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ABSTRACT 
 

There exists an abundance of visual symmetry within our environment. Yet 

research on human perception has almost exclusively been limited to studies of a single 

type of symmetry— two-fold reflection—leaving uncertainty about human perceptual 

sensitivity to the other types of symmetry as derived from the mathematics of Group 

Theory. Clarke et al. (2011) found that five of the seventeen wallpaper groups—P1, 

P3M1, P31M, P6, and P6M—have a high degree of self-similarity, as determined by the 

frequency with which participants grouped random-dot noise representations of the same 

wallpaper group together. The current study attempts to replicate Clarke et al. (2011) in a 

limited form. Here, we sought to understand the salience of lower-order features within 

each of five wallpaper groups, and concordantly, their impact on symmetry detection. 

Adult participants were presented with twenty exemplars of each of the five 

aforementioned wallpaper groups and instructed to sort them into as many subsets as they 

wished based on any criteria they saw appropriate. Participants were then surveyed on the 

methods they used to classify these images. Analysis suggest several factors—including 

contrast and presence of salient secondary structures—influence the detection of 

symmetry in wallpaper groups. 
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Introduction 

Background 

Symmetry is pervasive in our visual environment. In the natural world, it can 

most easily be observed in flowers, the petals of which are often radially symmetrical, 

and in the bodies of vertebrate animals, which predominantly display bilateral symmetry 

across the midline of the body (Tyler, 1995). In the artificial environment, the prevalence 

of symmetry can at least partially be attributed to functional advantages; symmetric 

objects are usually well balanced, and are often easier for humans to interact with due to 

our inherent anatomical symmetry (Treder, 2010). However, the ubiquity of symmetry in 

art and architecture indicates a purpose beyond mere functionality—aesthetic appeal. 

Indeed, historical records illustrate a human fascination with symmetrical forms since the 

earliest instances of art and architecture, including the centered mass-distribution of the 

Mayan pyramids and repeating patterns found on Persian rugs (Tyler, 2000). 

While the exact reason for the aesthetic appeal of symmetry is unknown, it can be 

argued that it is derived from perceptual specializations developed in response to the 

variance of symmetry in the natural environment. Since inanimate natural objects, which 

predominantly consist rocks and geological formations, do not generally exhibit any 

forms of symmetry, the presence of symmetry usually betrays the presence of living 

organisms (Tyler, 1995). Thus, the development of symmetry detection mechanisms 

within the perceptual system possibly conferred an evolutionary advantage (Tyler, 2000). 

Indeed, there is consensus among the literature that symmetry detection is a fundamental 
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property of the human visual system (Swaddle, 1999), and that it is an automatic process 

applied to all visual input (Treder, 2010). Moreover, this process has been demonstrated 

to occur very quickly—within 100 milliseconds of image presentation (Treder, 2010). 

However, despite the established importance of symmetry detection within the human 

visual system, the vast majority of research in this realm has been limited to reflectional 

(i.e. mirror) symmetry, leaving uncertainty about human perceptual sensitivity to the 

other types.  

Atomic Geometrical Symmetries, Isometries, and Wallpaper Groups 

Geometrical symmetry in two- and three-dimensional patterns has been studied 

mathematically. An image is considered to have geometrical symmetry if it contains a 

transformation of a structure within the Euclidean (i.e. two- or three-dimensional) plane 

such that it preserves the overall geometric properties of the structure (e.g. size, shape) 

(Weyl, 1952). Such a transformation is termed an isometry. There are four forms of 

atomic geometrical symmetries in two-dimensional Euclidean space, derived from the 

four possible (and identically named) isometries. (i) Reflection is the inversion of the 

structure with respect to the plane, so that each element is transferred perpendicularly 

through the plane to a point the same distance the other side of it. (ii) Rotation is circular 

transformation of the structure around a fixed point by a certain angle. (iii) Translation is 

the movement of every point of the structure by the same amount in a given direction, 

with no alteration of orientation. (iv) Glide reflection is a transformation that is a 

combination of a reflection across a line and a translation through a line parallel to that 
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line of reflection (Park et al., 2008). A visual representation of each of these atomic 

geometrical symmetries is depicted in Figure 1. 

 

 

Figure 1. The four types of atomic geometrical symmetries, derived from the four Euclidean plane isometries. (a) 
Reflectional symmetry. (b) Rotational symmetry. (c) Translational symmetry. (d) Glide reflectional symmetry. 

 

A single seed image, termed a fundamental domain (in Figure 1c and d above, it 

is a single equilateral triangle), can be subjected to any combination of the four 

isometries and then translated in two linearly independent dimensions to generate a 

regular two-dimensional pattern, or wallpaper. Examples of wallpapers generated from 

the same fundamental domain and subjected to each of the four isometries individually 
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are depicted in Figure 2. The smallest area of the regular pattern that demonstrates all 

isometries of the pattern is termed the unit. Through different combinations of the four 

isometries, different orders of rotation (if there is rotational symmetry), and different 

directions of translation, distinct classes of these patterns can be created, called wallpaper 

groups (Schattschneider, 1978). Due to mathematical restrictions on the possible orders 

of rotation within a regular pattern, every repeating pattern in a two-dimensional plane 

can be classified into one of just 17 wallpaper groups. Does human perception reflect this 

deep mathematical regularity in some way? 

 

 

Figure 2. Sample wallpapers generated from the same triangle fundamental domain and subjected to only one of the 
four isometries. (a) Translation. (b) Rotation. (c) Reflection. (d) Glide reflection. 

Theoretical Basis for Research 

Clarke et al (2011) investigated the influence of symmetries on the perception of 

two-dimensional patterns. Specifically, the study measured the perceived similarity of 
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exemplars of an individual wallpaper group to both 1) other exemplars of the same 

wallpaper group and, 2) exemplars of other wallpaper groups. The researchers generated 

5 exemplars of each of the 17 wallpaper groups (for a total of 85 exemplars) by creating a 

functional domain from random-dot white noise and applying the appropriate isometries 

to make a regular pattern. The participants were presented with all 85 exemplars laid out 

randomly on a table, and instructed create subgroups by sorting them into as many piles 

as they desired using whatever criteria they saw appropriate.  

Overall, the exemplars of the same wallpaper group were grouped together more 

frequently than expected by chance, indicating significant sensitivity to the wallpaper 

group classifications. However, substantial variability in the degree of self-similarity 

between wallpaper groups (as measured by the frequency that exemplars of a particular 

wallpaper group were placed in the same subset) indicated that the participants were 

taking other visual properties into account when classifying the images. Specifically, the 

particular fundamental domain used in creating each tiled pattern may have influenced 

the ability of the participants to detect the various symmetry patterns present in the 

stimuli.  

The dot distribution within each seed fundamental domain could have influenced 

symmetry detection through differences in spatial frequency content. Spatial frequency is 

defined as the pattern of visual stimulus changes across space; thus, more detailed areas 

have a higher spatial frequency. In this manner, clusters—areas with higher dot density—

could create regions of higher spatial frequency relative to the surrounding area. Julesz 

(1971) asserted a difference in the symmetry processing for patterns of differing spatial 

frequencies. Specifically, perception of symmetry in patterns with high spatial 
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frequencies is relies more on point-by-point comparisons, whereas symmetric relations 

are extracted more globally in patterns with low spatial frequencies.  

Moreover, the degree of non-uniformity in the pattern of dot distribution could 

affect the “goodness,” or overall perceptual salience, of individual exemplars. Nucci & 

Wagemans (2007) explored the impact of various local and global factors on the 

“goodness” of mirror symmetrical patterns. A sub-experiment varied the distance 

between dots and their symmetry axis and asked participants to classify the patterns as 

regular or random. The results found a positive correlation between the perceived 

goodness of a pattern and the proximity between the dots and their symmetry axis. Thus, 

the difference in perceived goodness of different exemplars could have provided an 

additional method of classification in the Clarke et al. (2011) study. 

Variance in the dot number of the seed fundamental domains could have 

influenced symmetry detection, as well. Wenderoth (1996) investigated the impact of 

various dot pattern parameters on the perceived salience of bilateral symmetry. In one 

experiment, participants were presented with random-dot white noise patterns with varied 

symmetry axis orientations and dot numbers, and asked to classify the patterns as 

“symmetrical” or “random.” The results indicated that increasing the dot numbers 

magnified the disparity in salience between vertical and all other symmetries. This 

occurred because increasing the dot number did not have an effect on detecting vertical 

symmetries, but significantly detracted from the detection at other axis orientations.   

Finally, variance in the dot density could impact symmetry detection. In another 

experiment, Wenderoth (1996) varied the dot density (i.e. the area that a set number of 

dots occupied) instead of the dot number, with the task classification remaining the same 
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for the participants. This revealed an increased difficulty in detecting symmetry with 

higher dot densities.  This effect could have emerged as another effect of the 

aforementioned variance in spatial frequencies. However, an alternative explanation 

exists involving luminance and contrast sensitivity. Zhang & Gerbino (1999) found that 

symmetry detection is impacted by differences in pattern luminance/contrast. Thus, 

differing amounts of white space due to dot density variance could impart this effect.  

Thus, in the current study, we sought to understand how local elements influence 

the perception of global themes, with a particular emphasis on symmetry detection. In 

order to best control for symmetry and focus on disparities generated through variances 

in seed fundamental domains, we used five wallpaper groups rated highly self-similar in 

Clarke et al. (2011): P1, P3M1, P31M, P6, and P6M. Examples of these five wallpaper 

groups, with the same fundamental domain, are depicted in Figure 3 to illustrate the 

symmetries present in and the global theme of each. Patterns were generated from 

random dots, but smoothed to reduce artifacts related to dot number and density. Patterns 

were also roughly equated for spatial frequency content. In addition, participants were 

interviewed after each task to informally assess their classification methodology.
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Figure 3. Examples of the five wallpaper groups used in this study, each with the same triangular fundamental domain. 
(a) P1. (b) P3M1. (c) P31M. (d) P6. (e) P6M. 
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Method 

Participants 

11 participants (8 male, 3 female), ranging in age between 19 and 23, were 

recruited as volunteers. All participants were naïve to the purpose of the study prior to the 

tasks, and lacked previous exposure to the topics inherent to the study. 

Stimuli 

Five wallpaper groups (P1, P3M1, P31M, P6, P6M) rated to be high in self-similarity, as 

determined by Clark et al (2011), were selected. 20 exemplars of each of these five wallpaper 

groups were created by tiling fundamental domains generated from random-dot white noise, 

resulting in a total of 100 distinct stimuli. These white noise fundamental domains had an area of 

~4096 pixels, and were either square, rectangular, or triangular, depending on the symmetry 

group they represented. The advantages conferred by using white noise include the ability to 

generate numerous exemplars of the same wallpaper group and the absence of pattern 

discontinuities after tiling. These images were printed onto white cardstock and cut into squares, 

allowing participants to manipulate the orientation of the images during the sorting tasks. All 

stimuli are depicted (in reduced size) in Appendix A, organized by wallpaper group. 
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Procedure 

Participants were presented with the 20 exemplars of a single wallpaper group 

(i.e. P1, P3M1, P31M, P6, P6M) and instructed to sort them into subsets by placing them 

into piles. Participants were advised to sort the exemplars into as many piles as they 

deemed necessary based on whatever criteria they desired. There were no time 

constraints placed on this sorting task, and the participants were allowed to move 

exemplars between piles until they were satisfied with their classification. This method 

was then repeated for the remaining four wallpaper groups for each participant, with 

group presentation order randomized between participants. These tasks were carried out 

on a large table with sufficient space to randomly lay out all twenty exemplars of each 

set, illuminated by normal overhead room lighting. 

Upon completion of each sorting task, participants were asked to verbalize which 

features they used to sort the exemplars. After completion of all five sorting tasks, 

participants were asked which if they had a distinct method for sorting the images, and if 

any wallpaper group was particular easy or difficult to sort.  

Generating the Jaccard Index 

The data was prepared for analysis by creating one binary variable for each subset 

created by each participant within a sorting task. Then, each exemplar was assigned a 

value of one (1) if it was included in a subset, or a value zero (0) if it was not. Next, the 

similarity of each pair of exemplars within a sorting task was calculated using the Jaccard 

index, a distance similarity measure for binary data. This index is calculated by the 
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equation , with x representing the number of subsets that contained both 

exemplars, and y and z the number of subsets that contain only one exemplar of the pair 

(Capra, 2005). Thus, the Jaccard index is the ratio of the number of subsets containing 

both exemplars of a pair to the number of subsets containing at least one of the exemplars 

of a pair, thereby excluding subsets with joint absences.  
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Results 

Pairs with the Highest Jaccard Scores 

The Jaccard index was calculated for all pairs of the 20 exemplars within each of 

the five wallpaper groups, generating (20x19) 190 unique values for each wallpaper 

group. These values are depicted in a similarity matrix for each of the five wallpaper 

groups in Appendix B. After calculation of the distribution of values for each group, the 

Jaccard index for the pairs within the top 5% of the empirical distribution were selected 

as a representation of the most similar pairs; these are highlighted in blue within each 

similarity matrix.  

Most- and Least- Representative Wallpaper Groups 

The mean of all the Jaccard indices for each of the exemplars was calculated as a measure 

of the degree each exemplar fundamentally represented its respective wallpaper group. These 

values are depicted below each similarity matrix, with the highest and lowest values of each 

wallpaper group highlighted in green and red, respectively. The exemplars with the highest and 

lowest Jaccard index for each of the five wallpaper groups are depicted in Appendix C. 
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Variation of Jaccard Index between Wallpaper Groups 

 Assessment by boxplot, depicted in Figure 4, and a Shapiro-Wilk test (p <.001) 

revealed the presence of numerous outliers and severe non-normality in the data, 

violating a fundamental assumption required to perform an analysis of variance 

(ANOVA).  

 
Figure 4. Boxplots of Jaccard index for each wallpaper group. 

 

Thus, a Kruskal-Wallis test—the nonparametric equivalent of an ANOVA—was 

run to determine if there were differences in the Jaccard index between wallpaper groups. 

Pairwise comparisons were performed using Dunn's (1964) procedure with a Bonferroni 
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correction for multiple comparisons. The Jaccard index was statistically significantly 

different between the different wallpaper groups, χ2(4) = 61.648, p < .001. Post-hoc 

analysis revealed statistically significant differences in the Jaccard index between the P1 

(Mdn = .158) and P3M1 (Mdn = .158) (p <.001), P1 and P31M (Mdn = .158) (p <.001), 

P1 and P6 (Mdn = .100) (p <.001), P1 and P6M (Mdn = .158) (p <.05), and P6 and P6M 

(p <.001) wallpaper groups. Since median values were the same for each of the wallpaper 

groups aside from P6—which can occasionally occur with the Kruskal-Wallis test, as it is 

fundamentally a comparison of distributions, not medians—a different method was 

necessary for determining the relative differences between the groups. A histogram 

showing the distribution of Jaccard indices for each of the wallpaper groups, depicted in 

Figure 5, was used for this purpose (note: the boxplot cannot be used for this because it is 

fundamentally nonparametric). It is apparent that the distribution within P1 has 

significantly more Jaccard index values in the .200 to .300 range than the distributions of 

every other wallpaper group. Moreover, it appears that P6M has significantly more 

Jaccard index values in the same .200 to .300 range than P6. Both of these conclusions 

are validated by the results of the Kruskal-Wallis test. 

 

 
 

 
 



15 

 
Figure 5. Histogram of Jaccard indices for each wallpaper group. 

Variation of Subset Count between Wallpaper Groups 

 A repeated measures ANOVA was conducted to determine whether there were 

statistically significant differences in the number of subsets generated in the sorting task 

within each participant for each wallpaper group. Assessment of the boxplot, depicted in 

Figure 6, revealed no outliers, and the Shapiro-Wilk test (p > .05) revealed that the data 

were distributed normally. The assumption of sphericity was violated, as assessed by 
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Mauchly's Test of Sphericity, χ2(2) = 24.564, p = .004. Therefore, a Greenhouse-Geisser 

correction was applied (ε = 0.627). The exercise intervention did not elicit statistically 

significant differences in subgroup number between wallpaper groups, F(2.507, 25.073) 

= 2.468, p = .094, with number of subgroups decreasing in order between P6 (M = 5.545, 

SD =  .755), P31M (M = 4.818, SD =  .724), P6M (M = 4.636, SD =  .730), P31M (M = 

4.545, SD =  .769), and P1 (M = 3.909, SD =  .579).  

 

 
Figure 6. Boxplots of number of subgroups for each wallpaper group. 
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Discussion 

The aim of this study was to explore the factors that influence sorting within an 

individual wallpaper group, and thereby possibly conclude why certain wallpaper groups 

are appear more self-similar than others. Our results show that the sorting of P1 resulted 

in sorted categories with a significantly higher Jaccard index distribution than all other 

wallpaper groups studied, indicating that participants sorted the P1 exemplars into similar 

sets (i.e. sets containing the same exemplars) significantly more often than in the other 

groups. The results of the repeated measures ANOVA indicates that this is not simply a 

byproduct of participants dividing the P1 exemplars into fewer subsets, thereby 

suggesting that there is less variation between participants in the factors used to sort the 

P1 group. Since Clark et al. (2011) demonstrated no significant link between the number 

of symmetries in a wallpaper group and its degree of self similarity, this lack of variation 

cannot be due to the inclusion of only one form of symmetry in P1. Thus, subjecting a 

seed fundamental domain to only translation symmetry must create a lower number of 

salient lower-order features compared to the rotations, reflections, and glide reflections. 

Indeed, all participants reported P1 as the most difficult group to sort due to lack of 

readily apparent features distinguishing the stimuli.  

P6M was also found to have a significantly higher Jaccard index distribution than 

P6. Since the primary mathematical difference between P6M and P6 is the presence of 

reflectional symmetry in the former, this suggests reflectional symmetry could play a 

significant role in increasing self-similarity by providing a more salient grouping feature. 

This finding is supported by several studies that indicate reflectional symmetry is more 
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readily detected and processed than the other forms of symmetry in humans (Swaddle, 

1999). 

 Clark et al. (2011) observed that a similar global geometric structure emerges in 

all exemplars of each wallpaper group, regardless of the seed random dot fundamental 

domain used. These include striations, grid patterns, and large geometric forms with 

characteristic circular, triangular, or elliptical shapes. They further argued that the 

perceptual classification of wallpaper groups does not occur directly through the 

recognition of symmetries, but instead through the aforementioned characteristic global 

geometric structure. Thus, an exemplar with a high mean Jaccard index most likely has 

features that enhance the salience of that characteristic global geometric structure, 

thereby making it more perceptually similar to other exemplars of that group. The 

comparison of the exemplars with the highest and lowest mean Jaccard indices within a 

particular wallpaper group can elicit those features.  

 For P1 (as depicted in Figure C-1) the exemplar with the highest mean Jaccard 

index has more prominent straight lines running through the pattern, due to contrast 

differences. Indeed, some participants reported sorting the P1 exemplars by the 

appearance of these lines. This suggests that contrast can affect the salience of the global 

geometric structure—in this case, striations—especially in patterns with limited amounts 

of symmetry.  

 For P3M1 (as depicted in Figure C-2), the presence of the three-pronged black 

structure within each unit appears more salient than the large triangular geometric form in 

the exemplar with the lowest mean Jaccard index. Thus, a high contrast secondary 

structure within a unit can make it difficult to detect the global geometric structure. 
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 For P31M (as depicted in Figure C-3), the exemplar with the highest mean 

Jaccard index prominently displays the 3rd-order rotational symmetry characteristic of the 

wallpaper group, whereas a lack of perceivable edges around the units in the other 

exemplar makes it harder to distinguish this feature. This suggests the importance of 

being able to discriminate the edges of a unit in recognizing the global geometric 

structure. This concept is further illustrated in comparing the exemplars within P6M (see 

Figure C-5). 

 For P6 (as depicted in Figure C-4), while the exemplar with the lowest mean 

Jaccard index clearly displays the edges of the unit, it does so at the sacrifice of 

prominently displaying the 6th-order rotational symmetry characteristic of the group, 

which the other exemplar does. This suggests the prominent role contrast plays in the 

determining the salience of distinct features within the pattern, and consequently the 

recognition of the global geometric structure.  

The sorting task was not completed with any time restrictions, limiting the study’s 

generalizability in context of literature measuring the symmetry reaction times. Thus, 

these results cannot be fully used to evaluate models of symmetry detection, as 

classification decisions were made with more deliberation than would be afforded by 

time-limited sorting. This is also further clouded by the participants’ freedom to move 

images between subsets until they were satisfied, as higher order cognition could 

confound the reactions of the symmetry detection processes of the visual system.  

Future studies could impose a time-restriction, effectively minimizing the 

aforementioned limitations. Moreover, the task could be repeated with stimuli that 

deliberately alter the factors—contrast, prominence of unit outline, and presence of 
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salient secondary structures—suggested to influence the salience of the global geometric 

structure inherent to each wallpaper group. The paradigm could also be restructured so 

that participants judge the similarity of only two exemplars at a time using a Likert-scale. 

Combined with a cluster analysis, this experimental design could further explore whether 

the human visual system perceptually organizes wallpaper groups in the hierarchical 

structure predicted by group theoretical mathematics (Schattschneider, 1978). 

Based on the aforementioned uses of symmetry detection within the human visual 

system, and the abundance of visual symmetry in the real world, the potential benefits of 

being able to effectively artificially recreate this mechanism within computers is clear. 

Potential applications of computational symmetry include facial recognition, 3D-

reconstruction, and image resolution-enhancement (Park et al., 2008). However, even 

after over 30 years of research, the best computer algorithm has a mean sensitivity of 

only 42% for bilateral reflection symmetry, and 32% for rotational symmetry, with a 43% 

and 13% false positive rate, respectively (Park et al., 2008). It is possible that the human 

mechanism of symmetry perception is particularly efficient and effective, and thus 

gaining a better understanding of these processes could, in turn, inform computer vision 

as well.
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Appendix A: Stimuli 
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Figure A-1. Exemplars for P3M1 wallpaper group, with code names. 
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Figure A-2. Exemplars for P3M1 wallpaper group, with code names. 
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Figure A-3. Exemplars for P31M wallpaper group, with code names. 
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Figure A-4. Exemplars for P6 wallpaper group, with code names. 
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Figure A-5. Exemplars for P6M wallpaper group, with code names. 
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Appendix B: Similarity Matrices 

 

Figure B-1. Similarity matrix for P1. Values highlighted in blue indicate top 5% of Jaccard indices. Values highlighted 
in green and red indicate highest and lowest Jaccard indices, respectively. 

 

 

 

 

Figure B-2. Similarity Matrix for P3M1. Values highlighted in blue indicate top 5% of Jaccard indices. Values 
highlighted in green and red indicate highest and lowest Jaccard indices, respectively. 
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Figure B-3. Similarity matrix for P4M1. Values highlighted in blue indicate top 5% of Jaccard indices. Values 
highlighted in green and red indicate highest and lowest Jaccard indices, respectively.  

 

 

 

 

Figure B-4. Similarity matrix for P6. Values highlighted in blue indicate top 5% of Jaccard indices. Values highlighted 
in green and red indicate highest and lowest Jaccard indices, respectively. 
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Figure B-5. Similarity matrix for P6M. Values highlighted in blue indicate top 5% of Jaccard indices. Values 
highlighted in green and red indicate highest and lowest Jaccard indices, respectively. 
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Appendix C: Exemplars with Highest and Lowest Mean Jaccard Indices  

	   P1	  Exemplars	   Mean	  Jaccard	  
index	  

(a)	  

	  

.2387	  
	  

(b)	  

	  

.1537	  

Figure C-1. P1. (a) Exemplar with highest mean Jaccard index. (b) Exemplar with lowest mean Jaccard index. 
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	   P3M1	  Exemplars	   Mean	  Jaccard	  

index	  

(a)	  

	  

.1964	  

(b)	  

	  

0.1249	  

Figure C-2. P3M1. (a) Exemplar with highest mean Jaccard index. (b) Exemplar with lowest mean Jaccard index.	  
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	   P31M	  Exemplars	   Mean	  Jaccard	  
index	  

(a)	  

	  

.1964	  

(b)	  

	  

0.1100	  

Figure C-3. P31M. (a) Exemplar with highest mean Jaccard index. (b) Exemplar with lowest mean Jaccard index.	  
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	   P6	  Exemplars	   Mean	  Jaccard	  
index	  

(a)	  

	  

.1488	  

(b)	  

	  

0.0884	  

Figure C-4. P6. (a) Exemplar with highest mean Jaccard index. (b) Exemplar with lowest mean Jaccard index	  
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	   P6M	  Exemplars	   Mean	  Jaccard	  
index	  

(a)	  

	  

.2166	  

(b)	  

	  

0.1076	  

Figure C-5. P6M. (a) Exemplar with highest mean Jaccard index. (b) Exemplar with lowest mean Jaccard index 
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