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Abstract

Let f be a complex polynomial of degree n. We attach to f a polynomial space W (f)
which consists of all complex polynomials p(x) of degree at most n− 2 such that f(x) divides
f ′′(x)p(x)− f ′(x)p′(x). The space W (f) arises for its importance in Yuriy G.Zarkhin’s solution
towards a question posed by Yu.S.Ilyashenko. In this paper, we establish an equivalent condition
on f(x) that guarantees W (f) to be nontrivial. Moreover we investigate the dimension of space
W (f) using three independent approaches. The first one uses Hermite interpolation, the second
one applies Chinese reminder theorem, the third one invokes combinatorial tools and linear
algebra.
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Chapter 1 |
Definitions, notations, and statements

We write C for the field of complex numbers and C[x] for the ring of one variable polynomials

with complex coefficients. Unless otherwise stated, all vector spaces we shall consider are over

the field of complex numbers. First we give a definition of the following polynomial space.

Definition 1.1. For every f(x) ∈ C[x] with deg f = n define

W (f) :=
{
p(x) ∈ C[x] : deg p ≤ n− 2 and f(x) divides f ′′(x)p(x)− f ′(x)p′(x)

}
The space W (f) arises from Zarkhin’s computation of the rank of the following map. Let us

consider the n-dimensional complex manifold Pn ⊆ Cn of all monic complex polynomials of

degree n ≥ 2
f(x) = xn + an−1x

n−1 + · · ·+ a0

with coefficients a = (a0, . . . , an−1) and without multiple roots. We denote roots (in this case

simple roots) of f(x) by

α = {α1, . . . , αn}

Locally with respect to a, we may choose each αi using Implicit Function Theorem as a smooth

uni-valued function in a. Further we will try to differentiate these functions with respect to

coordinates, with no computation of the roots. And here is our map

M : a = (a0, . . . , an−1) 7−→ f ′(α) = (f ′(α1), . . . , f ′(αn)) ∈ Cn

By abusing notation, we may assume that M is defined locally on Pn and write M(f) instead of

M(a0, . . . , an−1). Let dM : Cn → Cn be the corresponding tangent map (at the point f(x)). It

is convenient to identify the tangent space Cn with the space of all polynomials p(x) of degree

less than or equal to n− 1. Namely, to a polynomial p(x) =
∑n−1
i=0 cix

i, one assigns the tangent

vector (c0, . . . , cn−1) ∈ Cn. For example, the derivative f ′(x) corresponds to the tangent vector

(a1, . . . , (n − 1)an−1, n) ∈ Cn. To emphasize the role of W (f), we briefly outline Zarkhin’s
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proof ([8] Theorem 1.1) that the rank of the tangent map dM : Cn → Cn is n− 1 at all points of

Pn. In fact, Zarkhin shows that the kernel of dM is W (f)⊕ C · f ′(x).

The first question that naturally arises is who to deal with M? We interpret the ordering of

the roots as a choice of an isomorphism of commutative semi-simple C-algebras:

ψ : Λ = C[x]/f(x)C[x] ∼= Cn

u(x) + f(x) · C[x] 7→ u(α) := (u(α1), . . . , u(αn))

and carry out all the computations, including the differentiation with respect to a, of functions that

take values in the algebra Λ, despite of the fact that this algebra does depend on the coefficients a.

Of course while differentiating, we will use Leibniz’s rule and that f(x) = 0 in Λ. In what follows

we will often mean under polynomials their images in Λ (i.e. the collection of their values at the

roots of f(x), while we try not refer to the roots explicitly). Notice that the absence of multiple

roots means that f ′(x) is an invertible element of Λ. Also notice that α = (α1, . . . , αn) ∈ Cn is

the image under ψ of the independent variable x.

The first thing that we want to compute is the derivatives dα/dai. Since f(α) = 0,

df(α)/dai = 0. So we have

df(α)
dai

= ∂f

∂ai
(α) + f ′(α) · dα

dai

Since ∂f/∂ai = xi, we obtain that

0 = αi + f ′(α) · dα
dai

which gives us
dα

dai
= − αi

f ′(α)

It follows that for any polynomial u(x) whose coefficients may depend on a,

du(α)
dai

= ∂u

∂ai
(α) + u′(α)× dα

dai
= ∂u

∂ai
(α)− u′(α)× αi

f ′(α)

In particular we are interested in the case when

u(x) = f ′(x) = nxn−1 + (n− 1)an−1x
n−2 + · · ·+ a1

So we obtain that
df ′(α)
dai

= iαi−1 − αif ′′(α)
f ′(α)
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Actually, the rank of dM at f(x) is the dimension of the subspace of Λ generated by n

elements
df ′

da0
(α), df

′

da1
(α), . . . , df ′

dan−1
(α)

Suppose that a collection of n complex numbers c0, . . . , cn−1 satisfies

n−1∑
i=0

ci
df ′

dai
(α) = 0 ∈ Λ

If we put p(x) =
∑n−1
i=0 cix

i, then one may easily observe that p′(x) =
∑n−1
i=1 icix

i−1 and in Λ
the following equality holds

0 =
n−1∑
i=0

ci
df ′

dai
(α) = p′(α)− p(α)f ′′(α)

f ′(α)

Without loss of generality, we may multiply this equality by the invertible elements f ′(α) to

obtain the equivalent condition:

f ′(α)p′(α)− p(α)f ′′(α) = 0 ∈ Λ

In other words, the polynomial f ′(x)p′(x)− p(x)f ′′(x) is divisible by f(x). Now it is clear that

the rank of dM at f(x) equals the codimension of the space of all polynomials p(x) of degree less

than or equal to n− 1 such that f ′(x)p′(x)− p(x)f ′′(x) is divisible by f(x) in Cn. Obviously

this space contains nonzero f ′(x), which implies that the rank of dM does not exceed n − 1.

Since the degree of f ′(x) is n− 1, it is easy to observe that the kernel of dM at f(x) coincides

with the direct some C · f ′(x)⊕W (f). It follows readily that the rank of dM at f(x) equals

(n− 1)− dim[W (f)]

Moreover Zakhin uses polynomial algebra to show that f(x) must be divisible by the square of

a quadratic polynomial in order for W (f) to be nontrivial ([8] Theorem 1.5). This computes

the rank of dM at f(x) as n − 1 because we assume that f(x) has no multiple roots in the

construction of the map M . (f(x) has no multiple roots implies f(x) cannot be divisible by q2(x)
with q(x) ∈ C[x] of deg q = 2.)

Besides the important roleW (f) plays in computing the rank of dM , we believe that complete

understanding of the space W (f) will be helpful to further prove Elmer Rees’s conjecture ([1] §2)

that the rank of dM at f is equal to the cardinality of the set of simple roots of f(x) for arbitrary

complex polynomials f(x) allowing multiple roots. This paper will present the necessary and

sufficient condition of f(x) that tells when the space W (f) is non-trivial. Furthermore, we will
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obtain a dimension formula for the C-vector space W (f) for various f(x) ∈ C[x]. To complete

these tasks, it is essential to group roots of f(x) by different multiplicities and think about how

they are going to affect dim[W (f)] in each case. So, we need to introduce some notations prior

to statement of main results.

Notation 1.2. Let f(x) ∈ C[x] with deg f = n. We adopt the following notations for the rest of

this paper:

1. R(f) is the set of distinct roots of f(x);

2. Rk(f) is the set of distinct roots of f(x) with multiplicity exactly k;

3. α = R1(f), β = R2(f), γ =
⋃
k≥3Rk(f),

αi, βj , γs are elements in α, β, γ respectively,

For γi ∈ γ, ki denotes its multiplicity;

4. n1 = #R1(f), n2 = #R2(f), n3 =
∑
k≥3 #Rk(f);

5. The kth-part polynomial of f(x) is defined as fk(x) =
∏
r∈Rk(f)(x− r); and the α, β, γ-

part of f(x) are defined similarly.

Recall Zarkhin’s result ([8] Theorem 1.5) that

W (f) is nonzero =⇒ q2(x) divides f(x) for some quadratic polynomial q(x).

To study conditions on non-triviality ofW (f), Zarkhin proposed questions regarding the converse

statement. In other words, if f(x) is divisible by square of a quadratic polynomial, is W (f)
nontrivial? Fortunately, the answer is positive as we shall present in §3.

Theorem 1.3 (Non-triviality). Let f(x) be a complex polynomial. If there exists a quadratic

complex polynomial q(x) such that q2(x) divides f(x), then W (f) is nonzero.

Knowing what f(x) can produce nontrivial space W (f) is not interesting enough. To obtain

more information about W (f), we want to get the dimension of the C-vector space W (f) for

general class of f(x) ∈ C[x]. Following examples give a basic view of dimC[W (f)] when

deg f = 5 and 6.

Let q(x) be the quadratic polynomial whose square divides f(x). In following calculations

we let h(x) = f(x)/[q(x)]2, and for a given p(x) ∈ W (f) we write R(x) for f ′′(x)p(x) −
f ′(x)p′(x). Notice that the relationship f(x) | R(x) is preserved under the affine transformation

x 7→ ax+ b for any a, b ∈ C, a 6= 0. This free control of two parameters allows us to consider

q(x) only in the following two cases when one computes W (f)
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• q(x) = x2 − 1 (i.e. when q(x) has distinct roots);

• q(x) = x2 (i.e. when q(x) has multiple roots).

Example 1.4 (deg f = 5). If deg(f) = 5, then deg h = deg f−2·deg q = 1. So let h(x) = x−c
for some constant c ∈ C. According to the previous remark, we need to compute W (f) only

when q(x) = x2 − 1 or x2.

Case 1: q(x) = x2

(a) If c 6= 0, then f(x) has one simple root and one multiple root with multiplicity 4. (i.e.

n1 = 1, n2 = 0, n3 = 1 with k1 = 4). In this case we have p(x) ∈ W (f) if and only if

p(x) = x
(
x− 5c

6

)
. So dim[W (f)] = 1.

(b) If c = 0, then f(x) has only one multiple root with multiplicity 5 (i.e. n1 = n2 = 0, n3 = 1
with k1 = 5). In this case we have p(x) ∈W (f) if and only if p(x) is divisible by x2. So

dim[W (f)] = 2.

Case 2: q(x) = x2 − 1

(a) If c2 6= 1, f(x) has one simple root, and two double roots (i.e. n1 = 1, n2 = 2, n3 = 0).

In this case we can show that p(x) ∈W (f) if and only if p(x) = (x2− 1)(6cx− 5c2− 1).

So dim[W (f)] = 1.

(b) If c2 = 1, f(x) has no simple root, one double root, one root of multiplicity three (i.e.

n1 = 0, n2 = 1, n3 = 1). In this case, we compute that p(x) ∈ W (f) if and only if

p(x) = (x2 − 1)(x− c) which shows that dim[W (f)] = 1.

To summarize computation of dimension of the spaceW (f) for all possible degree five polynomial

f(x), we present the following table:

Table 1.1: dim[W (f)] for all quintic polynomial f(x)

n1 n2 n3 dim[W (f)] deg f − 1− (n1 + n2 + 2n3)
1 0 1 1 5− 1− (1 + 0 + 2 · 1) = 1
0 0 1 2 5− 1− (0 + 0 + 2 · 1) = 2
1 2 0 1 5− 1− (1 + 2 + 2 · 0) = 1
0 1 1 1 5− 1− (0 + 1 + 2 · 1) = 1

Similarly, by considering cases whether q(x), h(x) has simple roots or not, we can calculate

dim[W (f)] for all possible polynomials f(x) of degree 6. Table 1.2 is a short summary for all

deg f = 6. Both Table 1.1 and Table 1.2 suggests the coincidence between the positive integer
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deg f − 1− (n1 + n2 + 2n3) and dimension of the space W (f) when W (f) is nontrivial. Com-

putation of W (f) for polynomials f(x) of higher degree also provides support for Conjecture 1.5

formulated here:

Conjecture 1.5. If f(x) ∈ C[x] is divisible by the square of a quadratic polynomial, then

dim[W (f)] = deg f − 1− (n1 + n2 + 2n3)

Our main goal in this paper is to prove Conjecture 1.5 in a general case when f(x) does

not have too “many” simple roots. What we mean by not having too “many” simple roots in a

precise mathematical language is that the number of simple roots n1 is bounded above by the

number n2 +
∑n3
i=1(ki − 2), where n2 is the number of double roots, n3 is the number of roots

with multiplicity at least three, and ki’s are multiplicities of roots γ1, . . . , γn3 ∈ γ.

Table 1.2: dim[W (f)] for all polynomial f(x) of degree six

n1 n2 n3 dim[W (f)] deg f − 1− (n1 + n2 + 2n3)
0 0 1 3 6− 1− (0 + 0 + 2 · 1) = 3
0 1 1 2 6− 1− (0 + 1 + 2 · 1) = 2
1 0 1 2 6− 1− (1 + 0 + 2 · 1) = 2
2 0 1 1 6− 1− (2 + 0 + 2 · 1) = 1
0 3 0 2 6− 1− (0 + 3 + 2 · 1) = 2
1 1 1 1 6− 1− (1 + 1 + 2 · 1) = 1
2 2 0 1 6− 1− (2 + 2 + 2 · 0) = 1

Structure of the paper

The paper is organized as follows. In §2, we completely characterize W (f) when f(x) does

not have any simple roots (i.e.R1(f) = ∅). This description of the space W (f) will be used to

prove Theorem 1.3 in §3 together with the aid of an important lemma due to Marcin Mazur.

We will restate Conjecture 1.5 in §4 and give motivation of another abstract modelZ(η, ω; s, k)
in order to analyze W (f). §5 examines basic properties and examples of space Z(η, ω; s, k) that

will be used to partially prove Conjecture 1.5. In §6, we will give three different approaches

to show Conjecture 1.5 when f(x) does not have “too many” simple roots. The first method

essentially combines Hermite interpolation and evaluation homomorphism. The second one

directly applies Chinese reminder theorem. The third one computes dimension of W (f) as the

rank of a certain (associated) matrix and then uses two identities in finite hypergeometric series to

complete an induction argument. Lastly we proposed a plausible way in §7 to handle the case

when f(x) has “lots of” simple roots.
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Chapter 2 |
Study of W (f ) for f without simple roots

The goal of this section is to prove Conjecture 1.5 assuming that f(x) does not have simple

roots. We first set up some notations. For complex polynomials f(x) and g(x) we write

R(f, g)(x) = f ′′(x)g(x)− f ′(x)g′(x)

Suppose ks are the multiplicity of γs for all 1 ≤ s ≤ n3. Note ks ≥ 3 for every s = 1, 2, . . . , n3

and from Notation 1.2 (4)

n = deg f = n1 + 2n2 +
n3∑
s=1

ks ≥ n1 + 2n2 + 3n3 (2.1)

Also, recall from Notation 1.2 (5) that the α, β, γ-part polynomial of f(x) are defined as

fα(x) =
n1∏
i=1

(x− αi), fβ(x) =
n2∏
j=1

(x− βj), fγ(x) =
n3∏
s=1

(x− γs)

This is also equivalent to fα(x) = f1(x), fβ(x) = f2(x). Moreover,

fγ(x) =
∏

k≥3
fk(x) and f(x) = fα(x)f2

β(x)
∏

k≥3

[
fk(x)

]k
We are interested in following spaces for their deep connection to W (f).

Definition 2.1. Given f(x) ∈ C[x], we define sets

W (f, α) :=
{
p(x) ∈ C[x] | deg p ≤ (n− 2), fα(x) divides R(f, p)(x)

}
W (f, β) :=

{
p(x) ∈ C[x] | deg p ≤ (n− 2), f2

β(x) divides R(f, p)(x)
}

W (f, γ) :=
{
p(x) ∈ C[x] | deg p ≤ (n− 2), f̃γ(x) = f(x)/[fα(x)f2

β(x)] divides R(f, p)(x)
}

Remark 2.2. W (f, α),W (f, β) and W (f, γ) are finite dimensional vector spaces.
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Assume f(x), p1(x), p2(x) are polynomials of complex coefficients with p1(x), p2(x) ∈
W (f, β). Let c ∈ C be given. From definition of p1(x), p2(x) ∈W (f, β), we have f2

β(x) divides

R(f, p1)(x) = f ′′(x)p1(x) − f ′(x)p′1(x) and f2
β(x) divides R(f, p2)(x) = f ′′(x)p2(x) −

f ′(x)p′2(x). In particular, f2
β(x) divides

R(f, p1)(x) + cR(f, p2)(x) =
[
f ′′(x)p1(x)− f ′(x)p′1(x)

]
+ c
[
f ′′(x)p2(x)− f ′(x)p′2(x)

]
= f ′′(x) (p1(x) + cp2(x))− f ′(x)

(
p′1(x) + cp′2(x)

)
= R(f, p1 + cp2)(x)

So f2
β(x)|R(f, p1 + cp2)(x) =⇒ p1(x) + cp2(x) ∈ W (f, β). Therefore W (f, β) is a vector

space. One can also check using the exact same technique that W (f, γ) and W (f, α) are vector

spaces by using f̃γ(x) and fα(x) respectively instead of f2
β(x) from above argument.

Remark 2.3. W (f) = W (f, α)∩W (f, β)∩W (f, γ). In particular if R1(f) = ∅ (i.e. fα(x) ≡
1) then W (f, α) is the space of all polynomial with degree at most n− 2 which means

W (f) = W (f, β) ∩W (f, γ)

By weakening conditions on R(f, p)(x), we get larger spaces as W (f, β) and W (f, γ).

The advantage of doing this is because spaces of such type are relatively easier to characterize.

Following two propositions are common facts in elementary study of single variable polynomials,

we are going to use them quite often in proof of preceding lemmas.

Proposition 2.4. If f(x) ∈ C[x], then r ∈ Rk(f) if and only if

f(r) = f ′(r) = · · · = f (k−1)(r) = 0, and f (k)(r) 6= 0

where f (i)(r) is the ith derivative of f(x) evaluated at x = r, i ∈ Z+.

Proposition 2.5. If f(x) ∈ C[x], then r ∈
⋃
j≥k Rj(f) (i.e. (x− r)k divides f(x)) if and only

if f(r) = f ′(r) = · · · = f (k−1)(r) = 0.

Lemma 2.6 (Double Roots). Given f(x) ∈ C[x], p(x) ∈W (f) with β ∈ R2(f), then (x− β)2

divides R(f, p)(x) if and only if (x− β) divides p(x).

Proof. Let x = β be a double root of f(x), from Proposition 2.4 f(β) = f ′(β) = 0 and

f ′′(β) 6= 0. Since R(f, p)(x) = f ′′(x)p(x)− f ′(x)p′(x), we have

d

dx

[
R(f, p)(x)

]
=
[
f ′′′(x)p(x) + f ′′(x)p′(x)

]
−
[
f ′′(x)p′(x) + f ′(x)p′′(x)

]
= f ′′′(x)p(x)− f ′(x)p′′(x)
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So it follows from above formula of R(f, p)(x) and R′(f, p)(x) that

R(f, p)(β) = f ′′(β)p(β), R′(f, p)(β) = f ′′′(β)p(β)

Also, from Proposition 2.5

(x− β)2|R(f, p)(x) ⇐⇒ R(f, p)(β) = R′(f, p)(β) = 0

Because f ′′(β) 6= 0
R(f, p)(β) = 0 ⇐⇒ p(β) = 0

Thus combine with R(f, p)′(β) = f ′′′(β)p(β) we have

R(f, p)(β) = R(f, p)′(β) = 0 ⇐⇒ p(β) = 0

Hence using Proposition 2.5, we have (x− β)2 divides R(f, p)(x) if and only if (x− β) divides

p(x)

Theorem 2.7. p(x) ∈W (f, β) if and only if fβ(x) divides p(x)

Proof. From definition, p(x) ∈ W (f, β) ⇐⇒ f2
β(x) =

∏n2
i=1(x − βi)2 divides R(f, p)(x).

Because βi 6= βj for all 1 ≤ i 6= j ≤ n2, we know f2
β(x) =

∏n2
i=1(x− βi)2 divides R(f, p)(x)

if and only if (x − βi)2 divides R(f, p)(x) for each 1 ≤ i ≤ n2. From Lemma 2.6, for every

1 ≤ i ≤ n2, (x− βi)2 divides R(f, p)(x) ⇐⇒ (x− βi) divides p(x). By the fact that (x− βi)
and (x− βj) are relatively prime whenever i 6= j, we have

(x− β1)|p(x), (x− β2)|p(x), . . . , (x− βn2)|p(x) ⇐⇒ fβ(x) =
∏

βi∈β
(x− βi)|p(x)

Therefore, p(x) ∈W (f, β) if and only if fβ(x) =
∏n2
i=1(x− βi) divides p(x).

Previous theorem tells us exactly what restrictions we should put on p(x) ∈W (f) when we

consider only the affect of β on p(x). We shall proceed to see a similar result as we switch the

case to γ.

Lemma 2.8 (Higher Order Roots). Given f(x) ∈ C[x], p(x) ∈W (f) with γ ∈ Rk(f) (k ≥ 3),

then (x− γ)k divides R(f, p)(x) if and only if (x− γ)2 divides p(x).

Proof. Assume γ ∈ Rk(f) where k ≥ 3 and k ∈ Z+. It follows from Proposition 2.4 that

f(x) = (x − γ)kf̃(x) where f̃(γ) 6= 0. So, we have the following expressions for f ′(x) and

f ′′(x) using f̃(x), f̃ ′(x), f̃ ′′(x).

f ′(x) = k(x− γ)k−1f̃(x) + (x− γ)kf̃ ′(x)
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f ′′(x) = k(k − 1)(x− γ)k−2f̃(x) + 2k(x− γ)k−1f̃ ′(x) + (x− γ)kf̃ ′′(x)

We denote

Q(x) = R(f, p)(x)/(x− γ)k−2

and substitute formulas of f ′(x) and f ′′(x) into R(f, p)(x). We get an expression of Q(x) in

terms of f̃(x)

Q(x) =
[
k(k − 1)f̃(x) + 2k(x− γ)f̃ ′(x) + (x− γ)2f̃ ′′(x)

]
p(x)

− (x− γ)p′(x)
[
kf̃(x) + (x− γ)f̃ ′(x)

]
Next, we rearrange Q(x) by grouping terms without (x− γ), (x− γ), and (x− γ)2

Q(x) = k(k − 1)f̃(x)p(x) + k(x− γ)
[
2f̃ ′(x)p(x)− f̃(x)p′(x)

]
+ (x− γ)2R(f̃ , p)(x)

explicit substitution shows that Q(γ) = k(k − 1)f̃(γ)p(γ). Both k and k − 1 are not equal to

zero because k ≥ 3. And we also know f̃(γ) 6= 0 from the beginning. So

Q(γ) = 0 ⇐⇒ p(γ) = 0

In addition

Q′(x) = k(k − 1)
[
f̃ ′(x)p(x) + f̃(x)p′(x)

]
+ k

[
2f̃ ′(x)p(x)− f̃(x)p′(x)

]
+ k(x− γ)

[
2f̃ ′′(x)p(x) + f̃ ′(x)p′(x)− f̃(x)p′′(x)

]
+ 2(x− γ)R(f̃ , p)(x) + (x− γ)2R′(f̃ , p)(x)

Substitute x = γ into above formula we get

Q′(γ) = k(k + 1)f̃ ′(γ)p(γ) + k(k − 2)f̃(γ)p′(γ)

So if Q(γ) = Q′(γ) = 0, we have p(γ) = 0 and Q′(γ) = k(k − 2)f̃(γ)p′(γ) = 0. Both k

and k − 2 are nonzero because k ≥ 3. It follows that p′(γ) = 0 since f̃(γ) 6= 0. Conversely,

p(γ) = p′(γ) = 0 also implies Q(γ) = Q′(γ) = 0. So we have shown the following

(x− γ)2∣∣Q(x) ⇐⇒ (x− γ)2∣∣p(x)

From construction ofQ(x) and Proposition 2.5, (x−γ)k dividesR(f, p)(x) if and only if (x−γ)2

divides Q(x). So it follows from above argument that (x− γ)k divides R(f, p)(x) if and only if
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(x− γ)2 divides p(x).

Theorem 2.9. p(x) ∈W (f, γ) if and only if f2
γ (x) divides p(x).

Proof. From definition, p(x) ∈W (fγ) ⇐⇒
∏n3
i=1(x− γi)ki divides R(f, p)(x). Because γi 6=

γj for all 1 ≤ i 6= j ≤ n3, we know
∏n3
i=1(x− γi)ki divides R(f, p)(x) if and only if (x− γi)ki

divides R(f, p)(x) for each 1 ≤ i ≤ n3. From Lemma 2.8, for every 1 ≤ i ≤ n3, (x − γi)ki

divides R(f, p)(x) ⇐⇒ (x − γi)2 divides p(x). By the fact that (x − γi)2 and (x − γj)2 are

relatively prime whenever i 6= j, we have

(x− γ1)2|p(x), (x− γ2)2|p(x), . . . , (x− γn3)2|p(x) ⇐⇒ f2
γ (x) =

∏
γi∈γ

(x− γi)2|p(x)

Hence, p(x) ∈W (f, γ) if and only if f2
γ (x) =

∏n3
i=1(x− γi)2 divides p(x).

Since β and γ intersects trivially, fβ(x) and f2
γ (x) are relatively prime. So it is an immediate

consequence of Theorem 2.7 and Theorem 2.9 that

p(x) ∈W (f, β) ∩W (f, γ) ⇐⇒ fβ(x)f2
γ (x) divides p(x)

In particular, we can prove Theorem 1.3 and Conjecture 1.5 assuming n1 = 0 because from

Remark 2.3

W (f) = W (f, β) ∩W (f, γ) = {p(x) ∈ C[x] | deg p ≤ n− 2, and fβf2
γ divides p}

This shows dim(W (f)) = n− 1− (n2 + 2n3) which agrees with our dimension formula; and

the existence follows simply from dim(W (f)) > 0.

Corollary 2.10. IfR1(f) = ∅ thenW (f) = {p(x) ∈ C[x] | deg p ≤ n−2, and fβf2
γ divides p}
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Chapter 3 |
Non-triviality of the space W (f )

In this section we prove Theorem 1.3 for arbitrary f(x) ∈ C[x]. The proof combines

Corollary 2.10 and the following lemma due to Marcin Mazur.

Lemma 3.1 (Marcin Mazur). Let f(x) ∈ C[x], deg f = n, r ∈ C be a constant such that

f(r) 6= 0. Suppose p(x) is a nonzero monic polynomial in W (f). If we set f̃(x) = (x− r)f(x)
and

p̃(x) = (x− r)2p(x)− 1
n+ 1 f̃

′(x)

then p̃(x) is a nonzero element in W (f̃).

Proof. Let r ∈ C be given with f(r) 6= 0, f̃(x) = (x− r)f(x) implies

f̃ ′(x) = f(x) + (x− r)f ′(x), f̃ ′′(x) = 2f ′(x) + (x− r)f ′′(x) (3.1-1)

Without loss of generality, we may assume p(x) is a monic polynomial. Since the leading

coefficient of f̃ ′(x) is n+1, we take c = 1/(n+1) so that cf̃ ′(x) is a monic polynomial. It follows

that the term xn vanishes in p̃(x) = (x− r)2p(x)− cf̃ ′(x) hence deg p̃(x) = n− 1 = deg f̃ − 2.

From construction p̃(x) ≡ 0 if and only if (n + 1)(x − r)2p(x) = f̃ ′(x). Substitute f̃ ′(x)
from (3.1-1), we have (x− r)2p(x) = f(x) + (x− r)f ′(x) which means

f(x) = (n+ 1)(x− r)2p(x)− (x− r)f ′(x) = (x− r)
[
(n+ 1)(x− r)p(x)− f ′(x)

]
But above expression would imply f(r) = 0 contradicts to our assumption that f(r) 6= 0. So, we

have shown p̃(x) is a nonzero polynomial.

Differentiate p̃(x) from definition we have

p̃′(x) = 2(x− r)p(x) + (x− r)2p′(x)− cf̃ ′′(x)

= 2(x− r)p(x) + (x− r)2p′(x)− c
[
2f ′(x) + (x− r)f ′′(x)

] (3.1-2)

We use the shorthand notation R̃(x) for R̃(f̃ , p̃)(x) and substitute (3.1-2) into R̃(x) = f̃ ′′(x)p̃(x)−
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f̃ ′(x)p̃′(x)

R̃(x) = f̃ ′′(x)
[
(x− r)2p(x)− cf̃ ′(x)

]
− f̃ ′(x)

[
2(x− r)p(x) + (x− r)2p′(x)− cf̃ ′′(x)

]
Cancel cf̃ ′′(x)f̃ ′(x) according to above expression of R̃(x), we get

R̃(x) = f̃ ′′(x)(x− r)2p(x)− f̃(x)
[
2(x− r)p(x) + (x− r)2p′(x)

]
(3.1-3)

Now, substitute expressions of f̃ ′′(x) and f̃ ′(x) in (3.1-1) into (3.1-3)

R̃(x) = (x− r)3
[
f ′′(x)p(x)− f ′(x)p′(x)

]
− (x− r)f(x)

[
p(x) + (x− r)p′(x)

]
= (x− r)3R(f, p)(x)− f̃(x)

[
p(x) + (x− r)p′(x)

]
Because f(x) ∈W (f), f(x) divides R(f, p)(x) = f ′′(x)p(x)− f ′(x)p′(x). So

f̃(x) = (x− r)f(x) divdies (x− r)R(f, p)(x) (∗)

It follows from (∗) that

f̃(x) divides a(x)(x− r)R(f, p)(x)− b(x)f̃(x) for any a(x), b(x) ∈ C[x]

In particular, we can say f̃(x) divides R̃(x) when one takes

a(x) = (x− r)2 and b(x) = p(x) + (x− r)p′(x)

In short, our p̃(x) is a nontrivial polynomial of degree deg f̃ − 2 such that f̃(x) divides R̃(x) =
R̃(f̃ , p̃)(x) which means p̃(x) is a nonzero element in W (f̃).

Proof of Theorem 1.3

We are ready to prove W (f) is nonzero when f(x) is divisible by the square of a quadratic

polynomial. Let f(x) ∈ C[x] with deg f = n. We proceed to prove the result by induction on the

number of simple roots. To avoid confusion, we point out that polynomials fi(x)s are different

from what we defined in Notation 1.2.

Base Case: Put f0(x) = f(x)/fα(x), p0(x) = fβ(x)f2
γ (x). Since f(x) is divisible by square

of a quadratic polynomial q(x), we know p0(x) is non-constant for at least n2 ≥ 2 or n3 ≥ 1.
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Because R1(f0) = ∅, we can apply Corollary 2.10 in this case to say p0(x) ∈W (f0).

Induction Step: For each 1 ≤ k ≤ n1, we define fk(x) = (x − αk)fk−1(x). By induction

hypothesis, there exists pk−1(x) nonzero elements in W (fk−1). Same analogy from proof of

Lemma 3.1 we can pick ck = 1/[deg(fk−1) + 1] constant such that

pk(x) := (x− αk)2pk−1(x)− ckf ′k(x)

has degree ≤ deg pk−1 + 1 ≤ deg fk−1− 2 + 1 = deg fk − 2. (notice (deg fk−1) + 1 = deg fk)

Since deg pk ≤ deg fk − 2, we could treat fk(x) as f̃k−1(x) so that

pk(x) = (x− αk)2pk−1(x)− ckf̃ ′k−1(x) = p̃k−1(x)

It follows from Lemma 3.1 that p̃k−1(x) ∈W (f̃k−1) =⇒ pk(x) ∈W (fk). Repeat this argument

for k = 1, 2, . . . up to k = n1. We can say there exists nonzero polynomial pn1(x) ∈ W (fn1).

However

fn1(x) = (x− αn1)fn1−1(x) = (x− αn1)(x− αn1−1)fn1−2(x) = . . .

= fk−1(x)
n1∏
i=k

(x− αi) = · · · = f0(x)
n1∏
i=1

(x− αi) = f0(x)fα(x) = f(x)

So, f(x) = fn1(x) ⇒ W (f) = W (fn1). It follows that W (f) is nonzero because W (f)
contains a nonzero polynomial pn1(x).
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Chapter 4 |
Reformulation of Conjecture 1.5

We continue to show the dimension formula (Conjecture 1.5) when f(x) does not have “too

many” simple roots (i.e. n1 ≤ n2 +
∑n3
i=1(ki − 2) where ki is the multiplicity of root γi ∈ γ).

For any p(x) ∈W (f), we denote pα(x) = p(x)/[fβ(x)f2
γ (x)] and the rational functions d(x) as

follows

d(x) = f ′′α(x)
f ′α(x) +

n2∑
i=1

3
x− βi

+
n3∑
s=1

2(ks − 1)
x− γs

(4.1)

From §2, we only need to consider how simple roots are going to change dim(W (f)). The next

theorem, which completely characterizes W (f), is an essential step to obtain the dimension

formula.

Theorem 4.1. Let f(x) ∈ C[x] then p(x) ∈W (f) if and only if

(1) pα(x) ∈ C[x] (i.e. fβ(x)f2
γ (x) divides p(x));

(2) d(x)pα(x)− p′α(x) vanishes at x = αi for all i = 1, 2, . . . , n1.

Part (1) of Theorem 4.1 is a restatement of Corollary 2.10 and Part (2) is a direct consequence

of the following lemma.

Lemma 4.2. Let f(x) ∈ C[x] and suppose fβ(x)f2
γ (x) divides p(x) then p(x) ∈W (f, α) if and

only if d(x)pα(x)− p′α(x) vanishes at x = αj for all j = 1, 2, . . . , n1

Before we proceed to the proof of Lemma 4.2, we reveal one of its crucial consequence which

largely reduces the study of W (f) to lower dimensions.

Definition 4.3. Given f(x) ∈ C[x], we define r = (deg f − 2) − (n2 + 2n3) the reduction
degree for the polynomial space W (f).

Recall from (2.1) in §2, we have

r =
(
n1 + 2n2 +

n3∑
s=1

ks
)
− 2− (n2 + 2n3) = n1 + (n2 − 2) +

n3∑
s=1

(ks − 2)
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It is clear from above expression that r ≥ n1 since f(x) is divisible by the square of a quadratic

polynomial implies either n2 ≥ 2 or n3 ≥ 1 together with k1 ≥ 4. We write W̃ (f, α) for the

space of all polynomials p(x) satisfying condition (2) in Theorem 4.1 with deg[p(x)] ≤ r. It

follows immediately from Theorem 4.1 that

W (f) = (fβf2
γ ) · W̃ (f, α)

In particular since fβf2
γ is always nonzero, we have dim[W̃ (f, α)] = dimW (f). The way we

describe space W̃ (f, α) motivates following definition.

Definition 4.4. Let η = (η1, . . . , ηs), ω = (ω1, . . . , ωs) be points in Cs and suppose ωi 6= ωj for

all i 6= j. We define Z(η, ω; s, k) to be the space of all complex polynomials p(x) such that

(1) deg[p(x)] ≤ k;

(2) p′(ωi) = ηip(ωi) ∀ i [i.e. p′(x) ≡ ηip(x)(mod(x− ωi))]

First note condition (1) implies Z(η, ω; s, k) is always finite dimensional. Notice also condi-

tion (2) in Definition 4.4 precisely mimics (2) in Theorem 4.1. The space W (f) is an instance of

space Z(η, ω; s, k) when chosen η, ω appropriately. We can restate Lemma 4.2 in the context of

Z(η, ω; s, k) which also shows complete understanding on dimension of the space Z(η, ω; s, k)
would suffice to prove Conjecture 1.5.

Theorem 4.5. Let α = (α1, . . . , αn1), δ = (d(α1), . . . , d(αn1)) be points in Cn1 where d is the

rational function introduced in (4.1). The map φ : W (f)→ Z(δ, α;n1, r) defined by

p(x) 7−→ p(x)/fβ(x)f2
γ (x)

is an C-vector space isomorphism. In particular, dim[W (f)] = dim[Z(δ, α;n1, r)].

Proof. Notice Z(δ, α;n1, r) = W̃ (f, α). So the remark we made before Definition 4.4 and

Lemma 4.2 together shows φ : W (f) → Z(δ, α;n1, r) and its inverse φ−1 sending p̃(x) to

fβ(x)f2
γ (x)p̃(x) are both well-defined. We only need to check φ is one-to-one and also an

homomorphism. To claim φ is injective, observe

φ(p) = 0 ⇐⇒ (p/fβfγ) ≡ 0 ⇐⇒ p ≡ 0

To check φ : W (f) → Z(δ, α;n1, r) is an homomorphism. Let a, b ∈ C be constant and

p(x), q(x) ∈W (f) be given. Then

φ(ap+ bq) = ap(x) + bq(x)
fβ(x)f2

γ (x) = a
p(x)

fβ(x)f2
γ (x) + b

q(x)
fβ(x)f2

γ (x) = aφ(p) + bφ(q)
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Therefore we conclude φ is an isomorphism. In particular dim[W (f)] = dim[Z(δ, α;n1, r)] for

W (f) is a finite dimensional C-vector space.

Proof of Lemma 4.2.

Put

f̃γ(x) = f(x)
fα(x)f2

β(x)
=

n3∏
i=1

(x− γi)ki

We know from polynomial algebra that for any g(x) =
∏n
i=1(x−ωi) a polynomial with complex

coefficients,
g′(x)
g(x) =

n∑
i=1

1
x− ωi

Using this fact, we can rewrite d(x) in (4.1) as follows

d(x) = f ′′α(x)
f ′α(x) + 3

f ′β(x)
fβ(x) + 2 f̃γ

′
(x)

f̃γ(x)
− 2

f ′γ(x)
fγ(x)

We set f̃β = f2
β , pγ = f2

γ and rewrite f, p as f = fα · f̃β · f̃γ , p = pα · fβ · pγ It follows that

p′ = p′αfβpγ + pαf
′
βpγ + pαfβp

′
γ

f ′ = f ′αf̃β f̃γ + fα(f̃β
′
f̃γ + f̃β f̃γ

′
) (4.2-1)

f ′′ = f ′′α f̃β f̃γ + 2f ′α(f̃β
′
f̃γ + f̃β f̃γ

′
) + fα(f̃β

′′
f̃γ + f̃β f̃γ

′′
)

Because fα vanishes for all x = αi, it is clear that R(f, p) = f ′′p− f ′p′ vanishes for all x = αi

if and only if R(f, p)(modfα) as a polynomial vanishes for every x = αi. So we can disregard

terms which are of the form fα(x)k(x) for some k(x) ∈ C[x] in the representation of R(f, p)
using (4.2-1).

F = R(f, p)− fα
[
p(f̃β

′′
f̃γ + f̃β f̃γ

′′
)− (f̃β

′
f̃γ + f̃β f̃γ

′
)p′
]

=
[
f ′′ − fα(f̃β

′′
f̃γ + f̃β f̃γ

′′
)
]
p−

[
f ′ − fα(f̃β

′
f̃γ + f̃β f̃γ

′
)
]
p′

=
[
f ′′α f̃β f̃γ + 2f ′α(f̃β

′
f̃γ + f̃β f̃γ

′
)
]
pαfβpγ − f ′αf̃β f̃γ

[
p′αfβpγ + pαf

′
βpγ + pαfβp

′
γ

]
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As we claimed at the beginning, F vanishes for all x = αi if and only if R(f. p) vanishes for all

x = αi. Next, we simplify expression for F by substituting f̃β = f2
β , f̃β

′
= 2fβf ′β .

F =
[
f ′′αf

2
β f̃γ + 2f ′α(2fβf ′β f̃γ + f2

β f̃γ
′
)
]
pαfβpγ − f ′αf2

β f̃γ
[
p′αfβpγ + pαf

′
βpγ + pαfβp

′
γ

]
(4.2-2)

Divide G(x) = f ′α(x)f3
β(x)pγ(x)f̃γ(x) on both sides of (4.2-2), and denote F̃ (x) = F (x)/G(x)

we get

F̃ =
[
f ′′αf

2
β f̃γ + 2f ′α(2fβf ′β f̃γ + f2

β f̃γ
′
)
] pα

f ′αf
2
β f̃γ
− 1
fβpγ

[
p′αfβpγ + pαf

′
βpγ + pαfβp

′
γ

]

=
[f ′′αf2

β f̃γ

f ′αf
2
β f̃γ

+ 2
f2
β f̃γ

(
2fβf ′β f̃γ + f2

β f̃γ
′)]
pα −

[
p′α + pα

(f ′βpγ
fβpγ

+
p′γfβ

fβpγ

)]

=
[
f ′′α
f ′α

+ 2
(
2
f ′β
fβ

+ f̃γ
′

f̃γ

)]
pα −

[
p′α + pα

(f ′β
fβ

+
p′γ
pγ

)]
=
[
f ′′α
f ′α

+ 3
f ′β
fβ

+ 2 f̃γ
′

f̃γ
−
p′γ
pγ

]
pα − p′α

Since pγ = f2
γ , p
′
γ = 2fγf ′γ =⇒ p′γ/pγ = 2f ′γ/fγ . It follows from our definition of d(x) that

F̃ (x) = d(x)pα(x)− p′α(x). Note G does not vanishes for all x = αi since f ′α(x), fβ(x), pγ(x),
and f̃γ(x) all do not have factor (x − αi) in their irreducible factorization. In conclusion,

R(f, p) ≡ F̃ (x)(mod(x − αi)) for every i = 1, 2, . . . , n1. Since F̃ (x) = d(x)pα(x) − p′α(x),

we are done.

Example 4.6. We shall also see how Theorem 4.1 applies to particular examples.

• Consider f(x) = (x2 + 1)2(xn+1 − 1),m, n ∈ Z+. In this case

fα(x) = xn+1 − 1, fβ(x) = x2 + 1, fγ(x) = f̃γ(x) ≡ 1

We know from Lemma 4.2 that

d(x) = n

x
+ 6x
x2 + 1 = (n+ 6)x2 + n

x(x2 + 1)

So, p(x) ∈W (f) if and only if x2 + 1 divides p(x) and pα(x) = p(x)/(x2 + 1) satisifes

[(n+ 6)α2
i + n]pα(αi) = αi(α2

i + 1)p′α(αi) for all i = 1, 2, . . . , s

• Consider f(x) = xm+1(xn+1 − 1),m, n ∈ Z+,m ≥ 3. In this case

fα(x) = xn+1 − 1, fβ(x) ≡ 1, fγ(x) = x, and f̃γ(x) = xm+1
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From previous results we know d(x) = (2m+n)/x. Furthermore, p(x) ∈W (f) if and only if x2

divides p(x) and (2m+n)pα(αi) = αip
′
α(αi) for every i = 1, 2, . . . , n where pα(x) = p(x)/x2.
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Chapter 5 |
Basic properties of the abstract model Z(η, ω; s, k)

Our plan for this section carries as follows. We begin with basic properties of the space

Z(η, ω; s, k) such as the chain of natural embeddings, invariance under affine change of coordinate

x 7→ ax+ b, and a theorem which provides a lower bound for dimension of space Z(η, ω; s, k).

Then we move on to introduce the associated matrix of space Z(η, ω; s, k), the concept of

non-degenerate space and derive several equivalent form of Conjecture 1.5.

Proposition 5.1 (Natural Embedding). Let η, ω be points in Cs with ωi 6= ωj for all i 6= j and

assume s′ ≤ s, k′ ≤ k. If η′ = (η1, . . . , ηs′), ω′ = (ω1, . . . , ωs′) are points in Cs′
then

1. We have the following chain of vector space embeddings:

Z(η, ω; s, k′) Z(η, ω; s, k) Z(η′, ω′; s′, k′)ik′k iss′

where ik′k, iss′ are natural inclusion maps.

2. For any k′′ ≥ k we have

dim[Z(η, ω; s, k′′)] ≤ dim[Z(η, ω; s, k)] + (k′′ − k)

Proof.

Part (1) Observe for Z(η, ω; s, k) if we increase k, we are adding more polynomials in

the original space so the natural inclusion ikk′ : Z(η, ω; s, k) → Z(η, ω; s, k′) is a vector

space embedding whenever k′ ≥ k. On the other hand every polynomial p(x) in the space

Z(η′, ω′; s′, k) can be obtained from a polynomial p̃(x) in Z(η, ω; s, k) by dropping certain

relations on p̃(x). Therefore, the natural inclusion iss′ : Z(η, ω; s, k)→ Z(η′, ω′; s′, k) is also a

vector space embedding.

Part (2) Actually, we can say more on the embedding Z(η, ω; s, k) ↪→ Z(η, ω; s, k + 1).

Note when we go from subspace Z(η, ω; s, k) to Z(η, ω; s, k + 1), we at most obtain one more

basis (some polynomial of degree k+1). Hence we dimension of Z(η, ω; s, k+1) compare to the
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subspace Z(η, ω; s, k) increase at most one. So dim[Z(η, ω; s, k+ 1)] ≤ dim[Z(η, ω; s, k)] + 1.

Repeat this inequality consecutively, we get

dim[Z(η, ω; s, k′′)] ≤ dim[Z(η, ω; s, k′′ − 1)] + 1 ≤ · · · ≤ dim[Z(η, ω; s, k)] + (k′′ − k)

We proceed to state another useful result which roughly says the space Z(η, ω; s, k) is

invariant under a linear change of coordinates on ω.

Notation 5.2. Let a, b ∈ C be constant numbers and for any P = (P1, P2, . . . , Pn) a point in

Cn, we denote aP + b := (aP1 + b, aP2 + b, . . . , aPn + b).

Given any a, b ∈ C constant number with a nonzero, we write η′ = a−1η, ω′ = aω + b.

Observe for any p(x) ∈ Z(η, ω; s, k) the polynomial p̃(x) = p(a−1(x − b)) is an element in

Z(η′, ω′; s, k) since for any 1 ≤ i ≤ s, p′(ωi) = ηip(ωi) and p̃′(x) = a−1p′(a−1(x− b)) implies

p̃′(aωi + b) = a−1p′
(
a−1[(aωi + b)− b]

)
= a−1p′(ωi) = a−1ηip(ωi) = a−1ηip̃(aωi + b)

So the map φa,b : Z(η, ω; s, k)→ Z(η′, ω′; s, k) given by p(x) 7→ p((x− b)/a) is both one-to-

one and onto. Moreover, φa,b is an isomorphism because it obviously preserves vector addition

and scalar multiplication.

Proposition 5.3 (Invariance under Affine Transform). For a, b ∈ C constants with a 6= 0, the

map φa,b : Z(η, ω; s, k)→ Z(η′, ω′; s, k) defined by

φa,b(p(x)) = p(a−1(x− b))

is an vector space isomorphism where η′ = a−1η, ω′ = aω + b.

Next theorem gives an lower bound for dimension of the polynomial space Z(η, ω; s, k).

Theorem 5.4 (Lower Bound of Dimension). If k ≥ s− 1 then dim[Z(η, ω; s, k)] ≥ k + 1− s.

Proof. Let p(x) ∈ Z(η, ω; s, k) be given, since p(x) is a complex polynomial of degree at most

k, we can write p in its standard monomial representation as follows

p(x) = akx
k + · · ·+ a1x+ a0 =

k∑
i=0

aix
i
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From Definition 4.4, we know p(x) also have to satisfy

p′(ω1) = η1p(ω1), p′(ω2) = η2p(ω2), . . . , p′(ωs) = ηsp(ωs) (∗)

The system (∗) can be treated as homogeneous linear system with s linear equations in k + 1
unknowns x = (a0, a1, . . . , ak) ∈ Ck+1. So we would like to write down the matrix A explicitly

from the system (∗).

A =


η1 ω1η1 − 1 . . . ωk1η1 − kωk−1

1

η2 ω2η2 − 1 . . . ωk2η2 − kωk−1
1

...
...

. . .
...

ηs ωsηs − 1 . . . ωksηs − kωk−1
s


Since s ≤ k + 1, the number of columns in A is always greater or equal than the number of rows

of A. From basic linear algebra, the number of free variables in A is equal to the dimension of

the collection of all p(x) ∈ Z(η, ω; s, k). So,

dim[Z(η, ω; s, k)] = # columns of A− rankA = (k + 1)− rankA (5.4-1)

It is also a fact in linear algebra that

rankA ≤ min{# columns of A,# rows of A} = min{k + 1, s} = s

Hence rankA ≤ s which implies dim[Z(η, ω; s, k)] = k + 1− rankA ≥ k + 1− s.

Definition 5.5. We define the associated matrix A attached to the polynomial space Z(η, ω; s, k)
to be the one obtained in proof of Theorem 5.4.

The associate matrix A is an useful device to study polynomial space Z(η, ω; s, k) for its

connection to dimension of the space Z(η, ω; s, k) as stated in the next corollary

Corollary 5.6. Let A be the associated matrix of the space Z(η, ω; s, k). If k ≥ s− 1 then

dim[Z(η, ω; s, k)] = k + 1− rankA

Proof. See derivation of (5.4-1) in proof of Theorem 5.4.

We point out this corollary allow us to form another equivalent way to state Conjecture 1.5.

Conjecture 1.5 holds ⇐⇒ A the associated matrix of Z(δ, α;n1, r) attains full rank
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Before proceed to examples, we introduce one more definition.

Definition 5.7. Assume k ≥ s− 1, we say the space Z(η, ω; s, k) is non-degenerate if

dim[Z(η, ω; s, k)] = k + 1− s

otherwise it’s degenerate. We also say the space W (f) is degenerate if and only if its isomorphic

image Z(δ, α;n1, r) is degenerate.

In fact, Theorem 5.4 tell us immediately that every degenerate space Z(η, ω; s, k) has dimen-

sion strictly greater than k + 1− s. And it follows from our definition that

Conjecture 1.5 holds ⇐⇒ W (f) is non-degenerate

because Defintion 5.7 says W (f) is non-degenerate if and only if

dim[Z(δ, α;n1, r)] = r + 1− n1 = [n− 2− (n2 + 2n3)] + 1− n1

= n− 1− (n1 + n2 + 2n3)

So far, we obtain various equivalent form of Conjecture 1.5, we summarize this as the following.

Remark 5.8. All statements listed below are equivalent to each other

• Conjecture 1.5 holds

• The space W (f) ∼= Z(δ, α;n1, r) is non-degenerate

• The space Z(δ, α;n1, r) has dimension r + 1− n1.

• The associated matrix A of Z(δ, α;n1, r) has full rank.

It’s time to look at some examples to get an intuition for general patterns.

Example 5.9. Let η = 0 be the origin of Cs, we check dim[Z(0, ω; s, k)] = k + 1− s.
In this case, let Ṽ (ω) be the matrix obtained by taking the second to the (s+ 1)th columns in the

associated matrix of Z(0, ω; s, k).

Ṽ (ω) =


−1 −2ω1 . . . −sωs−1

1

−1 −2ω2 . . . −sωs−1
2

...
...

. . .
...

−1 −2ωs . . . −sωs−1
s


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It’s not hard to check Ṽ (ω) is obtained from the Vandermonde matrix V (ω) multiplying the jth

column by −j for each 1 ≤ j ≤ s. Therefore

det Ṽ (ω) = s!(−1)s detV (ω) = s!(−1)svn(ω) = s!(−1)s
∏

1≤i<j≤s
(ωj − ωi) 6= 0

where vn =
∏

1≤i<j≤n(xj − xi) is the Vandermonde polynomial. Therefore rank(Ṽ (ω)) = s

implies rankA = s. So dimZ(η, ω; s, k) = k + 1− rankA = k + 1− s.

Example 5.10. We use brutal force calculation to check if k ≥ 3,

dim[Z(η, ω; 2, k)] = k + 1− 2 = k − 1

Since k ≥ 3, the associated matrix A has at least four columns. Our plan is proof by contradiction.

Suppose to the contrary then Remark 5.8 says A does not have full rank. Let A1, A2 be the first

and second row of A respectively. Since A is a 2× (k + 1) matrix

A does not attain full rank ⇐⇒ rankA < 2 ⇐⇒ A1, A2 are linearly dependent

So, there exists nonzero constant c ∈ C such that A1 = cA2. It follows from the explicit

representation of A produced in Theorem 5.4 that

A1 = (η1, η1ω1 − 1, η1ω
2
1 − 2ω1, η1ω

3
1 − 3ω2

1, . . . )

= c(η2, η2ω2 − 1, η2ω
2
2 − 2ω2, η2ω

3
2 − 3ω2

2, . . . ) = cA2

Equate the first entry from above expression, we get η1 = cη2. Substitute η1 = cη2 into the

proceeding three entries we have

cη2(ω1 − ω2) = 1− c (5.10-1)

cη2(ω2
1 − ω2

2) = 2ω1 − 2cω2 (5.10-2)

cη2(ω3
1 − ω3

2) = 3ω2
1 − 3cω2

2 (5.10-3)

We continue to show (5.10-1) and (5.10-2) implies

c = −1, η1 + η2 = 0, and η2(ω1 − ω2) = −2 (5.10-4)

We begin with the right hand side of (5.10-2):

2ω1 − 2cω2 = 2ω1 − 2cω2 + (2ω2 − 2ω2) = 2(ω1 − ω2) + 2ω2(1− c)
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Substitute 1− c obtained from (5.10-1), we get

2ω1 − 2cω2 = 2(ω1 − ω2) + 2ω2cη2(ω1 − ω2) = (ω1 − ω2)(2 + 2cη2ω2)

So (5.10-2) is equivalent to the following

cη2(ω2
1 − ω2

2) = cη2(ω1 − ω2)(ω1 + ω2) = (ω1 − ω2)(2 + 2ω2cη2)

Cancel ω1 − ω2 on both sides because ω1 6= ω2

cη2(ω1 + ω2) = 2 + 2cη2ω2 =⇒ cη2(ω1 − ω2) = 2

From (5.10-1), we know 1− c = cη2(ω1 − ω2), so 2 = 1− c⇒ c = −1. Hence η1 = cη2 =⇒
η1 + η2 = 0 and (5.10-1) implies η2(ω1 − ω2) = −2.

We are ready to get a contradiction. From (5.10-4) c = −1, so (5.10-3) is equivalent to

−η2(ω1 − ω2)(ω2
1 + ω1ω2 + ω2

2) = 3(ω2
2 + ω2

2)

From (5.10-4), we can substitute η2(ω1 − ω2) = −2 into above expression. We get

2(ω2
1 + ω1ω2 + ω2

2) = 3(ω2
1 + ω2

2)

Simplify the equation further by moving everything from left hand side to the right hand side,

ω2
1 + ω2

2 − 2ω1ω2 = 0 ⇐⇒ (ω1 − ω2)2 = 0 ⇐⇒ ω1 = ω2 (contradiction)

Note that this example might serve as base case for certain induction arguments.

Example 5.11. We verify dim[Z(η, ω; s, k)] = k + 1 − s when ηiωi = 1/2 for every i =
1, 2, . . . , s. By Remark 5.8, we just need to show the associated matrix A of Z(η, ω; s, k) has full

rank. First we write down A explicitly under the assumption that ηiωi = 1/2

A =



−1 ω1 3ω2
1 . . . (2k − 1)ωk−1

1

−1 ω2 3ω2
2 . . . (2k − 1)ωk−1

2

−1 ω3 3ω2
3 . . . (2k − 1)ωk−1

3
...

...
...

. . .
...

−1 ωs 3ω2
s . . . (2k − 1)ωk−1

s





26

Take Ṽ (ω) to be the s× s matrix obtained from the first s column of A, we have

det[Ṽ (ω)] = (−1) · 3 · 5 · · · · · (2s− 1)vn(ω) 6= 0

Therefore,

rank[Ṽ (ω)] = s =⇒ rankA = s =⇒ dimZ(η, ω; s, k) = k + 1− s

In general, similar argument tells us that we could assume ηiωi = c for any c ∈ C constant and

obtain the same result. (The case when c ∈ {1, 2, . . . , s} is subtle).

We have been checked a lot examples where Z(η, ω; s, k) is non-degenerate. However it is

essential to point out that there are degenerate spaces as we shall show in the proceeding example.

Example 5.12 (Degenerate Case). Let η = ω = (1,−1) ∈ C2, we show dim[Z(η, ω; 2, 2)] = 2.

In this case, k = s = 2 and the associated matrix A of Z(η, ω; 2, 2) has size 2× 3

A =

η1 ω1η1 − 1 ω1(ω1η1 − 2)
η2 ω2η2 − 1 ω2(ω2η2 − 2)


Substitute η1 = ω1 = 1 and η2 = ω2 = −1 into this expression we get

A =

 1 0 −1
−1 0 1

 ∼
1 0 −1

0 0 0

 =⇒ rankA = 1 < 2

Remember we have shown from (5.4-1) that

dim[Z(η, ω, 2, 2)] = 2 + 1− rankA = 2

Because the associated matrix does not attain full rank, we conclude the space Z(η, ω, 2, 2) must

degenerate.
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Chapter 6 |
Proof of Conjecture 1.5 when f does not have
“too many” simple roots

Throughout this section, we are always going to assume that n1 ≤ 2r − 2 where n1 is the

number of simple roots of the given polynomial f(x) and r = deg f − 2 − (n2 + 2n3) is the

reduction degree. It is easy to verify this condition is equivalent to n1 ≤ n2 +
∑n3
i=1(ki − 2). We

present three independent proofs of Conjecture 1.5 under the assumption n1 ≤ 2r − 2. The first

one uses machinery of the abstract space Z(η, ω; s, k). The second one attacks the problem using

the Chinese Reminder Theorem. The third one develops a lemma on reduction of associated

matrix then deduces the result from mathematical induction.

6.1 First Approach: Application of Theory on Space Z(η, ω; s, k)

We know from Theorem 4.5 that W (f) is isomorphic to Z(δ, α;n1, r). Moreover, we also

made the remark that Conjecture 1.5 is equivalent to say

dim[Z(δ, α;n1, r)] = r + 1− n1 ⇐⇒ Z(δ, α;n1, r) is non-degenerate

So to bring our question into abstract setting of the polynomial space Z(η, ω; s, k) by the replace-

ment

(n1, r, δ, α) −→ (s, k, η, ω)

We might ask

Is Z(η, ω; s, k) non-degenerate whenever k ≥ 2s− 1?

The answer is positive. We give a general sketch of the proof before proceeds to the forest of

details. Assume k ≥ 2s−1, then we can always use Hermite interpolation to build an epimorphism

evs from Z(η, ω; s, k) to Cs where evs is the evaluation map p(x) 7→ (p(ω1), . . . , p(ωs)). Then

by the first isomorphism theorem, Z(η, ω; s, k) factors into two spaces Cs and Ker(evs) whose
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dimension can be easily compute.

Theorem 6.1 (Hermite Interpolation). Let k = 2s− 1 and y = (y1, y2, . . . , ys) be a point in Cs

then there exits a unique h(x) ∈ Z(η, ω; s, k) such that

h(ωi) = yi and h′(ωi) = ηiyi for each i = 1, 2, . . . , s (∗)

The polynomial constructed in Theorem 6.1 is a special case of Hermite interpolation poly-

nomial, which involves construction of polynomial with prescribed value at each point and

its derivative up to certain order. See [7] (§4.1.2 Page 136) for details. As a consequence of

Theorem 6.1, we can check whenever k = 2s − 1, the map evs : Z(η, ω; s, k) → Cs given by

h(x) 7→ (h(ω1), h(ω2), . . . , h(ωs))T is a well defined surjective map. In fact we can say more

about evs as the following lemma shows.

Corollary 6.2. If k = 2s− 1 then the map evs : Z(η, ω; s, k)→ Cs given by

evs(h) = (h(ω1), h(ω2), . . . , h(ωs))T

is a well-defined vector space isomorphism.

Proof. Note evs is well-defined since for every h ≡ g =⇒ h(ωi) = g(ωi), ∀ 1 ≤ i ≤ s which

implies

evs(h) = (h(ω1), h(ω2), . . . , h(ωs)T = (g(ω1), g(ω2), . . . , g(ωs))T = evs(g)

Also, evs is bijective from the uniqueness and existence of Hermite interpolation.

To check evs is a vector space homomorphism, let h, g ∈ Z(η, ω; s, k) and c ∈ C be a

constant. Recall, both vector addition and scalar multiplication are defined to be point wise (i.e.

(h+ cg)(x) = h(x) + cg(x)). So from direct calculation,

evs(h) + c evs(g) = (h(ω1), h(ω2), . . . , h(ωs))T + c(g(ω1), g(ω2), . . . , g(ωs))T

= (h(ω1) + cg(ω1), h(ω2) + cg(ω2), . . . , h(ωs) + cg(ωs))T

= ((h+ cg)(ω1), (h+ cg)(ω2), . . . , (h+ cg)(ωs))T = evs(h+ cg)

Since the choice of h(x), g(x), c are arbitrary, we can say evs is a homomorphism. Therefore evs
is an vector space isomorphism from Z(η, ω; s, k) to Cs.

Theorem 6.3. If k ≥ 2s− 1, then dim[Z(η, ω; s, k)] = k + 1− s.
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Proof. Suppose k ≥ 2s− 1, By Proposition 5.1 the usual inclusion map

i : Z(η, ω; s, 2s− 1) ↪→ Z(η, ω; s, k)

is a vector space embedding. Same method in proof of Corollary 6.2 can show the map evs :
Z(η, ω; s, k) → Cs given by q(x) 7→ (q(α1), q(α2), . . . , q(αs))T is a homomorphism. In

addition, evs is surjective in our case since Z(η, ω; s, 2s− 1) ∼= Cs embeds into Z(η, ω; s, k) as

a subspace . By the first isomorphism theorem we learned in basic algebra ([3] §3.3. Theorem 16.

Page 97),

Z(η, ω; s, k)/Ker(evs) ∼= Cs (6.3-1)

It follows from (6.3-1) that Z(η, ω; s, k) ∼= Ker(evs)⊕ Cs. So,

dimZ(η, ω; s, k) = dim[Ker(evs)] + dimCs = dim[Ker(evs)] + s

From definition

Ker(evs) = {q(x) ∈ Z(η, ω; s, k) | q(ωi) = 0 for every 1 ≤ i ≤ s, i ∈ Z+}

For every q(x) ∈ Ker(evs), q(ωi) = 0 ∀ i = 1, 2, . . . , s implies

q′(ωi) = ηiq(ωi) = ηi · 0 = 0

for each 1 ≤ i ≤ s, i ∈ Z+. By Proposition 2.5, (x − ωi)2 divides q(x) for all i. Since

ωi 6= ωj =⇒ gcd((x − ωi)2, (x − ωj)2) = 1 for all i 6= j, it follows that q(x) is divisible by∏s
i=1(x− ωi)2. Let Ω(x) :=

∏s
i=1(x− ωi), above argument shows,

Ker(evs) = {g(x)Ω2(x) | g(x) ∈ C[x], deg g ≤ k − 2s}

In particular, dim[Ker(evs)] = (k − 2s) + 1. Therefore,

dim[Z(η, ω; s, k)] = dim[Ker(evs)] + s = (k − 2s+ 1) + s = k + 1− s

Corollary 6.4. If r ≥ 2n1 − 1 then dim[W (f)] = deg f − 1− (n1 + n2 + 2n3).

Proof. Apply Theorem 6.3 when s = n1, k = r, η = δ and ω = α, we get

dim[Z(δ, α;n1, r)] = r + 1− n1
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So W (f) ∼= Z(δ, α;n1, r) must be non-degenerate. Thus Conjecture 1.5 holds when r ≥
2n1 − 1.

6.2 Second Approach: Chinese Reminder Theorem

Instead of developing machinery of Z(η, ω; s, k), we give another proof of Corollary 6.4.

This approach stems from comments by Yuriy G.Zarkhin who suggests to tackle the problem

directly by the Chinese Reminder Theorem.

To begin with, we denote R = C[x], I = 〈p(x)〉 the ideal in R generated by polynomial p(x),

and define our auxiliary polynomial

Af (x) := fα(x)fβ(x)f2
γ (x)

Also we write Ir = 〈x− r〉 for each r ∈ R(f). So we can define a quotient space corresponds to

Af

V (f) :=
n1∏
i=1

(R/Iαi)
n2∏
j=1

(R/Iβj
)
n3∏
l=1

(R/I2
γl

)

Since ideals Iαi , Iβj
, Iγl

are coprime inside the ring R, we can apply Chinese Reminder Theorem

to say that

V (f) ∼= R/〈fα〉 ×R/〈fβ〉 ×R/〈fγ〉2 ∼= R/〈Af 〉 as C-vector spaces.

It follows that

dim[V (f)] = deg[Af (x)] = n1 + n2 + 2n3

Next, we consider the map π̃ : R→ V (f) given by

π̃(p(x)) =


(dip(x)− p′(x))(mod(x− αi)) if 1 ≤ i ≤ n1

p(x)(mod(x− βj)) if 1 ≤ j ≤ n2

p(x)(mod(x− γk)2) if 1 ≤ k ≤ n3

where for all i = 1, . . . , n1

di = f ′′(αi)/f ′(αi)

Note each di is well-defined since αi are simple roots of f(x). Besides the map from R to factors

of the form R/Iβj
and R/Iγl

are canonical projections modulo (x− βj), (x− γl)2 respectively.
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Next theorem shows π̃ C-vector space epimorphism.

Theorem 6.5. The map π̃ : R→ V (f) defined above is a C-vector space epimorphism.

Proof. Given ai, bj , ck ∈ C constants where i, j, k ∈ Z+ with 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, 1 ≤ k ≤
n3, we want to find a polynomial p(x) ∈ R such that

dip(x)− p′(x) ≡ ai(mod(x− αi)) for all 1 ≤ i ≤ n1

p(x) ≡ bj(mod(x− βj)) for all 1 ≤ j ≤ n2

p(x) ≡ ck(mod(x− γk)) for all 1 ≤ k ≤ n3

(∗)

Since ideals Iαi , Iβj
, Iγl

are coprime in the ring R, from the Chinese Reminder Theorem, we can

pick p(x) ∈ R which simultaneously satisfies the following

p(x) ≡


hi(x)(mod(x− αi)2) if 1 ≤ i ≤ n1

bj(mod(x− βj)) if 1 ≤ j ≤ n2

ck(mod(x− γk)2) if 1 ≤ k ≤ n3

(6.5-1)

where the linear polynomial hi(x) are defined as

hi(x) =

aix+ ãi if di 6= 0

−aix if di = 0

with constants ãi ∈ C constructed from

ãi = 2ai
di
− αiai for all di 6= 0, 1 ≤ i ≤ n1 (6.5-2)

To check (∗) holds, it suffice to prove

dip(x)− p′(x) ≡ ai(mod(x− αi)) for each 1 ≤ i ≤ n1

First we proceed the case where di = 0, under the assumption dip(x)− p′(x) = −p′(x). From

(6.5-1), we know p(x) ≡ (−aix)(mod(x− αi)2). By definition,

p(x) = −aix+ qi(x)(x− αi)2 for some qi(x) ∈ C[x]

Differentiate both sides with respect to x, we obtain

p′(x) = −ai +
[
q′i(x)(x− αi) + 2qi(x)

]
(x− αi)
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It follows that −p′(x) ≡ ai(mod(x− αi)). Thus (∗) holds for 1 ≤ i ≤ n1 when di = 0. Now

suppose di 6= 0, we define gi(x) ∈ C[x] as follows

gi(x) = dix− (1 + diαi)

So, we immediately know after the definition that

g′i(x) = di and gi(αi) = −1 (6.5-3)

Since p(x) ≡ (aix+ ãi)(mod(x− αi)), we can also say

gi(x)p(x) ≡ gi(x)(aix+ ãi)(mod(x− αi)2)

Again from the definition,

gi(x)p(x) = gi(x)(aix+ ãi) + qi(x)(x− αi)2 (6.5-4)

for some qi(x) ∈ C[x]. Because

g̃i(x) = d

dx

[
gi(x)(aix+ ãi)

]
= g′i(x)(aix+ ãi) + gi(x)ai = 2diaix+

[
diãi − ai(1 + diαi)

]
we must have

g̃i(αi) = 2diaiαi + diãi − ai − diaiαi = 2diaiαi + di

(2ai
di
− aiαi

)
− ai − diaiαi = ai

Take derivative on both sides of (6.5-4) with respect to x we get

g′i(x)p(x) + gi(x)p′(x) = g̃i(x) +
[
2qi(x) + q′i(x)(x− αi)

]
(x− αi)

This shows

g′i(αi)p(x) + gi(αi)p′(x) ≡ g̃i(αi)(mod(x− αi))

We know g̃i(αi) = ai and g′i(x) = di, gi(αi) = −1 by (6.5-3). Therefore

dip(x)− p′(x) ≡ ai(mod(x− αi))

Finally, it’s trivial to check π̃ is an C-vector space homomorphism.

The result of this theorem allow us to deduce Conjecture 1.5 when n1 ≥ 2r − 1. (i.e. Corol-

lary 6.4).
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Proof of Corollary 6.4 by Theorem 6.5 Since we have an epimorphism

π̃ : R −→ V (f) ∼= R/〈Af 〉

Under the assumption that n1 ≥ 2r − 1 we have

degAf = n1 + n2 + 2n3 ≤ n− 1

This induces a C-vector space epimorphism in an obvious way

π̃∗ : R/〈xn−1〉 −→ V (f)

Notice p(x) ∈ Ker π̃∗ if and only if (x− βj) divides p(x), (x− γk)2 divides p(x) and (x− αi)
divides f ′′(x)p(x)− f ′(x)p′(x) since

R(f, p)(x) = f ′′(x)p(x)− f ′(x)p′(x) ≡
[
f ′′(αi)p(x)− f ′(αi)p(x)

]
(mod(x− αi))

≡ f ′(αi)
[
dip(x)− p′(x)

]
(mod(x− αi)) ≡ 0(mod(x− αi))

Theorem 4.1 says Ker π̃∗ = W (f). From the first isomorphism theorem,

(R/〈xn−1〉)/(Ker π̃∗) = (R/〈xn−1〉)/W (f) ∼= V (f) ∼= R/〈Af 〉

In other words

R/〈xn−1〉 ∼= (R/〈Af 〉)⊕W (f)

Therefore

dim[W (f)] = dim(R/〈xn−1〉)− dim(R/〈Af 〉)

= deg(xn−1)− degAf = n− 1− (n1 + n2 + 2n3)

In conclusion the space W (f) is non-degenerate when n1 ≥ 2r − 1.

6.3 Third Approach: Reduction of Associated Matrix

We are going to use associated matrix to investigate properties of degenerate spacesZ(η, ω; s, k)
through out this section. Our first remark is that when k ≥ s, Z(η, ω; s, k) is degenerate if and
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only if the row space of the associated matrix A is linearly dependent. This is not necessarily

true when k ≤ s − 1. Let Ai denote the i-th row of A. So if k ≥ s and space Z(η, ω; s, k) is

degenerate we know there exists some positive integer 1 ≤ i ≤ s such that Ai can be written as

the linear combination of the other rows. For the sake of simplicity, we always assume this i to be

the last row unless otherwise stated. The main result of this section is the following.

Lemma 6.6 (Reduction of Associated Matrix). Assume k ≥ s+1, letA be the associated matrix of

Z(η, ω; s+ 1, k), and suppose Z(η, ω; s+ 1, k) degenerates. Then the homogenous linear system

ATx = 0 has a nontrivial solution for which we shall denote by c = (c1, . . . , cs) ∈ Cs. Moreover,

if Ã is the associated matrix of Z(η̃, ω̃; s, k − 2) where ω̃ = (ω1, . . . , ωs), η̃ = (η̃1, . . . , η̃s) with

η̃i defined by

η̃i = ηi −
2

ωi − ωs+1
for all i = 1, . . . , s

then the system ÃTx = 0 also has a nontrivial solution c̃ = (c̃1, . . . , c̃s) where c̃i = (ωi −
ωs+1)2ci.

Proof of Lemma 6.6 is rather brutal force. We need the following fact from finite hypergeo-

metric series.

Proposition 6.7. Let a, b ∈ C and k ∈ Z+ then

1. −(k + 1)bk+1 +
∑k
l=0 a

k+1−lbl = (a− b)
∑k
l=0
[
(l + 1)ak−lbl

]
;

2. kak+1 + kbk+1 − 2
∑k
l=1 a

k+1−lbl = (a− b)2∑k−1
l=0

[
(l + 1)(k − l)ak−1−lbl

]
.

Example. Both identities in Proposition 6.7 are instances of hypergeometric series. We list

obvious examples for these identities when k = 1, 2, 3. To check (1) when k = 1 and 2

−2b2 + (a2 + ab) = (a2 − b2) + (ab− b2) = (a− b)[(a+ b) + b] = (a− b)(a+ 2b)

−3b3 + (a3 + a2b+ ab2) = (a3 − b3) + (a2b− b3) + (ab2 − b3)

= (a− b)[(a2 + ab+ b2) + b(a+ b) + b2] = (a− b)(a2 + 2ab+ 3b2)

To check (2) for k = 2 and 3, one observes

2a3 + 2b3 − 2(a2b+ ab2) = 2(a3 − a2b) + 2(b3 − ab2) = 2a2(a− b)− 2b2(a− b) = (a− b)2[2a+ 2b]

3a4 + 3b4 − 2(a3b+ a2b2 + ab3) = 3a4 − 2a3b− 2a2b2 − 2ab3 + 3b4

= 3(a4 − a3b) + (a3b− a2b2)− (a2b2 − ab3)− 3(ab3 − b4) = (a− b)[3a3 + a2b− ab2 − 3b3]

= (a− b)[3(a3 − ab2) + 4(a2b− ab2) + 3(ab2 − b3)] = (a− b)2(3a2 + 4ab+ 3b2)
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Proof of Lemma 6.7. Let n ∈ Z+, consider the polynomial f(x, y) = xn+1 − yn+1 ∈ C[x, y].
As a smooth function,

∂f

∂y
= −(n+ 1)yn (6.7-1)

On the other hand, we can factor the linear form x− y from f(x, y)

f(x, y) = (x− y)(xn + xn−1y + · · ·+ yn) = (x− y)
n∑
i=0

xn−iyi (6.7-2)

Taking the partial derivative of f with respect to y on both sides of (6.7-2) yields

∂f

∂y
= −

n∑
i=0

xn−iyi + (x− y)
n∑
i=1

ixn−iyi−1 (6.7-3)

We combine (6.7-1) and (6.7-3) together to get

−(n+ 1)yn +
n∑
i=0

xn−iyi = (x− y)
n∑
i=1

ixn−iyi−1 (6.7-4)

The left hand side of (6.7-4) can be simplified as

−(n+ 1)yn + (xn + xn−1y + · · ·+ yn) = −(n+ 1)yn + yn + (xn + xn−1y + · · ·+ xyn−1)

= −nyn + (xn + xn−1y + · · ·+ xyn−1)

= −nyn +
n−1∑
i=0

xn−iyi

Also, by the change of index i → i + 1, the right hand side of (6.7-4) is (x − y)
∑n−1
i=0 (i +

1)xn−1−iyi. So equation (6.7-4) is equivalent to

−nyn +
n−1∑
i=0

xn−iyi = (x− y)
n−1∑
i=0

(i+ 1)xn−1−iyi (6.7-5)

To obtain (1) from (6.7-5), we just consider the substitution

(x, y, n)→ (a, b, k + 1)

Similarly, from identity (6.7-2), it suffices to show

n(xn+1 + yn+1)− 2
[
x · f(x, y)

x− y
− xn+1

]
= (x− y)2 ∂2

∂x∂y

[
y · f(x, y)

x− y

]
(6.7-6)

for (2) just follows from the substitution (x, y, n)→ (a, b, k) into identity (6.7-6). We start with
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the left hand side of (6.7-6)

LHS of (6.7-6) = n(xn+1 + yn+1)− 2x
[
xn+1 − yn+1

x− y
− xn

]
= n(xn+1 + yn+1)− 2xy · x

n − yn

x− y

To simplify the right hand side of (6.7-6) observe

∂

∂x

[
y · x

n+1 − yn+1

x− y

]
= y · (n+ 1)xn(x− y)− (xn+1 − yn+1)

(x− y)2 = y · nx
n+1 − (n+ 1)xny + yn+1

(x− y)2

It follows that

(x− y)2 ∂2

∂x∂y

[
y · f(x, y)

x− y

]
= (x− y)2 ∂

∂y

[
y · nx

n+1 − (n+ 1)xny + yn+1

(x− y)2

]

=
[
nxn+1 − (n+ 1)xny + yn+1]+ y(x− y)2 ∂

∂y

[
nxn+1 − (n+ 1)xny + yn+1

(x− y)2

]

The second term on the right hand side of above equations is

y(x− y)2 ∂

∂y

[
nxn+1 − (n+ 1)xny + yn+1

(x− y)2

]

= y · [−(n+ 1)xn + (n+ 1)yn](x− y)2 − [nxn+1 − (n+ 1)xny + yn+1] · 2(y − x)
(x− y)2

= [−(n+ 1)xny + (n+ 1)yn+1] + 2y · [nxn+1 − (n+ 1)xny + yn+1]
x− y

So

RHS of (6.7-6) = (x− y)2 ∂2

∂x∂y

[
y · f(x, y)

x− y

]
=
[
nxn+1 − 2(n+ 1)xny + (n+ 2)yn+1]+ 2y · [nxn+1 − (n+ 1)xny + yn+1]

x− y

= n(xn+1 + yn+1)− 2y[(n+ 1)xn − yn] + 2y · [nxn+1 − (n+ 1)xny + yn+1]
x− y

= n(xn+1 + yn+1)− 2y · [(n+ 1)xn − yn](x− y)− [nxn+1 − (n+ 1)xny + yn+1]
x− y

If one compares RHS and LHS of (6.7-6), notice it is enough to show

[(n+ 1)xn − yn](x− y)− [nxn+1 − (n+ 1)xny + yn+1] = x(xn − yn) (6.7-7)
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Indeed

LHS of (6.7-7) = [(n+ 1)xn+1 − (n+ 1)xny − xyn + yn+1]− [nxn+1 − (n+ 1)xny + yn+1]

= xn+1 − xyn = x(xn − yn) = RHS of (6.7-7)

This finishes (2).

Before we proceed to the proof, let us examine important consequences of Lemma 6.6.

Theorem 6.8. Given η, ω ∈ Cs with s ≥ 2. If the space Z(η, ω; s, 2s− 2) is degenerate then

ηi =
s∑
j 6=i

2
ωi − ωj

for all i = 1, 2, . . . , s

Proof. We will prove the result by induction on the number of ωi. For the base case s = 2 you can

check Example 5.10. Suppose now that Z(η, ω; s+ 1, 2s) is degenerate, then from Lemma 6.6

the space Z(η̃, ω̃; s, 2s− 2) also degenerates with

η̃i = ηi −
2

ωi − ωs+1
and ω̃i = ωi

for all i = 1, 2, . . . , s. Applying induction hypothesis on the degenerate space Z(η̃, ω̃; s, 2s− 2),

we can say for each i = 1, 2, . . . , s

η̃i =
s∑
j 6=i

2
ωi − ωj

=⇒ ηi =
s∑
j 6=i

1
ωi − ωj

+ 2
ωi − ωs+1

=
s+1∑
j 6=i

2
ωi − ωj

This result is deduced from the fact that As+1 is a linear combination of other rows
∑s
i=1 ciAi.

We can assume without loss of generality that the rowAs+1 is not identically zero. Then it follows

that there exists ci 6= 0. For the sake of simplicity, assume that c1 6= 0. The exact same argument

as above can be applied to show

ηi =
s+1∑
j 6=i

2
ωi − ωj

for all i = 2, 3, . . . , s+ 1

This finishes our proof that ηi = g′′(ωi)/g(ωi) for all 1 ≤ i ≤ s+ 1. So from induction the proof

is complete.

It follows from this theorem immediately thatW (f) is non-degenerate whenever r ≥ 2n1−2.

Corollary 6.9. The space W (f) is non-degenerate whenever r ≥ 2n1 − 2.
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Proof. Suppose r = 2n1 − 2, remember we have

r = n− 2− (n2 + 2n3) and n ≥ n1 + 2n2 + 3n3

We claim first that above relations plus r < 2n1 − 1 imply

n2 + n3 ≤ n1 (6.9-1)

To begin with, we substitute r = n− 2− (n2 + 2n3) into r = 2n1 − 2

n− 2− (n2 + 2n3) = 2n1 − 2 ⇐⇒ n− (n2 + 2n3) = 2n1

Since n ≥ n1 + 2n2 + 3n3,

n1 + n2 + n3 = (n1 + 2n2 + 3n3)− (n2 + 2n3) ≤ n− (n2 + 2n3) ≤ 2n1

Cancel n1 on both sides of above equality, we get (6.9-1).

Next, recall the rational function d(x) defined at the beginning of Section 4. We denote

d̃(x) := d(x)− f ′′α(x)
f ′α(x) =

n2∑
i=1

3
x− βi

+
n3∑
j=1

2(kj − 1)
x− γj

(6.9-2)

Because d̃(x) is a rational function, the numerator of d̃(x) (in lowest terms), for which we shall

denote by h(x), is a complex polynomial with degree at most n2 + n3 − 1.

Since we only consider nonzero space W (f) (i.e.n2 ≥ 2 or n3 ≥ 1), d̃(x) is not identically

zero. So is the polynomial h(x). Then we deduce from

deg[h(x)] ≤ n2 + n3 − 1 ≤ n1 − 1

and the fundamental theorem of algebra that h(x) cannot vanish at more than n1 − 1 points. Now

suppose to the contrary that W (f) ∼= Z(δ, α;n1, r) is degenerate when r = 2n1 − 2. Then it

follows from the previous theorem that for every i = 1, 2, . . . , n1.

d(αi) = δi =
n1∑
j 6=i

2
αi − αj

= f ′′α(αi)
f ′α(αi)

⇐⇒ d̃(αi) = 0

The fact d̃(αi) vanishes for all i = 1, . . . , n1 implies polynomial h(x) vanishes for n1 distinct

points α1, . . . , αn1 . But this is a contradiction. So far we have shown the space Z(δ, α;n1, 2n1−



39

2) is non-degenerate which is equivalent to say

dim[Z(δ, α;n1, 2n1 − 2)] = (2n1 − 2) + 1− n1 = n1 − 1

Now let r ≥ 2n1 − 2, we know from the natural embedding proposition that

dim[W (f)] = dim[Z(δ, α;n1, r)] ≤ dim[Z(δ, α;n1, 2n1 − 2)] + r − (2n1 − 2)

= (n1 − 1) + r − (2n1 − 2) = r + 1− n1

We have shown that r + 1− n1 is an lower bound of dim[W (f)] by computing the rank of the

associated matrix. It follows that

dim[W (f)] = r + 1− n1 = n− 1− (n1 + n2 + 2n3)

Therefore the space W (f) is non-degenerate (i.e. Conjecture 1.5 holds) when r ≥ 2n2 − 2.

Proof of Lemma 6.6

Notations such as η̃, ω̃ are same as we stated in Lemma 6.6. Notice it suffices to prove

Lemma 6.6 in the case where k = s+ 2. Assume A is the associated matrix of space Z(η, ω; s+
1, s + 2) and let c = (c1, . . . , cs+1) be a nontrivial solution of the system ATx = 0. Up to

multiplication by scalars we can assume cs+1 = −1 for simplicity. The matrix equation AT c = 0
is equivalent to

As+1 = c1A1 + c2A2 + · · ·+ csAs (6.6-1)

where Ai are i-th row of A. We want to show

c̃ =


(ω1 − ωs+1)2c1

(ω2 − ωs+1)2c2
...

(ωs − ωs+1)2cs


solves the system

BT · x = 0 (6.6-3)
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where B is the associated matrix of Z(η̃, ω̃; s, s). We point out that B is a s× (s+ 1) complex

matrix which can be explicitly written as

B =


η̃1 η̃1ω1 − 1 . . . η̃1ω

s+1
1 − (s+ 1)ωs1

η̃2 η̃2ω2 − 1 . . . η̃2ω
s+1
2 − (s+ 1)ωs2

...
...

. . .
...

η̃s η̃sωs − 1 . . . η̃sω
s+1
s − (s+ 1)ωss

 (6.6-4)

Observe the system (6.6-1) is equivalent to

ηs+1ω
i
s+1 − iωi−1

s+1 =
s∑
j=1

cj(ηjωij − iωi−1
j ) ∀ i = 0, 1, . . . s+ 3 (6.6-5)

Here the i index runs till s+ 3 since A has s+ 3 columns. Put i = 0 in (6.6-5), we get

ηs+1 =
∑s
i=1 ηici

Substitute i = 1 into the system (6.6-5) and eliminate ηs+1 using above equation we have

−1 + (c1 + · · ·+ cs) =
s∑
i=1

ciηi(ωi − ωs+1)

Consider the right hand side of above equation

s∑
i=1

ciηi(ωi − ωs+1) =
s∑
i=1

ci[ηi(ωi − ωs+1)− 2] + 2
s∑
i=1

ci =
s∑
i=1

ci(ωi − ωs+1)η̃i + 2
s∑
i=1

ci

Move 2
∑s
i=1 ci to the left hand side, previous equation becomes

−(c1 + c2 + · · ·+ cs + 1) =
s∑
i=1

[
ci(ωi − ωs+1)η̃i

]
(6.6-6)

We are ready to prove that BT c̃ = 0 when expressed in the same way as (6.6-5) is equivalent to

s∑
i=1

c̃i(η̃iωji − jω
j−1
i ) = 0 ∀ j = 0, 1, 2, . . . , s+ 1 (6.6-7)

Our proof of (6.6-7) is by induction on j. For the base case we need to show

∑s
i=1 c̃iη̃i = 0
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First we use ηs+1 =
∑s
i=1 ciηi to cancel ηs+1 in the system (6.6-5) when consider only i = 2

−2ωs+1 + 2
s∑
i=1

ciωi =
s∑
i=1

ciηi(ω2
i − ω2

s+1) (6.6-8)

Right hand side of (6.6-8) can be simplified as

RHS of (6.6-8) =
s∑
i=1

ciηi(ωi − ωs+1)(ωi + ωs+1)

=
s∑
i=1

ci[ηi(ωi − ωs+1)− 2](ωi + ωs+1) + 2
s∑
i=1

ci(ωi + ωs+1)

=
s∑
i=1

ci(ωi − ωs+1)η̃i(ωi + ωs+1) + 2
s∑
i=1

ci(ωi + ωs+1)

Cancellation with the left hand side of (6.6-8) yields

0 = 2ωs+1(1 + c1 + c2 + · · ·+ cs) +
s∑
i=1

ciη̃i(ωi − ωs+1)(ωi + ωs+1)

Substitute (6.6-6) to replace c1 + · · ·+ cs + 1, we have

0 =
s∑
i=1

ciη̃i(ω2
i − ω2

s+1)− 2ωs+1
s∑
i=1

ciη̃i(ωi − ωs+1) =
s∑
i=1

ciη̃i(ωi − ωs+1)2 =
s∑
i=1

c̃iη̃i

So we verifies (6.6-7) when j = 0.

For the induction step, suppose (6.6-7) is true for all j = 0, 1, 2 . . . ,m (m ∈ Z+,m < s),

we want to show (6.6-7) for j = m+ 1. We write down equation i = m+ 3 in system (6.6-5)

first and use ηs+1 =
∑s
i=1 ciηi to replace ηs+1 as before

−(m+ 3)ωm+2
s+1 + (m+ 3)

s∑
i=1

ciω
m+2
i =

s∑
i=1

ciηi(ωm+3
i − ωm+3

s+1 ) (6.6-9)

From ak − bk = (a− b)(ak−1 + ak−2b+ · · ·+ bk−1), we could simplify the right hand side of

(6.6-9) as

R.H.S. of (6.6-9) =
s∑
i=1

(
ciηi(ωi − ωs+1)

m+2∑
l=0

ωm+2−l
i ωls+1

)
=

s∑
i=1

(
ci[ηi(ωi − ωs+1)− 2]

m+2∑
l=0

ωm+2−l
i ωls+1

)
+ 2

s∑
i=1

(
ci
m+2∑
l=0

ωm+2−l
i ωls+1

)
=

s∑
i=1

m+2∑
l=0

(
ciη̃i(ωi − ωs+1)[ωm+2−l

i ωls+1]
)

+ 2
s∑
i=1

m+2∑
l=0

(
ciω

m+2−l
i ωls+1

)
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Cancellation with the left hand side of (6.6-9) would give us

0 =
s∑
i=1

m+2∑
l=0

(
ciη̃i(ωi − ωs+1)[ωm+2−l

i ωls+1]
)

+ (m+ 3)ωm+2
s+1 (1 + c1 + · · ·+ cs)

+ 2
s∑
i=1

m+1∑
l=1

(
ciω

m+2−l
i ωls+1

)
− (m+ 1)

s∑
i=1

ci(ωm+2
i + ωm+2

s+1 )

Substitute equation (6.6-6) to replace 1 +
∑s
i=1 ci

0 =
s∑
i=1

(
ciη̃i(ωi − ωs+1)

m+2∑
l=0

ωm+2−l
i ωls+1

)
− (m+ 3)ωm+2

s+1
s∑
i=1

ci(ωi − ωs+1)η̃i

+ 2
s∑
i=1

m+1∑
l=1

(
ciω

m+2−l
i ωls+1

)
− (m+ 1)

s∑
i=1

ci(ωm+2
i + ωm+2

s+1 )

=
s∑
i=1

(
ciη̃i(ωi − ωs+1)

[
− (m+ 2)ωm+1

s+1 +
m+1∑
l=0

ωm+2−l
i ωls+1

])
+ 2

s∑
i=1

m+1∑
l=1

(
ciω

m+2−l
i ωls+1

)
− (m+ 1)

s∑
i=1

ci(ωm+2
i + ωm+2

s+1 )

For any 1 ≤ i ≤ s, i ∈ Z+ apply Proposition 6.7 for a = ωi, b = ωs+1 and k = m+ 1 we get

−(m+ 2)ωm+2
s+1 +

m+1∑
l=0

ωm+2−l
i ωls+1 = (ωi − ωs+1)

m+1∑
l=0

[
(l + 1)ωm+1−l

i+1 ωls+1

]
(m+ 1)[ωm+2

i + ωm+2
s+1 ]− 2

m+1∑
l=1

ωm+2−l
i ωls+1 = (ωi − ωs+1)2 m∑

l=0

[
(l + 1)(m+ 1− l)ωm−li ωls+1

]
Plugging this two equation back to the one obtained one step above, we have

0 =
s∑
i=0

m+1∑
l=0

[
c̃iη̃i(l + 1)ωm+1−l

i+1 ωls+1

]
−

s∑
i=1

m∑
l=0

[
c̃i(l + 1)(m+ 1− l)ωm−li ωls+1

]
= (m+ 2)ωm+1

s+1
s∑
i=0

c̃iη̃i +
s∑
i=1

m∑
l=0

[
(l + 1)ωls+1c̃i

(
η̃iω

m+1−l
i − (m+ 1− l)ωm−li

)]
= (m+ 2)ωm+1

s+1
s∑
i=0

c̃iη̃i +
m∑
l=0

(
(l + 1)ωls+1

s∑
i=1

c̃i
[
η̃iω

m+1−l
i − (m+ 1− l)ωm−1

i

])

We have shown that
∑s
i=1 c̃iη̃i = 0. Moreover, by induction hypothesis

s∑
i=1

c̃i
[
η̃iω

m+1−l
i − (m+ 1− l)ωm−li

]
= 0 for all l = 1, 2, . . . ,m

Therefore all terms vanished in previous equation except the one where l = 0. This means

s∑
i=1

c̃i
[
η̃iω

m+1
i − (m+ 1)ωmi

]
= 0

which is exactly what we want to show for the induction step. Thus we conclude that BT · c̃ = 0.
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Since the system has a nonzero solution c̃, we know BT cannot attain full rank from linear

algebra.
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Chapter 7 |
Future plan

Previous work on W (f) suggests the following idea to approach remaining case of Con-

jecture 1.5: simple roots α1, . . . , αn1 are good parameters for the space W (f). We know that

W (f) = Z(δ, α;n1, r) is degenerate if and only if the associated matrixA does not attain full rank.

This gives a clue to construct counter-examples if one assumes the existence of some degenerate

space W (f). More precisely, rankA < n1 if and only if all the n1 × n1 minors vanish. However

entries ofA are rational functions in α1, . . . , αn1 . So define F (α1, . . . , αn1) ∈ C[α1, . . . , αn1 ] to

be the common zero of all n1×n1 minors in A, if dim[W (f)] > (deg f − 1)− (n1 +n2 + 2n3),

F must be a non-constant polynomial. (i.e. common zeros of all n1 × n1 minors of A cutoff a

nonempty set in affine space An1). We believe this is the key step to attack last case where one

either proves Conjecture 1.5 for n1 < r < 2n1 − 2 or constructs counter-examples.
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Appendix |
Computation of dimension using Macaulay2

The program WSpace.m2 computes dimension of space Z(η, ω; s, k) and W (f) for given

polynomials. To begin with, the method getHMatrix compute the matrix we introduced at the

beginning of Section 6.

i2 : eta = {1/2, 3/4, -7/8, 9, 31}; omega = {47, 2, -3, -5/7, -4/11};

i4 : A = getHMatrix(eta, omega, 5)

o4 = | 1/2 45/2 2021/2 90569/2 4049097/2 180548197/2 |

| 3/4 1/2 -1 -6 -20 -56 |

| -7/8 13/8 -15/8 -27/8 297/8 -1539/8 |

| 9 -52/7 295/49 -1650/343 9125/2401 -50000/16807 |

| 31 -135/11 584/121 -2512/1331 10752/14641 -45824/161051 |

5 6

o4 : Matrix QQ <--- QQ

To compute the dimension of space Z(η, ω; s, k) from the associated matrix A, we use the

method dimH. This operation are easily executed internally via the rank command for

dim[Z(η, ω; s, k)] = k + 1− rankA

from Remark 5.4 in previous section. The method isConjectureHold checks if dimension

of the space Z(η, ω; s, k) is equal to k + 1− s. (i.e. the associated matrix A is full rank or not)

i5 : dimH(eta, omega, 5)

o5 = 1

i6 : isConjectureHold(eta, omega, 5)

o6 = true

We point out all methods involves Z(η, ω; s, k) has three inputs which corresponds to η, ω, k

respectively. Also, among all methods which computes information of Z(η, ω; s, k), failure to
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provide lists with different length or distinct elements in the second list (i.e. the list of ω) will

result in an error unless the UnSafe option is true.

To proceed onW (f), we start with the construction method wSpace. Because all information

on W (f) is obtained by factorizing f(x) into products of linear terms, the method wSpace ask

user to plug in two data sets: a list of roots and their corresponding multiplicities.

i2 : roots = {1/2, -3/4, 78, -29, 31/47, 2}

i3 : rootsMultiplicity = {1, 1, 1, 1, 2, 2}

i4 : f = wSpace(roots, rootsMultiplicity)

o4 : WSpace

Our object WSpace are descended from HashTable. Internally, they are HashTable

where each key is a root of f(x) and each associated value is the corresponding multiplicity. We

also stress that unless the UnSafe option was set to be false, the construction method will

always checks if all multiplicities are positive integer and all roots possess the same ambient ring.

(for the sake of simplicity, our program set Q as the ambient ring). Methods like getRoots,

getPolynomial are constructed in order to access internal data and provide computational

convenience.

i6 : f = wSpace({1, 2, 3, 4}, {1, 1, 2, 2})

o6 : WSpace

i7 : getPolynomial( f )

6 5 4 3 2

o7 = x - 17x + 117x - 415x + 794x - 768x + 288

o7 : QQ[x, y]

i8 : getRoots( f )

o8 = {1, 2, 3, 4}

o8 : List

As we have shown above, the method getPolynomial returns the polynomial f(x) that

corresponds to the space W (f) and the output of getRoots is the set of distinct roots of f(x).

Next example illustrates the following point: getPolynomial(f, k) returns the k-th part

polynomial of f(x) (see Notation 1.2 of Section 1), and getRoots(f, k) returns Rk(f) (i.e.

the set of roots whose multiplicity is exactly k).

i11 : f = wSpace({1, 3, -3, 2, 9, 4, 13}, {1, 1, 1, 1, 4, 5, 7})

o11 : WSpace

i12 : getPolynomial(f, 1)
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4 3 2

o12 = x - 3x - 7x + 27x - 18

o12 : QQ[x, y]

i13 : getRoots(f, 1)

o13 = {1, 2, 3, -3}

o13 : List

Recall in Theorem 4.1 of Section 4 , we proved that

W (f) = (fβf2
γ ) · W̃ (f, α) = (fβf2

γ ) · Z(δ, α;n1, r)

Hence calculating dimension ofW (f) essentially boils down to compute dimension ofZ(δ, α;n1, r).

This facts motivates the next method. The command getHMatrix with input type WSpace

returns the associated matrix of the space Z(δ, α;n1, r).

i2 : f = wSpace({1/2, -3/4, 5/6, 7/12, 9/10}, {1, 1, 1, 2, 2})

o2 : WSpace

i4 : A = getHMatrix( f )

o4 = | -28973/4180 70199/16720 -160437/66880 330831/267520 |

| -479/10 -499/20 -519/40 -539/80 |

| -489/19 -853/38 -1485/76 -23225/1368 |

3 4

o4 : Matrix (frac QQ[x, y]) <--- (frac QQ[x, y])

The method dimW calculates dimension ofW (f) by calling the associated matrix ofZ(δ, α;n1, r)
first. If the option UseFormula is set up to be true, dimW will compute the dimension from

Conjecture 1.5. Finally isConjectureHold checks if the dimension computed by the matrix

is same as our dimension formula dim[W (f)] = deg f − 1− (n1 + n2 + 2n3). (i.e. verifying

Conjecture 1.5)

i15 : roots = {5, 7/8, 2, 3/2, 3/5, 1, 5/6, 3/4, 1/5, 6/5}

i16 : rootsMultiplicity = {1, 1, 1, 1, 1, 2, 2, 3, 5, 7}

i17 : f = wSpace(roots, rootsMultiplicity)

o17 : WSpace

i18 : dimW( f )

o18 = 10

i19 : dimW(f, UseFormula => true)

o19 = 10
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i20 : isConjectureHold( f )

o20 = true
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