution of the conventional SHE problem.  

 Once  ( ) has been determined over the full range of    values for a large number of 

eliminated harmonics it can be characterized by the Bessel-Fubini shockwave equation taken 

from non-linear acoustics [1] 
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where    is a Bessel function of the first kind of order n and  (  ) and  (  ) are parameters to 

be determined via a polynomial curve fit of  ( ). According to [1], it is sufficient to truncate the 

series at 15 terms for practical calculations.  Expressions for  (  ) and  (  )  provided in [1] 

are: 
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2.3.2 Verification of Derived Values 

In order to verify the findings of  [1], the entire process of applying the SHE method and 

characterizing  ( ) was implemented in MATLAB. First, the transition angles for a range of    

were found using traditional SHE techniques. These transition angles were then plugged into the 

equations for the triangular carrier waveform and the desired sinusoid and the equations were 

solved for  ( ). The values obtained for  ( )were plotted for various    values in the following 

figure 

 

 

Figure 3: Derived  ( ) 

 

The values provided for the characterization of the shockwave equation were plotted 

against the derived  ( )function in Figure 4. 
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Figure 4: Comparison of Provided Shockwave Equation with  ( ) 

The blue curves represent the  ( ) obtained by using the values given in [1]. From the 

graph, the shockwave equation provided looks like a good fit for values of    lower than 0.9. 

Above 0.9, the shockwave equation with provided  (  ) and  (  ) begins to deviate from the 

derived  ( )values. The effects of this deviation could cause some harmonics to not be 

completely eliminated and could cause other distortion in the output. 

For further verification, the derived  ( )values were used to fit values for  (  ) and 

 (  )  at the same degree as those given in the reference paper. The curve fit yielded: 
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While the results were different from the provided values of  (  ) and (  ) , they were 

fairly close and were not believed to yield drastically different PWM waveforms. Going forward, 

the provided values of  (  ) and  (  )  are used in full system simulations as well as in the 

physical module. 

A best polynomial fit was also performed in order to maximize the potential of the 

MHBE method of SHE. Various degrees of polynomials were fitted to the shockwave equation 

and compared to find the absolute best fit, regardless of the degree. The result was a 11
th
 degree 

polynomial for both  (  ) and  (  ). 

2.3.3 Verification of Operation 

In order to verify operation of the method before time and money were invested into a 

physical module, a full MATLAB simulation of the system was created. The script used can be 

found in Appendix A. A sample space of 100,000 samples between 0 and    was used in so that 

the switching angles would be reasonably precise. The frequency modulation ratio was set at 

mf = 11 and the amplitude modulation ratio was set at ma =  0.9. 

 Figure 5 shows the results of the simulation. The blue waveform is the desired output 

sinusoid. That sinusoidal waveform is compared with the modified carrier waveform which is the 

colored in green. Finally, the output PWM waveform is generated in red. 
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Figure 5: MHBE Simulation 

 Figure 6 shows the PWM output waveform processed through MATLAB’s FFT function 

represented in a stem plot. The spectrum confirms that the proposed method eliminates the 

specified number of harmonics. The fundamental component has the correct amplitude of 0.9. 

The harmonics 2-10 are extremely close to zero and can be considered to be negligible. There are 

minor differences from the ideal spectrum. 
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Figure 6: MHBE Simulation Spectrum

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1
|P

|

0 5 10 15 20 25 30 35 40 45 50
-100

-50

0

50

100



16 

Chapter 3  
 

Module Design 

The advantage of the MHBE method of SHE is that the calculations are relatively simple 

and can therefore be performed by lower power devices. In order to prove this concept and 

provide a base for further development of the method, a microcontroller module was created. 

3.1 Design Goals 

The goal of the physical module implementation is to demonstrate that the method can be 

implemented on a relatively low power device without the assistance of an offline computer. The 

device needed to be low cost because of funding constraints and to prove that the method could 

be practical. In addition to being low cost, the module needed to independently perform all 

calculations on-the-fly in order to support changes in system parameters. Finally, the module 

needed to exhibit an output waveform with a spectrum close to that of the simulations to 

demonstrate that low order harmonics could be eliminated.

3.2 Device Choice 

Taking all of the design goals into consideration, an Arduino Mega 2560 was selected as 

the controller of choice. The Arduino is an open source device that is relatively low cost at around 

$60 for the device and cables. It features a 16-MHz clock which is fast enough to allow for 

adequate resolution given the low switching speeds that the device is meant to work with. The 

Arduino Mega 2560 was selected as opposed to the other Arduino boards due to the higher 
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amount of RAM. The RAM usage of the MHBE implementation was unknown, so the 8 kB of 

SRAM allowed for more headroom, preventing potential problems. While there are other boards 

with more processing power and higher amounts of RAM, the Mega 2560 was a good 

compromise between cost and capability. 

3.3 MHBE C++ Algorithm 

3.3.1 Setup 

In order to minimize processing times and solve for more accurate switching times, a new 

algorithm for solving for switching angles was used. The method calculates the peaks of the 

modified carrier waveform based on a conventional triangle waveform offset by a set value. It 

uses a basic bisection search method to minimize an error function. The peaks are solved in order, 

and then the each intersection of the carrier and sinusoid is found using a similar bisection 

method. Once all of the switching angles are found for an entire period, they are stored in a 

separate array, which is used to assign the appropriate binary value to the output voltage for each 

time. The incremental switch times are then calculated and stored in another array so that the 

output had less processing to do. 

3.3.2 Timing and Output 

Because the Arduino PWM did not support the functionality needed to create a variable 

PWM waveform with specified switching angles, the output waveform was hard coded using the 

internal timer functionality. Using one of the internal PWM timers with a resolution on the 

nanosecond scale, an interrupt was attached for the first incremental switching time. At each 
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interrupt, the timer is reset, the digital output was changed, and the next interrupt was attached. 

The process was looped such that the output was continuous.  

The selected Arduino lacked a negative digital output required for bipolar switching, so 

two digital outputs pins were used. At any given time, one pin is at logic level high and the other 

at low. Subtracting the two pins creates a positive and negative logic level based on the 

orientation of the connection.  

The Arduino code used in the MHBE module is included as Appendices B through E. 
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Chapter 4  
 

Results and Analysis 

The output of the Arduino based module was collected at various    values while 

maintaining an     value of 11. The base frequency was set at 60 Hz to simulate a typical North 

American ac line signal. 

 

Figure 7: Oscilloscope Capture of Arduino Output 

 Figure 7 shows an oscilloscope capture for an    value of 0.9. The yellow trace is the 

PWM output of the Arduino, and the purple trace is the FFT. Looking closely at the PWM trace, 

there was noise generated at the switching points and throughout the waveform as well. The noise 
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could have been a result of the Arduino power supply noise, because the Arduino was powered 

from a laptop USB port. These ports are generally very noisy and the noise might not have been 

filtered out completely. Another possibility is that the noise is a result of quantization issues that 

occurred during oscilloscope sampling.  

 The FFT performed by the oscilloscope (purple trace) was parameterized with a center 

frequency at 640 Hz and a span of 2 kHz using a Hanning window and a scale of 5 dB. The first 

peak was confirmed to be at 60 Hz by changing the center frequency to match the peak 

temporarily. The FFT clearly showed that there was a dip in harmonics between the center 

frequency at the 11
th
 harmonic and the fundamental frequency at 60 Hz. 

 The results for each     value were then taken from the oscilloscope with a sample size 

of 1,000,000 at 10 ms/ horizontal division and loaded into MATLAB for further analysis. The 

FFT was taken over one full period of the output waveform and scaled down to account for the 

5-V logic of the Arduino output.  
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Figure 8: Output Waveform and Spectrum for   = 0.9, Original   

 Figure 8 confirms that the harmonics between the fundamental and the 11
th
 harmonic 

were essentially eliminated. When compared with Figure 6, there are minor differences in the 

magnitude of the eliminated harmonics, but the overall shape is the same. These differences could 

be the result of the noise mentioned earlier. 
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Figure 9: Output Waveform and Spectrum for   = 0.9 Optimized   

 Figure 9 shows the Arduino output when the values for  (  ) and  (  ) were changed 

to the 11
th
 order best fit characterization of  ( ) described earlier. When compared to Figure 8, 

one noticeable difference is that the 10
th
 harmonic of the optimized waveform is lower. However, 

the unwanted harmonics before the 10
th
 are slightly higher in the optimized waveform, but only 

slightly. There is not enough of a difference between one fit of   and the other for one to be in 

absolute favor and the calculation differences were minimal. 
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Chapter 5  
 

Conclusions and Future Work 

 As a proof of concept for MHBE, the Arduino implementation alone is adequate. The 

output waveform showed that the unwanted harmonics were virtually eliminated. However, there 

were some inconsistencies between the MATLAB simulation and the measured output caused by 

noise in the system. Eliminating this noise would be the first priority for future work to see if the 

results can get any closer to the theoretical simulation using a physical implementation. A 

possibility for improvement is using an op amp comparator as a buffer to lock the output voltage 

to quantized levels, thus stabilizing the output waveform. A separate power supply for the 

Arduino could also yield improvements in the output. Being USB powered, noise was introduced 

into the system and the Arduino was limited in supply current. 

 Another area of exploration would be the output of the modified carrier waveform for use 

in direct modulation. While the implementation described in this thesis did the comparison of the 

carrier waveform and sinusoid, there may or may not be performance gains by using a physical 

comparator. However, because the Arduino selected did not have an analog output, it was not 

possible to implement this alternative method. 

 Derivation of the   parameters revealed that the given parameter values yielded 

deviations in   as    increased in value past 0.9. While an optimized polynomial fit was touched 

upon in this paper, the effects of different fits for   should be explored further. The shockwave 

equation seems to be a practical fit, but the spectrum of the output is still not exactly the same as 

the theoretical output spectrum for  conventional SHE. Other polynomial fits for the shockwave 

as well as a direct fit for   using a Fourier series analysis of the   curves are possibilities for 

future work. 
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 In terms of a SHE module, the project could explore the performance of other devices 

such as different microcontrollers as well as an FPGA implementation which were cost 

prohibitive for this paper. In addition controls for user input should be added as well as a display 

of current values for a true real-time module implementation. The module could then be 

connected to gate drives of a dc-to-ac inverter switching pole to implement a full system.
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Appendix A 

 

MHBE Verification MATLAB Script 

%% Definition of System Variables  
w = 1; %% Fundamental Frequency  
w_sw = 11; %% Base Switching Frequency  
M = 15; %% 15 or higher  
%M = 50;  
m_d = 1; %% Depth of Modulation: 0<= m_d <=1  
phi = 0; %% Phase Shift  
phi = pi/2;  

  
%% Define test cases.  
test = 0  

  
if  test == 0        % Figure 3 of [1]  
    m_d = 0.95;  
    m_d = 0.9  
elseif  test == 1    % Figure 4 of [1]  
    m_d = 1;  
    phi = pi/2;  
elseif  test == 2  
    m_d = 1;  
    phi = 0;  
end  

  
%t = linspace(0, 2*pi, 11000);  
t = linspace(0, 2*pi, 100000);  

  
%% Beta parameter functions  
sigma = ( - 0.1384.*(m_d).^3 + 0.1527.*(m_d).^2 -  0.01358.*(m_d) + 

0.0003431) ...  
        /((m_d).^3 -  1.948.*(m_d).^2 + 0.7006*m_d + 0.2491);  

  
G = - (0.9992.*(m_d).^4 -  2.399.*(m_d).^3 + 1.426.*(m_d).^2 -  

0.02446.*(m_d) + 0.001842) ...  
        /((m_d).^2 - 2.124.*(m_d) + 1.125);  

  
%% Construct desired output waveform.  
m_t = m_d.*sin(w.*t);  
%m_t = m_d.*cos(w.*t);  

  
%% Beta parameter functions  
% syms n;  
% Beta = 

double(symsum(G.*besselj(n,n.*sigma)./(n.*sigma).*sin(2*n.*(w.*t+pi/2))

, n, 1, M));  
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Beta = zeros(s ize(t));  

  
for  n = 1:M  
    Beta = Beta ...  
            + G.*besselj(n,n.*sigma)./(n.*sigma).*sin(2*n.*(w.*t + 

pi/2));  
end  

  
%% Illustrate beta.  
figure(1)  
clf  

  
plot(t,Beta);  
ylabel( ' \ it \ beta \ rm' )  

  
%% Construct carrier signal.  
c = 1 -  2/pi.*acos( - cos(w_sw.*t + Beta + phi));  

  
%% Construct PWM signal.  
p_t = sign(m_t -  c);  

  
%% Illustrate desired output, carrier signal, and PWM signal.  
figure(2)  
clf  

  
hold on 

  
plot(t, m_t, t, c, t, p_t);  

  
xlim([0 2*pi])  
ylim([ - 2 2])  

  
pretty_xaxis_2pi  

  
%% Illustrate desired output, carrier signal, and PWM signal.  
figure(3)  
clf  

  
hold on 

  
plot(t, m_t, t, p_t);  

  
xlim([0 2*pi])  
ylim([ - 5 5])  

  
pretty_xaxis_2pi  

  
%% Construct spectrum of switching waveform.  
P_w = fft(p_t)*2/length(p_t);  

  
%% Illustrate spectrum.  
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figure(4)  
clf  

  
N = 50;  

  
subplot(2,1,1)  
stem(0:N, abs(P_w(1 + (0:N))));  

  
ylim([0, 1.1])  

  
ylabel( '|P|' )  

  
subplot(2,1,2)  
stem(0:N, 180/pi*angle(P_w(1 + (0:N))));  
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Appendix B 

 

Arduino C++ Main Source Code 

#include "Bessel.h"  

#include "TimerThree.h"  

 

const double pi = 3.14159265359;  

const int arraySize = 100;  

int arrayFilled;  

double switchTimes[arraySize]; // Seconds  

double incrementalTimes[arraySize]; // Microseconds  

double vo[arraySize]; // 1 = 1, 0 = - 1 

int count = 0;  

const double to l = 1e - 6;  

double f=60;  

double m_a = .9;  

double w0 = 2 * pi * f;  

double mf = 11;  

double phc = 0;  

int M = 15;  

int maxTries = 100;  

int offset = 0;  

 

double funcSigma();  

double funcG();  

double funcBeta(double);  

double funcCarrier(double);  

double solveTime(doubl e, double);  

double solvePeak(double, double, int);  

 

void setup()  

{  

  Serial.begin(9600);  

   

  // Derived Parameters  

  // ------------------  

  double dlw0t = pi / mf;  

   

  // Initialize Array  

  // ----------------  

  for (int i=0; i<arraySize; i++)  

  {  

    switchTimes[i] = - 1;  

    vo[i] = 0;  

    incrementalTimes[i] = - 1;  
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  }  

   

  Serial.println("Arrays initialized");  

   

  // Extract phc/offset  

  // -------------------  

  phc = fmod(phc, (2 * pi));  

   

  if (phc < pi)  

    offset = 0;  

  else  

  {  

    phc = phc -  (2 * pi);  

    offset = - 1;  

  }  

   

  // Find each switch time  

  // -------------------------  

  Serial.println("Finding switching times");  

   

  double w0t = pi / mf * (offset -  phc / pi);  

 

  double w0t1 = w0t -  1/mf * funcBeta(w0t) -  dlw0t / 8;  

  double w0t2 = w0t -  1/mf * funcBeta(w0t) + dlw0t / 8;  

  double w0t_a = solvePeak(w0t1,w0t2, 0);  

  double w0t_b;  

   

  for(int i=1; i <= 2 * mf; i++)  

  {  

    w0t = pi / mf * (i + offset -  phc / pi);  

     

    w0t1 = w0t -  1/mf * funcBeta(w0t) -  dlw0t/4;  

    w0t2 = w0t -  1/mf * funcBeta(w0t) + dlw0t/4;  

      

    w0t_b = solvePeak(w0t1,w0t2,i);  

         

    w0t1 = w0t_a + dlw0t/100;  

    w0t2 = w0t_b -  dlw0t/100;  

     

    switchTimes[i - 1] = solveTime(w0t1,w0t2);  

     

    w0t_a = w0t_b;  

    Serial.print(i);  

    Serial.print(" Times Solved \ n");  

  }  

   

  // Adjustments to ends of array  

  // Set first entry  

  if (switchTimes[0] < 0)  

    switchTimes[0] = 0;  
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  else  

  {  

    if (switchTimes[0] < 10 * tol)  

      switchTimes[0] = 0;  

    else  

    {  

      for(int i=arra ySize - 1; i>0; i -- )  

      {  

        switchTimes[i] = switchTimes[i - 1];  

      }  

      switchTimes[0] = 0;  

    }  

  }  

   

  // Set end to 2 pi.  

  for (int i=0; i<arraySize; i++)  

  {  

    if ((switchTimes[i+1] == - 1) && (switchTimes[i] < 2 * pi))  

    {  

      switchTimes[i+1] = 2 * pi;  

      arrayFilled = i+1;  

      break;  

    }  

  }  

   

  // Find vo and create incremental switch times  

  // -------------------------------------------  

  for (int i=0; i<arrayFilled; i++)  

  {  

    w0t = 0.5 * (switchTimes[i] + switchTimes[i+1]);  

    vo[i] = (m_a * sin(w0t)) > funcCarrier(w0t);  

     

    incrementalTimes[i+1] = (switchTimes[i+1] - switchTimes[i])/w0 

* 1e6;  

  }  

   

  // Adjust ends of arrays  

  incrementalTimes[0] = switchTimes[0]/w0 * 1e6;  

  vo[arrayFilled] = vo[array Filled - 1];  

   

  Serial.println("Arrays adjusted and vo found");  

  

  Serial.println(" \ nArray Values");  

  Serial.print("Switching times, Increment times, vo \ n");  

  for (int i=0; i<=arrayFilled; i++)  

  {  

    Serial.print(switchTimes[i],4);  

    Serial.print(", ");  

    Serial.print(incrementalTimes[i]);  

    Serial.print(", ");  
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    Serial.print(vo[i]);  

    Serial.print(" \ n");  

  }  

  // Setup Timer  

  // ----------------------------------  

  Serial.println("Starting Timer...");  

   

  pinMode(10, OUT PUT);  

  pinMode(9, OUTPUT);  

   

  Timer3.initialize(2 * pi / w0 * 1e6);  

  Timer3.attachInterrupt(callback, incrementalTimes[count]);  

}  

 

void callback()  

{  

  // digitalWrite(10, vo[count]);  

  // digitalWrite(9, !vo[count]);  

   

  if (vo[count])  

  {  

    PORTB | = _BV(PB4);  

    PORTH &= ~_BV(PH6);  

  }  

  else  

  {  

    PORTB &= ~_BV(PB4);  

    PORTH |= _BV(PH6);  

  }  

   

  if (count==arrayFilled)  

  {  

    count = 0;  

  }  

  else  

  {  

    count++;  

  }  

   

  Timer3.attachInterrupt(callback, incrementalTimes[count]);  

}  

 

void loop()  

{  

}  

 

// Function Definitions  

// --------------------  

 

// Returns Beta Parameter Sigma  
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double funcSigma()  

{  

  // Best fit  

  /*  

  return (.0081*pow(m_a, 12) - .0479*pow(m_a, 11)+.1118*pow(m_a, 

10) - .1342*pow(m_a, 9)+.0885*pow(m_a, 8)  

  - .0311*pow(m_a, 7)+.0047*pow(m_a, 6)+.0001*pow(m_a, 5) -

.0001*pow(m_a, 4))/(.0814*pow(m_a, 10) - .4176*pow(m_a, 9)  

  +.8851*pow(m_a, 8) - pow(m_a, 7)+.6476*pow(m_a, 6) - .2404*pow(m_a, 

5)+.0481*pow(m_a, 4) - .0045*pow(m_a, 3)+.0001*pow(m_a, 1));  

  */  

   

  // Orig inal  

  return ( - .1384*pow(m_a, 3)+.1527*pow(m_a, 2) -

.01358*(m_a)+.0003431)/(pow(m_a,3) - 1.948*pow(m_a, 

2)+.7006*m_a+.2491);  

}  

 

// Returns Beta parameter G  

double funcG()  

{  

  // Best fit  

  /*  

  return (.0832*pow(m_a, 12) - .4723*pow(m_a, 11)+1.1263*pow(m_a, 

10) - 1.464*pow(m_a, 9)+1.1253*pow(m_a, 8) - .5188*pow(m_a, 7)  

  +.1388*pow(m_a, 6) - .0198*pow(m_a, 5)+.0013*pow(m_a, 

4))/(.0240*pow(m_a, 12) - .1418*pow(m_a, 11)+.2833*pow(m_a, 10)  

  - .0902*pow(m_a, 9) - .5332*pow(m_a, 8)+pow(m_a, 7) - .8557*pow(m_a, 

6)+.4097*pow(m_a,  5) - .111*pow(m_a, 4)+.0159*pow(m_a, 3)  

  - .001*pow(m_a, 2));  

  */  

   

  // Original  

  return - (.9992*pow(m_a, 4) - 2.399*pow(m_a, 3)+1.426*pow(m_a, 2) -

.02446*(m_a)+.001842)/(pow(m_a, 2) - 2.124*(m_a)+1.125);  

}  

 

// Returns instantaneous value of Beta  

double func Beta(double w0t)  

{  

  double sig = funcSigma();  

  double G = funcG();  

  double Beta = 0;  

   

  for (int n=1; n<=M; n++)  

  {  

    Beta += G * bessj(n,n * sig) / (n * sig) * sin(2 * n * (w0t + 

pi / 2));  

  }  
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  return Beta;  

}  

 

// Returns instantaneous value of  the carrier waveform  

double funcCarrier(double w0t)  

{  

  return 1 -  2 / pi * acos( - cos(mf * w0t + funcBeta(w0t)+phc));  

}  

 

// Implementation of bisection method to solve for single 

switching time  

double solveTime(double w0t1, double w0t2)  

{  

  double w0t3; // Midpoint  

  double fVal_w0t1;  

  double fVal_w0t3;  

  for(int i=0; i<maxTries; i++)  

  {  

    w0t3 = (w0t1 + w0t2)/2;  

    fVal_w0t1 = m_a * sin(w0t1) -  funcCarrier(w0t1);  

    fVal_w0t3 = m_a * sin(w0t3) -  funcCarrier(w0t3);  

     

    if (fVal_w0t3 == 0 || (w0t2 - w0t1)/2 < tol) // Solution Found  

      return w0t3;  

       

    if ((fVal_w0t3 < 0 && fVal_w0t1 <0) || (fVal_w0t3 > 0 && 

fVal_w0t1 >0))  

      w0t1 = w0t3;  

    else  

      w0t2 = w0t3;  

  }  

  return 4;  

  // Failed to find in max  tries  

}  

 

// Solves for peak value  

double solvePeak(double w0t1, double w0t2, int n)  

{  

  double w0t3; // Midpoint  

  double fVal_w0t1;  

  double fVal_w0t3;  

  for(int i=0; i<maxTries; i++)  

  {  

    w0t3 = (w0t1 + w0t2)/2;  

    fVal_w0t1 = mf * w0t1 + funcBeta(w 0t1) + phc -  (n + offset) * 

pi;  

    fVal_w0t3 = mf * w0t3 + funcBeta(w0t3) + phc -  (n + offset) * 

pi;  

     

    if (fVal_w0t3 == 0 || (w0t2 - w0t1)/2 < tol) // Solution Found  
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      return w0t3;  

       

    if ((fVal_w0t3 < 0 && fVal_w0t1 <0) || (fVal_w0t3 > 0 && 

fVal_w0t1 >0))  

      w0t1 = w0t3;  

    else  

      w0t2 = w0t3;  

  }  

  return - 8;  

  // Failed to find in max tries  

}
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Appendix C 

 

Arduino C++ Bessel.h 

/* Sourced  from 

http://www.atnf.csiro.au/computing/software/gipsy/sub/bessel.c */  

 

/* bessel.c  

                      Copyright (c) 1998  

                  Kapteyn Institute Groningen  

                     All Rights Reserved.  

*/  

 

#include     "math.h"  

 

#define ACC 40.0  

#define BIGNO 1.0e10  

#define BIGNI 1.0e - 10 

 

static double bessj0( double x )  

/* ------------------------------------------------------------ */  

/* PURPOSE: Evaluate Bessel function of first kind and order  */  

/*          0 at input x                                      */  

/* ------------------------------------------------------------ */  

{  

   double ax,z;  

   double xx,y,ans,ans1,ans2;  

 

   if ((ax=fabs(x)) < 8.0) {  

      y=x*x ;  

      ans1=57568490574.0+y*( - 13362590354.0+y*(651619640.7  

         +y*( - 11214424.18+y*(77392.33017+y*( - 184.9052456)))));  

      ans2=57568490411.0+y*(1029532985.0+y*(9494680.718  

         +y*(59272.64853+y*(267.8532712+y*1.0))));  

      ans=ans1/ans2;  

   } else {  

      z=8.0/ax;  

      y=z*z;  

      xx=ax - 0.785398164;  

      ans1=1.0+y*( - 0.1098628627e - 2+y*(0.2734510407e - 4 

         +y*( - 0.2073370639e - 5+y*0.2093887211e - 6)));  

      ans2 = - 0.1562499995e - 1+y*(0.1430488765e - 3 

         +y*( - 0.6911147651e - 5+y*(0. 7621095161e - 6 

         - y*0.934935152e - 7)));  

      ans=sqrt(0.636619772/ax)*(cos(xx)*ans1 - z*sin(xx)*ans2);  

   }  

   return ans;  

}  

 

http://www.atnf.csiro.au/computing/software/gipsy/sub/bessel.c%20*/


36 

 

static double bessj1( double x )  

/* ------------------------------------------------------------ */  

/* PURPOSE: Evaluate Bessel  function of first kind and order  */  

/*          1 at input x                                      */  

/* ------------------------------------------------------------ */  

{  

   double ax,z;  

   double xx,y,ans,ans1,ans2;  

 

   if ((ax=fabs(x)) < 8.0) {  

      y=x* x;  

      ans1=x*(72362614232.0+y*( - 7895059235.0+y*(242396853.1  

         +y*( - 2972611.439+y*(15704.48260+y*( - 30.16036606))))));  

      ans2=144725228442.0+y*(2300535178.0+y*(18583304.74  

         +y*(99447.43394+y*(376.9991397+y*1.0))));  

      ans=ans1/ans2;  

   } else {  

      z=8.0/ax;  

      y=z*z;  

      xx=ax - 2.356194491;  

      ans1=1.0+y*(0.183105e - 2+y*( - 0.3516396496e - 4 

         +y*(0.2457520174e - 5+y*( - 0.240337019e - 6))));  

      ans2=0.04687499995+y*( - 0.2002690873e - 3 

         +y*(0.8449199096e - 5+y*( - 0.8822898 7e- 6 

         +y*0.105787412e - 6)));  

      ans=sqrt(0.636619772/ax)*(cos(xx)*ans1 - z*sin(xx)*ans2);  

      if (x < 0.0) ans = - ans;  

   }  

   return ans;  

}  

 

double bessj( int n, double x )  

/* ------------------------------------------------------------ */  

/* PURP OSE: Evaluate Bessel function of first kind and order  */  

/*          n at input x                                      */  

/* The function can also be called for n = 0 and n = 1.       */  

/* ------------------------------------------------------------ */  

{  

   int    j, jsum, m;  

   double ax, bj, bjm, bjp, sum, tox, ans;  

    

   ax=fabs(x);  

   if (n == 0)  

      return( bessj0(ax) );  

   if (n == 1)  

      return( bessj1(ax) );  

       

 

   if (ax == 0.0)  
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      return 0.0;  

   else if (ax > (double) n) {  

      tox=2.0/ax;  

      bjm=bessj0(ax);  

      bj=bessj1(ax);  

      for (j=1;j<n;j++) {  

         bjp=j*tox*bj - bjm;  

         bjm=bj;  

         bj=bjp;  

      }  

      ans=bj;  

   } else {  

      tox=2.0/ax;  

      m=2*((n+(int) sqrt(ACC*n))/2);  

      jsum=0;  

      bjp=ans=sum=0.0;  

      bj=1.0;  

      for (j=m;j>0;j -- ) {  

         bjm=j*tox*bj - bjp;  

         bjp=bj;  

         bj=bjm;  

         if (fabs(bj) > BIGNO) {  

            bj *= BIGNI;  

            bjp *= BIGNI;  

            ans *= BIGNI;  

            sum *= BIGNI;  

         }  

         if (jsum) sum += bj;  

         jsum=!jsum;  

         if (j == n) ans=bjp;  

      }  

      sum=2.0*sum - bj;  

      ans /= sum;  

   }  

   return  x < 0.0 && n%2 == 1 ? - ans : ans;  

}  

 

#undef ACC  

#undef BIGNO  

#undef BIGNI  
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Appendix D 

 

Arduino C++ TimerThree.h 

/*  

 *  Interrupt and PWM utilities for 16 bit Timer3 on 

ATmega168/328  

 *  Original code by Jesse Tane for http://labs.ideo.com August 

2008  

 *  Modified March 2009 by Jérôme Despatis and Jesse Tane for 

ATmega328 support  

 *  Modified June 2009 by Michael Polli and Jesse Tane to fix a 

bug in setPeriod() which caused the timer to stop  

 *  

 *  This is free software. You can redistribute it and/or modify 

it under  

 *  the terms of Creative Commons Attribution 3.0 United States 

License.  

 *  To view a copy of this license, visit 

http://creativecommons.org/licenses/by/3.0/us/  

 *  or send a letter to Creative Commons, 171 Second Street, 

Suite 300, San Francisco, California, 94105, USA.  

 *  

 */  

 

#include <avr/io.h>  

#include <avr/inte rrupt.h>  

 

#define RESOLUTION 65536    // Timer3 is 16 bit  

 

class TimerThree  

{  

  public:  

   

    // properties  

    unsigned int pwmPeriod;  

    unsigned char clockSelectBits;  

 

    // methods  

    void initialize(long microseconds=1000000);  

    void start();  

    void stop();  

    void restart();  

    void pwm(char pin, int duty, long microseconds= - 1);  

    void disablePwm(char pin);  

    void attachInterrupt(void (*isr)(), long microseconds= - 1);  

    void detachInterrupt();  

    void setPeriod(long microseconds);  

    void setPwmDuty(char pin, int duty);  
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    void (*isrCallback)();  

};  

 

extern TimerThree Timer3;  
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Appendix E 

 

Arduino C++ TimerThree.cpp 

/*  

 *  Interrupt and PWM utilities for 16 bit Timer3 on 

ATmega168/328  

 *  Original code by Jesse Tane for http://labs.ideo.com August 

2008  

 *  Modified March 2009 by Jérôme Despatis and Jesse Tane for 

ATmega328 support  

 *  Modified June 2009 by Michael Polli and Jesse Tane to fix a 

bug in setPeriod() which caused the timer t o stop  

 *  Modified Oct 2009 by Dan Clemens to work with timer3 of the 

ATMega1280 or Arduino Mega  

 *  

 *  This is free software. You can redistribute it and/or modify 

it under  

 *  the terms of Creative Commons Attribution 3.0 United States 

License.  

 *  To view a copy of this license, visit 

http://creativecommons.org/licenses/by/3.0/us/  

 *  or send a letter to Creative Commons, 171 Second Street, 

Suite 300, San Francisco, California, 94105, USA.  

 *  

 */  

 

#include "TimerThree.h"  

 

TimerThree Timer3;              // preinstatiate  

 

ISR(TIMER3_OVF_vect)          // interrupt service routine that 

wraps a user defined function supplied by attachInterrupt  

{  

  Timer3.isrCallback();  

}  

 

void TimerThree::initialize(long microseconds)  

{  

  TCCR3A = 0;                 // cl ear control register A  

  TCCR3B = _BV(WGM13);        // set mode as phase and frequency 

correct pwm, stop the timer  

  setPeriod(microseconds);  

}  

 

void TimerThree::setPeriod(long microseconds)  

{  
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  long cycles = (F_CPU * microseconds) / 2000000;                                

// the counter runs backwards after TOP, interrupt is at BOTTOM 

so divide microseconds by 2  

  if(cycles < RESOLUTION)              clockSelectBits = 

_BV(CS10);              // no prescale, full xtal  

  else if((cycles >>= 3) < RESOLUTION ) clockSelectBits = 

_BV(CS11);              // prescale by /8  

  else if((cycles >>= 3) < RESOLUTION) clockSelectBits = 

_BV(CS11) | _BV(CS10);  // prescale by /64  

  else if((cycles >>= 2) < RESOLUTION) clockSelectBits = 

_BV(CS12);              // prescale b y /256  

  else if((cycles >>= 2) < RESOLUTION) clockSelectBits = 

_BV(CS12) | _BV(CS10);  // prescale by /1024  

  else        cycles = RESOLUTION -  1, clockSelectBits = 

_BV(CS12) | _BV(CS10);  // request was out of bounds, set as 

maximum 

  ICR3 = pwmPeriod = cycles;                                                     

// ICR1 is TOP in p & f correct pwm mode  

  TCCR3B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));  

  TCCR3B |= clockSelectBits;                                                     

// reset clock select register  

}  

 

void TimerThree::setPwmDuty(char pin, int duty)  

{  

  unsigned long dutyCycle = pwmPeriod;  

  dutyCycle *= duty;  

  dutyCycle >>= 10;  

  if(pin == 5) OCR3A = dutyCycle;  

  if(pin == 2) OCR3B = dutyCycle;  

  if(pin == 3) OCR3C = dutyCycle;  

}  

 

void TimerThree::pwm(char pin, int duty, long microseconds)  // 

expects duty cycle to be 10 bit (1024)  

{  

  if(microseconds > 0) setPeriod(microseconds);  

   

 // sets data direction register for pwm output pin  

 // activat es the output pin  

  if(pin == 5) { DDRE |= _BV(PORTE3); TCCR3A |= _BV(COM3A1); }  

  if(pin == 2) { DDRE |= _BV(PORTE4); TCCR3A |= _BV(COM3B1); }  

  if(pin == 3) { DDRE |= _BV(PORTE5); TCCR3A |= _BV(COM3C1); }  

  setPwmDuty(pin, duty);  

  start();  

}  

 

void TimerThree::disablePwm(char pin)  

{  
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  if(pin == 5) TCCR3A &= ~_BV(COM3A1);   // clear the bit that 

enables pwm on PE3  

  if(pin == 2) TCCR3A &= ~_BV(COM3B1);   // clear the bit that 

enables pwm on PE4  

  if(pin == 3) TCCR3A &= ~_BV(COM3C1);   // clear the bit  that 

enables pwm on PE5  

}  

 

void TimerThree::attachInterrupt(void (*isr)(), long 

microseconds)  

{  

  if(microseconds > 0) setPeriod(microseconds);  

  isrCallback = isr;                                       // 

register the user's callback with the real ISR  

  TIMSK3 = _BV(TOIE1);                                     // 

sets the timer overflow interrupt enable bit  

  sei();                                                   // 

ensures that interrupts are globally enabled  

  start();  

}  

 

void TimerThree::detachInterru pt()  

{  

  TIMSK3 &= ~_BV(TOIE1);                                   // 

clears the timer overflow interrupt enable bit  

}  

 

void TimerThree::start()  

{  

  TCCR3B |= clockSelectBits;  

}  

 

void TimerThree::stop()  

{  

  TCCR3B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));          // 

clears all clock selects bits  

}  

 

void TimerThree::restart()  

{  

  TCNT3 = 0;  

}  
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Appendix E 

 

Other Arduino Output Waveforms 

 

Figure 10: Output Waveform and Spectrum for   = 0.5, Original   
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Figure 11: Output Waveform and Spectrum for   = 1.0, Original  
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