THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE

DEPARTMENT OF FINANCE

EXAMINING THE IMPACT OF THE MARKET RISK PREMIUM BIAS ON THE CAPM AND THE FAMA FRENCH MODEL

CHRIS DORIAN SPRING 2014

A thesis submitted in partial fulfillment of the requirements for baccalaureate degrees in Finance and Economics with honors in Finance

Reviewed and approved* by the following:

Timothy Simin Associate Professor of Finance Thesis Supervisor

> James Miles Professor of Finance Honors Adviser

* Signatures are on file in the Schreyer Honors College.

ABSTRACT

The Capital Asset Pricing Model and the Fama French Three Factor Model are widely considered two of the premier financial asset pricing models. The Fama French Model uses three factors, SMB, HML, and Market Premium, to predict stock returns. It was created as an extension to the Capital Asset Pricing Model, which only considers one factor, the Market Premium. Glenn Pettengill, Sridhar Sundaram, and Ike Mathur observed that the Capital Asset Pricing Model has a flaw in that it relies on the positive relationship between risk and return but does not consider that an inverse relationship exists when the market premium is negative. Pettengill et al. note that this flaw creates a market risk premium bias within the model. This paper utilizes a similar method as Pettengill et al. to determine that the same flaw exists for the Fama French Model. It then determines that the Fama French Model is better that the Capital Asset Pricing Model at reducing the impact of the market risk premium bias.

TABLE OF CONTENTS

List of Figures
List of Tablesiv
Acknowledgementsv
Chapter 1 Introduction
Capital Asset Pricing Model
Chapter 2 Literature Review
Chapter 3 Methodology
Data Used
Chapter 4 Empirical Results12
Determining if Market Risk Premium Bias Exists
Chapter 5 Conclusion16
Appendix A Summary of Data

LIST OF FIGURES

Figure 1. The Capital Asset Pricing Model	1
Figure 2. The Fama French Model	3
Figure 3. Pettengill et al. Regression.	6
Figure 4. Fama French Model Regression	9
Figure 5. CAPM Regression.	10

LIST OF TABLES

Table 1. Summary Statistics of Factors	9
Table 2. Equal Weighted Excess Returns.	12
Table 3. Equal Weighted Nominal Returns.	13
Table 4. Value Weighted Excess Returns	13
Table 5. Value Weighted Nominal Returns.	13
Table 6. Underestimations of Beta	14

ACKNOWLEDGEMENTS

First, I would like to thank Professor Timothy Simin for his assistance throughout the entire process. From his guidance in choosing a topic to his help when the initial results were not as predicted, I would not have completed this project without him. I would also like to thank Professor James Miles for serving as my faculty reader and ensuring that I was always on track in completing this project.

In addition, I would like to thank my parents, Paul and Michele Dorian, for their constant interest in my academic endeavors. They have consistently provided me with the motivation that I needed to be successful in my endeavors.

Chapter 1

Introduction

Capital Asset Pricing Model

The Capital Asset Pricing Model (CAPM) was designed by William Sharpe (1964) and John Lintner (1965) to predict stock returns. The underlying principle of the CAPM is that a stock's return is dependent on its sensitivity to non-diversifiable risk. The formula for the CAPM is:

(1)
$$E(\mathbf{R}_a) = \mathbf{R}_f + \mathbf{\beta} * (E(\mathbf{R}_m) - \mathbf{R}_f) + \alpha$$

Figure 1: The Capital Asset Pricing Model

Where

 $E(R_a) =$ the expected return of the stock,

 $R_{\rm f}$ = the risk free rate

E (R_m) = the expected return of the market

 $(E(R_m) - R_f) =$ the market risk premium

 β = the coefficient of the market risk premium, referred to as "the beta factor" or "beta"

 α = the error term

While there are flaws in the Capital Asset Pricing Model which will be addressed later, it is a very popular model to use for predicting expected stock returns due to its simplicity and the intuitive nature of a positive linear relationship between non-diversifiable risk and stock returns.

Fama French Model

The Fama French three-factor model was created by Eugene Fama and Kenneth French (1992) to predict stock returns. Fama and French observed that the Capital Asset Pricing Model (CAPM) was accurate but did not account for two types of stocks that tend to outperform the market: small cap stocks and stocks with a high book-to-market ratio. To account for these observations, they created two variables and added them to the CAPM.

When creating these variables, Fama and French first constructed six portfolios named S/L, S/M, S/H, B/L, B/M, and B/H. These were created from the intersection of two size groups and three book-to-market groups. For instance, the S/L portfolio includes all of the small market cap stocks that also have a low book-to-market ratio. Once these portfolios were constructed, Fama and French were able to create their variables.

The first variable that Fama and French designed accounts for the risk factor associated with the size of a stock. They named this variable SMB (small minus big). SMB is the difference between the returns of small stocks and big stocks within the same book-to-market group. For instance, the difference between the returns of the S/L portfolio and the B/L portfolio would be calculated. Essentially, this variable accounts for the difference between returns on small and big stocks with similar book-to-market ratios. It is affected by the difference in returns associated with the size of the stock without being swayed by the book-to-market ratio.

The second variable that Fama and French designed accounts for the risk factor associated with the book to market ratio of a stock. They named this variable HML (high minus low). HML is the difference between the returns of high book-to-market stocks and low book-tomarket stocks within the same size group. For instance, the difference between the returns of the S/H portfolio and the S/L portfolio would be calculated. Essentially, this variable accounts for the difference between returns on stocks with high and low book-to-market ratios with similar sizes. It is affected by the difference in returns associated with the book-to-market ratio of the stock without being swayed by the size of the stock.

By utilizing these variables, Fama and French created the Fama French three-factor model:

(2)
$$E(R_a) = R_f + \beta_1 * (E(R_m) - R_f) + \beta_2 * (SMB) + \beta_3 * (HML) + \alpha$$

Figure 2: The Fama French Model

Where

E (R_a) = the expected return of the stock R_f = the risk free rate E (R_m) = the expected return of the market (E (R_m) - R_f) = the market risk premium SMB = small minus big factor HML = high minus low factor β_1 , β_2 , and β_3 = the coefficients associated with each factor α = the error term.

Market Risk Premium Bias

Glenn Pettengill, Sridhar Sundaram, and Ike Mathur (1995) point out that the CAPM relies on the notion that there is a positive relationship between risk and return. However, when the realized market return is below the risk free rate, there will actually be an inverse relationship between the beta factor and portfolio return. Amazingly, the market risk premium is negative in approximately 40 percent of the 1047 months between July 1926 and September 2013. This

impressive number of instances in which the market risk premium is negative suggests that there may be a flaw within any model that does not account for this. Pettengill et al. create a dummy variable (δ) to account for whether excess returns are positive or negative and apply this to the CAPM. They discover that a market risk premium bias exists within the CAPM because it does not account for the instances in which the market risk premium is negative.

The Fama-French model also relies on the notion that there is a positive relationship between risk and return. The goal of this paper is to determine if a similar market risk premium bias exists within the Fama French Model. In order to test for market risk premium bias, this paper utilizes techniques similar to those used by Pettingill et al. and applies them to both the CAPM and the Fama French Model. The results of this paper support the existence of market risk premium bias within both the CAPM and the Fama French Model.

After determining that market risk premium bias exists within both models, this paper will also determine which model between the CAPM and Fama French Model is more effective at mitigating the market risk premium bias. The results illustrate that both models underestimate the value of the beta coefficient associated with market risk premium. The results also indicate that the Fama French Model underestimates the beta value to a lesser degree, thus it is the superior model at reducing the impact of market risk premium bias.

Chapter 2

Literature Review

The Capital Asset Pricing Model (CAPM) designed by William Sharpe (1964) and John Lintner (1965) has been one of the premium asset pricing models ever since it was created. The underlying principle of the CAPM is that there is a positive linear relationship between a stock's expected return and non-diversifiable risk. The model was widely accepted at first due to its sound logic. Investors who are both rational and risk averse only need to be rewarded for non-diversifiable risk because they will diversify away all other types of risk. The model's measure of a stock's sensitivity to non-diversifiable risk is the beta factor in equation (1).

Early tests of the CAPM agreed with the model's use of beta as a measure of risk and the concept of a positive linear relationship between a stock's expected returns and beta. Fischer Black, Michael C. Jensen, and Myron Scholes (1972) use time series tests instead of cross-sectional tests to assess the validity of the CAPM. They conclude that the beta factor is useful in explaining asset returns and that there is a positive linear relationship between beta and expected returns. Fama and MacBeth (1973) similarly conclude that they cannot reject the existence of a positive linear relationship between expected returns and beta.

Many recent tests, however, have critiqued the CAPM. Merton H. Miller and Myron Scholes (1972) find that stocks with high beta values tend to have lower expected returns than their beta value would suggest and that stocks with low beta values tend to have higher expected returns than their beta value would suggest. In other words, the relationship between beta and returns is flatter than the CAPM would suggest. Later, Richard Roll (1977) challenges the assumption of the CAPM that a linear relationship exists between beta and expected returns. More recently, Glenn Pettengill, Sridhar Sundaram, and Ike Mathur (1995) test the relationship between beta and expected returns and discover that the market premium bias exists within the CAPM.

Pettengill et al. first observed the market risk premium bias in their paper entitled *The Conditional Relationship between Beta and Returns* in 1995. In their paper, they explore the usefulness of the Capital Asset Pricing Model (CAPM) in predicting stock returns. They claim that a major shortcoming of the CAPM is that it is biased because it does not account for the possibility of a negative market risk premium. They argue that when the realized market return is greater than the risk-free rate there is a positive relationship between beta and returns. Conversely, when the realized market return is less than the risk free rate there is an inverse relationship between beta and returns. In order to prove that this systematic relationship between returns and risk exists, they run the following regression:

(3)
$$R_{it} = Y_{0t} + Y_{1t} * \delta * \beta_i + Y_{2t} * (1 - \delta) * \beta_i + \varepsilon_t$$

Figure 3: Pettengill et al. Regression

Where

$$\begin{split} R_{it} &= \text{realized portfolio returns} \\ Y_{0t} &= \text{constant value} \\ Y_{1t} &= \text{estimated coefficient of beta when market risk premium is positive} \\ Y_{2t} &= \text{estimated coefficient of beta when market risk premium is negative} \\ \beta_i &= \text{the beta factor} \\ \epsilon_t &= \text{the error term} \\ \delta &= 1 \text{ if } (\text{Rm} - \text{Rf}) > 0 \text{ and} \\ \delta &= 0 \text{ if } (\text{Rm} - \text{Rf}) < 0 \end{split}$$

The key values in this regression are y_{1t} and y_{2t} . They expect Y_{1t} to be positive because it is estimated when the realized market excess returns are positive. They expect Y_{2t} to be negative because it is estimated when the realized market excess returns are negative. They test two different hypotheses to confirm their expectations. The first hypothesis that they test is:

$$H_0: y_1 = 0$$

 $H_a: y_1 > 0$

The null hypothesis is that the y_1 coefficient is equal to 0. If they can reject this null hypothesis in favor of the alternate hypothesis that y_1 is positive, then they can prove that there is a positive relationship between beta and returns when the realized market excess returns are positive.

The second hypothesis that they test is:

$$H_0: y_2 = 0$$

 $H_a: y_2 < 0$

The null hypothesis is that the y_2 coefficient is equal to 0. If they can reject this null hypothesis in favor of the alternate hypothesis that y_2 is negative, then they can prove that there is an inverse relationship between beta and returns when the realized market excess returns are negative.

In their conclusion, Pettengill et al. reject both null hypotheses. Thus, they conclude that the positive relationship between beta and expected returns is conditional on realized returns. This discovery leads to the conclusion that the CAPM has market risk premium bias.

Chapter 3

Methodology

Data Used

The data range for this paper is from July 1926 to September 2013. The returns used were monthly returns for 25 different portfolios formed on size and book-to-market obtained from Kenneth French's website. Four different types of portfolio returns were used: equal weighted excess returns, equal weighted nominal returns, value weighted excess returns, and value weighted nominal returns. Data on the risk-free rate, the SMB factor, and the HML factor were also obtained from Kenneth French's website.

Determining if a Market Risk Premium Bias Exists

In addition to this data, a dummy variable (DELTA or δ) was created to account for whether the market risk premium was positive or negative. Every data point has a δ value where

 $\delta = 1$ if $(R_m - R_f) < 0$ and $\delta = 0$ if $(R_m - R_f) > 0$

A summary of the data can be observed in Table 1, while a more detailed summary of the data can be viewed in Appendix A.

Table 1: Summary Statistics of Factors

Statistic	R _m -R _f	SMB	HML	RF	MKT	DELTA
Mean	0.640	0.236	0.396	0.288	0.928	0.401
Standard Error	0.167	0.101	0.109	0.008	0.167	0.015
Standard Deviation	5.413	3.264	3.543	0.254	5.402	0.490
Sample Variance	29.299	10.651	12.552	0.064	29.185	0.240
Minimum	-29.000	-16.390	-12.680	-0.060	-28.970	0
Maximum	37.740	38.490	37.310	1.350	37.840	1
Count	1047	1047	1047	1047	1047	1047

Because the data set consists of returns for 25 different portfolios over the same time period, it is a panel data set with the portfolio number (1 through 25) acting as the panel variable. To test for the market risk premium bias, several different panel regressions were run. Fixed effects are assumed. All regressions were run using Stata Data Analysis and Statistical Software.

To test for the market risk premium bias within the Fama French Model, the following regression was run:

(4)
$$\mathbf{R}_{a} = \alpha + \beta_{1} * (\mathbf{R}_{m} - \mathbf{R}_{f}) + \beta_{2} * (SMB) + \beta_{3} * (HML) + \beta_{4} * (\delta) + \varepsilon$$

Figure 4: Fama French Model Regression

Where

 α = constant value

 (R_m-R_f) = realized market risk premium

SMB = small minus big factor

HML = high minus low factor

 δ = dummy variable accounting for direction of market risk premium

 β_1 , β_2 , β_3 , and β_4 = the coefficients associated with each factor

 ϵ = the error term

The coefficient β_4 is estimated to determine if the market risk premium bias exists. The following hypothesis is tested:

$$\mathbf{H}_0: \mathbf{\beta}_4 = \mathbf{0}$$

 $H_a\!\!: \beta_4 \not= 0$

The null hypothesis is that the beta coefficient of the dummy variable is equal to 0. If the null hypothesis can be rejected, then the dummy variable is a significant factor and the market risk premium bias exists within the Fama French Model.

To test for the market risk premium bias within the CAPM, the following regression was run:

(5)
$$\mathbf{R}_{a} = \alpha + \beta_{1} * (\mathbf{R}_{m} - \mathbf{R}_{f}) + \beta_{2} * (\delta) + \varepsilon$$

Figure 5: CAPM Regression

Where

 α = constant value

 (R_m-R_f) = realized market risk premium

 δ = dummy variable accounting for direction of market risk premium

 β_1 and β_2 = the coefficients associated with each factor

 ϵ = the error term

The coefficient β_2 is estimated to determine if the market risk premium bias exists. The following hypothesis is tested:

$$\begin{split} H_0: \ \beta_2 &= 0 \\ H_a: \ \beta_2 &\neq 0 \end{split}$$

The null hypothesis is that the beta coefficient of the dummy variable is equal to 0. If the null hypothesis can be rejected, then the dummy variable is a significant factor and the market risk premium bias exists within the CAPM.

Testing the Effect of the Bias on Beta

After discovering that the market risk premium bias existed within both the Fama French Model and the CAPM, regressions were run without the dummy variable. This was done to test the effect that the market risk premium bias has on beta in each model. Whichever model's beta value is more affected by the addition of the dummy variable is more biased due to the direction of the market risk premium.

Chapter 4

Empirical Results

Determining if Market Risk Premium Bias Exists

The results of the regressions can be viewed in Table 2, Table 3, Table 4, and Table 5, while more detailed regression results can be viewed in Appendix B. Each table shows the same four regressions run with different types of returns used. In each table, <u>underlined</u> numbers are statistically insignificant using a 95% confidence interval. The numbers in the R_m - R_f , SMB, HML, and DELTA columns are the coefficients of each of variable. The numbers in the Constant column are the constants in each regression. The numbers in the t column are the t-statistic for the coefficient of the dummy variable. The numbers in the P>|t| column are the probability that the coefficient of the dummy variable is equal to 0.

Regression	Constant	R _m -R _f	SMB	HML	DELTA	t	P > t
Fama French (with Delta)	-0.206	1.099	0.664	0.405	0.408	5.75	0.000
Fama French (without delta)	<u>-0.028</u>	1.072	0.664	0.412	N/A	N/A	N/A
CAPM (with delta)	-0.338	1.338	N/A	N/A	1.147	13.84	0.000
CAPM (without delta)	0.169	1.264	N/A	N/A	N/A	N/A	N/A

Table 3: Equal Weighted Nominal Returns

Regression	Constant	$\mathbf{R}_{\mathbf{m}}$ - $\mathbf{R}_{\mathbf{f}}$	SMB	HML	DELTA	t	P > t
Fama French (with Delta)	<u>-0.066</u>	1.099	0.661	0.406	0.449	6.32	0.000
Fama French (without delta)	0.262	1.069	0.661	0.412	N/A	N/A	N/A
CAPM (with delta)	<u>-0.067</u>	1.337	N/A	N/A	1.191	14.37	0.000
CAPM (without delta)	0.460	1.261	N/A	N/A	N/A	N/A	N/A

Table 4: Value Weighted Excess Returns

Regression	Constant	\mathbf{R}_{m} - \mathbf{R}_{f}	SMB	HML	DELTA	t	P > t
Fama French (with Delta)	-0.149	1.061	0.604	0.366	0.193	2.82	0.005
Fama French (without delta)	<u>-0.064</u>	1.049	0.604	0.370	N/A	N/A	N/A
CAPM (with delta)	-0.268	1.278	N/A	N/A	0.862	10.98	0.000
CAPM (without delta)	0.113	1.223	N/A	N/A	N/A	N/A	N/A

Table 5: Value Weighted Nominal Returns

Regression	Constant	\mathbf{R}_{m} - \mathbf{R}_{f}	SMB	HML	DELTA	t	P > t
Fama French (with Delta)	-0.123	1.061	0.601	0.368	0.234	3.41	0.001
Fama French (without delta)	0.225	1.046	0.600	0.372	N/A	N/A	N/A
CAPM (with delta)	0.003	1.278	N/A	N/A	0.906	11.53	0.000
CAPM (without delta)	0.403	1.219	N/A	N/A	N/A	N/A	N/A

The results in Table 2, Table 3, Table 4, and Table 5 support the notion that market risk premium bias exists within each model. In all 16 regressions, the coefficient for the dummy variable is statistically significant even at a 99% confidence interval. Thus, both null hypotheses are rejected and the dummy variable proves significant. The t-values for the coefficient of the

dummy variable are much greater in the CAPM than in the Fama French Model. This suggests that the addition of the dummy variable has a much greater impact on the CAPM model than the Fama French Model.

Testing the Effect of the Bias on Beta

The tables show that a market risk premium bias exists within both models. The next question to answer is which model is better at mitigating this bias. This question can be answered by examining how each model is affected by the addition of the dummy variable.

In all 8 regressions, the beta value increases with the addition of the dummy variable. This suggests that both models underestimate the value of beta due to market risk premium bias. Table 6 displays the extent to which beta is underestimated in each regression.

Regression	Model	Underestimation of Beta
Equal Weighted Excess Returns	Fama French	2.55%
Equal Weighted Excess Returns	САРМ	5.85%
Equal Weighted Nominal Returns	Fama French	2.81%
Equal Weighted Nominal Returns	САРМ	6.09%
Value Weighted Excess Returns	Fama French	1.23%
Value Weighted Excess Returns	САРМ	4.54%
Value Weighted Nominal Returns	Fama French	1.50%
Value Weighted Nominal Returns	САРМ	4.79%

Table 6: Underestimations of Beta

In all four cases using different types of returns, the CAPM underestimates beta by a higher percentage than the Fama French Model does. The CAPM on average underestimates beta by 4.54% - 6.09% while the Fama French Model only underestimates beta by 1.23% - 2.81%.

Chapter 5

Conclusion

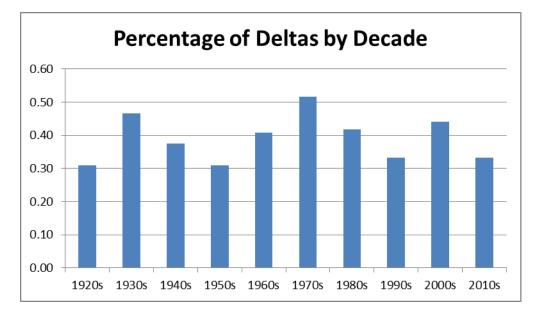
The Capital Asset Pricing Model and the Fama French Model are widely regarded as the two most popular models for predicting asset returns. Some regard the CAPM as the most useful model due to its simplicity. Others appreciate that the Fama French Model accounts for two anomalies that are not accounted for by the CAPM: that small cap stocks and stocks with a high book-to-market ratio tend to outperform other types of stocks.

While the CAPM and the Fama French Model are the two most popular models, neither is perfect. Both are flawed in the sense that they neglect to consider that an inverse relationship between returns and beta will exist when the market returns fall below the risk-free rate. This flaw creates what Pettengill et al. coined as the market risk premium bias.

This paper does not claim that either model is more useful. Both models are useful at predicting asset returns; however the results of this study suggest Fama French Model is superior to the CAPM when considering market risk premium bias. Each model contains market risk premium bias, but the addition of two variables, SMB and HML, in the Fama French Model lessens the impact of this bias. The Fama French Model only underestimates beta by 1.23% - 2.81% while the CAPM underestimates beta by 4.54% - 6.09%.

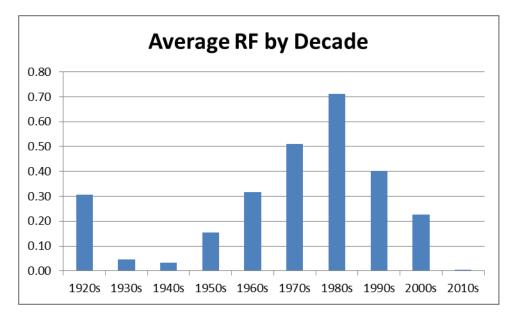
There is opportunity for further research about the phenomenon of market risk premium bias. It would be valuable to continue to look at the relationship between beta and returns, particularly when the market risk premium is negative. This would be useful in understanding exactly what causes market risk premium bias and could potentially lead to the creation of a model that completely eliminates this bias.

Appendix A

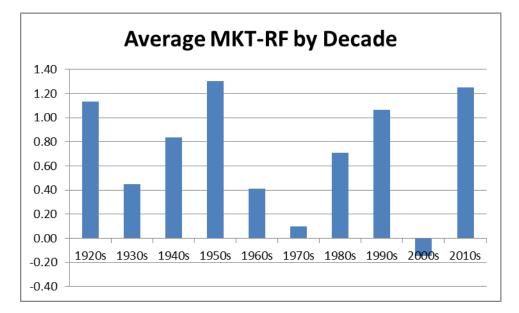

Summary of Data

Summary of $R_{\rm m}\text{-}R_{\rm f},$ SMB, and HML

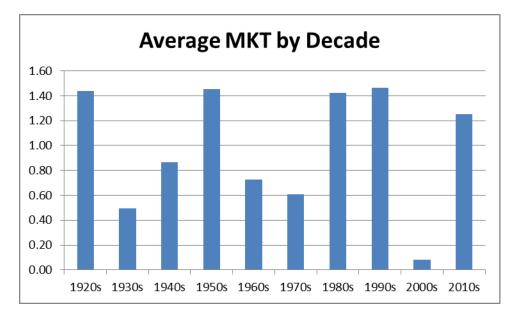
R _m -R _f		SMB		HML	
Mean	0.640	Mean	0.236	Mean	0.396
Standard Error	0.167	Standard Error	0.101	Standard Error	0.109
Median	1.020	Median	0.050	Median	0.240
Mode	1.410	Mode	0.050	Mode	0.480
Standard Deviation	5.413	Standard Deviation	3.264	Standard Deviation	3.543
Sample Variance	29.299	Sample Variance	10.651	Sample Variance	12.552
Kurtosis	7.377	Kurtosis	21.973	Kurtosis	17.701
Skewness	0.159	Skewness	2.152	Skewness	2.012
Range	66.740	Range	54.880	Range	49.990
Minimum	-29.000	Minimum	-16.390	Minimum	-12.680
Maximum	37.740	Maximum	38.490	Maximum	37.310
Sum	669.770	Sum	246.910	Sum	415.040
Count	1047	Count	1047	Count	1047

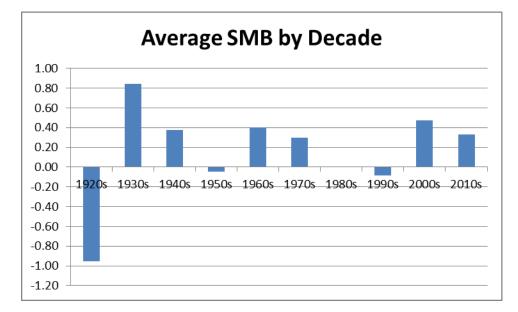

Summary of $R_{\rm f},\,R_{\rm m},$ and DELTA

R _f		R _m		DELTA	
Mean	0.288	Mean	0.928	Mean	0.599
Standard Error	0.008	Standard Error	0.167	Standard Error	0.015
Median	0.250	Median	1.280	Median	1
Mode	0.030	Mode	-1.750	Mode	1
Standard Deviation	0.254	Standard Deviation	5.402	Standard Deviation	0.490
Sample Variance	0.064	Sample Variance	29.185	Sample Variance	0.240
					-
Kurtosis	1.259	Kurtosis	7.355	Kurtosis	1.840
					-
Skewness	1.043	Skewness	0.126	Skewness	0.404
Range	1.410	Range	66.810	Range	1
Minimum	-0.060	Minimum	-28.970	Minimum	0
Maximum	1.350	Maximum	37.840	Maximum	1
Sum	301.630	Sum	971.400	Sum	627
Count	1047	Count	1047	Count	1047

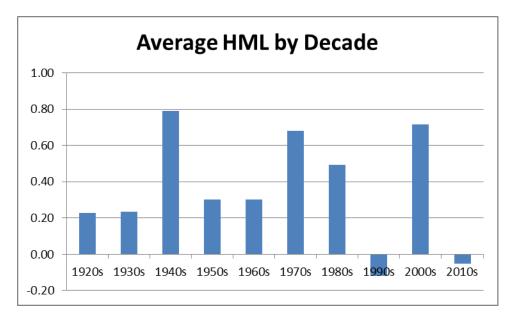


Percentage of Deltas by Decade


Average Rf by Decade



Average Rm-Rf by Decade



Average Rm by Decade

Average HML by Decade

Appendix B

Detailed Regression Results

Equal Weighted Excess Returns - Fama French With Delta

LIVER ETTECCP	(within) reg	ression		Number of	E obs	= 26175
Group variable	e: Portfolio			Number of	groups	= 2!
R-sq: within	= 0.7791			Obs per d	group: min	= 104
between	n = .				avg	= 1047.0
overal	1 = 0.7782				max	= 104
				F(4,26146	5)	= 23049.44
corr(u i, Xb)				Prob > F		= 0.0000
2 M B	12 - xem					
ExcessRetu~s	Ctear Coef.	Std. Err.	t	P> t	[95% Con:	f. Interval
MKTRF	1.098836	.0067527 162	2.72	0.000	1.085601	1.112072
MULKE						
SMB	.6644308	.0078097 85	5.08	0.000	.6491234	. 6797382
	.6644308	.0078097 85		0.000	.6491234	
SMB			7.11			. 4183921
SMB HML	.4045081	.0070835 57 .0710186 5	7.11 5.75	0.000	.3906241	. 4183921
SMB HML DELTA	.4045081 .4081155	.0070835 57 .0710186 5	7.11 5.75	0.000	.3906241 .2689153 2830052	. 4183921
SMB HML DELTA _cons	.4045081 .4081155 2058089	.0070835 57 .0710186 5	7.11 5.75	0.000	.3906241 .2689153 2830052	.4183921 .5473158 1286125

Equal Weighted Excess Returns - Fama French Without Delta

(within) regre Portfolio	ession				= s =	26175 25
= 0.7788			Obs per	group:	min =	1047
=					avg =	1047.0
= 0.7779					max =	1047
			F(3,26	147)	=	30684.00
= 0.0000			Prob >	F	=	0.0000
Coef.	Std. Err.	t	P> t	[95% Co	nf. Int	cerval]
1.071541	.0048027	223.11	0.000	1.06	2127	1.080954
.6638254	.0078138	84.96	0.000	. 648	5101	.6791408
4123684	.0069544	59.30	0.000	.398	7374	.4259995
0276069	.0242954	-1.14	0.256	075	2272	.0200134
.28340762	A CONTRACTOR OF					
3.8865979						
	<pre>Portfolio = 0.7788 = . = 0.7779 = 0.0000 Coef. 1.071541 .6638254 .41236840276069 .28340762</pre>	<pre>= 0.7788 = . = 0.7779 = 0.0000 Coef. Std. Err. 1.071541 .0048027 .6638254 .0078138 .4123684 .00695440276069 .0242954 .28340762</pre>	<pre>Portfolio = 0.7788 = . = 0.7779 = 0.0000 Coef. Std. Err. t 1.071541 .0048027 223.11 .6638254 .0078138 84.96 .4123684 .0069544 59.300276069 .0242954 -1.14 .28340762</pre>	<pre>Portfolio Number = 0.7788 Obs per = . = 0.7779 = 0.0000 F(3,26) Coef. Std. Err. t P> t 1.071541 .0048027 223.11 0.000 .6638254 .0078138 84.96 0.000 .4123684 .0069544 59.30 0.0000276069 .0242954 -1.14 0.256 .28340762</pre>	PortfolioNumber of group= 0.7788Obs per group:= 0.7779 $F(3,26147)$ = 0.0000 $Frob > F$ Coef. Std. Err. $t P > t $ [95% Co1.071541.0048027.6638254.007813884.960.000.6638254.0069544.93300.000.3980276069.0242954.28340762	Portfolio Number of groups = = 0.7788 Obs per group: min = avg = = 0.7779 max = = 0.0000 Prob > F = Coef. Std. Err. t P> t [95% Conf. Int 1.071541 .0048027 223.11 0.000 1.062127 .6638254 .0078138 84.96 0.000 .6485101 .4123684 .0069544 59.30 0.000 .3987374 0276069 .0242954 -1.14 0.256 0752272 .28340762 .28340762

F test that all u i=0: F(24, 26147) = 5.57 Prob > F = 0.0000

Equal Weighted Excess Returns - CAPM With Delta

Fixed-effects	(within) requ	ression		Number o	f obs	=	26175
Group variable				Number o	f group	s =	25
R-sq: within	= 0.6876			Obs per	group:	min =	1047
between	n = .					avg =	1047.0
overall	L = 0.6868				inviyen ₁	max =	1047
				F(2,2614	8)	1 =	28769.73
<pre>corr(u_i, Xb)</pre>	= -0.0000			Prob > F		=	0.0000
ExcessRetu~s	Coef.	Std. Err.	els E t Is	P> t	[95%	Conf.	Interval]
MKTRF	1.337595	.0075066	178.19	0.000	1.322	882	1.352309
DELTA	1.147093	.0828612	13.84	0.000	.9846	804	1.309505
_cons	3379411	.0465838	-7.25	0.000	4292	479	2466342
sigma u	.28340762						
sigma e	4.6189826						
rho	.00375058	(fraction	of variar	nce due to	u_i)		
F test that a	ll u_i=0:	F(24, 2614)	B) = 3	3.94	Pr	ob >	F = 0.0000

Equal Weighted Excess Returns - CAPM Without Delta

Group variable	(within) reg	ression		Number of Number of			26175
Group variable	. FOICIOIIO			NULLOET C	JI GIOU	05	
R-sq: within	= 0.6853			Obs per	group:	min =	1047
between						avg =	1047.0
overall	= 0.6845					max =	1047
				F(1,2614	49)		56932.73
corr(u i, Xb)	= 0.0000			Prob > H	F	=	0.0000
_							
		GAA 00	0.0.00	×9	1058	Conf	Tatawall
ExcessRetu~s	Coef.	Ca.a. 00	0.0.00	×9	[95%	Conf.	Interval]
ExcessRetu~s MKTRF	Coef.	GAA 00	0.0.00	×9	[95% 1.25 :	<u></u>	Interval] 1.274069
	<u></u>	Std. Err.	t	P> t	<u></u>	3307	1.274069
MKTRF	1.263688	Std. Err. .0052961 .0288533	t 238.61 5.87	P> t 0.000 0.000	1.25	3307 9358	1.274069 .2260438
MKTRF _cons	1.263688 .1694898	Std. Err. .0052961 .0288533	t 238.61 5.87	P> t 0.000	1.25	3307 9358	1.274069 .2260438

Equal Weighted Nominal Returns - Fama French With Delta

	(within) reg	ression 🔤 🔤	Number of ob		26175
Group variabl	e: Portfolio		Number of gr	oups =	25
D and oddbide	0 7770		Ole -	HISSE CAL	1047
R-sq: within			Obs per grou	-	
betwee				avg =	
overal	1 = 0.7770			max =	1047
			F(4,26146)	0.=	22895.25
corr(u i, Xb)			Prob > F	=	0.0000
187					
PortfolioR~n	Coef.	Std. Err. t	P> t [9	5% Conf.	Interval]
MKTRF	1.098843	.0067602 162.54	0.000 1.	085592	1.112093
SMB	.6613734	.0078184 84.59	0.000 .	646049	.6766979
HML	.4059781	.0070914 57.25	0.000 .3	920786	.4198775
HML DELTA		.0070914 57.25 .0710976 6.32		920786 099465	
			0.000 .3		
DELTA _cons	.4493016 .0658935	.0710976 6.32	0.000 .3	099465	.5886567
DELTA	.4493016	.0710976 6.32	0.000 .3	099465	.5886567 .1431757

Equal Weighted Nominal Returns - Fama French Without Delta

26175	obs =	Number of	1	ession	(within) regre	Fixed-effects
25	of groups =	Number o			NEAR AND AN ARRANGED AND A REAL AND	Group variable
1047	group: min =	Obs per			= 0.7776	R-sq: within
1047.0	avg =				= .	between
1047	max =				= 0.7767	overall
30468.32	47) =	F(3,261				
0.0000	r =	Prob > 1			= -0.0000	corr(u_i, Xb)
erval]	[95% Conf. Int	P> t	t	Std. Err.	Coef.	PortfolioR~n
1.078218	1.059367	0.000	222.26	.0048087	1.068793	MKTRF
.6760415	.6453726	0.000	84.45	.0078235	.660707	SMB
	.4009837	0.000	59.55	.0069631	.4146317	HML
.4282797						
.4282797 .3097587	.2143996	0.000	10.77	.0243256	.2620792	_cons
	.2143996	0.000	10.77	.0243256	.2620792	
	.2143996	0.000	10.77	.0243256		

Equal Weighted Nominal Returns - CAPM With Delta

Fixed-effects	(within) regr	ession		Number of	obs -	= 26175
Group variabl	e: Portfolio			Number of	groups	= 25
R-sq: within	= 0.6865			Obs per c	roup: min :	= 1047
betwee					avg	= 1047.0
	1 = 0.6857				max	= 1047
				F(2,26148)	= 28627.25
corr(u_i, Xb)	= -0.0000			Prob > F		= 0.0000
PortfolioR~n	Coef.	Std. Err.	aiw.C tora	P> t	[95% Conf	. Interval]
MKTRF	1.337394	.0075081	178.13	0.000	1.322677	1.35211
DELTA	1.19132	.0828781	14.37	0.000	1.028875	1.353766
_cons	0674639	.0465933	-1.45	0.148	1587894	.0238616
sigma u	.28340762					
sigma e	4.6199267					
	.00374905	1 francis an	of wariar	ot aub an	ui)	

Equal Weighted Nominal Returns - CAPM Without Delta

Fixed-effects	(within) reg	ression	Number of	obs · =	26175
Group variable	e: Portfolio		Number of	groups =	25
R-sg: within	= 0.6840		Obs per g	coup: min =	1047
between	n = .			avg =	1047.0
overal	1 = 0.6832			max =	1047
			F(1,26149)	orta ineito	56602.78
corr(u i, Xb)	= -0.0000		Prob > F		0.0000
- E80					
PortfolioR~n	Coef.	Std. Err.	t P> t	[95% Conf.	Interval]
MKTRF	1.260637	.0052987 237.	91 0.000	1.250251	1.271022
_cons	.4595315	.0288674 15.	92 0.000	.4029498	.5161131
sigma u	.28340762			05401	60.4 5
sigma e	4.6380555				
Signa e		15 11 5	riance due to w		

Value Weighted Excess Returns – Fama French With Delta

Fixed-effects	(within) reg	ression		Number of	obs =	26175
Group variable				Number of	groups =	25
R-sq: within	= 0.7779			Obs per g	group: min =	1047
betweer	n = .				avg =	1047.0
overall	= 0.7773				max =	1047
				F(4,26146	5) =	22890.62
corr(u i, Xb)	= -0.0000			Prob > F		0.0000
Deserve Deterve	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ExcessRetu~s	COEL.	Stu. EII.	en a	1-101	[500 00	
EXCESSRETU~S 	1.06139	.0065055	163.15	0.000	1.048639	1.074141
0.0	NARDS S	<u>(85.23 S.</u>	<u> </u>		-	
MKTRF SMB	1.06139	.0065055	163.15	0.000	1.048639	1.074141
MKTRF	1.06139	.0065055	163.15 80.27	0.000	1.048639	1.074141.6186481
MKTRF SMB HML	1.06139 .6039011 .3663894	.0065055 .0075237 .0068241	163.15 80.27 53.69	0.000 0.000 0.000	1.048639 .5891542 .3530138	1.074141 .6186481 .3797651
MKTRF SMB HML DELTA _cons	1.06139 .6039011 .3663894 .1926542	.0065055 .0075237 .0068241 .0684183 .0379427	163.15 80.27 53.69 2.82	0.000 0.000 0.000 0.005 0.005	1.048639 .5891542 .3530138 .0585507	1.074141 .6186481 .3797651 .3267578 0741915
MKTRF SMB HML DELTA	1.06139 .6039011 .3663894 .1926542 1485614	.0065055 .0075237 .0068241 .0684183 .0379427	163.15 80.27 53.69 2.82 -3.92	0.000 0.000 0.000 0.005 0.005	1.048639 .5891542 .3530138 .0585507 2229312	1.074141 .6186481 .3797651 .3267578 0741915

Value Weighted Excess Returns - Fama French Without Delta

Fixed-effects	(within) reg	ression		Number of	f obs	=	26175
Group variable	e: Portfolio			Number of	f groups	=	25
R-sq: within	= 0.7778			Obs per (group: m	in =	1047
between	n = .				a	vg =	1047.0
overall	1 = 0.7772					ax =	1047
				F(3,2614	7)	=	30510.10
corr(u i, Xb)	= 0.0000			Prob > F		=	0.0000
					2/(39x)	a ail	Program II
ExcessRetu~s	Coef.	Std. Err.	aix.Et da	P> t	[95% C	onf.	Interval]
MKTRF	1.048505	.0046247	226.72	0.000	1.039	44	1.057569
SMB	.6036154	.007524	80.22	0.000	. 58886	78	.6183629
HML	. 3701	.0066966	55.27	0.000	.35697	43	.3832256
_cons	0644397	.0233946	-2.75	0.006	11029	44	018585
sigma u	.22561031						
sigma e	3.7424968						
	.00362093	(fragtion	of varia	nce due to	11 i)		

Value Weighted Excess Returns - CAPM With Delta

Fixed-effects	(within) regres.	sion		Number of	obs		26175
Group variable	: Portfolio			Number of	: group	ps =	25
57.							
R-sq: within	= 0.6962			Obs per d	group:	min =	1047
betweer				-		avg =	1047.0
	= 0.6956					max =	1047
	984 Cont. Intata						
				F(2,26148		=	29954.79
corr(11 i Xh)	= 0.0000			Prob > F		onte-	
COTT(U_T, MD)	- 0.0000						
	0000			Cat Cat			10-00 - LOV
ExcessRetu~s	Coef. St					Conf.	Interval]
MKTRF	1.278059 .0	0071123 1	179.70	0.000	1.264	4118	1.291999
DELTA	.8618589 .0	0785087	10.98	0.000	.7079	9775	1.01574
_cons		0441369	-6.07	0.000	3544	1693	1814478
						19 20 C 19	The second se
sigma u	.22561031	a waster		30 10110			
sigma_u sigma e		0.01.000		- (a)125			
sigma_u sigma_e rho	4.3763621	fraction of	f varian	ce due to			

Value Weighted Excess Returns - CAPM Without Delta

	(within) reg	ression		Number o	of obs	=	26175
Group variable	e: Portfolio			Number o	of group	ps =	25
R-sq: within	= 0.6948			Obs per	group:	min =	1047
betweer	n = .					avg =	1047.0
overall	= 0.6942					max =	1047
				F(1,2614	19)	=	59517.04
corr(u_i, Xb)	= 0.0000			Prob > H	F	=	0.0000
ExcessRetu~s	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
				and montanes			
MKTRF	1.222529	.0050112	243.96	0.000	1.21	2707	1.232351
	1.222529 .1132955	.0050112 .0273008	243.96 4.15	0.000	1.212		1.232351 .1668065
MKTRF							
MKTRF _cons	.1132955						

Value Weighted Nominal Returns - Fama French With Delta

Fixed-effects	(within) regr	ression		Number of	obs	0.7	26175
Group variable	e: Portfolio			Number of	group)S =	25
R-sq: within	= 0.7764			Obs per g	roup:	min =	1047
between	n = .					avg =	1047.0
overal.	l = 0.7758					max =	1047
				F(4,26146)			22691.27
corr(u_i, Xb)	= -0.0000			Prob > F		=	0.0000
MonthlyRet~n	Coef.	Std. Err.	the son true	P> t	[95%	Conf.	Interval]
MKTRF	1.061396	.0065185	162.83	0.000	1.048	619	1.074173
SMB	.6008438	.0075388	79.70	0.000	.5860	672	.6156203
HML	.3678594	.0068378	53.80	0.000	.3544	569	.381262
DELTA	.2338403	.0685556	3.41	0.001	.0994	676	.3682131
_cons	.123141	.0380189	3.24	0.001	.0486	219	.1976601
sigma u	.22561031	uero 10 18	021010			01101	3202 1870
sigma e	3.7495136						
rho	.00360743	(fraction	of varia	nce due to u	1 i)		

Value Weighted Nominal Returns - Fama French Without Delta

Fixed-effects		ression		Number o	of obs	=	26175
Group variable	e: Portfolio			Number of	of groups	=	25
							2
the State of the second second second second second	= 0.7763			Obs per	group: m	in =	1047
between					a	/g =	1047.0
overal	l = 0.7757				ma	ax =	1047
				F(3,2614	17)	. =	30238.85
corr(u_i, Xb)	= 0.0000			Prob > H	2	-	0.0000
		54 S. J. S.					
MonthlyRet~n	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
MKTRF	1.045756	.0046343	225.66	0.000	1.0366	13	1.05484
SMB	.6004969	.0075397	79.64	0.000	.585718	37	.6152751
HML	.3723632	.0067105	55.49	0.000	.359210	3	.3855162
_cons	.2252464	.0234432	9.61	0.000	.179290	54	.2711964
sigma u	.22561031		Large Lat	adara si	nav Isteinan		
sigma e	3.750276						
rho	.00360597	(fraction	of varia	nce due to	oui)		

Value Weighted Nominal Returns - CAPM With Delta

LIVER ETTECTS	(within) reg	ression		Number of	f obs	=	26175
Group variable	: Portfolio			Number of	f group	ps =	25
R-sq: within	= 0.6948			Obs per o	group:	min =	1047
between	=					avg =	1047.0
overall	= 0.6942					max =	1047
				F(2,2614	3)	=	29759.79
corr(u i, Xb)	= 0.0000			Prob > F		-	0.0000
MonthlyRet~n	Coef.	Std. Err.	t t	P> t	[95%	Conf.	Interval]
MonthlyRet~n MKTRF	Coef.	Std. Err.	t 179.51	P> t	[95% 1.26		
0.3	10/ a pus					3904	1.29181
MKTRF	1.277857	.0071185	179.51	0.000	1.26	3904 0698	1.29181
MKTRF DELTA	1.277857 .9060863	.0071185	179.51 11.53	0.000	1.26	3904 0698	1.29181
MKTRF DELTA _cons	1.277857 .9060863 .0025186	.0071185	179.51 11.53	0.000	1.26	3904 0698	Interval] 1.29181 1.060103 .0891053

Value Weighted Nominal Returns - CAPM Without Delta

Fixed-effects	(within) reg	ression		Number of	E obs	==	26175
Group variable				Number of	E group	os =	25
R-sg: within	= 0.6932			Obs per o	group:	min =	1047
betweer	n = .					avg =	1047.0
	= 0.6927					max =	1047
				F(1,2614	9)	=	59088.42
corr(u_i, Xb)	= 0.0000			Prob > F		=	0.0000
MonthlyRet~n	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
MKTRF	1.219478	.0050168	243.08	0.000	1.20	9645	1.229311
_cons	.4033372	.0273312	14.76	0.000	.349	7665	.4569079
sigma u	.22561031						
sigma e	4.3912445						

BIBLIOGRAPHY

- Black, Fischer, Michael C. Jensen and Myron Scholes. 1972. "The Capital Asset Pricing Model:
 Some Empirical Tests," in *Studies in the Theory of Capital Markets*. Michael C. Jensen,
 ed. New York: Praeger, pp. 79-121
- Fama, Eugene F., and James D. Macbeth. "Risk, Return, and Equilibrium: Empirical Tests." *Journal of Political Economy* 81.3 (1973): 607-36. *JSTOR*. Web. 25 Mar. 2014.
- Fama, Eugene F., and Kenneth R. French. *The Capital Asset Pricing Model: Theory and Evidence*. Working paper no. 550. N.p.: Center For Research in Security Prices, n.d. *Social Science Research Network*. Web. 25 Mar. 2014.
- Fama, Eugene F., and Kenneth R. French. "Common Risk Factors in the Returns on Stocks and Bonds." Journal of Financial Economics 33.1 (1993): 3-56. David Eccles School of Business. The University of Utah. Web. 25 Mar. 2014.
- French, Kenneth R. Data Library. 2014. Raw data. Kenneth R. French, n.p.
- Lintner, John. "The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets." *The Review of Economics and Statistics* 47.1 (1965): 13-37. *JSTOR*. Web. 31 Mar. 2014.
- Miller, Merton H. and Myron Scholes. 1972. "Rates of Return in Relation to Risk: A Reexamination of Some Recent Findings," in ed. Michael C. Jensen, *Studies in the Theory of Capital Markets*. New York: Praeger
- Pettengill, Glenn N., Sridhar Sundaram, and Ike Mathur. "The Conditional Relation between Beta and Returns." *The Journal of Financial and Quantitative Analysis* 30.1 (1995): 101-16. *JSTOR*. Web. 25 Mar. 2014.

- Pettengill, Glenn N., Sridhar Sundaram, and Ike Mathur. "The Conditional Relation between Beta and Returns." *The Journal of Financial and Quantitative Analysis* 30.1 (1995): 101-16. *JSTOR*. Web. 25 Mar. 2014.
- Roll, Richard. "A Critique of the Asset Pricing Theory's Tests Part I: On past and Potential Testability of the Theory." *Journal of Financial Economics* 4.2 (1977): 129-76. Web.
- Sharpe, William F. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk*." *The Journal of Finance* 19.3 (1964): 425-42. *JSTOR*. Web. 25 Mar. 2014.
- Simin, Timothy T. A Revisitation of "The Conditional Relationship between Beta and Returns" Rep. N.p.: n.p., n.d. Print.

ACADEMIC VITA

Chris Dorian 1409 Allan Lane, West Chester, PA 19380 Cpd770@gmail.com

Education

B.S., Finance, 2014, The Pennsylvania State University, University Park, PA

B.S., Economics, 2014, The Pennsylvania State University, University Park, PA

Honors and Awards

Dean's List 2010-2013

National Society of Collegiate Scholars, 2011

Beta Gamma Sigma Honor Society, 2013

Professional Experience

Moody's Analytics, Intern, Summer 2010, West Chester PA

The Pennsylvania State University, Research Assistant, 2013-2014, State College, PA

The Pennsylvania State University, Intramural Supervisor, 2012-2014, University Park, PA

Certifications

Bloomberg Essentials Certification, Equity and Fixed Income, 2012

Leadership Experience

Sigma Nu Fraternity, Treasurer, 2011-2012, State College, PA Boy Scouts of America, Eagle Scout, 2002-2009, West Chester, PA