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Abstract 

 

 Insurance pricing is an important part of discussing actuarial science and this topic is a 

very important part of doing research in this particular field. This paper will show how using 

game theory methods and models we can create strategies that result in a different perspective in 

not only pricing, but in various other aspects of actuarial science and the insurance field. First we 

take a look at different game theory models and concepts to establish the suitability of applying 

this particular field of mathematics to actuarial science. We then see if our work will result in a 

difference from actuarial methods, whether that be in premiums or maybe in ratio of accept or 

reject in life insurance. There are many different fields in actuarial science and the applications 

of game theory can address problems that apply to all of them. 
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Chapter 1 – Introduction 

Why Use Game Theory? 

 Game theory is an application of mathematics to the decision making processes of the 

cooperation and conflict of rational bodies. For example, these bodies could be the insurer and 

the insured. Using game theory models as a way to predict behavior of the bodies involved gives 

a more detailed look at the rationale behind decisions being made by either party. Looking at it 

from a new perspective results in a more accurate picture being drawn of certain situations and 

creates possibilities of not just having arbitrary rules but mathematically explained solutions to 

problems that may arise at any point in insurance pricing. The main point is that game theory is 

designed with conflict of interest in mind and is flexible enough to explore the rewards of both 

sides of a relationship assuming rational decision making. 

 The concepts introduced here could be applied to various fields of actuarial science and 

indeed, many of them are in use in the business world as we know it. As an example, swaps, 

options, and forwards all have their theoretical base in zero-sum games. To give a simple 

example, swaps (more specifically interest rate swaps) are agreements to exchange future interest 

payments based on a specified principal amount. Generally speaking, the two parties in the 

exchange trade fixed-rate and variable-interest rate such that one party can hedge risks associated 

with the variable interest rate and the other can receive potentially higher rewards while holding 

a conservative asset. In essence, this is a zero-sum monetary exchange that is realized in the 

future since neither firm knows exactly how the rates will change. In a game that uses present 

value terms, this is played as a cooperative game that realizes win-win measured by different 

utility values on the risk of the swap. 
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Game Theory Introduction 

 Let us assume that there are two players, represented by P1 and P2. A common 

representation of a zero-sum game is P1 and P2 placing a penny on a table with the payoff 

dependent on whether or not the pennies match. We can then create a payoff matrix for this game 

and represent it as follows: 

P1\P2 Heads Tails 

Heads ahh,bhh aht,bht 

Tails ath,bth att,btt 

Figure 1 

According to Fig. 1, we have our payoffs represented by aij and bij where     *   + depending on 

whether or not the two faces of the coins are the same. If they are the same, then P1 gets a penny 

and P2 gets the penny if the faces differ. For example       while        and        

while      . As is evident, the combined payoff for P1 and P2 in all the cells in the matrix is 

zero, thus the name zero-sum game. As a note, remember that this is a model and models map 

decision trees, not what the players will actually do. 

 Now we consider decision rules, or various ways to come to an optimal decision. In 

Figure 1, this particular game has a very simple decision tree because of how the payoffs are 

symmetrical. One way we can make a decision is the minimax criterion, which is the tendency 

for both players to attempt to obtain the largest guaranteed pay-off. This means that they are 

minimizing the possible loss in the worst case (maximum loss) scenario. Note that this is 

equivalent to maximizing the minimum gain (or maximin) for the game that we have created 

here. We therefore get: 

   
  *   +

   
  *   +

        
  *   +

   
  *   +
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The above equation depending on whose perspective is being observed and whether or not you 

are maximizing the gain or minimizing the loss. Either way, the optimal strategy would be a mix 

of both strategies with probability one-half and this results in the value of the game being 0. 

 The minimax criterion is based on the assumption that the player is attempting to 

maximize their gain. In the context of a zero-sum game, when a player maximizes their gain it 

results in the other player taking a loss. In other words, the goals of our two players are strictly at 

odds. However, I will now look at Bayes criterion, which is where one party assumes the other 

party has committed to a fixed a priori strategy. That is, one player will assume that the other 

will have a certain ratio of decisions and will be able to use those assumptions to simplify the 

decision making process. The assumption has to be a realistic proportion of decisions made, 

otherwise if the assumption is that the other player will always make a certain move then the 

problem becomes very unrealistic and trivial. This particular sort of analysis is useful if one 

player is very familiar with how the other player thinks or if the fixed player is in a market 

situation that renders them too big to react quickly. 
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Chapter 2 – Pricing Models 

Cournot and Bertrand 

 There are two kinds of models that will be discussed in this chapter: Bertrand and 

Cournot oligopoly. An oligopoly is a type of market that is dominated by a small number of 

sellers and this makes our models a bit easier to work with. A Bertrand oligopoly is where 

insurers set the premium and Cournot is where insurers choose optimal values of insurance 

coverage. There are several differences between the two models while they have similar 

assumptions. Bertrand assumes firms compete on price while the consumers choose the 

quantities at the prices set. Cournot has the firms compete on the output they produce and they 

choose these values independently and simultaneously. 

 The Bertrand model is a non-cooperative game where all prices are set simultaneously 

and consumers buy everything from the company that offers their product at the lower price and 

randomly if all the companies charge the same price. This model considers a duopoly (market 

completely dominated by two companies) where firm A’s price depends on where it believes 

firm B will set its price. One firm can take over the market by pricing just below the other, but 

this actually is not optimal if the other firm is pricing below marginal cost since both would 

receive negative profits. This particular model also comes with a paradox called the Bertrand 

Paradox which states that it only takes two firms to obtain perfect competition. Obviously in a 

vacuum without any external factors this could occur, but is not particularly realistic. Thus this 

model pushes the market price towards marginal cost. 

 The Cournot model is a non-cooperative game with a fixed number of firms in which 

firms simultaneously choose production levels (output) and the total production across all firms 

affects the market price. There is a variant of this model that has two stages, the first where 
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companies choose capacities and in the second they compete using the Bertrand model. In 

addition, as the number of firms tends towards infinity, the market price is pushed down toward 

marginal utility as each firm is competing for market share and we end up with the same result as 

the Bertrand model. 

Hotelling    

 Another type of model that we will look at is the Hotelling model. This model expands 

on our Bertrand model by taking into account and allowing some differences in the service of the 

company. This service does not necessarily mean what it is they’re selling in this case, but things 

such as customer service, product design, location, etc. In the case of location, we can imagine 

two stores on a street that sell the exact same commodity for the exact same price. The customer 

will generally choose the closer store since the product itself is the same. The other factors like 

customer service or product design can also be pictured as being placed on a line and the 

consumer can visualize where they would fall on that line and see how “close” they are to a 

particular firm. 

 While the Hotelling model does hold the product between firms the same at least from 

the perspective of the consumer, it is possible to apply product differentiation between firms 

while also following parts of this model. Bear in mind that one of the ideas addressed was the 

various factors of “closeness”. Companies can effectively sell the same thing as their peers, but 

throw their own twist by changing one of those factors. If your product has some dependency on 

those factors then marketing could differentiate the product from those of competitors while 

keeping the core of the product identical. I came across the company JetBlue that markets itself 

as a cheaper airline while also offering similar services and flight schedules. In this example the 

factor of “closeness” is price. In addition, the consumer also values what they give up for this 
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price, in this case comfort and this can be taken into account as an additional cost for a cheaper 

monetary price. 

 The result of this model, in the case of a duopoly, is that both players are pushed towards 

the middle of the location line. In the example of two shops on a street, if distance is the only 

difference between them then customers will go to whichever is closer. If the two take up the two 

ends of the street then they share more or less 50% of the market if customers are uniformly 

distributed along the street. There is an invisible line down the middle of the street that indicates 

where customers are more or less indifferent to either store. In order to capitalize on the potential 

customer pool that exists in the middle one or both of the stores will attempt to shift their 

location to be closer to that pool and take more than 50% of the market share. The closer to the 

middle, the more market share either store will receive assuming that the other store does not 

move as well. Thus both stores will end up in the middle if the game proceeds naturally. When 

that happens, distance is no longer a factor of “closeness” by most standards of measurement. 

Ideally, we would want both stores to be equidistant from the end and the middle of the street, or 

a quarter of the way down from the end. This way a customer on the street would have to walk 

the least distance to either store and market share for both is still 50%. However, distrust 

between the two players would prevent this as there’s always the possibility that one will move 

their location in an attempt to gain more market share. 
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Chapter 3 – Life Insurance Applications 

Life Insurance Underwriting 

 Life insurance applications of game theory and the ideas introduced in this section will 

mostly come from the paper by Jean Lemaire titled A Game Theoretic Look at Life Insurance 

Underwriting. This particular paper mostly focuses on life insurance underwriting, which 

determines whether or not a person is accepted or not for insurance. The mathematics contained 

within the paper is fairly simple, but it serves as a very important introduction to game theory 

concepts as they are applied to the insurance field. We start with establishing a payoff matrix for 

this example from the perspective of the insurer: 

P1\P2 Healthy Proposer Ill Proposer 

Accept A C 

Reject B D 

Figure 2 

 In the above figure, P1 is the insurer (player 1) and P2 is the proposer (player 2). Their 

payoffs are represented by A, B, C, and D. For now, we will look at the payoffs with respect to 

player 1, the insurer. Obviously the worst result for an insurer is to accept a proposer that is ill, 

thus C is the lowest payoff. In turn, D > B and A > B. As a note, there can be arguments made 

for whether rejecting a bad risk is better than accepting a good one but it is not relevant to this 

particular discussion.  

    We now analyze the decision making process of our two players by first looking at the 

minimax criterion. The map of our payoffs for this zero-sum game can be expressed graphically.  
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                                                                      Figure 3 

Using the payoffs presented in Figure 2, we can build a graph based on the payoffs of P1. The 

horizontal axis in Figure 3 represents P2’s strategy. 

 This model is very naïve and does not take into account the ability of the players to 

gather outside information. For example, P1 (the insurer) could collect medical information on 

P2 and make a decision based on this factor. If we assume that there are only two characteristics 

of the obtained medical information: ps (successfully noticing a bad risk) and pf (failing to notice 

a bad risk), then we can introduce a third pure strategy for P1. This strategy is simply following 

the medical information and the payoffs E and F can be expressed as follows: 

        (    )           (    )       
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                                                                                                       Figure 4 

 The payoffs for P1 can be optimized by mixing the strategies of “accepting” and 

“following the medical information”. If we end up with medical information such that the line 

EF ends up below the intersection between AC and BD, then we have medical information so 

weak that it’s completely useless. 

Insurance Pricing Competition 

 So far we have discussed the game where it is strictly insurer vs. consumer. In order to 

analyze the case of firm vs. firm, we use a Hotelling model, based upon the fact that consumers 

buy insurance despite moderate price differences. Our two players are firms H and J. Assume 

that the consumers’ preferences are uniformly distributed on an interval [0, 1]. Our products 

possess gross utility v. If there is a location x which represents where on the line an arbitrary 

consumer is then there is a utility cost of kx that is incurred from purchasing from firm H and 

utility cost of (1-k)x when purchasing from firm J if both companies are at the extremes of the 

interval. The symbol k is, in the original Hotelling model, a parameter for location. In this 
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particular model, I will use it as a metaphor for consumer’s preferences and/or characteristics. 

This interpretation will guide the firms toward product differentiation and specialization of their 

products. Assume the prices of the products from firm H and J are           respectively.  

 Let’s create an arbitrary firm g, whose position is located at location lg,     *   + then we 

can denote net utility using the following functions: 

                                             

  (    )        |    |
            

  (    )        |    |
 
           

The above equation will allow us to calculate the utility gained from the products of these firms 

even if their location is not at the extremes of the line. Observe from these utility functions that 

when    , the purchase cost becomes the same regardless of where the firm is located. 

When    , then the utility cost is linear and when     the utility cost is quadratic, which 

means that utility is reduced more strongly as the distance between their preference and the 

product increases. For now, we assume     for simplicity’s sake. 

 Consider   to be a reserve price. If    is negative, then the consumer does not buy any 

products. Then if the prices are not too high relative to the price v we have the market covered. 

We then assume that             so we can find the marginal consumer x who is 

indifferent between the two firms and we get (from equating the two net utility functions): 

  (    )    (    ) 

      |    |        |    | 

  
(       (     ))
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The above equation represents our midpoint, which is the location on the interval that represents 

where the consumer chooses a firm at random. Now we introduce D, the variable for demand. 

Demand in this case represents the number of people in the market pool. Our demand functions 

           represent the number of people that would favor one firm over the other out of a 

pool of D people. We can then derive the demand functions for the two firms by multiplying D 

by the midpoint between our two firms: 

  (     )      
(       (     ))

  
 

where        (     )                            (     )          . 

  (     )   (   )   
(       (       ))

  
 

where        (     )                            (     )            

 We now introduce our set of strategies S which is the set of prices p that will allow our 

two firms to maximize profit. If the firms’ products have unit costs    and    respectively, then 

our profit functions   are: 

       (          )         

  (     )  (     )  (     )  (     ) (       (     ))
 

  
  

and 

  (     )  (     )  (     )  (     ) (       (       ))
 

  
 

 The best response functions for our two firms can be done by maximizing the two profit 

functions by setting their derivatives to zero and solving. This gives us: 

   (     )

   
  (     )  (       (     ))    
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(       (     ))

 
 

and 

   (     )

   
  (     )  (       (       ))

 

  
   

   
(       (       ))

 
 

 

Figure 5 

 The solution to this game can be obtained using the Nash Equilibrium. This equilibrium 

profile consists only of the best moves (price to be set for the product) for our two firms. In this 

model, our Nash Equilibrium represents the price that will yield the most profit given that both 

firms know the location of the other firm and the distribution of their consumers. What this 

means is that given these prices and assumptions, neither of our firms can change the price in 

such a way that will yield them a greater profit than what they will already receive. The Nash 
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Equilibrium can then be calculated as the intersection of these two equations, which occurs at the 

following two prices of the firms: 

  
  

(      )

 
 
 (       )

 
 

and 

  
  

(      )

 
 
 (       )

 
 

Figure 5 graphically illustrates the case for the two firms when the costs are equal. With a larger 

k, the products are more differentiated and the equilibrium prices are higher. Similarly, when k = 

0 our prices get smaller and it gets close to a Bertrand competition with homogeneous products 

barring any other factors that need to be taken into account. 

 Building upon this Hotelling model, we note that insurance is a way to pool risk. In this 

case, the firms might find themselves in a situation where equally splitting the market share 

down the middle does not absorb enough risk to be sustainable. It is possible that this might 

occur in an area with a small enough population or there could be other factors. In such a 

situation, the firms may end up needing to specialize in their type of insurance and adding in 

various incentives to split the market in a different way in order to absorb risk. In the case of 

taking into account more than one factor, note that a two dimensional model of the baseline 

Hotelling model does not necessarily move both companies into the center of a square. This is 

because if the two companies stay in the center of the square it lowers the cost of entry into the 

market by a third firm that can provide that specialized care and be closer than the other two 

without having as high a cost. The k is very important to this model as it dictates how much the 

product for our two firms should differ in order to maximize profit, not just market share. Note 

that this means that some degree of specialization occurs in our metaphor for location.  
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Chapter 4 – Non-life Insurance Applications  

 Game theory has further applications to non-life insurance and indeed, even the models 

discussed in the life insurance section have applications in most fields of actuarial science. The 

life insurance underwriting model in particular could be used in say medical insurance 

underwriting. Most general applications can be done with changes in the calculation and 

additions made to other factors that need to be taken into account. Specific models will not be 

covered in this paper, but I can recommend the paper by Dutang, Albrecher, and Loisel (2013) as 

a very good resource that contains an in-depth look at game theory approach towards this field. 

 One of the areas of insurance that should be mentioned is risk loads for property 

catastrophe insurance (Mango 1998). In the referenced paper by Donald Mango, he talks about 

how game theory applications to real world issues can also be applied to this particular field. 

There are mentions of tax allocations, maintenance costs, financing of large projects, 

construction fees, etc. This particular model is known as “cooperative games with transferable 

utilities” and is used when the players need to share money between them. Whether they want to 

maximize or minimize their money in this game is dependent on the type of game that they are 

addressing. Applying this to risk load gives us a pretty easy fit where our “players” want to 

minimize allocations of the portfolio risk load. That being said, the paper does acknowledge that 

there are small details that involve more complex mathematics that would require more research 

in order to make the game fit more easily with this particular problem. 

 Another field of study where game theory has applications is reinsurance. We start with 

the primary insurance market with an arbitrary number of players and then extend this model by 

creating “levels” of reinsurance by its distance from the primary insurance market (Powers and 

Shubik 2006). Level “1” is the reinsurance of the primary insurers and level “2” the reinsurance 
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of those reinsurers. Each level is a stage of a game and we end up with an (r+1)–stage game 

depending on how many levels of reinsurance there are. The equilibrium in this case is one that 

is “perfect” in the sense that the equilibrium of the primary game will also be the same for each 

sub game. In addition, there are things other than the price of insurance that can be analyzed in 

this model. One of the questions asked is the optimal number of reinsurers because like most 

things, the reinsurance market can become saturated in a way that the marginal utility of 

additional levels is so low that it is not desirable. 
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Chapter 5 – Conclusion 

 In this paper I have given a brief introduction to game theory and analyzed various 

applications of game theory in the insurance industry. I proposed an adaptation of the Hotelling 

model using the Hotelling’s original location parameter as a metaphor for consumer preferences 

and/or other characteristics. An outline is presented of how this adaptation can provide a 

methodology for finding equilibrium for product differentiation i.e. specialized policies for 

increased profit for insurance companies. I also survey additional applications of game theory for 

insurance and present a few computational examples on how they might be modeled. While the 

models presented are simple, the various complexities that reality adds onto any model can 

create interesting situations. In this case, the way that I have set up the model, additional factors 

can be taken into account and added into the game theory model in a fairly obvious way. The 

field of game theory still has a lot of different areas that could be explored and its applications 

are still wide and varied. 
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