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ABSTRACT 
 

Fishbone wellbores are a type of multi-lateral wellbore structure that can be applied 

to unconventional natural gas reserves such as tight gas sands and shale gas reservoirs to 

increase natural gas production and make the development of natural gas plays plausible in 

otherwise uneconomic conditions. 

This study is aimed at developing an artificial neural network tool to forecast 

monthly production data for fishbone type wellbores in tight gas sand formation. Reservoir, 

fluid, and wellbore parameters, as well as their resulting monthly production data 

generated with reservoir simulation software, are used to train the ANN model. The 

resulting model is able to predict a combination of outputs for any parameter combination 

within the range of training. 

Three neural network structures will be designed. The first, described above, is a 

typical reservoir depletion study, with reservoir rock and fluid parameters known along 

with an existing wellbore geometry. In this case, monthly production data will be predicted 

by the neural network tool. The second structure will focus on wellbore geometry 

optimization, with reservoir rock and fluid parameters known, along with a desired 

production target. In this second case, possible wellbore geometry to yield aforementioned 

production targets will be predicted by the tool. In the final case, a formation test 

application, a known wellbore geometry along with early production data will be provided 

as known inputs to the tool. The tool will predict possible reservoir rock and fluid 

properties responsible for the given production data.   
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Chapter 1  
 

Introduction 

Natural gas plays are one of the primary frontiers of the petroleum and natural gas 

industry. Natural gas itself is used commercially and domestically for energy and heat. 

There are other technically advanced applications coming to the market including 

liquefaction to LNG (liquefied natural gas), as well as gas-to-liquids projects in which 

natural gas can be converted to produce liquid petroleum products [13]. However, at the 

present, natural gas prices in the U.S. are depressed, and conventional natural gas recovery 

through horizontal wellbores is largely un-economic. Limited upside price potential [6] has 

somewhat limited the development of these unconventional plays. However, new 

technology is in existence, including massive slickwater fracturing [8] and multilateral 

fishbone wellbores [4], that are able to increase production from natural gas formations and 

therefore induce the plausibility of further development of these natural gas plays.  

This paper will focus on reservoir development studies of multilateral fishbone type 

wellbores in tight gas formations. Traditional reservoir studies for observation of reservoir 

pressure depletion and infill drilling potential are time consuming and tedious, and must be 

repeated at multiple stages in the development of the reservoir. A new type of study will be 

explored in which an artificial neural network is trained based on a wide range of reservoir 

rock, fluid, and wellbore geometry parameters. After the successful training of the network 

based on real production simulation data, the tool will offer a fast, convenient way of 

gauging development progress, analyzing the pressure profile in the reservoir, and 

suggesting possible wellbore geometry and parameters in the case of infill drilling.  
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The concept of applying a neural network to hydrocarbon recovery has been proven 

by multiple previous studies [1] [2] [15], specifically by using a back propagation network 

with conjugate gradient training algorithms. The neural network structure is widely 

versatile, and can be applied to any problem in which there inputs and outputs.  

The neural network is a model in which the system will “learn by example”, and can 

be trained by a variety of inputs and outputs [14]. The network will self-adapt, and 

modification of parameters within the network will allow the accurate reproduction of 

outputs with the given inputs. After this stage, the network can be provided any inputs 

within its range of training, and the network will generate the respective outputs. In this 

study, inputs and outputs to the network system will include reservoir rock and fluid 

properties, wellbore geometry information, as well as daily production data for nine years 

of natural gas production, in intervals of 30 days.  

A similar study has been conducted by Burak Kulga [2], in which a neural network 

system was applied to predict monthly production data from tight gas sand systems with 

multiple hydraulic fractures. This study will continue further in this line of research, again 

applying the neural network system to tight gas sand reservoirs, however, this time 

containing fishbone multilateral wellbores. This study will extend this concept further, by 

not only predicting monthly gas production, but also allowing the determination of 

reservoir formation and fluid parameters, as well as the determination of appropriate 

wellbore geometry selection for required gas production.  
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Problem Statement 

In a natural gas recovery problem such as this, there are three major factors 

controlling the system. The first being reservoir parameters, including rock and fluid 

properties downhole. The second aspect of the problem includes wellbore geometry. 

Parameters of wellbore data include length of the wellbore, any multilateral branches, and 

subsequent lengths. Finally, the output of these two principle variables would be the final 

facet of the problem, that is, the gas production of the system.  

Neural Network Structure A 

The first neural network structure will attempt to model a typical reservoir 

development study scheme, in which a series of formation evaluation has been performed, 

to allow for the understanding of formation rock and fluid parameters. In addition, wellbore 

geometry has been determined and drilled. This network will take these two series of 

inputs, and will output the predicted daily gas production for nine years of natural gas 

production in monthly intervals.  

 

Figure 1-1 Network Structure A Schematic 
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Neural Network Structure B 

The second network architecture will attempt to represent a well-testing and 

formation evaluation scenario. This case will serve as an inverse case to the previous 

network structure A. In this case, a wellbore structure is in place and is producing natural 

gas. Production data has been captured and tabulated. From these two series of inputs, a 

network will be trained to yield formation characteristics that would satisfy the 

aforementioned gas rates with the given wellbore geometry. Resulting data would allow for 

characterization of the formation. Results of this study would allow for planning and 

modeling of further development and depletion of the field.  

 

Figure 1-2 Network Structure B Schematic 
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Neural Network Structure C 

The third neural network structure is another replication of the inverse to network 

structure A. However, in this third network structure, the two known inputs to the problem 

will include monthly production data over the nine years of natural gas production, along 

with a suite of reservoir formation evaluation data including rock and fluid properties. The 

output of the network will be an effective design for a horizontal wellbore with a number of 

lateral branches, that will be able to meet the respective production rates with the given 

reservoir rock and fluid parameters presented to the network.  

 

Figure 1-3 Network Structure C Schematic 
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Chapter 2  
 

Literature Review 

Unconventional Gas Reservoirs 

Law and Curtis (2002) have defined tight gas reservoir as having a permeability of 

less than 0.1 millidarcies [6], with an effective gas permeability, on average, of less than 0.6 

millidarcies [7]. Pores are connected irregularly, resulting in very low, if any, rates of gas 

flow [8]. Special methods are therefore required for production of gas from this type of 

reservoir.  Tight gas sands often have very high stresses, due to great burial depth; 

therefore, tight gas reservoirs are often diagenetically transformed from their initial state at 

the time of deposition [8].  

It is generally known that tight reservoirs cannot be produced economically without 

stimulation, such as massive slickwater hydraulic fracturing [6]. 

Initial production will typically be quite high and notice a steep decline, after which, 

follows a stable production period (with a low rate of decline), that may endure for years 

and even decades [8]. Water saturation has a large effect on gas permeability in tight gas 

reservoirs. At 50% water saturation, gas permeability is “significantly reduced”. At water 

saturations higher than this, there is minimal to no gas permeability [8].  

The large volume and areal extent, as well as declining amount of conventional plays 

in the world today make unconventional plays, including tight gas reservoirs, a very 

attractive option. The low carbon impact of natural gas is another factor encouraging the 

leap into unconventional resources including natural gas [8]. An important current-day 

limitation on unconventional natural gas play development is the limited upside potential 

for the price of natural gas [6]. Therefore, the key aspect in the delineation between 
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successful unconventional gas reservoir exploitation and exceeded costs is in maximal 

recovery with minimal economic footprint. Technologies such as horizontal wellbores, 

massive slickwater hydraulic fracturing, and multi-lateral wellbores have changed the 

outlook on the economic feasibility of unconventional resources.  

Horizontal Wellbores 

A horizontal wellbore has three distinct features. It has a vertical section that will 

extend from surface to just above the formation of interest. It will then have a “kickoff 

point” and curve where the well will begin to deviate. The curve can have a radius of 

anywhere from 300 to 500 feet, with a final inclination of approximately 90 degrees, or 

running parallel within the reservoir. Finally, in the horizontal section of the wellbore, the 

well will extend horizontally through the reservoir, staying within the reservoir rock until 

the end of the wellbore is reached [10].  

The first horizontal well was drilling in Texas in 1929 [10], with other countries 

including China and the Soviet Union making similar attempts in the 1950’s [10]. The 

1980’s, however, is when horizontal wells began to be drilled in large quantities. This was 

due to the advancement of down hole mud motors, as well as down hole telemetry 

equipment. Currently, wells are being drilled with lateral lengths in excess of 8,000 feet. 

MWD and LWD tools have given operators the ability to more accurately stay within the 

target formation during drilling the lateral. Often, bottomhole assemblies will be configured 

with various down hole tools that are capable of measuring bottomhole 

temperature/pressure, and other drilling parameters  such as weight on bit, rate of 

penetration, rotational torque, and so on.  
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Horizontal wells are more expensive to drill and complete than their vertical 

counterparts. However, in cases such as low matrix permeability, or water/gas coning is 

expected, horizontal drilling may be preferred or even required. For instance, such 

applications as shale gas in the Appalachian Basin require horizontal drilling to maintain 

profitable recovery of natural gas.  

 

Horizontal wellbores offer the following benefits [10, 13]: 

 Operators are able to develop a given reservoir with a smaller number of 

wells. This will translate to increased well spacing and fewer number of 

wells drilled. Due to increased surface area exposed to the target formation, 

a horizontal well is able to drain a significantly larger rock volume than a 

vertical well.  

 Horizontal wells may delay the onset o production problems that could spell 

low production rates 

 Horizontal wells may produce at 2.5 to 7 times the rate/reserves of vertical 

wells.  

 A well that is cased into the producing formation will allow a lower density 

mud wen drilling the lateral section.  

 

 



9 

Fishbone Wellbores 

Development of Tight Gas Reservoirs 

 

In the last twenty years, horizontal wellbores have become a well-established 

technology, and a commonly used method to develop tight gas reservoirs.  

In recent years, multilateral drilling technology has advanced enough to bring a new 

option to the table in economic tight gas reservoir development, termed fishbone well. A 

fishbone well is a multi-lateral well, with all laterals are placed in the same pay zone [3]. 

Therefore, the drainage area open to the formation is increased from the single wellbore 

running through the payzone,  to the main lateral in addition to the each of the branches 

diverging from the main lateral. Increased drainage area in fishbone wells has proved to 

allow high single well production rates and enhanced recovery [4]. 

Multi-lateral technology and fishbone wellbores are a new technology, and currently 

much focus is placed on the technological development of the multilateral well. Up to 1995, 

there were less than 50 multilateral wells. Since 1995, however, there have been hundreds 

drilled, and even more planned [5]. Multilateral wells are now possible due to advanced 

drilling technologies, including directional and horizontal drilling techniques, drilling 

equipment, and coiled tubing drilling [5]. Currently, multilateral completions is the 

bottleneck to multilateral development, with technology in this area yet to be fully explored 

and developed.  
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Multi-Lateral Wellbores and Fishbone Wellbores  

A multilateral well is “a single well with one or more wellbore branches radiating 

from the main borehole”, as defined by Schlumberger [5]. The world’s first multi-lateral 

well was drilled by a Soviet drilling engineer by the name of Alexander Grigoryan [5]. 

Following the idea that production will increase with increasing effective wellbore radius, 

Grigoryan postulated that a wellbore with many branches in the target formation would 

also increase surface area open to flow, and therefore increase production [5]. This was the 

first concept of the fishbone well. Grigoryan’s multilateral, named “Well 66/45”, performed 

extremely well. Well 66/45 had a main vertical wellbore drilled to 575 meters (1886 ft), 

after which, nine producing branches were drilled into the target formation, with individual 

branch lengths of 80 to 300 meters ( 260 to 1000 ft) [5]. Compared to other traditional 

vertical wells in the same field, Well 66/45 was able to contact over 5 times the pay 

thickness, and produced 17 times the amount of oil [5]. It was slightly more expensive, at 

about 1.5 times the cost of other wells in the area [5]. 

There exist two main types of multilateral wells. That is, vertical wells with various 

horizontal laterals extending into different reservoir layers; and horizontal well bores with 

horizontally spread laterals. Multilateral wells are classified based on “TAML”, “Technology 

Advancement for Multi-Laterals”, referring to the complexity of the branch junction [11, 4, 

5]. This rating systems features six levels, labeled ‘1’ through ‘6’, and additionally a ‘6S’ 

category. Level 1 represents an openhole main borehole, with an open and unsupported 

junction and branch [11, 4, 5]. Level 2 is for a wellbore with a cased and cemented main 

wellbore, with an openhole lateral (or with a slotted liner hong-off in the open hole). Level 3 

features a cased and cemented main wellbore, with a cased lateral, but not cemented. 

Lateral liner will be anchored to the main wellbore, but not cemented.  
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Level 4 will have a main wellbore and lateral both cased and cemented. In level 5, 

pressure integrity is maintained at the junction and through the lateral through the use of 

completion equipment. Level 6, junction has pressure integrity, with casing, no 

need/reliance on completion equipment. The subcategory level 6 features a downhole 

splitter that will divide the main wellbore into two laterals [11, 4, 5]. 

 

 

A fishbone well is a structure with a main horizontal wellbore, with horizontally 

spaced branches, or laterals, extending off in a tangential direction from the main wellbore. 

All the branches in a fishbone wellbore structure are intended to target one reservoir 

interval.  

The use of a fishbone wellbore structure allows [5]: 

 Increased Production Rates 

 Improved Hydrocarbon Recovery 

 Maximized Zonal Recovery 

 Reduced Drilling and Completions Costs 

Where fracture structure is unknown, a fishbone wellbore may increase chances of 

contacting and connecting natural fractures pre-existing in the rock formation [5].  

Fishbone Wellbore Parameters 

Later referenced in Chapter 5, fishbone wellbores have several critical parameters 

that can influence production rates, including branch number and branch deviation angle, 

branch length, and the distance between branches (referred to as branch spacing). A study 

done in optimization of fishbone wellbore parameters in thin layer fishbone wellbores 

observed that production rates will increase with increasing number of branches, however, 
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with a branch number greater than four, there is little additional benefit [12]. Every 

additional branch will incur additional drilling time and drilling cost, reducing possible 

benefits from increased production after completion of the well. Similarly, it was noted that 

production does not increase with a branch angle higher than about 30 degrees [12]. For 

both branch length and spacing between branches, the main factor dictating these 

parameters are safe well operation. An optimal branch length has been observed as 100 to 

200 m (330 ft to 660 ft), and an optimal well spacing of 80 to 150 m (250 to 500 ft) [12]. 

Artificial Neural Networks 

The lowest level and most fundamental building block of a neural network 

architecture is the concept of a neuron.  

To illustrate the architecture of the neuron, the one-input neuron should be 

considered. In this case, a single scalar input will be multiplied by a scalar weight. This 

product will be added to another input (in this case, 1) that is multiplied by a bias. 

Following, the sum of these two products will be input to a transfer function, which will 

output the output of the neuron/network. In this case, the bias and the weight are both 

adjustable parameters that will be alternated and modified as the network is trained, and 

can be adjusted according to a variety of user-selected learning rules [17]. The specific 

quantity of inputs and outputs provided to and from the network will be dependent on the 

external specifications of the problem [17]. Theoretically, any problem that has inputs and 

outputs can be described by a neural network architecture. In this problem, various 

reservoir and well parameters, as well as gas production rates output by the reservoir-well 

system, are conveniently described as inputs and outputs to the neural network. 
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Moving upwards in complexity from the single input neuron, next should be 

considered neurons with multiple inputs. In this case, each of the inputs will be multiplied 

by the weight, and added together along with the bias. This entire value will be sent to the 

transfer function, generating the output of the neuron [17]. The neuron output will again be 

a scalar. Addition of neurons would mean that the output of the network is no longer a 

scalar, but is instead a vector. In this case, multiple neurons on the same level is known as a 

‘layer’ of neurons. Here, every input will be sent to every neuron. That is to say, every input 

of the input matrix will be sent to each neuron. At the neuron, the values will be multiplied 

by the weight of the neuron, summed, and sent to the transfer function, after which will 

yield the output. There will be as many outputs to the network as there are neurons in the 

output layer.  

Additional layers can be added. Until this point, the network structure developed in 

this overview has included an input layer, as well as an output layer. This type of network, 

with a series, ‘layer’, of neurons is known as the Perceptron Network. Neural networks can 

also feature ‘hidden’ layers that will connect between the input matric and the output layer. 

In this way, the hidden layers’ outputs will never be seen by the network user, but will only 

effect the internal calculations performed by the network. This case will function in the 

same way as before. Each of the inputs will be sent to each of the neurons in the first layer. 

They will be operated on by the neurons, being multiplied by each neurons’ weight, as well 

as bias added after summation. Finally, this value is given as input to the transfer function, 

whose output consists of the output of the neuron. After all outputs are found, each of the 

outputs from every neuron are then sent as input to each of the neurons from the next layer. 

The process is repeated, with inputs being operated on by a new set of weights and biases, 
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and output generated by another transfer function. Finally, after an unknown, user-defined 

number of layers, the final output layer will be reached, and network outputs generated 

[17]. Multi-layer networks make for a large amount of creativity, design, and testing when it 

comes to network architecture. Networks with multiple layers are more powerful than 

networks of a single layer [17]. Able to have two different transfer functions, the 

opportunity to have a series of parameters able to be trained through learning rules 

(weights and biases), enables the network to have a better ability to learn and reproduce 

any given function. To increase accuracy and performance of the network, additional 

neurons may also be added. Additional neurons will provide the network with more 

flexibility, because it will have more parameters that it is able to optimize [16]. This type of 

network, with multiple layers of neurons with integrated operation is known as the Multiple 

Layer Perceptron (MLP) network [14]. 

Other types of networks include Radial Basis Function network, Kohonen’s Self-

Organizing Feature Map, ART – Adaptive Resonance Theory network, Hopfield network, 

BAM – Bidirectional Associative Memory network, Counter-Propagation network, and the 

Cognitron & Neo-Cognitron networks [14]. 

Transfer Functions 

The transfer function in a network will take the summation of the inputs and 

respective biases as an input, and the output of the function will be the output of the 

neuron. There are several types of transfer functions, which will each be discussed briefly 

[17]. 

 Hard Limit. With an input of less than zero, the function will output 0. With an input 

of greater than or equal to zero, the function will output 1. 

 ( )  {
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 Symmetrical Hard Limit. With an input of less than zero, a function value of -1 will 

be assigned. With an input of greater than or equal to zero, a function value of 1 will 

be assigned.  

  ( )  {
      
     

 

 Linear. With the linear transfer function, the function value will be equal to the input 

value.  

 ( )  {   

 Saturating Linear. With an input of less than zero, a function value of 0 will be 

assigned. With an input value greater than or equal to zero and less than or equal to 

one, a function value of the input value itself. With a function value of greater than 

one, a function value of one will be assigned.  

 ( )  {
             
       
                      

 

 

 Symmetric Saturating Linear. With an input of less than negative one, a function 

value of negative one will be output. For an input value of less than or equal 

negative one to a value of less than or equal to one, a function value of the input 

value itself will be output. For an input value of greater than one, a function value of 

one will be output.  

  

 ( )  {
                   
        
                          

 

 Log-Sigmoid. The Log-sigmoid transfer function will take the input value and 

contract its’ value to between zero and one.  

The log-sigmoid function is written as:  

  ( )   
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Where c is an arbitrary constant. As can be seen from the figure below, the value of c will 

determine the shape that the sigmoid will take. As can be seen from the figure, increasing values 

of c will cause the sigmoid function to closer and closer represent the step function.  

 

Figure 2-1 Log-Sigmoid Function 

 Hyperbolic Tangent Sigmoid. The tangent sigmoid transfer function is similar to the 

log-sigmoid transfer function, except that in this case, the output of the function will 

scale any given input to a value between negative one and one.  

The hyperbolic tangent-sigmoid transfer function is written as: 

  

      ( )   
       

       
 

Addition of a constant in from of the input variables will again, as stated with the 

log-sigmoid function, will influence the severity of the slope between negative one 

and one.  
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Figure 2-2 Tan-Sigmoid Function 

 Positive Linear. With an input of less than zero, the function value will be zero. With 

an input of greater than or equal to zero, a function value of the input itself will be 

output.  

 ( )  {
     
     

 

 

 Competitive. The competitive transfer function is a function that will compare 

values with other neurons in the same layer. For all neurons in a layer, the function 

will return a value of one for the neuron with the highest input value. For all other 

neurons, the function will return a value of zero.  

 ( )  {
                                    ( )
                               

 

 

 

This research will focus on specifically the log-sigmoid and tan-sigmoid transfer functions. 

For use with backpropagation networks, transfer functions must me differentiable [14]. As 

such, these two transfer functions lend themselves well to use with a backpropagation 

network.  



18 

Training 

After the network structure has been determined, training can begin, at which point 

the inputs will be given to the network, operated on, and output by the various neurons and 

layers of the network. A function, called the ‘performance function’ will allow the network, 

with the use of learning rules, to know to what extent to adjust the weights and biases of the 

neurons. 

Learning Rules 

As mentioned above, the weights and the biases of every neuron are modified 

through training according to a user-selected set of learning rules. That is, a learning rule is 

simply defined as a procedure for modifying the weights and biases of a network [17].  

There are three basic types of learning rules for neural networks, including 

supervised learning, reinforcement learning, and unsupervised learning [17]. In supervised 

learning, a training set is utilized to provide an example of proper network operation. 

Network outputs will be compared against the targets, and the network weights and biases 

will then be adjusted based on this comparison. Reinforcement learning is similar to 

supervised learning. However, in reinforcement learning, the network is not provided with 

a set of examples, but instead each output is provided with a grade of rating regarding 

network performance. From here, the network is able to update its weights and biases. In 

the final learning rule type, unsupervised learning, there is no ideal network output 

available. In this case, network weights and biases are solely modified based on inputs 

supplied to the network.  

Some important types of learning rules include Hebbian, Perceptron, Delta, Least 

Mean Square (Widrow-Hoff), Outstar (Grossberg), and Winner Takes All [14].  
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The backpropagation Algorithm 

Backpropagation algorithm will adjust the network’s weights and biases in the 

direction of steepest descent, which is the negative of the gradient [16]. In the 

backpropagation algorithm, computations will be performed backwards throughout the 

network, and is derived from the chain rule, calculus [16]. A single algorithm iteration can 

be written in the following fashion: 

              

Where    is representative of the weights and biases of the current iteration,    is 

representative of the learning rate of the algorithm, and    is the gradient of the current 

iteration. The algorithm can be implemented in one of two separate ways: batch mode, as 

well as incremental mode [16]. In batch mode, the entire training set will be applied to the 

network before the update of the weights and biases. In the incremental mode, however, 

gradient computation and weight update will take place after each and every input is 

submitted to the network.  

There are various other forms of backpropagation with faster training algorithms, 

and they include Variable Learning Rate, Resilient Backpropagation, Conjugate Gradient 

Algorithms, Quasi-Newton Algorithms, Levenberg-Marquardt, Reduced Memory Levenberg-

Marquardt [16]. This study will focus on the use of conjugate gradient algorithms. Previous 

studies done at The Pennsylvania State University [1] [2] [15] have suggested that 

significant results were achieved when using this training algorithm.  In the conjugate 

gradient training algorithm, searches are performed along the conjugate directions. This 

will yield a faster convergence [16] [17]. In the conjugate gradient training algorithm, the 

learning rate (which will be applied to control the length of the weight update) will be 
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adjusted during each individual iteration [16]. Conjugate Gradient Training Algorithm is 

comprised of four major different learning techniques: 

 Scaled Conjugate Gradient, trainscg 

This training algorthim combines portions of technique used for Levenberg-

Marquardt algorithm (specifically, the model-trust region approach), and 

applies it to the conjugate gradient approach. In the scaled conjugate 

gradient algorithm, no line search is performed for every iteration. However, 

it may take a larger number of iterations for convergance to be reached. 

There is a balance, however, because every iteration will be considerable 

shorter. The intense line search, repeated forevery iteration, will be avoided 

[16].  

 Fletcher-Reeves Update, traincgf 

In the Fletcher-Reeves Update training algorithm, searching is started at the 

negative of the gradient on the first iteration. That is,       . Afterwards, 

a line serach will be performed. This is to calculate the optimal distance to 

move in the search direction. After, in order to determine the next search 

direction, the newest steepest descent (negative of the gradient) is 

combined with the previous search direction [16]:  

               

For Fletcher-Reeves Update, the constant    is calculated as the ratio of the 

normal squared of the current gradient to the norm squared of the previous 

gradient [16]: 
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 Powell-Beale Restarts, traincgb 

In Powell-Beale Restarts, if the condition: |      |     |  |
 is fulfilled, the 

search direction will be reset to the negative of the gradient [16]. 

 Polak-Ribiere Update, traincgp 

In Polak-Ribiere Update, the search direction for every repetition of the 

algorithm is the same as in Fletcher-Reeves Update, as calculated by: 

               

However, the constant    will be calculated using the inner product of the 

previous gradient change,      , with the current gradient   , divided by 

the norm squared of the gradient of the previous iteration [16]: 
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Chapter 3  
 

Generation of Training, Validation, and Testing Sets 

 

Combinations of reservoir, fluid, and wellbore properties were generated using 

CMG®-IMEX® black-oil simulator. The following assumptions were utilized for initial 

reservoir conditions: 

 3 Dimensional Model  (three layer) 

 Square reservoir, non-uniform grid distribution 

 Dry Gas Reservoir 

 Oil and Gas Saturations both zero (So = 0; Sg = 0) 

 One horizontal well in the center of j direction 

 Production with specified pressure (Psf) 

Models 

In development of the ANN tool, two cases were selected. These two cases are a 

horizontal wellbore in a tight gas reservoir, containing no branches or fishbone-type well 

structure. The other case is horizontal wellbore in tight gas reservoir, containing a number 

of fishbone branches, with branches varying in length, number, and angle from the main 

lateral.
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Case One: Single Horizontal Wellbore in Tight Gas Reservoir  

For the development of a neural network tool for horizontal fishbone wellbores in 

tight gas reservoirs, a range of rock and fluid parameters were determined with the 

appropriate parameters to model a tight gas reservoir. MATLABTM was then utilized to 

generate various combinations of these parameters. 

In both cases, a number of assumptions were used in the development of the target 

tight gas reservoir. Two dimensional, square reservoirs, with non-uniform, dynamically 

sized gridblocks were modeled. The reservoir is a dry gas reservoir, with no oil saturation 

and connate water saturation. Table 5.1 contains the ranges of reservoir rock, fluid, and 

wellbore properties that were used to model all dry gas reservoirs for case one.  

 For case one, an important condition of parameter set generation was to limit 

wellbore length. Wellbore length was randomly generated from the parameters given below 

(from 1,000’ to 7,000’). But before the value was assigned, a check had to be employed to 

ascertain that wellbore length did not exceed the boundary length of the reservoir. The 

wellbore length maximum was set as 80 percent of total reservoir length. If the randomly 

generated value was less than this 80 percent value, it was accepted. However, if the code 

generated value did exceed this 80 percent limit, the wellbore length value was rejected and 

re-assigned as 80 percent of the reservoir grid block boundary length.  
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Table 3-1 Reservoir and Fluid Parameters, Case One 

 

 

 

 

 

 

  

Parameter Minimum 
Value 

Maximum 
Value 

Units 

Area (A) 100 1,000 Acres 

Thickness (h) 50 300 ft 

Matrix Permeability (k) 0.0001 0.1 md 

Porosity (φ) 5 20 % 

Reservoir Temperature (Ti) 100 300 °F 

Initial Reservoir Pressure (Pi ) 1000 7000 psia 

Specified Pressure (Psf) 14.7 0.5*Pi + 14.7 psia 

Horizontal Wellbore Length 
(Lwb) 

1,000 7,000 ft 

Gas Specific Gravity (γg) 0.6 0.8  
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Case Two: Multilateral Horizontal Wellbore in Tight Gas Reservoir with Fishbone 
Branches 

Case two is for a lateral wellbore with a varying number of fishbone branches 

drilled deviating laterally from the main wellbore. In this case, parameters Area (A), 

Thickness (h), permeability (k), porosity (φ), reservoir Temperature (Ti), Initial Reservoir 

Pressure (Pi), Specified Pressure (Psf), Horizontal Wellbore Length (Lwb), and Gas Specific 

Gravity (γg) were all held constant with the first case.  

 However, case two marks the addition of various parameters unique to the fishbone 

wellbore geometry. Chiefly among these are branch number (n), branch length (Lb), and 

angle of deviation from the main lateral (θ). The branch geometry will be fixed as a planar 

quadrilateral structure [4]. In this wellbore structure, the main wellbore lateral will extend 

laterally in the i-direction through the reservoir grid blocks in the center of the reservoir 

thickness (that is, layer 2 of three). In the fishbone well bore geometry, there are many 

parameters that will influence recovery from the reservoir. These parameters include 

number of branches, branch length, angle of branch deviation from main horizontal 

wellbore, and location of branch junction on the main horizontal wellbore (branch spacing). 

In this series of simulations, the following variables will be tested and controlled: branch 

number (0 to 2 branches), branch length (see Table 5.2 for parameter range specifications), 

and branch spacing on the main horizontal wellbore. The angle of branch deviation will 

remain constant at 45˚. This is due to the fact that a Cartesian grid block structure was 

imposed on the series of simulations performed in this research. Working under a time 

constraint, to maintain an acceptable speed of simulation execution, the grid block system 

was not developed at a fine enough resolution to allow the alteration of branch deviation 

angle.  
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In the parameter generation combination performed in MATLABTM, special 

consideration must be made for the dimensions of the branch geometry in relation to the 

area of the reservoir for the specific data set, as well as the wellbore length. In the 

MATLABTM coding procedure, code was developed to automatically orient the placement of 

the branches at a given distant from the beginning of the main horizontal wellbore.  

Branch length will be limited such as to not exceed the boundary of the reservoir. 

After random parameter assignment, a conditional parameter modification will trim the 

branch length such that it will end at the reservoir boundary, if it will originally exceed the 

reservoir boundary.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3-2 Reservoir, Fluid, and Wellbore Parameters, Case Two 

 

Parameter Minimum 
Value 

Maximum 
Value 

Units 

Area (A) 100 1,000 Acres 

Thickness (h) 50 300 ft 

Matrix Permeability (k) 0.0001 0.1 md 

Porosity (φ) 5 20 % 

Reservoir Temperature (Ti) 100 300 °F 

Initial Reservoir Pressure (Pi ) 1000 7000 psia 

Specified Pressure (Psf) 14.7 0.5*Pi + 14.7 psia 

Horizontal Wellbore Length 
(Lwb) 

1,000 7,000 ft 

Gas Specific Gravity (γg) 0.6 0.8  

Number of Branches (n) 1 2  

Branch Length ( Lb) 300 1000 ft 

Branch Spacing (x) 0.1*    0.8*    ft 

Branch Deviation Angle (θ) 45 ° 
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Data Set Simulation and Processing 

After the ranges of parameters for both cases were established, MATLABTM code was 

employed to create a number of sets to be used for training and testing of the neural 

network. A different code was then used to generate CMG input batch files, to be used in the 

batch simulation of the different reservoir condition cases generated by the input files. This 

code was designed to receive an input of the reservoir, fluid, and wellbore properties 

generated in previous code, and generate an output batch file to conduct simulations and 

obtain an output of monthly production data from CMG. Appendix A contains all code used 

during this procedure, as well as a sample batch file script used as an input in CMG IMEX in 

the simulation of reservoir depletion with the previously descripted reservoir, fluid, and 

well bore geometry parameters. 

 The outputs of the batch generation (CMG_CASE1.m and CMG_CASE2.m) were then 

executed with IMEX in an automated fashion. Upon completion of each simulation, the 

resulting pressure depletion and production data for each case were generated in the same 

directory.  
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Figure 3-1 Data Set # 185, grid block structure and well bore geometry in IMEX1 

 

                                                      
1
 IMEX Black Oil Simulator used for reservoir pressure depletion simulation in this study.  

©CMG Computer Modelling Group LTD. 
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Figure 3-2 Data Set #841 Grid Block System Hidden to Reveal Wellbore Structure 

 

Figure 3-3 Data Set #841 Reservoir Pressure Depletion, Nine Years of Natural Gas Production 
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Following the successful simulation of each data set and the resulting production data 

output, procedure was executed to extract, compile, and output into format useable by the 

neural network. Within this step, the data sets were examined and cleaned. Several non-

operational data sets were generated. These entire sets were removed. Additionally, due to 

the entirely random nature of set generation, there may have been combinations of 

parameters that are altogether entirely unfeasible to be applied in actuality. Several of these 

sets were also removed. Finally, data was also tabulated and output in excel for reference.  
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Chapter 4  
 

Development of ANN Model 

 For case one, nine input variables will be used, including reservoir area (A), 

thickness (h), formation permeability (k) and porosity (φ), initial reservoir temperature 

(Ti) and pressure (Pi), formation gas specific gravity (γg), horizontal wellbore length (   ), 

and specified pressure (   ). The output of case one will include nine years (108 months) of 

daily production data, given in monthly intervals, accounting for 109 outputs for the 

network. Case two A will note the addition of three input parameters, including branch 

length,   , number of lateral branches, n, as well as the location of branch junction in terms 

of the main wellbore, x. The output for case two A will be identical to case one, using 

monthly gas production data as the main output.  

Network A can also be known as a “forward-looking” case, because it will take two 

sets of parameters, and predict future time-dependent outputs. The next two cases to be 

developed in this research are “inverse” cases, in which this time dependent data will be 

used in prediction of multiple original properties. Network B will take input of all nine 

years, by month, of daily gas production data (109 inputs), along with five wellbore 

geometry inputs of main wellbore length    , specified pressure    , number of branches n, 

branch length   , and branch junction location on the main wellbore x (5 inputs, 114 inputs 

total), to predict reservoir rock and fluid properties, including area (A), thickness (h), 

formation permeability (k) and porosity (φ), initial reservoir temperature (Ti) and pressure 

(Pi), formation gas specific gravity (γg)(7 outputs). Network C will be another alteration of 

the inverse case. In this case, again all 109 gas rate data points will be included as inputs, 

along with all reservoir rock and fluid properties, including area (A), thickness (h), 
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formation permeability (k) and porosity (φ), initial reservoir temperature (Ti) and pressure 

(Pi), formation gas specific gravity (γg)(7 inputs, 116 total inputs). The outputs of this 

network structure will be wellbore geometry data, including main wellbore length    , 

specified pressure    , number of branches n, branch length   , and branch junction 

location on the main wellbore x. 

In optimization of the neural network structure, several variables will be examined 

and varied through a series of multiple network training trials to determine the most 

effective network structure. Network parameters to be modified through experimentation 

include: 

 The number of hidden layers 

 The type of transfer function between layers 

 The number of neurons contained in each layer 

 Network types (feed-forward, cascade-forward) 

 Training algorithm used 

 Relationship of network inputs and outputs, including functional links 

For initial trials, there will be one hidden layer employed. The number of hidden 

units, or neurons, will be set to half of the sum of the number of inputs and outputs. Tansig 

and logsig will be predominantly utilized as activation functions. This is in part due to 

reference to previous studies analyzing neural network application to hydrocarbon 

recovery noted that back propagation networks performed more effectively with transfer 

functions logsig and tansig.  

In order to train a neural network, a large base of data (consisting of inputs and outputs) 

must be provided to the network. The data will be divided randomly, with user-defined 

percentage allocations to each set of data, into three sets. These sets are known as the training set, 
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the validation set, and the testing set. The largest portion of the data, about 70% to 80%, will be 

allocated to the training set. The inputs and the outputs of the training set will be used by the 

network and its learning rules and training algorithms to manipulate network parameters to yield 

the outputs from the inputs, memorizing the data. The validation set will constantly be monitored, 

but not trained, to represent approximate performance the network yields when exposed to 

untrained data. Finally the training set, the smallest portion of the data (roughly 5% to 10%), will 

be seen by the network only once, at the end of training. The testing set will test the network with 

data points it has never been exposed to, and network prediction error will be calculated from 

statistical methods, comparing the actual outputs (in this case, outputs generated in the numerical 

reservoir simulation model) and the outputs predicted by the ANN.  

Various trials will be executed, in which the previously stated network properties 

will be altered and shuffled, to find a network structure that is most suitable to each 

individual application.  

In general, it was found over the course of different network trials, that a cascade-

forward back propagation network, newcf, yielded better results for all network structures 

where output consisted of time dependent outputs (Network Structure A, output of gas 

production schedule). 
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Case One 

 The goal of the network outputs in this study has been fixed as the output of 

monthly production data for nine years of cumulative gas production. Outputs were left 

unmodified as the daily gas rate values (in units of SCF per day) monthly for nine years, 

yielding a total of 109 network outputs.  

Table 4-1 Network Input and Output Structure, Case One 

Inputs (9) Outputs (109) 

 Area, A [Acres] 

 Formation Thickness, h [ft] 

 Formation Permeability, k [md] 

 Formation Porosity, φ [%] 

 Initial Pressure, Pi [psia] 

 Initial Temperature, Ti [˚F] 

 Formation Gas Specific Gravity 

 Horizontal Wellbore Length,    , [ft] 

 Specified Pressure,    , [psia] 

 Daily Gas production rate, Day 1, 

     [SCF/D] 

 … 

 … 

 Daily Gas Production rate, Day 3240, 

     [SCF/D] 

 

In the trials of case one, a cascade-forward back propagation network, newcf, was 

implemented. To assess network performance, the function msereg, mean squared error 

with regularization performance, will be utilized. As described above, the initial trial for 

case one utilized a single hidden layer, with 59 neurons. Increasing the number of layers 

while decreasing the number of neurons per layer (for example, from one layer with 59 

neurons to two layers with 40 and 20 neurons, respectively) resulted in a much slower 

training, and a larger error from the values generated by CMG. It was found that due to the 
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large number of inputs and outputs, a larger number of neurons per layer was beneficial in 

increasing the strength of the network.  

 

 

Table 4-2 Case One Neural Network Trials 

Trial 
Number 

Iterations 
to goal 

Hidden 
Layers 

Neurons 
per layer 

Training 
Method 

Transfer 
Functions 

Mean 
Percentage 

Error 
1 5212 1 59 newcf tansig 1.73% 

2 10052 2 40, 20 newcf tansig, 
tansig 

2.18% 

3 3659 2 50, 30 newcf tansig, 
logsig 

1.97% 

4 2912 2 20, 10 newcf tansig, 
logsig 

1.82% 

5 1381 1 59 newcf logsig 1.76% 

6 3618 2 40,20 newff tansig, 
tansig 

1.70% 

7 1594 2 42, 24 newff tansig, 
logsig 

1.81% 

8 3245 2 42, 24 newcf tansig, 
logsig 

1.90% 

9 1037 1 55 newcf logsig 1.76% 

10 1090 1 50 newcf logsig 1.64% 

11 7583 1 50 newcf tansig 1.90% 

 

The final network design for case one included a cascade forward backpropagation 

network, newcf, with scaled conjugate gradient backpropagation, trainscg. One hidden layer 

is used, with 50 neurons. Logsig transfer function is used. It was found that with one hidden 

layer and a large number of outputs, logsig yielded significantly better results than any 

combination of transfer functions when two hidden layers were utilized. Logsig also 

performed significantly better than the use of transfer function tansig when only one hidden 

layer was employed. This network configuration yielded the best combination of lowest 
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mean percentage error over all the testing sets, while also achieving the best training 

performance of all trials conducted.  

Case Two, Network Structure A 

This network structure is an analog of the network structure applied in case one, 

extended to include the capability of handling multiple lateral branches including the main 

wellbore. As with Case One, the target output of this network is the nine year, monthly 

production schedule (gas rates, in SCF/Day) generated by a reservoir with given inputs of 

rock and fluid properties, along with a given input of a wellbore geometry. For this problem, 

there were 12 inputs and 109 outputs.  

Table 4-3 Network Input and Output Structure, Case Two A 

Inputs (12) Outputs (109) 

 Area, A [Acres] 

 Formation Thickness, h [ft] 

 Formation Permeability, k [md] 

 Formation Porosity, φ [%] 

 Initial Pressure, Pi [psia] 

 Initial Temperature, Ti [˚F] 

 Formation Gas Specific Gravity 

 Horizontal Wellbore Length,    , [ft] 

 Specified Pressure,    , [psia] 

 Number of Lateral Branches, n 

 Branch Length,   , [ft] 

 Location of Junction on main 

Wellbore Lateral, x, [% wellbore 

length] 

 Daily Gas production rate, Day 1, 

     [SCF/D] 

 … 

 … 

 Daily Gas Production rate, Day 3240, 

     [SCF/D] 

 

As above, initial network trials were begun with a single hidden layer of neurons, 

with number of neurons equal to half of the sum of inputs and outputs. In this case, testing 
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was begun with a single layer of 70 neurons. A cascade forward back propagation network 

was primarily tested, noting its’ effectiveness with the prior, similarly structured, case. It 

has been noted that a cascade-forward network will be better suited to handle data with 

time dependent outputs. In this case, with data outputs being directly dependent on time, 

cascade-forward networks seemed to be the most logical place to begin testing. As trials 

were continually ran, it was apparent the respective strengths and weaknesses of different 

network configurations. For this case, it was clear that a two hidden-layer network 

performed far better than either one hidden layer or three hidden layers. Feed forward 

networks were tested multiple times, however cascade-forward still excelled. Finally, the 

transfer function combination of logsig followed by tansig consistently yielded the best 

performance and error results. Performance function used was msereg, mean squared error 

with regularization. Below, Table 5-4 as documented a selection of the trials that were 

conducted with network structure A.  

As can be seen highlighted in yellow in Table 4-4, the final network structure 

selected for prediction of monthly production data from reservoir properties and wellbore 

structure with multiple lateral branches was s a cascade-forward backpropagation network, 

newcf, with scaled conjugate gradient, trainscg backpropagation technique. Two hidden 

layers were chosen with 70 neurons and 40 neurons, respectively. The transfer functions 

found to function it the greatest performance were logsig followed by tansig 
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Table 4-4 Case Two A Neural Network Trials 

Trial  Iterations  
Hidden 
Layers Neurons  

Training 
Method 

Transfer 
Functions 

Testing 
Sets 
Averaged 
MPE Stop 

1 414 1 70 newcf logsig 4.96% 
Early Stopping 
Tech. 

2 933 2 70, 30 newcf logsig, logsig 3.33% 
Early Stopping 
Tech. 

3 3216 2 70, 30 newcf logsig, tansig 2.28% 
Early Stopping 
Tech. 

4 823 2 50,20 newcf logsig, tansig 6.50% 
Early Stopping 
Tech. 

5 4367 2 70, 40  newcf logsig, tansig 2.34% 
Early Stopping 
Tech. 

6 3842 3 
70, 40, 
20 newcf 

logsig, tansig, 
logsig 3.12% 

Early Stopping 
Tech. 

7 3983 2 70, 30 newcf logsig, logsig 4.04% 
Early Stopping 
Tech. 

8 2547 2 70, 30  newcf logsig, tansig 3.00% 
Early Stopping 
Tech. 

9 2296 2 70, 30 newcf logsig, tansig 4.10% 
Early Stopping 
Tech. 

10 3082 2 70, 30 newff logsig, tansig 4.70% 
Early Stopping 
Tech. 

11 3079 2 70, 40  newcf logsig, tansig 2.76% 
Early Stopping 
Tech. 

 

 

Case Two, Network Structure B 

The network structure of ANN B is a solution to the inverse problem initially proposed. 

In this problem case, gas production data is assumed to be a known input, along with the wellbore 

geometry and design data. The output of this network will be the various reservoir rock and fluid 

pararmeters, including area, thickness, permeability, porosity, initial reservoir temperature and 

pressure, as well as gas specific gravity.  
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Table 4-5 Network B Inputs and Outputs 

Inputs (114) Outputs (7) 

 Daily Gas production rate, Day 1, 

     [SCF/D] 

 … 

 … 

 Daily Gas Production rate, Day 3240, 

     [SCF/D] 

 Main Wellbore Length,     [ft] 

 Well Specified Pressure,     [ft] 

 Number of branches, n 

 Branch length,    [ft] 

 Junction location on main wellbore, x 

 Area, A [Acres] 

 Formation Thickness, h [ft] 

 Formation Permeability, k [md] 

 Formation Porosity, φ [%] 

 Initial Pressure, Pi [psia] 

 Initial Temperature, Ti [˚F] 

 Formation Gas Specific Gravity 

 

 

The initial network structure design, as defined in the neural network literature review, 

will consist of one hidden layer, with neurons amounting to half of the sum of network inputs and 

outputs. The initial trial consisted of a single layer with 60 neurons. A feed-forward 

backpropagation network was utilized due to its relatively better performance when outputs are 

not time related. Backpropagation technique used was the scaled conjugate gradient, trainscg. For 

the learning function, learngd, gradient descent weight and bias learning function, was selected. 

Transfer function was the sigmoid function logsig, however, these parameters were altered in 

subsequent trials. The performance function selected for the trials was msereg, mean squared 

error with regularization.  

In initial trials, validation and training results were very poor. The error of the training set 

saw continued reduction, however validation proved to be impossible, with the network 

consistently failing validation tests. The network type, backpropagation technique, number of 
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neurons and layers were all varied. To an extent, it was found that an increased number of 

neurons and layers would increase early time validation performance. However, after the network 

assed about 300 to 500 iterations, no matter the network configuration, validation performance 

was poor, and the network could consistently fail validation checks. This is due to the non-unique 

nature of the problem solution. A various combination of reservoir parameters may exist for a 

given gas production schedule. Therefore, network performance was measured through another 

criteria, using ANN generated reservoir parameters to generate another gas production curve, and 

compare results with the original gas production curve. Results will be discussed in Chapter 7.  

Due to the non-unique nature of the solution to the structure of network B, it was 

determined whether or not functional links would need to be added to the network outputs to 

increase accuracy of the solution. To an extent, it was beneficial, however, overuse of functional 

links led to impossible reservoir parameter outputs. Without functional links in the output data 

sets, the network was able to generate parameters that were near the testing set values, in the 

same order of magnitude. However, with an excess of functional links applied, values were 

generated to different orders of magnitude (impossibly small reservoir area values, impossibly 

large porosity and permeabilities). As further discussed in Chapter 7, it was found that more 

consistent results were obtained without the use of functional links. A lower standard deviation 

amongst average mean percentage errors in all the parameters means a larger relative likelihood 

of the ability to apply a forcing function to generate more realistic outputs after network output. 

Additionally, the non-unique nature of the problems makes for a scenario in which parameter 

“error” does not even necessarily correlate to network inoperability, but instead, the prediction of 

one of many different possible solutions.  
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Table 4-6 Functional Links Utilized in Network B 

# Network Output 

1  

        
 

2     

3  

        
 

4       

5    

  
 

6       

7       

 

A final network structure was determined as three hidden layers, containing 80, 60, and 

40 neurons, respectively. Feed-forward backpropagation network was used with scaled conjugate 

gradient training algorithm. Mean squared error with regularization, msereg, was the performance 

function, and learngd, gradient descent weight and bias learning function was used. The transfer 

functions used between each layer were logsig, logsig, and logsig, respectively.  
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Case Two, Network Structure C 

Table 4-7 Network Structure C Inputs and Outputs 

Inputs (116) Outputs (5) 

 Daily Gas production rate, Day 1, 

     [SCF/D] 

 … 

 … 

 Daily Gas Production rate, Day 3240, 

     [SCF/D] 

 Area, A [Acres] 

 Formation Thickness, h [ft] 

 Formation Permeability, k [md] 

 Formation Porosity, φ [%] 

 Initial Pressure, Pi [psia] 

 Initial Temperature, Ti [˚F] 

 Formation Gas Specific Gravity 

 Main Wellbore Length,     [ft] 

 Well Specified Pressure,     [ft] 

 Number of branches, n 

 Branch length,    [ft] 

 Junction location on main wellbore, x 

Initial network structure for network C was a feed-forward backpropagation network with 

scaled gonjugate gradient backpropagation, trainscg. The mean squared error with regulariziaton, 

msereg, function was applied, with learning function gradient descent weight and bias function, 

learngd. A single hidden layer with 60 neurons was used. As can be seen from Table 5-7 above, 

there were 116 inputs and 5 outputs for the network.  

Initial trials offered unsatisfactory results with failure of network validation testing. A 

number of training algorithms were employed in the trials, including a variety of conjugate 

gradient algorithms (Fletcher-Reeves Update traincgf, Polak-Ribiere Update traincgp, Powell-

Beale Restarts traincgb, and Scaled Conjugate Gradient trainscg), as well as Bayesian 

Regularization trainbr, and Levenberg-Marquardt trainlm. Addtionally, the number of neurons 

and layers were varied. As mentioned above, an additional number of neurons and layers, 

providing more parameters for the network to optimize, increased network performance. 

However, convergence could not be reached after a certain point, and no matter how network 
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structure was shuffled between training algorithms, network structure, # of neurons and layers, 

training performance would not increase. Functional links were added. Addition of functional 

links immediate improved validation performance during early training. As training proceeded, it 

was noted that validation performance would still return to its previous poor behavior. This was 

again observed due to the non-unique nature of the solution. As such, two different testing 

procedures were used. Testing procedure one included using ANN C predicted wellbore 

geometry with the original reservoir parameters and analyzing production curve error. Testing 

procedure two consisted of quantifying the errors of the actual properties generated.  

The final network structure was without functional links. While functional links led to 

better network training, the resulting properties were higher in error. Although unable to train the 

network to as small an error as with functional links, the network generating wellbore properties 

with the most plausible results was without functional links. The final structure selected for this 

problem structure was a feed-forward backpropagation network with Powell-Beale Restarts, 

traincgb. Mean squared error with regularization was the performance function, with the learning 

function learndgm, gradient descent with momentum weight and bias. 
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Chapter 5  
 

Results and Discussion 

Error Analysis of ANN Outputs 

To assess network accuracy of reproduction of target outputs, a statistical average 

known as “Mean Percentage Error” will be used. This error is defined as: 

    
    

 
∑

               

      

 

   

 

where the ‘forecast’ term is applicable to the neural network generated output, and the 

‘actual’ term is applicable to the actual output value generated by reservoir simulations in 

CMG. MPE is an average of the percentage difference of CMG and ANN predicted production 

values for each time step considered in this study. It is important to recognize the level of 

uniqueness in each class of solutions that the different network structures attempt to 

represent. In Case One and Case Two A, the target outputs of the networks are gas 

production profiles. For given inputs of reservoir parameters and wellbore geometry, the 

production profile will be a unique solution to this problem. The network easily learns the 

time-dependent behavior of hydrocarbon production via reservoir pressure depletion, and 

the network can be trained to very low error with little to no validation checks failing 

during the training procedure. In this case, a simple mean percentage error is sufficient to 

effectively describe the accuracy of the network. However, in Case Two B and C, the target 

outputs of the networks are reservoir system parameters, including rock and fluid 

properties, as well as wellbore geometry. In this case, the inherent non-uniqueness of the 

problem solution presents a difficulty for validation and testing processes of the network. In 

this case, more than one set of reservoir parameters will lead to the reproduction of a given 
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gas production profile. To understand how a variety of solutions may exist for one set of a 

given production profile and reservoir properties, one need consider the variables that can 

be altered within a wellbore geometry. To increase production, the main wellbore length 

may be increased, the number of branches may be increased, the branch length may be 

increased, the specified pressure at the wellhead may be decreased or any simultaneous 

combination of these parameters. As such, the trained network may find a correct answer to 

the parameter values that will yield a given production schedule, but it may not be the 

solution that was provided to the tool for validation and testing, and will therefore fail 

validation. In this case, error should not be assessed from the original properties that were 

utilized in the simulation to yield production values. Instead, the outputs artificially 

generated by the system should then be used as inputs to the previous network structure 

(to predict gas production schedule), and a production schedule generated. After this, 

production values can then be compared with the original production schedule used as 

input to the network to generate the parameters, and the gas production schedules can then 

be evaluated for accuracy.  

 

Case One 

Thee mean percentage error was calculated for each of the testing data sets and 

averaged to determine the overall accuracy of the neural network’s reproduction of the 

CMG generated outputs. The final network structure yielded an average MPE of 1.7434%. 
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Figure 5-1 Case One, Data Set #162 Comparison of CMG Output vs. ANN Output 

It was observed that data sets with a more moderate rate of decline experienced 

slightly larger error than those with a steeper decline. Figure 7-1 shows data set #162, with 

a mean percentage error of 3.53%. ANN output drastically overestimates early time 

production rate, yielding a gas rate of nearly 11x10^5 SCF/D, with CMG output only at 

about 9x10^5 SCF/D. At later times, the ANN data more accurately meets the CMG produced 

output.  
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Figure 5-2 Case One, Data Set # 918 Comparison of CMG Output vs. ANN Output 

Figure 7-2 features data set #918. This data set had production rate seeing a much 

steeper decline than the previous data set #162. In this case, ANN predicted output meets 

CMG output very accurately, with a mean percentage error of only 0.62%.  

 

Figure 5-3 Case One, Data Set #345 Comparison of CMG Output vs. ANN Output 

A final data set, set #345, is displayed in Figure 7-3. This data set has gas rates that 

see a decline between the two extremes illustrated above. Mean percentage error is 1.766%. 
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It is conclusive that the network is more accurate at reproducing gas production rates that 

see a sharper decline over time.  

Case Two, Network Structure A 

Network structure A, identical to the network developed in case 1, will be tested in 

the same way as case 1. That is, the output production data predicted by ANN A will be 

compared to the production data from CMG, and error analyzed for each production rate 

over the domain of the output.  

 

Figure 5-4 Case Two A, Data Set #167, CMG Output vs. ANN Output 

Figure 7-4 shows a typical gas production schedule predicted by ANN A. Data set 

#167 had a mean percentage error of 2.75%, which is very accurate. The network is much 

more adept at predicting the later section of the gas production curve, where change in 

production rate is not so severe. At early times, the ANN is less accurate at data 

reproduction. Overall, the average MPE of all the testing sets was found as 2.08%, proving 
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that network A is very accurate in the prediction of gas production rate from given 

reservoir and well parameters.  

 

 

Figure 5-5 Case Two A, Data Set #432 CMG Output vs. ANN Output 

Data set #432 is representative of the largest errors amongst all the test data sets 

inspected for error, with an MPE of 4.9%. As can be seen in Figure 7-6, the largest errors are 

found in the initial period with highest production rates, after which error decreases. In 

later times, another section of larger deviation is noted.  
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Figure 5-6 Case Two A, Data Set #432 ANN Prediction Percentage Error 

Case Two, Network Structure B 

Network structure B, as pictured below in Figure 7-7, features the input data of the 

gas production schedule of the well over 9 years (daily gas production, in monthly interval) 

as well as the wellbore geometry. The desired outputs include the reservoir rock and fluid 

parameters of the well, including Area A, thickness h, permeability k, porosity φ, reservoir 

temperature Ti, initial reservoir pressure Pi, and gas specific gravity   .  



52 

 

Figure 5-7 Case Two B Inputs and Outputs 

 

As mentioned previously, the solution to the given problem is non-unique. A 

number of various reservoir parameters may exist to allow the generation of a given 

production profile. As such, a direct mean percent error analysis of the  outputs (reservoir 

parameters predicted through use of the ANN) may not be compared with the original 

reservoir parameters provided to CMG for generation of the production profile. An 

additional method of analysis will be utilized. As proven in the Network Structure A case, 

the network structure A (allowing prediction of gas production schedule from reservoir 

parameters and wellbore geometry) will be assumed to be accurate. With this assumption, 

then the artificial inputs predicted from ANN B may be used as inputs to ANN A. The outputs 

(gas production schedules) should be identical, proving the feasibility of ANN 2’s ability to 

generate reservoir parameters that would allow for the replication of a given gas 

production schedule with wellbore geometry held constant. This case will prove that ANN B 
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is able to capture the inverse relationship between reservoir properties and gas production, 

but may not be able to predict the unique solution.  

 

 

 

Figure 5-8 Network Two B Testing Procedure 

 

Figure 7-8 depicts the testing procedure, described above, that will validate network 

two B. Three production profiles will be graphed. The first is simply the original production 

profile generated in IMEX (CMG Output) that was simulated from the original IMEX inputs 

(CMG Input). The second profile is the production profile artificially predicted with ANN A 

(ANN A Output) generated by using the same inputs as were given to IMEX in the initial 

numerical reservoir simulation (CMG Input). The final profile that will be analyzed is the 

production profile predicted with ANN A and ANN B (ANN B Output) using inputs that were 

generated from ANN B.  
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Figure 5-9 Case Two B, Data Set #122, CMG, ANN A and ANN B Outputs vs. Time 

Figure 7-9 is representative of the testing procedure used to assess the performance 

of the ANN B network. Gas production profiles were generated using ANN A, with both the 

original inputs supplied to CMG (red curve), as well as with the artificial inputs from ANN B 

(green curve). Both curves were plotted in comparison to the original case of CMG 

production profile, ie. target input and output (black curve). While it can be observed that 

error is slightly greater for the ANN B output (15.7% vs. 5%, respectively), however, it is 

noted that the artificial inputs, when used by ANN A to produce a production profile, are 

able to produce a significantly close reproduction of the target gas production profile. For 

further comparison, the reservoir properties generated by ANN B are provided in Table 7- 
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Table 5-1 Case Two B, Data Set #122 Reservoir Parameter Prediction 

Parameter Original Parameter (CMG Input) ANN B 
Prediction 

Percentage 
Error 

A [Acres] 812 874 7.64% 

h [ft] 179 193 7.82% 

k [md] 0.0952 0.09 5.46% 

φ [%] 0.0836 0.0641 23.33% 

Ti [˚F] 192 211.3 10.05% 

Pi [psia] 2681 2876 7.27% 

γg  0.74 0.683 7.70% 

 

Multiple reservoir parameters were predicted to under 10% error. The parameters 

in this case with the largest variation from the target value were porosity (23.33% error) 

and reservoir temperature (10.05% error). 

After removal of 4 outliers, the mean percentage error averaged over all 50 testing 

sets examined (that the ANN had not been exposed to in training) for the production profile 

generated with ANN predicted reservoir parameters was 23.89%. Likewise, the mean 

percentage error averaged over all 50 testing sets for the production profile generated with 

original CMG inputs was 20.87%. Therefore, with an error of only 3.02% between the MPE 

of production profiles generated with target/predicted inputs, and 9.8% error of predicted 

to target parameters, the network 2B is fairly accurate in prediction of a probable set of 

reservoir parameters resulting in a given production profile with known wellbore 

geometry. However, the network will not be able to predict the exact solution to the 

problem, because this network was developed without the use of functional links. The 

further employment of functional links on the output parameters may link the input and 
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output sets to a level such that the network may be able to be trained to predict the unique 

solution.  

 

 

Figure 5-10 Case Two B, Data Set # 416, CMG, ANN A, and ANN B Outputs vs. Time 

Data Set #416 is representative of the failure of ANN B to predict the unique set of 

parameters leading to the gas production data generated for set #416 in CMG. As can be 

seen from Figure 7-10, the production curves have a very low error, and both ANN A and 

ANN B are able to accurately reproduce the gas production curve. However, in Table 7-2, it 

is found that the target reservoir parameters (used by CMG for production profile 

generation) are very different from the solution predicted by ANN B. In this way, it is 

conclusive that there may exist may combinations of parameters to evolve a given gas 

production curve. 
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Table 5-2 Case Two B, Data Set #416, Reservoir Parameter Predictions 

Parameter Original Parameter (CMG Input) ANN B 
Prediction 

Percentage 
Error 

A [Acres] 398 601 51.01% 

h [ft] 72 82 13.89% 

k [md] 0.0715 0.075 4.90% 

φ [%] 0.1947 0.132 32.20% 

Ti [˚F] 264 184 30.30% 

Pi [psia] 5336 5107 4.29% 

γg  0.66 0.71 7.58% 

 

While the mean percentage error of the production profile generated by the two 

different sets of inputs may have resulted in errors of 8% and 10%, the reservoir 

parameters themselves have much larger error. Area [acres] varied as much as 51%, while 

still generating a near identical gas production profile. As such, while the network may be 

able to produce a representative set of reservoir parameters, it is not the ideal solution 

where parameter accuracy is necessary. 
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Figure 5-11 Case Two B, Data Set #612, CMG, ANN A, and ANN B Outputs vs. Time 

Data set #612 is representative of a third type of output seen by the ANN system. In 

this case, there appears to be a consistent error throughout the whole domain of the 

production schedule. This case may present a situation in which some type of multiplier or 

forcing function may be applied post-ANN output to serve as error correction. 

Table 5-3 Case Two B, Data Set #612, Reservoir Parameter Prediction 

Parameter Original Parameter (CMG Input) ANN B 
Prediction 

Percentage 
Error 

A [Acres] 985 861.3 12.56% 

h [ft] 238 203 14.71% 

k [md] 0.057 0.0454 20.35% 

φ [%] 0.1798 0.1647 8.40% 

Ti [˚F] 169 165 2.37% 

Pi [psia] 6758 6615 2.12% 

γg  0.77 0.7122 7.51% 
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To descriptively analysis the error present for each of the parameters predicted by 

ANN B, the mean percentage error for every parameter was averaged for the entire set of 

testing data sets. In this way, it can be quantitatively determined how well the network was 

able to reproduce the exact solution from the initial problem. 

Table 5-4 ANN B, Average MPE, by Parameter. With and Without Functional Links. 

Parameter Average MPE, Without 
Functional Links 

Average MPE, Highest Performing 
Configuration with Functional Links 

A [Acres] 
18.49 18.89 

h [ft] 
21.40 12.14 

k [md] 
22.40 49.16 

φ [%] 
22.08 27.54 

Ti [˚F] 
21.33 22.54 

Pi [psia] 
22.10 29.66 

γg  
21.28 9.77 

Mean  [%] 
21.30 24.24191 

 

Reservoir parameter mean percentages errors (from the initial input values given to 

CMG as input) were tabulated in this way for two different network configurations. One in 

which functional links were included, and another without the inclusion of function links. In 

this way, the intention was to test the network development and response to the use of 

functional links. It was found that with the use of functional links, the network was better 

able to be trained to output the unique solution. Validation and testing performance was 

much higher, and the network was trained to a much lower error level. However, due to the 

structure of the functional links used, when any given functional link contained more than 

one output parameter (ie. reservoir rock and fluid parameters), increased error would be 
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induced when parameters were calculated from an initial artificial parameter. Several 

parameters expressed lowest error when the network was trained with functional links. 

However, the standard deviation in error for outputs when generated with functional links 

was also larger, yielding error margins that are too high to be plausible for use in a real-time 

field study.  

Case Two, Network Structure C 

Network C inputs consist of 109 inputs of daily natural gas production rates (9 

years, monthly basis), as well as 7 reservoir parameter inputs including area (A), thickness 

(h), permeability (k) , porosity (φ), reservoir temperature (Ti), initial reservoir pressure (Pi), 

and gas specific gravity (  ), for a total of 116 inputs. Outputs include 5 wellbore geometry 

parameters, including Horizontal Wellbore Length (   ), Specified Pressure (   ), Number of 

Lateral Branches (n), Branch Length (  ), Location of Junction on main Wellbore Lateral (x).  

 

Figure 5-12 Case Two C Inputs and Outputs 

As in Case Two B, the solution to this problem is non-unique. A multiple number of 

wellbore geometries are able to yield a given natural gas production schedule given a 
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certain combination of reservoir parameters. As such, two testing method will be employed. 

The first testing method is comprised of an error analysis between the original wellbore 

geometry used to generate a given gas production schedule and the wellbore geometry 

predicted by the ANN with the same gas production schedule used as network input. The 

second testing method is to use the wellbore geometry predicted by ANN C as an input to 

ANN A along with constant reservoir parameters, and compare the resulting gas production 

schedule with the original production schedule generated in CMG by the inputs given to 

CMG.  

 

Figure 5-13 ANN C Testing Procedure 

Figure 7-13 depicts the testing procedure, described above, that will validate 

network C. Three production profiles will be graphed. The first production profile is simply 

the original production profile generated in the numerical reservoir simulation model (CMG 

Output) that was simulated from the original inputs supplied to the numerical simulation 

(CMG Input). The second profile is the production profile artificially predicted with ANN A 
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(ANN A Output) generated by using the same inputs as were given to the numerical 

simulation (CMG Input). The final profile that will be analyzed is the production profile 

predicted with ANN A and ANN C (ANN C Output) using inputs that were generated from 

ANN C.  

 

 

Figure 5-14 Case Two Network C, Set #124, Comparison of CMG, ANN A, and ANN C Gas Production Profiles 

Figure 5-14 is a comparison of the production profiles from CMG (CMG Output), 

ANN A output with original wellbore geometry (ANN A Output), and ANN A output with 

wellbore geometry predicted with ANN C. Deviation from the original CMG data is only 

8.7% when curve is generated from wellbore geometry predicted by ANN C. The network 

has trouble reproducing accurate gas production values when there is a steep decline in 

daily production rate, as can be seen from the larger deviation of production rate at early 
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times. However, in later times when production rate decline has begun to stabilize, the 

network is very accurate in the prediction of gas production rate. 

Table 5-5 Case Two C, Data Set #124 Wellbore Geometry Prediction 

Parameter Original Parameter (CMG 
Input) 

ANN C 
Prediction 

Percentage 
Error 

Main Horizontal 
Wellbore Length, 
Lwb [ft] 

1840 3864.86 109.88% 

Specified 
Pressure, Psf 
[psia] 

261.95 484.085 84.80% 

Number of 
Branches, n 

1 1.00027 0.02% 

Branch Length, Lb 
[ft] 

510 685.502 34.41% 

Multilateral 
Junction Location, 
x 

0.7 0.3463 50.52% 

 

Table 5-5 is an error analysis of the individual wellbore geometry parameters 

generated by ANN C for Data Set #124 vs. the original values used as input by CMG for 

generation of the gas production profile. While the generated production profiles are very 

similar, the wellbore geometries seem to diverge by quite a large margin. However, given 

that the specified pressure suggested by ANN C is possible to be maintained by the surface 

production facilities, and the main wellbore length does not exceed the extent of the 

reservoir, the configuration predicted by the network is still feasible.  
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Figure 5-15 Case Two Network C, Set #492, Comparison of CMG, ANN A, and ANN C Gas Production Profiles 

 

Figure 5-15 is another representative comparison of the outputs generated by ANN 

A, ANN C, and the original gas production schedule produced by CMG. Error in production 

rate generated by the network is quite variable. In some sets, error as low as 4% to 10% 

was seen, with other sets over 50% error. Therefore, more work should be conducted in the 

functional links employed by the network. However, being a design parameter, many 

combinations will exist.  
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Table 5-6  Case Two C, Data Set #492 Wellbore Geometry Prediction 

Parameter Original Parameter (CMG 
Input) 

ANN C 
Prediction 

Percentage 
Error 

Main Horizontal 
Wellbore Length, 
Lwb [ft] 

2740 2749.27 0.34% 

Specified 
Pressure, Psf 
[psia] 

48.8 267 447.11% 

Number of 
Branches, n 

2 2 0% 

Branch Length, Lb 
[ft] 

820 864.16 5.39% 

Multilateral 
Junction Location, 
x 

0.3 0.34363 14.55% 

 

Table 5-6 shows the wellbore geometries predicted by ANN C vs. the actual wellbore 

geometry used to generate the gas production profile in CMG. Specified pressure was quite 

divergent, but other parameters were predicted quite accurately. Critical design parameters 

such as wellbore length, branch length, number of branches, and even junction location 

were predicted with minimal error.  

The average deviation from the target (CMG generated) gas production schedule 

over all the testing sets while using wellbore geometries predicted by ANN C was 29% after 

removal of 2 large outliers.  
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Further Work 

The work done in this thesis has laid a very convenient backdrop for further neural 

network and batch reservoir depletion simulations with the fishbone type wellbore 

structure. The MATLABTM code developed to modify and generate batch files contains a 

sturdy and reproducible algorithm for dynamic sizing and placement of main horizontal 

wellbore and branches with a given number of branches. The code will automatically test 

and resize for wellbore lengths that will exceed other reservoir (Area) parameters. In 

further work, cases can be added to handle an additional number of wellbores. Additionally, 

the code developed in this thesis has allowed for the dynamic and random placement of one 

branch junction. With the future increased number of deviations, this technique can be 

replicated and duplicated to allow for multiple junctions and a variety of wellbore 

geometries.  

In the testing and development of neural network structure, additional testing can 

be done on functional links to be used when studying the inverse production problem in 

which reservoir and wellbore parameters are generated from field gas production data. At 

this point in the research, time constraint became a major factor in the results seen to date. 

With an additional investment of time, various combinations of parameters can be tested 

and a more robust network structure developed.  
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Chapter 6  
 

Summary 

In this research, three different types of problems were solved by using a neural 

network. In the first, or “forward-looking” case, reservoir rock and fluid parameters along 

with wellbore parameters were used by the ANN as inputs to predict a gas production 

schedule for nine years of daily gas production data. Along with this, two inverse cases were 

developed, one which can take the input of a gas production schedule along with wellbore 

geometry and attempt to predict the formation rock and fluid properties, and another which 

can take the input of a gas production schedule along with reservoir rock and fluid 

parameters, and predict the necessary wellbore geometry to produce at the given rates.  

In order to train an ANN, a large set of data were generated within a range of 

parameters determined by the parameters of the target formation (tight gas sand), target 

fluid (natural gas, with no water or oil saturations), and wellbore (multilateral fishbone 

horizontal wellbore). These data sets were input into CMG to generate the respective gas 

production schedules for each data set. The data were then trimmed for any error data sets 

(or unrealistic sets) and used for the training of the ANN. Data was given to the ANN 

randomly in three data sets: a training set in which the ANN will attempt to “memorize” or 

manipulate its parameters to obtain the given outputs from the given inputs, a validation set 

in which these data sets are run to gauge error performance in sets which the network has 

not been trained with, and a testing set in which the network will only be exposed to the 

data one time, at the end of training, to estimate an error percentage (performance) of the 

network to data sets which it has not yet been exposed to.  

 



68 

In the forward looking ANN case, gas production schedule data was able to be 

predicted to within 5% - 10% error from the original data generated in CMG.  

In the inverse case, reservoir parameters were able to be predicted within 20% 

error from the original reservoir parameters that were used to generate the production 

data in CMG and train the forward looking ANN. A variety of plausible reservoir rock and 

fluid parameter combinations were able to be generated that, when provided as inputs to 

the forward looking ANN, were capable of generating gas production profiles that very 

accurately reproduced the original gas production schedule, to within 24%.  

In the second inverse case, wellbore geometries were predicted, and when used to 

generate a gas production curve, saw deviation from the target gat production curve of 29% 

or less error. As a design parameter, a number of viable combinations could exist. As long as 

specified pressure predicted by the network is feasible to be handled by the surface 

production equipment, and wellbore length does not exceed the extent of the reservoir, 

wellbore geometry parameters predicted by the ANN were plausible.  

A number of conclusions are able to be drawn from this research. 

 Neural Networks with conjugate gradient algorithms are very capable of 

predicting natural gas production when given reservoir and well properties 

as input parameters (also found by previous studies [1], [2], [15]). 

 The parameter x, the location of the multilateral junction on the main 

wellbore, is a very difficult parameter predict, and a neural network cannot 

do so accurately without functional links.  

 For inverse problems, outputs generated from the inverse ANN are able to 

be used as inputs to the forward looking ANN, and error from the original 

solution may be calculated to determine accuracy of the inverse ANN.  
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The overall impression of this work is that given known reservoir rock, fluid, and 

wellbore parameters, such a trained network will be able to very accurately predict 

probable gas production rates for years in the future. Given the existence of a unique 

solution, the neural network is able to be trained (while avoiding overtraining [16]) to a 

very high accuracy. However, when the inverse problem is considered, the networks 

designed in this study experienced very low validation performance when trained in the 

typical fashion. This result has arisen from the non-unique solution to the problem. 

Whether it be the prediction of reservoir rock and fluid parameters (Network Structure B), 

or the prediction of wellbore characteristics that should be drilled (Network Structure C), 

both systems have a various number of parameter combinations that will fulfill the input 

parameters. Therefore, as a formation evaluation tool, the ANN presented in this study, at 

this point, may not be a plausible application. However, if a company desires to drill a 

horizontal multilateral well based on a desired production goal and a known set of reservoir 

parameters, the ANN C in this study may be indeed be a viable route for the company to 

determine necessary wellbore geometry.  
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Appendix A 
 

ANN Development Procedure 

Part A. Generation of data sets. This phase of the neural network design process will 

generate a variety of reservoir rock and fluid properties, along with wellbore geometry and 

production scheme parameters. Parameters generated within ranges characterized by 

target reservoir type and subsequent reservoir fluid. See Table 5.1 and 5.2 for ranges of 

each parameter.  

Table 6-1 Generation of Data Sets 

%Generate random combinations of reservoir, fluid, and wellbore properties 
%given ranges of each property and number of sets to generate 
  
sets = 1000; 
  
%Parameter number one, reservoir 
a = randi([100,1000],[1,sets]); 
a_ft = a*43560; 
%Parameter Number two, reservoir thickness 
h = randi([50,300],[1,sets]); 
%Parameter number three, permeability 
k = unifrnd(0.0001, 0.1, [1,sets]); 
%Parameter number four, porosity 
phi = unifrnd(0.05, 0.20, [1,sets]); 
%Parameter number 5, reservoir temp 
t = randi([100,300],[1,sets]); 
%Parameter 6, initial reservoir pressure 
pi = unifrnd(1000,7000,[1,sets]); 
%Parameter 7, specified pressure 
psf_multiplier = unifrnd(0,0.2,[1,sets]); 
psf = psf_multiplier.*pi + 14.7; 
%Parameter 8, wellbore length 
boundlen = (a_ft).^0.5; %First, establish a parameter that defines the gridblock boundary 

length 
lwb = randi([1000,7000],[1,sets]); 
%check for ambiguity between reservoir gridblock boundary length and wellbore length. 
%Set a wellbore length maximum of 0.8*reservoir gridblock boundary length 
for i = 1:sets 
    if lwb(i) > boundlen(i)*0.8 
        lwb(i) = boundlen(i)*0.8; 
    end 
end 
lwb = roundn(lwb, 1); 
%Parameter 9, Gas Specific Gravity 
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g_sg = unifrnd(0.6, 0.8, [1,sets]); 
  
%Next, generate parameters related to fishbone branch geometry. For case 
%#1, these parameters will be ignored in the black-oil simulator 
  
%Parameter 10, Branch number 
n = randi(2, [1,sets]); 
  
  
%Parameter 11, Branch Placement 
%X referes to the distance from the beginning of the horizontal wellbore 
%length, at which the branch junction will occur 
  
x = [1,sets]; 
x = unifrnd(0.1,0.8, [1,sets]); 
x = roundn(x, -1); 
  
%Parameter 12, Branch Deviation Angle 
%%theta = randi([15,45],[1,sets]); Future chamge: to randominze the angle 
%%of deviation. For first revision of the code, simply assign theta to 
%%equal the value of 45 degrees.  
theta = 45*(3.1415/180); 
  
%Parameter 13, Branch Length. Adjust in the case that branch runs outside 
%of reservoir boundary length.  
lb = randi([300,1000],[1,sets]); 
for i = 1:sets 
        if (x(i)*lwb(i) + lb(i)*cos(theta)) > boundlen(i) 
            lb(i)= (boundlen(i) - x(i))/cos(theta); 
        end 
end 
lb = roundn(lb,1); 
  
%Debug the branch length condition system. Check or the length remainin 
%btwen the ed of the fishbone branch and the reservoir boundary 
debugendlength = [1:sets]; 
debugwell_length = [1:sets]; 
for i=1:sets 
        debugendlength(i) = boundlen(i) - lb(i)*cos(theta) - x(i)*lwb(i); 
        debugwell_length(i) = lwb(i)/boundlen(i); 
end 
%Generation of 2 matrices to summarize all parameters. setcompilation will 
%be exported to text and converted to excel as a record of the parameters 
%of every set. indata will be used with another MATLAB algorithm [1] to 
%generate input files to run with CMG for production data simulation. 
  
  
setcompilation=[a;boundlen;h;k;phi;t;pi;psf;g_sg;lwb;n;lb;x]; 
setcompilation = transpose(setcompilation); 
  
input=[boundlen;h;k;phi;t;pi;g_sg;psf;lwb;n;lb;x]; 
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input = transpose(input); 
%%Export files to .txt format 
save setcompilation.txt setcompilation -ASCII 
save input.txt input -ASCII 
  

xlswrite('input.xls',input); 
 

Part B. Generation of CMG input script. Computer Modelling Group’s (CMG) IMEX 

black oil simulator operates with an input file (‘.dat’). The following MATLAB code will 

execute by searching the root directory for file ‘input.txt’ containing all data set and 

parameter information generated in Part A, and will generate an individual and unique ‘.dat’ 

input file to run with CMG IMEX simulator.  

Part B.1. Generation of CMG IMEX input script for Case 1. As can be seen in section 

5.1.1, Case One is simply a single horizontal wellbore of randomly generated length 

(wellbore length unique to each data set). This code will automatically center the wellbore 

in the reservoir, in both lateral directions (i and j directions). In the thickness (k direction) 

direction of the reservoir, the code will automatically generate a grid block system with 

three equally sized layers, with the wellbore in the middle layer.  

Table 6-2 Generation of CMG IMEX Input Script, Case One 

load input.txt; 
q = 1000; 
for i=1:q; 
numb=num2str(i); 
temp=['data' numb '.dat']; 
fid=fopen(temp,'wt'); 
fprintf(fid,'\n RESULTS SIMULATOR IMEX 201211'); 
fprintf(fid,'\n INUNIT FIELD'); 
fprintf(fid,'\n WSRF WELL 1'); 
fprintf(fid,'\n WSRF GRID TIME'); 
fprintf(fid,'\n WSRF SECTOR TIME'); 
fprintf(fid,'\n OUTSRF WELL LAYER NONE'); 
fprintf(fid,'\n OUTSRF RES ALL'); 
fprintf(fid,'\n OUTSRF GRID SG SW PRES'); 
fprintf(fid,'\n WPRN GRID 0'); 
fprintf(fid,'\n OUTPRN GRID NONE'); 
fprintf(fid,'\n OUTPRN RES NONE'); 
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fprintf(fid,'\n **$ Distance units: ft'); 
fprintf(fid,'\n RESULTS XOFFSET 0.0000'); 
fprintf(fid,'\n RESULTS YOFFSET 0.0000'); 
fprintf(fid,'\n RESULTS ROTATION 0.0000 **$ (DEGREES)'); 
  
fprintf(fid,'\n **'); 
fprintf(fid,'\n **'); 
fprintf(fid,'\n **$ *********************************************************'); 
fprintf(fid,'\n **$ Definition of fundamental cartesian grid'); 
fprintf(fid,'\n **$ *********************************************************'); 
fprintf(fid,'\n GRID VARI 30 29 3'); 
fprintf(fid,'\n KDIR DOWN'); 
fprintf(fid,'\n **'); 
fprintf(fid,'\n **'); 
fprintf(fid,'\n DI IVAR'); 
%I-direction gridblock assignment  
%5 gridblocks from reservoir edge to beginning of horizontal wellbore 
%20 gridblocks for the length of the main horizontal wellbore 
%5 gridblockss from the end of the main horizontal wellbore to the far edge 
%of the reservoir 
fprintf(fid,'\n 5*%d 20*%d 5*%d', (input(i,1)-input(i,9))/10, input(i,9)/20,(input(i,1)-

input(i,9))/10); 
fprintf(fid,'\n **'); 
fprintf(fid,'\n **'); 
  
fprintf(fid,'\n DJ JVAR'); 
%J-direction gridblock assignment. Divide j direction into 29 equal block 
%lengths. 14 above wellbore, 1 for wellbore, and 14 below wellbore 
fprintf(fid, '\n 29*%d', input(i,1)/29); 
fprintf(fid, '\n **'); 
fprintf(fid, '\n **'); 
  
fprintf(fid, '\n DK ALL'); 
%K-direction gridblock assignment.  
fprintf(fid, '\n 2610*%d', input(i,2)/3); 
fprintf(fid, '\n DTOP'); 
fprintf(fid, '\n 870*%d', input(i,6)); 
  
fprintf(fid, '\n **'); 
fprintf(fid, '\n **'); 
fprintf(fid, '\n **$ Property: Permeability I (md)   Max: %d Min: %d' ,input(i,3),input(i,3)); 
fprintf(fid, '\n PERMI CON        %d', input(i,3)); 
fprintf(fid, '\n **$ Property: NULL Blocks  Max: 1  Min: 1'); 
fprintf(fid, '\n **$  0 = null block, 1 = active block'); 
fprintf(fid, '\n NULL CON            1'); 
fprintf(fid, '\n **$ Property: Porosity  Max: %d  Min: %d', input(i,4),input(i,4)); 
fprintf(fid, '\n POR CON         %d',input(i,4)); 
fprintf(fid, '\n **$ Property: Permeability J (md)   Max: %d  Min: %d', input(i,3), input(i,3)); 
fprintf(fid, '\n PERMJ CON        %d', input(i,3)); 
fprintf(fid, '\n **$ Property: Permeability K (md)   Max: %d  Min: %d', input(i,3), input(i,3)); 
fprintf(fid, '\n PERMK CON        %d', input(i,3)); 
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fprintf(fid, '\n **$ Property: Pinchout Array  Max: 1  Min: 1'); 
fprintf(fid, '\n **$  0 = pinched block, 1 = active block'); 
fprintf(fid, '\n PINCHOUTARRAY CON            1'); 
fprintf(fid, '\n CPOR 3.0E-6'); 
fprintf(fid, '\n MODEL GASWATER'); 
fprintf(fid, '\n TRES %d', input(i,5)); 
fprintf(fid, '\n PVTG ZG 1'); 
  
%%%%%%Code for generationg of PVT tables, viscosity. Created by Yogesh 
%%%%%%Bansal, inplemented also by Burak Kulga [1,2] 
Psc = 14.7; 
T_r = 460; 
T_res = input(i,5) + T_r; 
MW = input(i,7)*28.96; 
Ppc = 756.8 - 131*input(i,7) - 3.6*input(i,7)^2;    %%Determine pseudo-critical pressure for 

the gas 
Tpc = 169.2 + 349.5*input(i,7) - 74.0*input(i,7)^2; %%Determine pseudo-critical 

temperature for the gas 
P = (Psc:(8000-Psc)/20:8000); 
Pr = P./Ppc;    %%Calculate reduced pressure of the gas 
Tr = T_res/Tpc; %%calculate reduced temperature of the gas 
  
%%Loop to calculate Z-values for PVT tables (DRANCHUK) 
A = [0.3265; -1.07; -0.5339; 0.01569; -0.05165; 0.5475; -0.7361; 0.1844; 0.1056; 0.6134; 

0.721]; 
[u,v] = size(P); 
c1 = A(1) + A(2)/Tr + A(3)*Tr^-3 + A(4)*Tr^-4 + A(5)*Tr^-5; 
c2 = A(6) + A(7)/Tr + A(8)/Tr^2; 
c3 = A(7)/Tr + A(8)/Tr^2; 
for h=1:u 
    for g=1:v 
        if P(h,g) ~= 0 
            ro(h,g) = 0.27*Pr(h,g)/Tr; 
            diff=1; 
            while diff > 0.0001 
                f = 1 - 0.27*Pr(h,g)/(ro(h,g)*Tr) + c1*ro(h,g) + c2*ro(h,g)^2 - A(9)*c3*ro(h,g)^5 + 

A(10)*(1 + A(11)*ro(h,g)^2*exp(-1*A(11)*ro(h,g)^2/Tr^3)); 
                fd = 0.27*Pr(h,g)/(ro(h,g)^2*Tr) + c1 + 2*c2*ro(h,g) - 5*A(9)*c3*ro(h,g)^4 + 

2*A(10)*ro(h,g)*(1+A(11)*ro(h,g)^2 - A(11)^2*ro(h,g)^4)*exp(-1*A(11)*ro(h,g)^2)/Tr^3; 
                ron(h,g) = ro(h,g) - f/fd; 
                diff = abs(ron(h,g) - ro(h,g)); 
                ro(h,g) = ron(h,g); 
            end 
            z(h,g) = 0.27*Pr(h,g)/(ro(h,g)*Tr); 
        end 
    end 
end 
  
%%Viscosity calculation, created by Yogesh Bansal [1], used by Barak Kulga 
%%[2], from Lee 
  
X = 3.448 + 986.4/T_res + (0.01009*MW); 
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Y = 2.447 - (0.2224*X); 
K = (9.379 + 0.01607*MW)*T_res^1.5/(209.2 + 19.26*MW + T_res); 
  
ro_calc = P*MW./z/10.732/T_res; 
mu_g = 10^-4*K*exp( X * (ro_calc./62.4).^Y); 
P_V_T = [P;z;mu_g]; 
fprintf(fid, '\n %10.3f %5.6f %5.6f', P_V_T); 
fprintf(fid, '\n **'); 
fprintf(fid, '\n **'); 
fprintf(fid, '\n **'); 
fprintf(fid, '\n **'); 
fprintf(fid, '\n **'); 
fprintf(fid, '\n **'); 
fprintf(fid, '\n BWI 1'); 
fprintf(fid, '\n CVW  0.0'); 
fprintf(fid, '\n CW  3.51118e-006'); 
fprintf(fid, '\n DENSITY WATER  62.4'); 
fprintf(fid, '\n REFPW  8000'); 
fprintf(fid, '\n VWI  1'); 
fprintf(fid, '\n GRAVITY GAS  %d', input(i,7)); 
fprintf(fid, '\n PTYPE CON 1'); 
fprintf(fid, '\n ROCKFLUID'); 
fprintf(fid, '\n RPT  1'); 
  
fprintf(fid, '\n SWT'); 
fprintf(fid, '\n **$        Sw       krw'); 
fprintf(fid, '\n 0 0.0 0'); 
fprintf(fid, '\n 1 1 0'); 
fprintf(fid, '\n SGT'); 
fprintf(fid, '\n **$        Sg       krg'); 
fprintf(fid, '\n 0 0.0'); 
fprintf(fid, '\n 1 1'); 
fprintf(fid, '\n INITIAL'); 
fprintf(fid, '\n USER_INPUT'); 
fprintf(fid, '\n PRES CON %d', input(i,6)); 
fprintf(fid, '\n SW CON  0'); 
fprintf(fid, '\n NUMERICAL'); 
fprintf(fid, '\n RUN'); 
fprintf(fid, '\n DATE  2014  1  1'); 
  
fprintf(fid, '\n **$'); 
fprintf(fid, '\n WELL "Well-1"'); 
fprintf(fid, '\n PRODUCER "Well-1"'); 
fprintf(fid, '\n OPERATE  MIN  BHP  %d  CONT', input(i,8)); 
fprintf(fid, '\n **$    rad geofrac     wfrac       skin'); 
fprintf(fid, '\n GEOMETRY  I  0.375  0.37  1  0'); 
fprintf(fid, '\n PERF  GEOA  "Well-1"'); 
  
%%%%Code for the perforation geometry 
    fprintf(fid, '\n **$ UBA    ff  Status  Connection'); 
    fprintf(fid, '\n 6 15 2 1. OPEN  FLOW-TO "SURFACE" REFLAYER'); 
    j=1; 
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    for i=7:25 
        fprintf(fid, '\n %d 15 2 1. OPEN FLOW-TO %d', i, j); 
        j= j+1; 
    end 
  
fprintf(fid, '\n **'); %following is code obtaining monthly production data 
  
for day=2:30 
    fprintf(fid, '\n DATE  2014  1  %d.00000', day); 
end 
for month=2:12 
    if month == 2 
        for day=1:28 
            fprintf(fid, '\n DATE  2014  %d  %d.00000',month, day); 
        end 
    else 
        for day=1:30 
            fprintf(fid, '\n DATE  2014  %d  %d.00000',month, day); 
        end 
    end 
end 
  
for year=2015:2022 
    for month=1:12 
        if month == 2 
            for day=1:28 
                fprintf(fid, '\n DATE  %d  %d  %d.00000',year, month, day); 
            end 
        else 
            for day=1:30 
                fprintf(fid, '\n DATE  %d  %d  %d.00000',year, month, day); 
            end 
        end 
    end 
end 
fprintf(fid, '\n STOP'); 
fclose(fid);  
end 
 

Part B.2. Generation of CMG IMEX input script for Case Two. Section 5.1.2 describes 

the wellbore geometry of Case Two. This MATLAB script will generate a CMG code with 

perforations corresponding to a number of branches (one to two branches) with a varying 

branch length, as well as a varying junction location on the main wellbore lateral. Junction 

departure angle (the orientation of the branch with the main lateral) was held constant at 

45°. 
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Table 6-3 Generation of CMG IMEX Input Script, Case Two 

load input.txt; 
q = 1000; 
for i=1:q; 
numb=num2str(i); 
temp=['data' numb '.dat']; 
fid=fopen(temp,'wt'); 
fprintf(fid,'\n RESULTS SIMULATOR IMEX 201211'); 
fprintf(fid,'\n INUNIT FIELD'); 
fprintf(fid,'\n WSRF WELL 1'); 
fprintf(fid,'\n WSRF GRID TIME'); 
fprintf(fid,'\n WSRF SECTOR TIME'); 
fprintf(fid,'\n OUTSRF WELL LAYER NONE'); 
fprintf(fid,'\n OUTSRF RES ALL'); 
fprintf(fid,'\n OUTSRF GRID SG SW PRES'); 
fprintf(fid,'\n WPRN GRID 0'); 
fprintf(fid,'\n OUTPRN GRID NONE'); 
fprintf(fid,'\n OUTPRN RES NONE'); 
  
  
fprintf(fid,'\n **$ Distance units: ft'); 
fprintf(fid,'\n RESULTS XOFFSET 0.0000'); 
fprintf(fid,'\n RESULTS YOFFSET 0.0000'); 
fprintf(fid,'\n RESULTS ROTATION 0.0000 **$ (DEGREES)'); 
  
fprintf(fid,'\n **'); 
fprintf(fid,'\n **'); 
fprintf(fid,'\n **$ *********************************************************'); 
fprintf(fid,'\n **$ Definition of fundamental cartesian grid'); 
fprintf(fid,'\n **$ *********************************************************'); 
xblock = round(input(i,1)/50); 
yblock = round(input(i,1)/50); 
fprintf(fid,'\n GRID VARI %d %d 3', xblock, yblock); 
fprintf(fid,'\n KDIR DOWN'); 
fprintf(fid,'\n **'); 
fprintf(fid,'\n **'); 
fprintf(fid,'\n DI IVAR'); 
%I-direction gridblock assignment  
%5 gridblocks from reservoir edge to beginning of horizontal wellbore 
%20 gridblocks for the length of the main horizontal wellbore 
%5 gridblockss from the end of the main horizontal wellbore to the far edge 
%of the reservoir 
fprintf(fid,'\n %d*50 ',xblock); 
fprintf(fid,'\n **'); 
fprintf(fid,'\n **'); 
  
fprintf(fid,'\n DJ JVAR'); 
%J-direction gridblock assignment. Divide j direction into 29 equal block 
%lengths. 14 above wellbore, 1 for wellbore, and 14 below wellbore 
fprintf(fid, '\n %d*50', yblock); 
fprintf(fid, '\n **'); 
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fprintf(fid, '\n **'); 
  
fprintf(fid, '\n DK ALL'); 
%K-direction gridblock assignment.  
fprintf(fid, '\n %d*%d', xblock*yblock*3,input(i,2)/3); 
fprintf(fid, '\n DTOP'); 
fprintf(fid, '\n %d*%d', xblock*yblock,input(i,6)); 
  
fprintf(fid, '\n **'); 
fprintf(fid, '\n **'); 
fprintf(fid, '\n **$ Property: Permeability I (md)   Max: %d Min: %d' ,input(i,3),input(i,3)); 
fprintf(fid, '\n PERMI CON        %d', input(i,3)); 
fprintf(fid, '\n **$ Property: NULL Blocks  Max: 1  Min: 1'); 
fprintf(fid, '\n **$  0 = null block, 1 = active block'); 
fprintf(fid, '\n NULL CON            1'); 
fprintf(fid, '\n **$ Property: Porosity  Max: %d  Min: %d', input(i,4),input(i,4)); 
fprintf(fid, '\n POR CON         %d',input(i,4)); 
fprintf(fid, '\n **$ Property: Permeability J (md)   Max: %d  Min: %d', input(i,3), input(i,3)); 
fprintf(fid, '\n PERMJ CON        %d', input(i,3)); 
fprintf(fid, '\n **$ Property: Permeability K (md)   Max: %d  Min: %d', input(i,3), input(i,3)); 
fprintf(fid, '\n PERMK CON        %d', input(i,3)); 
fprintf(fid, '\n **$ Property: Pinchout Array  Max: 1  Min: 1'); 
fprintf(fid, '\n **$  0 = pinched block, 1 = active block'); 
fprintf(fid, '\n PINCHOUTARRAY CON            1'); 
fprintf(fid, '\n CPOR 3.0E-6'); 
fprintf(fid, '\n MODEL GASWATER'); 
fprintf(fid, '\n TRES %d', input(i,5)); 
fprintf(fid, '\n PVTG ZG 1'); 
  
%%%%%%Code for generationg of PVT tables, viscosity. Created by Yogesh 
%%%%%%Bansal, inplemented also by Burak Kulga [1,2] 
Psc = 14.7; 
T_r = 460; 
T_res = input(i,5) + T_r; 
MW = input(i,7)*28.96; 
Ppc = 756.8 - 131*input(i,7) - 3.6*input(i,7)^2;    %%Determine pseudo-critical pressure for 

the gas 
Tpc = 169.2 + 349.5*input(i,7) - 74.0*input(i,7)^2; %%Determine pseudo-critical 

temperature for the gas 
P = (Psc:(8000-Psc)/20:8000); 
Pr = P./Ppc;    %%Calculate reduced pressure of the gas 
Tr = T_res/Tpc; %%calculate reduced temperature of the gas 
  
%%Loop to calculate Z-values for PVT tables (DRANCHUK) 
A = [0.3265; -1.07; -0.5339; 0.01569; -0.05165; 0.5475; -0.7361; 0.1844; 0.1056; 0.6134; 

0.721]; 
[u,v] = size(P); 
c1 = A(1) + A(2)/Tr + A(3)*Tr^-3 + A(4)*Tr^-4 + A(5)*Tr^-5; 
c2 = A(6) + A(7)/Tr + A(8)/Tr^2; 
c3 = A(7)/Tr + A(8)/Tr^2; 
for h=1:u 
    for g=1:v 
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        if P(h,g) ~= 0 
            ro(h,g) = 0.27*Pr(h,g)/Tr; 
            diff=1; 
            while diff > 0.0001 
                f = 1 - 0.27*Pr(h,g)/(ro(h,g)*Tr) + c1*ro(h,g) + c2*ro(h,g)^2 - A(9)*c3*ro(h,g)^5 + 

A(10)*(1 + A(11)*ro(h,g)^2*exp(-1*A(11)*ro(h,g)^2/Tr^3)); 
                fd = 0.27*Pr(h,g)/(ro(h,g)^2*Tr) + c1 + 2*c2*ro(h,g) - 5*A(9)*c3*ro(h,g)^4 + 

2*A(10)*ro(h,g)*(1+A(11)*ro(h,g)^2 - A(11)^2*ro(h,g)^4)*exp(-1*A(11)*ro(h,g)^2)/Tr^3; 
                ron(h,g) = ro(h,g) - f/fd; 
                diff = abs(ron(h,g) - ro(h,g)); 
                ro(h,g) = ron(h,g); 
            end 
            z(h,g) = 0.27*Pr(h,g)/(ro(h,g)*Tr); 
        end 
    end 
end 
  
%%Viscosity calculation, created by Yogesh Bansal [1], used by Barak Kulga 
%%[2], from Lee 
  
X = 3.448 + 986.4/T_res + (0.01009*MW); 
Y = 2.447 - (0.2224*X); 
K = (9.379 + 0.01607*MW)*T_res^1.5/(209.2 + 19.26*MW + T_res); 
  
ro_calc = P*MW./z/10.732/T_res; 
mu_g = 10^-4*K*exp( X * (ro_calc./62.4).^Y); 
P_V_T = [P;z;mu_g]; 
fprintf(fid, '\n %10.3f %5.6f %5.6f', P_V_T); 
fprintf(fid, '\n **'); 
fprintf(fid, '\n **'); 
fprintf(fid, '\n **'); 
fprintf(fid, '\n **'); 
fprintf(fid, '\n **'); 
fprintf(fid, '\n **'); 
fprintf(fid, '\n BWI 1'); 
fprintf(fid, '\n CVW  0.0'); 
fprintf(fid, '\n CW  3.51118e-006'); 
fprintf(fid, '\n DENSITY WATER  62.4'); 
fprintf(fid, '\n REFPW  8000'); 
fprintf(fid, '\n VWI  1'); 
fprintf(fid, '\n GRAVITY GAS  %d', input(i,7)); 
fprintf(fid, '\n PTYPE CON 1'); 
fprintf(fid, '\n ROCKFLUID'); 
fprintf(fid, '\n RPT  1'); 
  
fprintf(fid, '\n SWT'); 
fprintf(fid, '\n **$        Sw       krw'); 
fprintf(fid, '\n 0 0.0 0'); 
fprintf(fid, '\n 1 1 0'); 
fprintf(fid, '\n SGT'); 
fprintf(fid, '\n **$        Sg       krg'); 
fprintf(fid, '\n 0 0.0'); 
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fprintf(fid, '\n 1 1'); 
fprintf(fid, '\n INITIAL'); 
fprintf(fid, '\n USER_INPUT'); 
fprintf(fid, '\n PRES CON %d', input(i,6)); 
fprintf(fid, '\n SW CON  0'); 
fprintf(fid, '\n NUMERICAL'); 
fprintf(fid, '\n RUN'); 
fprintf(fid, '\n DATE  2014  1  1'); 
  
fprintf(fid, '\n **$'); 
fprintf(fid, '\n WELL "Well-1"'); 
fprintf(fid, '\n PRODUCER "Well-1"'); 
fprintf(fid, '\n OPERATE  MIN  BHP  %d  CONT', input(i,8)); 
fprintf(fid, '\n **$    rad geofrac     wfrac       skin'); 
fprintf(fid, '\n GEOMETRY  I  0.375  0.37  1  0'); 
fprintf(fid, '\n PERF  GEOA  "Well-1"'); 
  
%%%%Code for the perforation geometry 
%define all lengths in terms of wellblocks 
n = input(i,10); 
y_loc = round(yblock/2); 
main_count = round(input(i,9)/50); 
branch_count = round(input(i,11)/50); 
wellblock = round((xblock-main_count)/2); 
junctionblock = round(wellblock+main_count*input(i,12)); 
fprintf(fid, '\n **$ UBA    ff  Status  Connection'); 
%First, code to draw the main lateral wellbore 
fprintf(fid, '\n %d %d 2 1. OPEN  FLOW-TO "SURFACE" REFLAYER',wellblock,y_loc); 
j=1; 
for i=wellblock+1:(wellblock+main_count) 
        fprintf(fid, '\n %d %d 2 1. OPEN FLOW-TO %d', i, y_loc, j); 
        if j == junctionblock-wellblock 
            connect_to_junction = j; 
        end 
        j=j+1; 
end 
  
%Next, conditional perforation geometry based on one or two laterals.  
switch n 
    case 1 
        %first perforation off the junction block 
        fprintf(fid, '\n %d %d 2 1. OPEN FLOW-TO %d', junctionblock+1, y_loc-1, 

connect_to_junction); 
        j=j+1; 
        %loop for subsequent blocks containing branch 
        for i=2:branch_count 
            fprintf(fid, '\n %d %d 2 1. OPEN FLOW-TO %d', junctionblock+i, y_loc-i, j); 
            j=j+1; 
        end 
    case 2 
        %first perforation off the junction block, above wellbore 
        fprintf(fid, '\n %d %d 2 1. OPEN FLOW-TO %d', junctionblock+1, y_loc-1, 
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connect_to_junction); 
        j=j+1; 
        %loop for subsequent blocks containing branch 
        for i=2:branch_count 
            fprintf(fid, '\n %d %d 2 1. OPEN FLOW-TO %d', junctionblock+i, y_loc-i, j); 
            j=j+1; 
        end 
        %first perforation off the junction block, below wellbore 
        fprintf(fid, '\n %d %d 2 1. OPEN FLOW-TO %d', junctionblock+1, y_loc+1, 

connect_to_junction); 
        j=j+1; 
        %loop for subsequent blocks containing branch, below wellbore 
        for i=2:branch_count 
            fprintf(fid, '\n %d %d 2 1. OPEN FLOW-TO %d', junctionblock+i, y_loc+i, j); 
            j=j+1; 
        end 
end 
  
%inside the conditional statement, include code to perforate at the exact 
%location determined by x(i) give by the runs/user assigned. 
  
  
  
fprintf(fid, '\n **'); %following is code obtaining monthly production data 
  
for day=2:30 
    fprintf(fid, '\n DATE  2014  1  %d.00000', day); 
end 
for month=2:12 
    if month == 2 
        for day=1:28 
            fprintf(fid, '\n DATE  2014  %d  %d.00000',month, day); 
        end 
    else 
        for day=1:30 
            fprintf(fid, '\n DATE  2014  %d  %d.00000',month, day); 
        end 
    end 
end 
  
for year=2015:2022 
    for month=1:12 
        if month == 2 
            for day=1:28 
                fprintf(fid, '\n DATE  %d  %d  %d.00000',year, month, day); 
            end 
        else 
            for day=1:30 
                fprintf(fid, '\n DATE  %d  %d  %d.00000',year, month, day); 
            end 
        end 
    end 
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end 
  
  
fprintf(fid, '\n STOP'); 
  
fclose(fid); 
  
end 

 

Part C. Extraction of production data from ‘.irf’ results file (generated by CMG IMEX). 

This code, using the “Results” module of CMG, will extract cumulative gas production and 

daily gas production rate for each of the simulations and output respective data to a ‘.txt’ 

file. Simulation data is daily gas production data for nine years.  

Table 6-4 Extraction of Production Data 

%%% Extraction of monthly production data generated by CMG 
%%% Created with reference code developed by Yogesh bansal, 2009 [1] 
  
load input.txt 
  
cmgdata = ['CMGEXTRACT.bat']; 
fidext = fopen(cmgdata,'wt'); 
%Loop to extract production data from first directory of CMG IMEX output 
%data 
for i=1:1000; 
    counter = num2str(i); 
    filehandle = ['data' counter '.rwd']; 
    fid = fopen(filehandle, 'wt'); 
     
    fprintf(fid, '%s','FILE "data',num2str(i)); 
    fprintf(fid, '%s','.irf"'); 
    fprintf(fid, '\nLINES-PER-PAGE 10000\n'); 
    fprintf(fid, '\nTIME ON\n'); 
    fprintf(fid, '\n*TIMES-FOR\n'); 
     
     
    %%TIME LOOP 
    for x = 1:15 
        for y = 1:108 
            fprintf(fid, '%d\n',x); 
            fprintf(fid, '%d\n',y*30); 
        end 
    end 
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    fprintf(fid, 'SPREADSHEET\n'); 
    fprintf(fid, 'TABLE-FOR\n'); 
    fprintf(fid, '%s\n','COLUMN-FOR *PARAMETERS "Cumulative Gas SC" *WELLS "Well-1"'); 
    fprintf(fid, '%s\n\n','COLUMN-FOR *PARAMETERS "Gas Rate SC" *WELLS "Well-1"'); 
    fprintf(fid, '%s\n','TABLE-END'); 
    fclose(fid); 
     
    fprintf(fidext, '%s','call "C:\\Program Files 

(x86)\\CMG\\BR\\2012.20\\Win_x64\\EXE\\report.exe" -f "data'); 
    fprintf(fidext, num2str(i)); 
    fprintf(fidext, '%s','.rwd"'); 
    fprintf(fidext, '%s',' -o "data_extract_case2_',num2str(i),'.txt"'); 
    fprintf(fidext, '\n'); 
end 

fclose(fidext); 
 

Part D. Preparation of Data for use as input and target of neural network. Each 

subsequent ‘.txt’ file containing all production rate and cumulative production data will be 

read into a matrix. All erroneous sets will be deleted and removed, and the matrices will be 

formatted for the next step, the neural network.  

Table 6-5 Data Preparation for ANN Training 

load input.txt 
input = transpose(input); 
q = 1; 
for i=1:length(input(1,:)) 
    j=num2str(i); 
    data = ['data_extract_case2_' j '.txt']; 
    %if statement to check for bad cases that have been deleted 
    if exist(data) 
        [time cumgas scfd] = textread(data, '%f %f %f','headerlines',6); 
        production_rate(:,i) = scfd; 
        cumulativegas(:,i) = cumgas; 
    else 
        skipped(q,:) = i; 
        q=q+1; 
    end 
end 
  
save time.txt time -ASCII 
save production_rate_2.txt production_rate -ASCII 
save cumulativegas_2.txt cumulativegas -ASCII 
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Part E. Declaration and Training of Neural Network in Matlab. A number of 

parameters in this matlab code were varied, and the training was done in a series of trials to 

determine the optimal network configuration. The code will output the Matlab workspace 

containing the trained network, for further operation in the next step.  

Table 6-6 Neural Network Training in Matlab 

load input_CASE2_B.txt 
load target_CASE2_B.txt 

  
%%Add functional links, tranforming solution from non-unique to unique 
output = 

[target_CASE2_B(1,:)./(input_CASE2_B(110,:).*input_CASE2_B(112,:).*inpu

t_CASE2_B(113,:)); %parameter 1, A/(Lwb*n*Lb) 
    

target_CASE2_B(1,:).*target_CASE2_B(2,:);                              

                        %parameter 2, A*h 
    

target_CASE2_B(2,:).*target_CASE2_B(3,:);                              

                        %parameter 3, k*h 
    

target_CASE2_B(1,:).*target_CASE2_B(2,:).*target_CASE2_B(4,:);         

                         %parameter 4, A*h*phi 
    

target_CASE2_B(6,:)./input_CASE2_B(111,:);                             

                        %parameter 5, pi/psf 
    

target_CASE2_B(6,:).*target_CASE2_B(5,:);                              

                        %parameter 6, Pi*Ti 
    

target_CASE2_B(5,:).*target_CASE2_B(7,:);                              

                       %parameter 7, Ti*g_sg 
    

target_CASE2_B(3,:).*target_CASE2_B(6,:).*(input_CASE2_B(110,:)+input_C

ASE2_B(112,:).*input_CASE2_B(113,:))./(input_CASE2_B(1,:)+input_CASE2_B

(109,:)); 
    

input_CASE2_B(112,:).*input_CASE2_B(113,:).*input_CASE2_B(114,:)./targe

t_CASE2_B(1,:); 
    

target_CASE2_B(6,:)./input_CASE2_B(111,:).*input_CASE2_B(114,:).*input_

CASE2_B(113,:).*target_CASE2_B(1,:)]; 

  

     

  

  
in = log(input_CASE2_B); 
tar = log(output); 

  
%Normalize data between -1 and 1 
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[irun,is] = mapminmax(in,-1,1); 
[Trun,Ts] = mapminmax(tar,-1,1); 

  
[mi,ni] = size(irun); 
[mo,no] = size(Trun); 

  
%Define variables used in the network 
N_in = mi;%Number of inputs 
N_out = mo;%Number of outputs 
Total_in = ni;%Number of simulations 

  
%Assign sets for training, validation, and testing 
[irun_train,irun_val,irun_test,trainInd,valInd,testInd] = 

dividerand(irun,0.8,0.15,0.05); 
[Trun_train,Trun_val,Trun_test] = 

divideind(Trun,trainInd,valInd,testInd); 

  
val.P = irun_val; 
test.P = irun_test; 
val.T = Trun_val; 
test.T = Trun_test; 

  
NNeu1 = 60; 
NNeu2 = 40; 

  

  
netB = newff(irun,Trun,[NNeu1, 

NNeu2],{'logsig','tansig'},'trainscg','learngdm','msereg'); 

  
%Training Parameters 
netB.trainParam.goal = 0.00005; 
netB.trainParam.epochs = 12000; 
netB.trainParam.show = 1; 
netB.trainParam.max_fail = 10000; 
NET.efficiency.memoryReduction = 60; 
netB.trainParam.showWindow = true; %Show Training Window 

  
%Train Network 
[netB,tr] = train(netB,irun_train,Trun_train,[],[],test,val); 

  

  

  
%Save the workspace to use the network for later application 
save('Case2B_FN_ANN.mat'); 

 

Part F. Testing of the Neural Network. This code will use the network to predict all 

outputs for the testing data sets, and then will compare predicted outputs with target 

outputs. 
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Table 6-7 Neural Network Testing in Matlab 

load Case2B_FN_ANN.mat; 
load time.txt; 
Trun_train_ANN = sim(netB, irun_train); 
test_ANN = sim(netB, irun_test); 

  
Trun_train = mapminmax('reverse',Trun_train,Ts); 
test_ANN = mapminmax('reverse',test_ANN,Ts); 
Trun_train_ANN = mapminmax('reverse',Trun_train_ANN,Ts); 
Trun_test = mapminmax('reverse',Trun_test,Ts); 

  
irun_test = mapminmax('reverse',irun_test,is); 

  
Trun_test = exp(Trun_test); 
test_ANN = exp(test_ANN); 
irun_test = exp(irun_test); 

  
%Reverse Functional Links to provide output Artificial Reservoir 

Parameters 
%Area: ANN output 1 = A/(Lwb*n*Lb) 
A_ANN = 

test_ANN(1,:).*irun_test(110,:).*irun_test(112,:).*irun_test(113,:); 
A = 

Trun_test(1,:).*irun_test(110,:).*irun_test(112,:).*irun_test(113,:); 
%h 
h_ANN = test_ANN(2,:)./A_ANN; 
h = Trun_test(2,:)./A; 
%k 
k_ANN = 

test_ANN(3,:).*irun_test(110,:).*irun_test(112,:).*irun_test(113,:); 
k = 

Trun_test(3,:).*irun_test(110,:).*irun_test(112,:).*irun_test(113,:); 
%phi 
phi_ANN = 

test_ANN(4,:).*irun_test(110,:).*irun_test(112,:).*irun_test(113,:); 
phi = 

Trun_test(4,:).*irun_test(110,:).*irun_test(112,:).*irun_test(113,:); 
%Pi 
Pi_ANN = test_ANN(5,:).*irun_test(111,:); 
Pi = Trun_test(5,:).*irun_test(111,:); 
%Ti 
Ti_ANN = test_ANN(6,:)./Pi_ANN; 
Ti = Trun_test(6,:)./Pi; 
%g_sg 
g_sg_ANN = test_ANN(7,:)./Ti_ANN; 
g_sg = Trun_test(7,:)./Ti; 

  

  
%Find Percent Error For Each of the Outputs. 
ANN_er_A = abs(A_ANN - A)./A.*100; 
ANN_er_h = abs(h_ANN - h)./h.*100; 
ANN_er_k = abs(k_ANN - k)./k.*100; 
ANN_er_phi = abs(phi_ANN - phi)./phi.*100; 
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ANN_er_Pi = abs(Pi_ANN - Pi)./Pi.*100; 
ANN_er_Ti = abs(Ti_ANN - Ti)./Ti.*100; 
ANN_er_gsg = abs(g_sg_ANN - g_sg)./g_sg.*100; 

  
props = [mean(ANN_er_A);mean(ANN_er_h);mean(ANN_er_k);mean(ANN_er_phi); 

mean(ANN_er_Pi);mean(ANN_er_Ti);mean(ANN_er_gsg)]; 
save properties.txt props -ASCII 
%Save outputs to import into Network A model for testing artificial 

inputs 
%production = irun_test(1:109,:); 
%wellbore = irun_test(110:114,:); 
%case2Ainput_ANNinput = [Trun_test_ANN; wellbore]; 
%case2Aoutput_target = production; 
%case2input_targetinput = [Trun_test; wellbore]; 

 

Part G. In the final testing procedure of the neural network, outputs generated from 

ANN B and C will be used as inputs for ANN A, and the respective gas production schedule 

outputs will be compared against the target gas production profile generated by CMG. 

Table 6-8 Neural Network Testing of Predicted Reservoir and Wellbore Parameters 

load time.txt; 
load Case2AANN.mat; 
load case_2BTO2A_ANN_GEN_INPUT.txt; 
load case_2BTO2A_TARGET_INPUT.txt; 
load case_2BTO2A_CMG_OUTPUT.txt; 

  
%Test artificially generated inputs with Case 2A Network 

  
%input as the training set 
testinput = case_2BTO2A_ANN_GEN_INPUT; 
actualinput = case_2BTO2A_TARGET_INPUT; 
ideal_Target = case_2BTO2A_CMG_OUTPUT; 

  
testinput = log(testinput); 
actualinput = log(actualinput); 
test_target = log(ideal_Target); 

  
[in_trial, s1] = mapminmax(testinput,-1,1); 
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[in_actual, s3] = mapminmax(actualinput,-1,1); 
[out_trial, s2] = mapminmax(test_target,-1,1); 

  
Trial_output = sim(net, in_trial); 
Actual_output = sim(net, in_actual); 

  
Trial_output = mapminmax('reverse',Trial_output, s2); 
Actual_output_reverse = mapminmax('reverse',Actual_output, s2); 
Trial_output = exp(Trial_output); 
Actual_output_reverse = exp(Actual_output_reverse); 

  
%Calculate Mean Percentage Error For Each Data Set 
mpe_ANNparam = zeros(50,1); 
mpe_CMGparam = zeros(50,1); 
for j = 1:50 
    for i = 1:109 
        mpe_ANNparam(j) = mpe_ANNparam(j)+(abs(ideal_Target(i,j) - 

Trial_output(i,j))/ideal_Target(i,j))*100; 
        mpe_CMGparam(j) = mpe_CMGparam(j)+(abs(ideal_Target(i,j) - 

Actual_output_reverse(i,j))/ideal_Target(i,j))*100; 
    end 
    mpe_ANNparam(j) = mpe_ANNparam(j)/109; 
    mpe_CMGparam(j) = mpe_CMGparam(j)/109; 
end 
AV_MPE_ANNparam = mean(mpe_ANNparam); 
AV_MPE_CMGparam = mean(mpe_CMGparam); 

  

  
q=36 
figure 
plot(time, ideal_Target(:,q),'--k','LineWidth',1.5,'MarkerSize',10) 
hold on 
plot(time, 

Actual_output_reverse(:,q),':r','LineWidth',1.5,'MarkerSize',10) 
plot(time, Trial_output(:,q),':g','LineWidth',1.5,'MarkerSize',10) 
hold off 
%Note - Change the string label in the next line based on which run is 
%selected for chart output 
title('Gas Production Rate vs. Time, Case 2 Network B Generated Data, 

Set #612 ') 
xlabel('Time [Days]') 
ylabel('Gas Production Rate [SCF/D]') 
set(gca, 'XTick',[0:270:3240]) 
legend('CMG Output', 'ANN A Output', 'ANN B Output') 
%error = num2str(AV_MPE_ANNparam); 
%error2 = num2str(AV_MPE_CMGparam); 
%str = ['AVG MPE, Artificial Inputs = ' error '%']; 
%str2 = ['AVG MPE, CMG Inputs = ', error2, '%']; 
%teststr = {str,str2}; 
%annotation('textbox',[0.46,0.65,0.44,0.10],'String', teststr); 
thisset = {['MPE, ANN Generated Inputs = ' num2str(mpe_ANNparam(q)) 

'%'],[ 'MPE, CMG Inputs = ' num2str(mpe_CMGparam(q)) '%']}; 
annotation('textbox',[0.40,0.65,0.50,.10],'String', thisset); 
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ANN_er_A = abs(ideal_Target(1,:) - 

Trial_output(1,:))./ideal_Target(1,:).*100; 
ANN_er_h = abs(ideal_Target(2,:) - 

Trial_output(2,:))./ideal_Target(2,:).*100; 
ANN_er_k = abs(ideal_Target(3,:) - 

Trial_output(3,:))./ideal_Target(3,:).*100; 
ANN_er_phi = abs(ideal_Target(4,:) - 

Trial_output(4,:))./ideal_Target(4,:).*100; 
ANN_er_Pi = abs(ideal_Target(6,:) - 

Trial_output(6,:))./ideal_Target(6,:).*100; 
ANN_er_Ti = abs(ideal_Target(5,:) - 

Trial_output(5,:))./ideal_Target(5,:).*100; 
ANN_er_gsg = abs(ideal_Target(7,:) - 

Trial_output(7,:))./ideal_Target(7,:).*100; 

  
props = [mean(ANN_er_A);mean(ANN_er_h);mean(ANN_er_k);mean(ANN_er_phi); 

mean(ANN_er_Pi);mean(ANN_er_Ti);mean(ANN_er_gsg)]; 
save properties.txt props -ASCII 
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