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ABSTRACT 

  

Machine vision is a computationally expensive problem with an exceptionally large 

number of real-world applications.  With the rise of the Internet of Things and the presence of 

wearables in day to day settings, there is an additional focus on power constraints and the 

limitations of fixed hardware.  In a vision pipeline, the accuracy of the object classification stage 

will likely affect the usefulness of the pipeline as a whole.  However, we find that it is difficult to 

create a system with the ability to recognize a large number of objects both quickly and 

accurately because the number of classifiers needed grows with the number of objects.  We 

observe that real world images and the objects in them tend to be sensible and expose 

relationships between objects and scenes that are used by humans intuitively.  This high-level 

context could potentially be used to inform and improve object classification by allowing us to 

make reasonable, probabilistic guesses about objects that might occur based on other information 

that we have about the image.  This guesswork will lower the number of classifiers that need to 

be run, which will also address power and timing concerns.  In this paper, we explore the 

meaning of context, design a framework to store it in a way accessible to a computer, and then 

evaluate the efficacy of context-based filtering. 
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Chapter 1  
 

Introduction 

In recent years, computers have become powerful enough to begin tackling the immense 

amount of processing required to simulate the workings of the human brain.  Specifically, 

advancements in neuroscience that have given us a clearer picture of how the human visual 

cortex works, alongside this computer power increase, have together created the setting 

necessary for us to lay the groundwork for a vision framework in silicon approximating that of 

the human brain.  The applications for this are nearly endless; some forms of machine vision are 

already so standard as to be invisible.  Consider a barcode scanner or handwriting-to-text 

recognition.  If a computer could “see” as well as a human can, this could automate and 

revolutionize any number of fields. 

One specific field in which this would be very efficacious is that of wearables.  In recent 

years, there has been a push towards the so called “Internet of Things”, in which we see manifold 

small devices networked together, many of which are sensors and wearables.  Already, we see 

that devices like Google Glass can provide some rudimentary machine vision support.  If such a 

device could more closely mimic the full range of abilities displayed by the human visual cortex, 

it is possible to imagine such a device functioning as the user’s “eyes.”  This sort of advancement 

may someday lead to a prosthetic eye for the visually impaired.  Within the Microsystems 

Design Lab, we explore this particular vision as part of the NSF-sponsored Visual Cortex on 
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Silicon Expedition, and the particular concerns associated with a low-power, fixed-hardware 

platform inform many of our design decisions. 

One such concern is power consumption, especially in the context of small, low-power 

devices like wearables.  If a user can only depend on their “visual prosthesis” for two or three 

hours at a time, would the vision it affords really be worth the inconvenience?  In addition, the 

specific processing involved in machine vision is inherently computationally intensive, 

depending largely in part on operations on large matrices.  The mammalian visual cortex is 

organized hierarchically and operates in various stages.  Figure 1 is a diagram of our 

understanding of the computational requirements of this pipeline within the lab.  Some portions 

of this pipeline are distinctly bio-inspired, whereas others represent a higher level interpretation 

of neural function. 
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Figure 1: Image Processing Pipeline 

 

 In this paper, we focus specifically on the demands of the “Classification” stage.  The 

input to this part is a series of Regions of Interest (ROIs), which are portions of the image being 

observed that we believe are likely to contain identifiable objects based on other algorithms like 

saliency that are run earlier in the pipeline.  The desired output is a label for each ROI.  This 

stage is understandably extremely important to the success of the pipeline as a whole.  We 

explore a way of looking at high level semantic context information available within an image to 

make this stage faster and more accurate while additionally decreasing power demands.  In 

Chapter 2, we further discuss what is meant by “context” and explore related works that address 

this issue in various ways.  In Chapter 3, we formulate our own framework for addressing this 
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problem by considering a variety of design questions.  In Chapters 4 and 5, we evaluate our 

framework on a pair of real world image datasets.  Finally, in Chapter 6, we conclude and 

discuss some next steps that could improve our framework.



 

 

Chapter 2  
 

Why Context? 

As we begin to explore this problem in greater detail, it is first important to establish 

what we mean by context.  This may be easiest to explore by defining what information from an 

image we would not consider context, namely the extracted features of an object we wish to 

identify.  A key concept in machine learning as a whole and therefore computer vision as well is 

the choice of features to extract from an image.  In the context of this thesis, the specific 

representation of the features is open-ended, though in Chapters 4 and 5 we explore a specific 

implementation that uses HOG vectors.  However, in this general discussion, features can be 

thought of to mean our chosen representation of the object to be identified. 

What, then, is context?  As previously stated, we consider context to be any information 

about the scene that we may be able to acquire beyond the specific features of the object to be 

classified.  This can be defined on the same level as the features, such as HOG vectors for the 

image as a whole, or could refer instead of higher-level information about the scene or other 

objects in the image or in related images.  Context is therefore a very loosely defined idea that 

can take a variety of forms.  Roughly speaking, features will tend to refer to the object to be 

classified and context will refer to any other information that we can relate to this object, 

including, but not limited to, other objects in the scene, the type of scene, or information about 

previous scenes that are somehow related, as in temporal information between adjacent video 

frames.  In this section, we explore some other work related to various forms of content 

extraction and discuss their usefulness. 
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GIST 

One well known algorithm in this field is GIST content extraction, detailed in two papers 

with slightly different implementations. [1] [2]  The idea of GIST is a form of high-level scene 

classification based on features of an image as a whole.  A key idea here is that we observe 

objects of interest within an image as part of a larger scene.  Both implementations of GIST use 

filters on different characteristics of the image to extract features from a scene as a whole, 

similarly to how one might extract features for a region of interest on which identification should 

be performed.  From this, a GIST vector is calculated that represents the scene.  In [1], the 

specific goal is to explore the accuracy of scene recognition between three outdoor locations.  [2] 

seeks instead to identify both broad categories of location, such as “outdoors”, as well as more 

specific ones, such as specific streets or parks.  Both show very highly reliable classification 

results.  In addition, [2] performs experiments on unseen locations that might fit into a larger 

category, which shows an understandable loss of accuracy.  Finally, the authors of [2] connect 

this idea of scene classification to the probability of object presence with the understanding that 

there is an exposable relationship between scene and the presence and location of objects within.  

The idea of GIST as a whole is a powerful one: it confirms that real-world datasets have logical 

relationships that we can exploit.  To be able to identify the type of scene will inevitably affect 

the likelihood of the different objects that we expect to see, as seen in [2].  This is perhaps an 

obvious observation to a human being, but the ability to quantify this type of knowledge, 

especially from raw, extracted features of a single image, is crucially important to our 

understanding of context.   
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Visual Words 

Within images are areas known as key points that can be reliably extracted.  These key 

points are highly salient regions that contain useful identifying information about an image as a 

whole.  Such points are often located around the edges of important objects within the image.  

The authors of [3] seek to use the presence and frequency of appearance of these key points in a 

context that mirrors text classification.  An image can be described by the key points that it 

contains, which is known as a “bag of visual words” representation.  Using this representation, 

the goal is to be able to classify image types by the similarity in appearance of specific patterns 

within the image and predict labels for previously unseen images.  This method is already well-

established as effective on text documents. 

[3] explores a variety of experimental metrics to consider while creating such a system 

and evaluates the impact of specifics such as the size of the vocabulary, the removal or lack 

thereof of “stop words”, and the granularity of spatial relationship information within images.  

The results are varied and show that the accuracy is very dependent on the values chosen for said 

variables, as well as the dataset itself.  However, the idea highlights again the fact that context 

can be extracted from an image in a variety of ways.  Specifically, we see that meaningful 

context can be extracted from the frequency of salient patterns within an image, which could 

translate to the frequency of objects but more generally simply means regions with similar 

extracted patterns.  This is similar to the GIST approach but with the additional “zooming in” on 

the important regions of an image that is derived from saliency. 

The authors of [4] make use of the same sort of visual words representation of an image 

but with the intention of retrieving the frames of a video in which a particular object exists.  A 
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“vocabulary” of visual words is built, as in [3], but [4] differs in that it is focused on frames of a 

video so additional information about visual word saliency can be computed based on the 

differences between objects in contiguous frames.  The overall goal is to be able to identify the 

same scene from different angles, and to then be able to search for an object that appears in a 

given frame and find those other frames in which it is present without false negatives from the 

differences in perspective. 

A key detail in [4] is the observation that a temporal relationship that can be exposed 

between frames of a video, which can be loosely extended as well to images that are known to be 

related.  A great deal of additional information can be extracted in a set of images when they are 

known to be related in time.  This additional dimension establishes much more complex 

relationships between objects than could be exposed from singular, independent images. 

Generating Sentences from Image Features 

In [5], the authors explore a leap from simple object recognition to the derivation of 

meaning from detected objects.  In the same way that a human might simply summarize an 

image by describing the principal action and scene, the authors of [5] seek to algorithmically 

extract simple sentence representations of images based on detection results.  It would, for 

example, be natural to describe an image as something like “a man sits on a bench in a city” or 

“a penguin swimming in the ocean”, omitting many other details within the image and 

summarizing the central focus.  This same simple description could also be used to identify 

images in many cases without other details.  [5] explores a simple triplet sentence structure that 

describes an image as a combination of object, action, and scene, and attempt to predict 
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sentences based on images and vice-versa.  The relationships between the components of the 

triplets are weighted beforehand based on images from Flickr to establish the connection 

between different scenes, objects, and actions.  A key detail here is the understanding that a 

certain scene, object, or action will influence the likelihood of the value of the other two nodes in 

the triplet.   

[5]’s results are not necessarily stunning in their accuracy, but its authors suggest that a 

deeper knowledge of object relationships and sentence structure is required and should be 

explored to deepen the understanding of the principal actions taking place in an image.  Overall, 

the concept that such a concise description of an input image might be extracted with little to no 

other information is a powerful idea, and the correct annotation of an image in this sense could 

provide us with additional information about objects that might be in a scene. 

Our Approach 

 In this thesis, as previously mentioned, we focus on high-level semantic context.  In a 

way, this idea encapsulates each of the ideas explored by the other papers just discussed.  This 

semantic context specifically refers to the sort of relationships between objects that a human 

recognizes intuitively.  Consider a simple example: imagine that you have walked into a 

classroom with the lights off.  You can see the outline of an object, but cannot see any of its 

features clearly.  Depending on the size of the object, and with the knowledge that you are in a 

classroom, there are a list of candidate objects that you might consider, including perhaps a 

computer, a backpack, a chair, etc.  This list of objects would change if you were in, for example, 

a garage or a movie theater.  The probabilistic weighting that a human does innately in a 
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situation like this stems from a higher level understanding of the relationships between objects 

and scenes which cannot be extracted from a single image.  To extend the previous example, if 

the scene was a stable and you had never been to a stable before nor did you know anything 

about horse care, your list of candidate objects would be much less informed and potentially may 

not contain the mystery object. 

 This specific sort of object relationship context was used in [5] to weight the relationships 

of objects, scenes, and actions in triplets.  In addition, [2] explored the relationship between an 

identified scene and the objects that might be present within.  However, each paper examines 

these object relationships in a cursory fashion that, while useful, could be extended.  In neither 

paper do we see the actual derivation or representation of these relationships as the main focus of 

the work.  The relationships between objects are extremely complex, and we believe that the first 

step in reliably utilizing them is to expose them more thoroughly.  Consider the complexity of 

our understanding of “part of” relationships, categorical grouping of objects, synonyms, and the 

different relationships two objects might exhibit when seen in different context.  Our goal in this 

thesis is to discover which of these manifold types of relationships are most relevant to object 

classification and then to find a way to “teach” a computer these relationships that we humans 

learn and use without thinking every day.  This goal requires us to consider several questions.  

What contextual relationships are important?  How can we encapsulate them into data structures?  

How should a computer interact with the resulting context information?  In the next chapter, we 

look into these questions in more detail.



 

 

Chapter 3  
 

Methodology and Design Decisions 

 In this chapter, we will consider what sort of information informs our decisions when 

creating a framework for image context.  Our goal is to identify three things: what information is 

important, how this can be translated into data structures, and how we should design access to 

the framework.  This is a wide-open question, as the amount and types of context that might be 

extracted somehow from an image is quite large, and for a first exploration, flexibility to add 

more context is important.  These design decisions are focused on creating an immediately 

realizable system that can be tested in a simple situation before delving too deeply into more 

types of context or relationships, and as such, the discussion in this chapter is informed by 

practicality more so that extensive brainstorming.  In Chapter 6, we revisit these ideas with a 

focus on brainstorming future work. 

What context is important? 

This question is perhaps the most interesting and open ended question of this idea as a 

whole and will have the strongest impact on the rest of the implementation.  As such, our goal 

was to remain open-minded about this and understand that the answer to this may not be 

available until we experiment.  However, the starting point for our work was based on the idea 

that, for any given object, there are other objects that we might consider to be “related” to it.  A 

towel, for example, might suggest beach-related items like beach balls or coconuts.  It could also 
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suggest bathroom items like a washcloth or shampoo, which immediately gives rise to the 

importance of context couched in the knowledge of the scene as a whole.  For simplicity’s sake, 

we begin our exploration assuming that our scene will be constant and explore the idea of scene-

by-scene relationships more thoroughly in Chapter 6.  The granularity of what might be 

considered a “scene” is also variable, but here we will focus on a scene as a location in which we 

can reliably decide if an object is likely to be present or absent and if two objects are related.  For 

our purposes, then, “house” would be too general, as object relationships vary too greatly 

between rooms, but “kitchen” or “living room” would represent an acceptable scene. 

What, then, are we considering to be the important relationships between objects in a 

known scene?  For our purposes, this is fairly straightforward: we want to know what objects are 

likely to be present in a given scene, and then of those objects, which are likely to be present 

near one another.  Since we are considering a single setting, the first can simply be considered 

the whole set of objects that we are able to classify.  The second becomes important as we 

consider our yet-unidentified ROIs within an image.  Perhaps we know nothing about our first 

ROI in an image, but once we have performed a single classification brute-force, we should be 

able to look up what objects might be seen near that one and look for them first before those that 

are less likely.  This could be seen as a simple true or false mapping in which we consider 

objects to be related or not to be related, or we could take a more complicated tack in which we 

weight such relationships with likelihoods or counts so that we could extract not just a list of the 

related items, but a ranked list of the top n related items by probability.  In this same way, it 

might be useful to apply the same sort of probability to items in the scene as a whole, as there are 

certainly items that are more likely to appear than others in a given scene in general. 
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How can we represent this in data structures? 

To represent discrete objects and their multifarious, potentially hierarchical relationships, 

the most obvious data structure that comes to mind is a hypergraph in which each node 

represents an object for which we have a classifier, and each edge is a type of relationship.  As 

previously stated, we are looking for simplicity in this first implementation, so hierarchical 

relationships may not come into play immediately, but we would like them to be available for 

representation in the future.  However, at this moment, our hypergraph will likely take the form 

of a regular graph while we are not worrying about more complex object relationships. 

A key detail as we think about implementation is to consider the asymmetric nature of 

existing datasets and allow for objects to have relationships defined at various levels of 

complexity.  For example, one can imagine a dataset in which we are only given an undirected 

graph of relationships with only a true-false mapping of nodes to one another.  In contrast 

another dataset might provide detail on the relationships, such as spatial relationships, scene 

information, or weighted relationships.  These two granularities of specificity should both be 

representable in our implementation, so the implementation we choose should have the ability to 

represent these varied edge characteristics. 
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Figure 2: A Simple ViCoNet Example 

Ultimately, the data structure that we envision is a graph for a given scene where each 

node is an object that we have a classifier for and each edge represents some likelihood of the 

connected nodes being seen close together.  Additionally, we can envision storing some simple 

frequency information in the form of counts on the nodes and the edges.  A visualization can be 

seen in Figure 2.  We call this graph a Visual Co-Occurrence Network, or ViCoNet, as it 

attempts to encapsulate our understanding of what objects are likely to occur near one another in 

images.  The use of counts for probabilistic weighting is not ideal, but it is a simple way to begin 

to quantify the importance of relationships between objects. 

How should our visual pipeline interact with ViCoNet? 

In thinking about this question, the most important detail is the relationship of input from 

the vision pipeline to relevant output that will improve image classification.  We can consider 

some simple scenarios in which the pipeline might desire some input from our network.  For 

example, given an image with no classifications yet performed, the pipeline could ask ViCoNet 

what objects are seen most frequently in general and begin running classifiers based on 
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frequency.  Once some classifications have taken place, the spatial relationships between the 

objects in ViCoNet may begin to be useful.  For example, if we have identified a plate and a fork 

located close to another unknown ROI, ViCoNet should be able to suggest likely items like a 

spoon or knife over, for example, a cabinet or window in a kitchen setting.   

In considering interactions with ViCoNet, we are assuming a static knowledge graph that 

is pre-populated with these relationships and purely provides output to the pipeline.  However, it 

is important that ViCoNet additionally be able to learn and dynamically adjust as the world 

changes around it.  Therefore, it is important to keep in mind the idea that feedback from the 

pipeline as to the correctness of ViCoNet’s guesses might be used to reweight relationships over 

time.  For the time being, we will stick with a static implementation of ViCoNet, but the two-

way nature of the relationship between ViCoNet and the pipeline’s successes and failures is 

important to keep in mind, and we will look deeper into a dynamic implementation of ViCoNet 

in Chapter 5. 

 

From these three questions, we have begun to flesh out an implementable form for 

ViCoNet.  Now, with a framework in place, we can perform evaluation of its usefulness in the 

context of the rest of the classification stage of our pipeline. 

  



16 

 

Chapter 4  
 

Context Evaluated in a Retail Environment 

Now that we have explored the applications and design decisions that go into storing and 

accessing this context, we implement the general ideas discussed in Chapter 3 and evaluate the 

efficacy of context in real image recognition.  This experiment was also published as [6]. 

Retail as an Environment for Evaluation 

A critical decision in evaluating the usefulness of context is to choose a setting in which 

context is likely to provide us with useful information.  As explored above, this holds true in 

most real life settings.  However, different environments vary in the complexity of said context.  

A retail environment is structured in a logical way so that shoppers can easily find the items they 

seek.  This hierarchy works on more than one level.  In a grocery store, for example, the store as 

a whole is divided into aisles.  Each aisle is sorted so that items of the same time, at the 

granularity of “olive oil” or “aluminum foil” tend to be located in the same contiguous area.  

These areas are further ordered by brand, and the brands are ordered by specific product type.  

For this reason, a grocery store can be said to have a great deal of information—on the order of 

thousands of items on average—organized in a complex, intuitive way that the average shopper 

navigates almost without thought.  This rigid hierarchy is ideal for translation into terms a 

computer can understand, and additionally tends to hold true across grocery stores in general at 

least at the granularity of aisle.  Some of these relationships may even carry over into farmers’ 

market or kitchen settings. 
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Another advantage of retail in general is that, with the pervasive nature of advertising, it 

is generally very easy to find high quality, high resolution images of products.  This is important 

for us when training classifiers, as better training images can help improve accuracy.  

Additionally, items in a store are arranged on shelves so that they face outward along the plane 

of the aisle.  While obviously this is not a perfect system due to objects being knocked over or 

other effects of human error, it does on average mean that the objects in an image are likely to be 

facing the same direction and not be obscured or skewed in ways that might make classification 

more difficult. 

Though a grocery store (or, indeed, any other retail establishment) may be designed in 

this specific, logical way, this is not meant to imply that such hierarchy does not exist in the rest 

of the world.  As seen in the other papers in Chapter 2, the vast majority of real world images 

will likely contain usable context, and in Chapter 6 we further explore the idea of multiple scenes 

and how to manage the varied relationships. 

The datasets 

Within this grocery environment, we gathered and annotated two sets of images.  For 

training, our local Wegmans grocery store allowed us to gather images of the aisles.  There are 

14 of these panoramic images, each one representing an aisle.  We created a list of 102 classes 

from objects that appear on the shelves in these images, choosing with a focus at representing 

each aisle and container type (box, packet, bottle, etc.) as evenly as possible.  We used Bing’s 

API to download training images in bulk, so we had to additionally modify our list of classes to 
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contain only those that produced useful results in this image search API.  A table containing the 

counts of class per aisle is shown below. 

Aisle Number of Items 

Cereal 8 

Chips 5 

Cleaning 8 

Coffee 7 

Condiments 8 

Cookies 13 

Dental 5 

Juice 6 

Pasta 2 

Refrigerated 7 

Sauce 11 

Soda 16 

Soup 3 

Storage 3 

Total 102 
Table 1: Training Data 

Within this training dataset, we annotated a number of instances of each class using the 

LabelMe toolkit [7], which we subsequently used in the training phase described below. 

For testing purposes, we used a separate, disjoint dataset from California of images of 

supermarket shelves.  The item classes above were additionally chosen so that as many as 

possible appeared in this second dataset.  Our hope was that the same relationships that are true 

in a grocery store in Pennsylvania would also hold for one in California, which was part of our 

motivation for choosing the testing set.  We annotated over one thousand instances of 63 of our 

102 classes in these test images. 
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The image processing pipeline 

This takes place in the context of a larger pipeline developed by a number of others in the 

lab, as the goal is to someday link all of the disjoint pieces together into a functional pipeline, 

which can be seen in Figure 1.  Here, we discuss the other components of object classification 

and establish ViCoNet’s location and behavior within this context. 

HMAX 

HMAX is a hierarchical, bio-inspired object classification algorithm which consists of 5 

layers.  First, there is an input layer from which specific portions of an image can be extracted.  

This is followed by four layers of simple and complex cells meant to mimic the behavior of 

visual cortex neurons. [8]  HMAX has several properties that make it ideal for our system.  The 

algorithm itself is quite complicated and computationally intensive, but can be parallelized and 

accelerated efficiently, making it a good candidate especially in a fixed-hardware setting.  

Additionally, HMAX performs well on a variety of different datasets, as can be seen in [9].  A 

downside to HMAX is that, as the number of classes supported grows, the classification accuracy 

plummets, as shown in [10].  HMAX on its own is therefore not an ideal choice for 

classification, but its fairly reliable accuracy, combined with the ability to take the top k ranked 

guesses as opposed to simply the top 1, makes HMAX useful as an efficient pre-filter that we can 

run on an image before anything more computationally expensive. 

With our 102 previously defined classes, we find that we can achieve about 35% 

accuracy on the top 1 HMAX candidate and 70% accuracy when we choose the top 20 
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candidates.  The accuracy curve for HMAX can be seen in Figure 3.  HMAX therefore prunes 

our results space for a given image down to 20% before any classification takes place, which 

hearkens back to previously discussed power consumption concerns, ideally allowing us to run 

fewer classifiers overall. 

 

Figure 3: HMAX Accuracy Results 

Exemplar SVM 

An Exemplar SVM, or ESVM, is an implementation of a traditional Support Vector 

Machine (SVM) that is trained on a single positive example of a class and many negatives. [11]  

This means that a given ESVM can identify a specific view of an object with very high accuracy, 

which is especially well-adapted to a retail environment in which we generally expect to see the 

front side of an object as it is arranged on a shelf.  Each object to be classified requires its own 
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ESVM to be trained, though, and as the number of classes grows, so too does the number of 

ESVMs.  Without any additional way to make decisions, a purely ESVM detector must run every 

classifier on every ROI, which is not at all scalable and is prohibitively slow for any realistic use 

case.  Combining the accuracy of ESVM with the pre-filtering of HMAX is explored in [10] and 

can be shown to improve accuracy while reducing the number of classifiers, and therefore time 

and energy, needed to use the system.  This filtering is agnostic of higher level context, though, 

and the hope is that the use of ViCoNet can further improve this hierarchical filtering to improve 

both accuracy and efficiency. 

The Visual Co-Occurrence Network 

We implemented ViCoNet as a simple graph in C# to attempt to capture the sort of object 

relationships that we have previously discussed.  C#’s object oriented nature allows us to 

develop a simple graph relationship with the flexibility to later add in additional data items into 

the edges.  Additionally, C# provides an easy-to-use interface to hardware accelerators, which 

will be important as we move towards a hardware implementation in the future.  In Figure 4, 

ViCoNet’s specific relationship to the HMAX-ESVM pipeline can be seen.  The high-level goal 

is for ViCoNet to take the list of k = 20 candidates for a given ROI from HMAX, which has 

already been pruned down from our original 102 classes, and further reduce it based on high 

level semantic knowledge of our scene.  In Figure 4, ViCoNet is given to understand that the 

candidate image is in a chips aisle and can trim irrelevant items from the list and therefore 

prevent their ESVMs (greyed out) from being run.  However, this does lend itself to the 

important question of how we understand what aisle we are in, which will be addressed shortly. 
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Figure 4: ViCoNet's Location in the Pipeline 

Structure 

The structure of ViCoNet that we implemented is similar to the visualization in Figure 2.  

Each ESVM has a node in the graph that associates a count of appearances with the object.  We 

train ViCoNet on the previously detailed Pennsylvania grocery store database of 14 large, 

panoramic aisle images.  Edges are drawn between nodes if they have been seen within 1000 

pixels of one another, which corresponds to roughly a few feet with the size of our dataset.  This 

allows us to maintain relationships at a granularity of their location within an aisle, so that 

objects are neighbors of the objects close to them on the shelf, and related over several hops to 

all of the other objects further down the aisle.  Aisles do not overlap in our dataset, so the overall 

form of ViCoNet is a collection of disjoint subgraphs.   
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Figure 5: A Subsection of ViCoNet with Aisle Names 

Ideally, each aisle would be represented by a single subgraph, but as not every item in our 

images is annotated, there are situations in which the closest two items in a region of an image 

are over 1000 pixels apart.  We want to maintain an aisle as a contiguous level of categorization 

even if it is not spatially connected based on our metrics, so nodes are additionally tagged with 

the name of the annotation file from which they were taken so that it is possible to associate all 

subgraphs of a given aisle with one another.  Figure 5 shows a subsection of our trained ViCoNet 

corresponding to the soda aisle, generated from the GraphSharp library in C#.  A valid question 

would be how ViCoNet could possibly be trained in the real world and understand that 

subgraphs are part of the same aisle, and for the time being we assume that this will be possible 
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using some other method such as GPS or manual user interaction.  In the next chapter, we will 

address this concern more concretely. 

Testing 

ViCoNet is used within testing to improve the list of k = 20 candidates from HMAX by 

removing items that are unrelated to the current context.  However, this requires ViCoNet to 

discover the aisle in which the detections are taking place.  To do this, we perform object 

classification in two stages: stabilization and pruning.  For each aisle, we read in the annotations 

one after another.  Our pipeline is artificially aware of when a new aisle begins.  Stabilization 

takes place on the first 5 ROIs for each aisle.  For each of these five objects, the HMAX-ESVM 

pipeline gives a classification which, as we have seen, represents about 66% accuracy.  Our 

choice of 5 stabilization candidates was with the hope that this accuracy value would give us at 

least 3 correct values out of the 5.  ViCoNet takes these 5 objects and makes an aisle decision 

based on the most commonly occurring aisle in these classifications.  This may also not be the 

best way to make a decision, but as a first pass at implementation, we tried what seemed to be 

the most intuitive and simple way to decide.  With the aisle decision made, the pruning phase 

begins for ROI number 6 and onwards.  ViCoNet now observes each k = 20 candidate list from 

HMAX and prunes it to contain only objects in the current aisle.  Figure 6 shows a visualization 

of this process. 
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Figure 6: Stabilization and Pruning Stages 

Though this two-stage stabilization and pruning system works quite well on average and 

trims down the number of ESVMs to be run by more than 80%, it also resulted in an accuracy 

loss of almost 10%.  This is due to a phenomenon in which the aisle is mispredicted in the 

stabilization phase, resulting in 0% accuracy for all items in that aisle.  This is because if the 

correct item is present in HMAX’s candidates, it will be pruned out and the corresponding 

ESVM will not be run regardless.  A visualization of this can be seen in Figure 7, where the 

correct classification for the item (Mug Root Beer) is provided by HMAX but subsequently 

pruned out with the values in red by ViCoNet during the pruning stage, as it has mispredicted the 

soda aisle as the cookies aisle.  Our first attempt at addressing this was for us to increase the 

number of ROIs used to predict the aisle from 5 to 7, 9, and finally 11, with the hope that a larger 

number of potential decision candidates would yield better accuracy for the group overall.  We 

found that, for all of them but 11, our aisle prediction accuracy did not increase.  At 11, we were 
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able to guess only one additional aisle correctly, and it was really only because by chance the 

next two items happened to balance the guessing in our favor.  Additionally, taking more ROIs 

for stabilization inevitably makes the whole stage slower and would affect the end user who 

might be waiting for ViCoNet to stabilize and begin providing them with detections.  Clearly, 

there must be a better solution.  An important observation to be made here is that the stabilization 

guesses for these mispredicted aisles are somewhat random in appearance, and that our particular 

ESVM implementation always provides a classification, even if none of its detectors provide a 

score of any confidence.  In some situations, the classification is the result of a calculation in 

which the detector is ultimately performing a max operation on an array of 0 values, and 

whatever the first value is happens to be chosen. 

 

Figure 7: Aisle Misprediction and Faulty Pruning 

This misprediction stems from low confidence guesses on the part of the HMAX-ESVM 

pipeline.  To remedy this, we added thresholding to our stabilization phase.  Now, instead of 

taking the first five ROIs, we only take those whose ESVM detection score is above a certain 

absolute threshold and put any “unknowns” back into the testing queue.  We found that this 

resulted in no aisles being mispredicted.  Realistically, we would probably have to just throw out 
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unknown ROIs, but here we wanted to evaluate the system without much variation between its 

implementations.  One interesting consequence of this is that, for one aisle, there are not enough 

confident detections to ever stabilize.  In that case, we simply run all the detectors corresponding 

to the k = 20 from HMAX, so it is essentially returning to the behavior of the HMAX-ESVM 

pipeline alone. 

Thresholding fixed the issues that can occasionally arise from ESVM’s imperfect 

accuracy.  However, HMAX can also cause problems with its own lack of accuracy.  In some 

situations, we saw that ViCoNet could correctly guess the aisle, but within the pruning phase the 

correct item was not present in the k = 20 from HMAX, so even with the correct aisle, we are 

still not running the correct detector.  To counter this, we split the operation of ViCoNet into two 

different modes: passive and active, which can be seen in Figure 8. 

 

Figure 8: Passive and Active Modes 

Passive mode refers to the operation as we have already seen, in which k = 20 candidates 

from HMAX are pruned after stabilization decides on an aisle.  In active mode, we perform 

stabilization as we have seen, but instead of then taking the results from HMAX and pruning 

them, we run all of the detectors corresponding to a given aisle.  This results in a higher number 
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of detectors being run, as would be expected, but it also remedies the problem of HMAX not 

providing us the correct answer in the candidate list, and in the case of proper aisle prediction, 

guarantees that we will run the detector corresponding to the object in question. 

Results 

The results for this simple implementation can be seen in Table 2.  We performed 

evaluations on the active and passive implementations both with and without thresholding (-Th) 

and compared them to the accuracy of the classifiers alone and the baseline ESVM-HMAX 

pipeline.  Note that the accuracy for HMAX alone refers to the accuracy of the top k = 1 guesses.   

System Avg. Accuracy Avg. No. of Classifiers 

HMAX 35.42% 1 

ESVM 67.90% 102*Exemplars 

ESVM-HMAX 66.05% 20*Exemplars 

ViCoNet-Passive 57.01% 3.85*Exemplars 

ViCoNet-Active 59.56% 17.18*Exemplars 

ViCoNet-Passive-Th 71.93% 3.91*Exemplars 

ViCoNet-Active-Th 77.43% 13.21*Exemplars 

Table 2: System Evaluation 

We first see that the non-thresholded results are better in terms of the number of 

classifiers and therefore performance and power consumption, but significantly worse in 

accuracy.  This is as a result of the aisle misprediction problem and was what suggested the 

thresholding idea.  Upon implementation of the threshold, we see a marked improvement in both 

accuracy and detector reduction in both the active and passive cases.  As expected, the active 

case does run more detectors than the passive but additionally sees an accuracy increase as a 

result of bypassing the inaccuracy of HMAX. 
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The tradeoff between accuracy and number of exemplars between active and passive can 

be considered in terms of the desired application.  For example, a low-power device might prefer 

the more conservative passive approach to avoid the energy associated with running so many 

detectors.  A different device with less power concerns might opt for the accuracy increase from 

the active case instead.  These results demonstrate that even our simple implementation of 

ViCoNet, which did not even make use of the frequency or aisle location information and pruned 

instead of using probabilistic weighting, was able to demonstrate very concrete results. 

Effect of Object Hierarchy 

In this first experiment, we saw that a simple exploitation of context was able to improve 

both performance and accuracy.  However, our experiment revealed some issues with the nature 

of our pipeline and with the data as a whole.    As previously mentioned, the ESVM confidence 

thresholding that we introduced prevented any aisles from being mispredicted, but introduced the 

new problem of aisles remaining unknown due to a lack of usable information.  Additionally, 

certain classes tend to have a low detection score through ESVM in general.  Soda in particular 

consistently gets low detection scores, likely because of the similarity between the different 

objects in a soda aisle.  Table 3 shows the average classification rates per aisle in both the 

passive and active cases (with thresholding) from the previous experiment to demonstrate the 

non-uniform nature of aisle classification accuracy.  Since these aisles are related through very 

clearly established higher-level semantic object relationships, we now consider the fact that it 

may be possible to improve detection scores specifically for some of the lower-performing aisles. 
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Average Aisle Classification Accuracies 

Aisle Passive Active 

Cereal 88.5% 95.6% 

Cleaning 73.6% 89.8% 

Coffee 71.1% 79.3% 

Condiments 60.8% 85.4% 

Cookies 61.7% 56.8% 

Dental 47.5% 84.3% 

Juice 15.0% 15.0% 

Pasta 79.2% 76.7% 

Sauce 74.3% 80.0% 

Soda 44.4% 55.9% 

Storage 66.3% 73.6% 
Table 3: Classification Averages 

Looking forward, our goal is to create a network that can represent the manifold complex 

relationships between objects with which we are familiar day to day.  One basic type of 

relationship is a hierarchy of categories of object.  For example, our “Pepsi Soda Bottle” and 

“Fresca Soda Bottle” could be considered part of a larger group of objects known simply as 

“Soda Bottle.”  This type of hierarchical semantic clustering has been explored in depth in 

Princeton’s WordNet database, which also demonstrates the complicated nature of this problem. 

[12]  We do not make use of the WordNet API in this simple extension to our experiment, but it 

might represent a good opportunity to extract hierarchical mappings in the future.  The mapping 

of objects to groups is not clearly defined or strictly hierarchical, if we consider it in all the forms 

that humans group objects, but the task becomes slightly simpler if we focus on creating 

groupings that help us overcome issues in our visual pipeline.  Starting out, it is not immediately 

obvious what groupings will fulfill this criteria, but it does give us an objective way to measure 

whether a chosen grouping methodology is worthwhile.  To begin, we believe that if we group 

our objects by their similarity, we think that this may improve our detection scores either by 

reducing noise in test sets through similarity of candidate item shapes.  It may also help because 
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accuracy will likely improve when the number of candidate items for a given ROI decreases.  

We saw in the passive pruning case from our experiment that lowering the number of detectors 

that need to be run on a given ROI seems to increase accuracy on average, so our hope is that 

pruning not just by aisle but additionally by shape may improve the accuracy further. 

To evaluate this, we attempted to build on our results from the soda aisle.  With an 

average ESVM confidence of 56% in the active case, it was not quite the worse aisle.  Juice had 

a stunningly bad confidence of 15%.  However, the juice aisle predictions were so bad that we 

did not have enough confident predictions to stabilize in the aisle at all.  For our purposes, we 

wanted an aisle in which we stabilize correctly, but the detection scores are low, allowing us to 

exploit knowledge of possible object shape groupings within the aisle.  However, lack of locality 

information could potentially also be exploited within this hierarchical system as well, and we 

discuss some ideas related to the juice aisle issues at the end of this chapter. 

Within the soda aisle, we believed that the lower detection scores could potentially be 

mitigated by lowering the number of classes that needed to be run.  There are 13 classes within 

this aisle, which fall into three distinct shape categories.  The breakdown is shown in Table 4 

below. 

 

 

 

 

 

 



32 

 

 

 

Shape Category Class Name 

Soda Bottle Pepsi Soda Bottle 

 Coca Cola Soda Bottle 

 Fresca Soda Bottle 

 Mug Root Beer Bottle 

 Sprite Soda Bottle 

 Diet Pepsi Soda Bottle 

Soda Can Coca Cola Soda Can 

 Dr Pepper Soda Can 

 Pepsi Soda Can 

Soda Pack Coca Cola Soda Pack 

 Dr Pepper Soda Pack 

 Sierra Mist Soda Pack 

 Crush Soda Pack 

 Mountain Dew Soda Pack 
Table 4: Soda Aisle Class Groupings 

 

We believed that running the detectors in a given grouping on an ROI as opposed to all 

14 in the entire aisle would give better accuracy.  This does rely on the assumption that it is 

possible for us to detect this shape in the first place, which is not a negligible assumption.  

However, the success of this experiment will motivate our desire to move forward in attempting 

to develop such a shape detector.  We ran each grouping of detectors on each ROI separately and 

pooled the results, which can be seen in Table 5 ordered by ascending accuracy when grouped by 

shape. 
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Class Name Ungrouped Accuracy Grouped Accuracy 

Fresca Soda Bottle 0.0% 0.0% 

Sierra Mist Soda Pack 75.0% 0.0% 

Sprite Soda Bottle 0.0% 16.7% 

Pepsi Soda Bottle 22.6% 32.3% 

Mug Root Beer Bottle 0.0% 33.3% 

Coca Cola Soda Can 61.5% 69.2% 

Coca Cola Soda Bottle 0.0% 70.0% 

Diet Pepsi Soda Bottle 35.0% 85.0% 

Dr Pepper Soda Can 85.7% 100.0% 

Pepsi Soda Can 100.0% 100.0% 

Coca Cola Soda Pack 0.0% 100.0% 

Dr Pepper Soda Pack 63.6% 100.0% 

Crush Soda Pack 100.0% 100.0% 

Mountain Dew Soda Pack 77.8% 100.0% 

AVERAGE 44.4% 64.8% 
Table 5: Ungrouped and Grouped Accuracies 

The results from this table are excellent!  We see that every class except Sierra Mist Soda 

Pack benefits from this system with accuracies improving greatly for the most part.  When 

exploring the reasons for this further, we find that the individual detection scores for classes do 

not improve.  However, filtering by shape means that we end up removing some classes that act 

as false positives.  Based on a deeper look at the results for Sierra Mist, it appears that the 

detector for this particular class was not firing most of the time in either the grouped or the 

ungrouped cases, and that this meant that the pipeline was performing a max operation on a set 

of 0s from the ESVMs, and in the ungrouped case, the 0 that was first that was selected 

essentially at random just happened to be the correct one, leading to a falsely high accuracy.  In 

the second iteration, this was not the case simply by chance.  This issue of running a max on all 

0s suggests the necessity of an additional provision to avoid having such a problem in the future 

unrelated to the benefits reaped from the grouped approach, which is implemented in [10] as an 

“unknown” output from the pipeline and might be added here as well to handle that case.  
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Overall, these results do not necessarily confirm that hierarchical grouping works, but they 

certainly suggest that the matter is worth additional exploration. 

 

Figure 9: Example of Hierarchical Relationships 

When considering all of this in the context of object relationships, and especially when 

trying to compensate for the relationships between objects in different scenes, these hierarchical 

results may ultimately lead us to a classifier decision tree like we see in Figure 9.  Previously, the 

number of classifiers that we run on a given ROI was determined by either the pruned k ≤ 20 we 

get from HMAX or the total number of classifiers for a given aisle based on whether we are in 

passive or active mode, which may not necessarily be the most likely subsets of classifiers for an 

ROI.  If we were to arrange objects hierarchically, this would instead become a function of the 
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height of the tree.  Each level of the tree could represent a particular granularity of object at a 

level that could be reasonably detected with ESVMs (object shape), inferred from ViCoNet 

(scene information), or extracted from the image in another way, allowing us to trim our results 

not to just a list of objects but instead to a specific subtree of relationships.  This could 

potentially reduce the number of classifiers to be run if we can obtain meaningful accuracies to 

reliably prune the tree.  In the soda case, for example, we run 14 classifiers on all soda products 

if we do not have any more specific filtering information.  However, with a reliable shape 

detector, we could run 3 classifiers to determine the subcategory, plus 6 more in the worst case 

(bottle) leaving with us with at least 5 fewer detectors run overall. 

We have previously discussed the open-ended issue of exactly how we will know what 

aisle we are in.  This could potentially address that problem by giving us a way to “brute force” 

item detect to help us determine context.  If we could create shape detectors on a high enough 

level that we could feasibly detect all of these higher level shapes without any aisle context and 

at reasonable computational expense, we could potentially narrow down the detection space 

quickly for objects in unknown aisles, allowing us to stabilize faster and more accurately.  This 

would depend on the assumption that the tradeoffs with regards to accuracy and performance 

were in favor of the decision tree over the ESVM-HMAX pipeline.  However, the results in this 

small experiment suggest hopeful things about the efficacy of hierarchy that might make such a 

comparison worth exploring. 

Additionally, this hierarchical grouping could help us in the previously mentioned 

unpredictable aisles problem.  For example, we found that the confidences for the juice aisle 

were so low that, out of all of the ROIs in the aisle, there were only two that passed our 
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“unknown” threshold.  To remedy this, we simply left the test ROIs in that aisle unchanged, 

which essentially meant that they used the HMAX-ESVM pipeline for their detections with no 

semantic context.  However, if the noise being introduced in our classification really is from the 

confusion related to the similarity between objects, it might be that a set of higher-level detectors 

might be the answer.  Consider, for example, if we forwent running any “leaf” detectors—i.e. 

specific products like “Ocean Spray Juice Bottle”—and instead ran all of the higher level product 

category detectors, such as “Juice Bottle”, “Tomato Sauce Jar”, and others at that granularity, 

which would inevitably be a smaller number of detectors as well.    Perhaps we can’t determine 

on a first pass if a given item is a specific juice brand due to this noise, but if these more vague 

shape detectors can demonstrate higher accuracies, we might be able to identify that the 

previously “unknown” ROIs are juice bottles or juice boxes, which will still allow us to stabilize 

to the juice aisle and allow ViCoNet to begin running the correct subset of detectors. 

Though this single experiment doesn’t prove whether hierarchical grouping effectively 

increases our accuracy, it does open the door to additional experiments.  However, as previously 

discussed, the applications for successful hierarchical detection schemes could possibly address 

some other issues we have encountered.  At the time of writing, we still consider this to be a 

work in progress.   
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Chapter 5  
 

A Dynamic Learning Approach to ViCoNet 

Until this point, our work on ViCoNet has focused on a static, offline model in which 

ViCoNet is trained first and on annotations, which is to say ground truth, before it is used.  This 

allowed us to be certain that our object relationships were valid and to verify if such relationships 

would be useful in the pruning stage.  However, this builds on a host of assumptions that will 

need to be addressed as we move forward with our implementation. 

 When training our ViCoNet, we assume that the data in our annotation files is correct, 

since we’ve manually annotated them ourselves.  However, ideally ViCoNet should be learning 

at all times from the detections that the pipeline performs, and these will not always be accurate, 

as we have seen.  Without the ground truth available, we can’t be sure which detections are right 

and wrong without pestering the user, which we’d like to do infrequently, if at all.  This means 

that we have to assume our pipeline is at least mostly correct as it provides us with detections 

and allow ViCoNet to learn both the good and the bad, and hope that in the long run that we will 

generally be right more frequently than wrong and that the incorrect connections can be pruned. 

Our previous version of ViCoNet was also entirely static, being trained before any testing 

took place and not learning any relationships based on the results of our test detections.  This 

means that we are losing the potentially useful information that we gather through our process of 

classification.  The relationships between objects change over time, and ViCoNet should be able 

to learn these new relationships and re-weight the likelihood of objects.  For example, a user 

might find that a store has been rearranged.  Their device should be able to learn the new layout 

of the store.  However, it should also be resilient enough to avoid false positives in restructuring.  
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A single misplaced item should not reweight all of the expectations learned over a longer time 

and learned relationships that prove to be extraneous over the long run should eventually be 

pruned away. 

Finally, we perform all training in the previous chapter before any testing.  However, a 

real life implementation of ViCoNet would likely be built incrementally, especially if it was 

being built from the ground up.  This means that we should expect to see ViCoNet’s prediction 

ability increase as it learns more. 

In this chapter, we redefine our approach to ViCoNet by looking at in the context of a 

more interactive vision pipeline.  We attempt to interleave the training and testing stages into a 

single, continuous cycle mimicking a shopper walking through a store.  The rough idea of 

ViCoNet is still the same, as we are still attempting to capture and report object relationships.  

However, the structure of and interactions with ViCoNet are very different. 

ViCoNet Testing Vehicle 

The code for this implementation of ViCoNet is entirely separate from that used in 

Chapter 4.  We are still working in C# for the same reasons explained in Chapter 4, but many 

things have changed.  ViCoNet now runs as part of a larger “vehicle” representing something 

akin to a device containing its data structures and the HMAX-ESVM pipeline as well.  The 

vehicle for ViCoNet stores its information in XML format, the rough structure of which is shown 

below.  The actual relationships stored in ViCoNet are learned from the deserialization of these 

files, described more fully in the methodology section below. 
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Figure 10: Example of XML format 

Within this format, there is a list of classes which corresponds here to the 102 classes 

used in the experiments in the previous chapter.  There is also a list of scenes, each of which 

represents a single image.  Within a scene is some information about the image along with a list 

<ViCoNetDataset> 

 <Classes> 

  <Class ID="0" Name="Class 0" />  

  <Class ID="1" Name="Class 1" />  

  <Class ID="2" Name="Class 2" />  

  <Class ID="3" Name="Class 3" />  

  <Class ID="4" Name="Class 4" />  

 <Classes>  

 <Scenes>  

  <Scene>  

   <Image>datasets/viconet/images/scene1.jpg</Image> 

   <Label>Scene Label</Label> 

   <Width>1920</Width>  

   <Height>1080</Height>  

   <!-- Height may not be strictly needed, but why not! -->  

   <Objects>  

    <Object>  

     <Location>  

      <X>0</X> 

      <Y>0</Y> 

      <Width>50</Width>  

      <Height>50</Height>  

     </Location>  

     <Classification>      

      <Ground_Truth>  

       <Truth Index="0" /> 

      </Ground_Truth>  

      <RLS_Responses>  

       <RLS Class="0" Response="0.5" />  

       <RLS Class="1" Response="0.5" />  

       <RLS Class="2" Response="0.5" />  

       <RLS Class="3" Response="0.5" />  

       <RLS Class="4" Response="0.5" /> 

      </RLS_Responses> 

      <ESVM_Responses> 

       <ESVM Class="0" Response="0.5" />  

       <ESVM Class="1" Response="0.5" />  

       <ESVM Class="2" Response="0.5" />  

       <ESVM Class="3" Response="0.5" />  

       <ESVM Class="4" Response="0.5" /> 

      </ESVM_Responses>  

     </Classification> 

    </Object>  

     <!-- Multiple objects in each scene -->  

   </Objects> 

  </Scene>  

   <!-- Multiple scenes -->  

 </Scenes> 

</Dataset> 
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of objects within the scene.  In the previous implementation, we drew an edge between nodes in 

ViCoNet if they were less than one thousand pixels apart, which was a very dataset-specific 

decision boundary.  Here instead we change our edge-drawing criteria to whether or not objects 

appear in the same scene with one another without worrying about distance.  These objects are 

still based on our annotations from before and the ground truth is available, but it is only used for 

accuracy calculation.  Each object additionally contains information about its location and the 

confidence results of classification for this ROI through HMAX/RLS and ESVM, which allows 

ViCoNet to take advantage of the confidence scores, something it previously could not do.  The 

previous version of ViCoNet was disconnected from the details of the pipeline, so our hope is 

that a closer integration with the pipeline may yield more precise prediction results.  

Additionally, simulating the entire pipeline in software allows us to experiment with the precise 

interactions between HMAX and ESVM, which was not nearly as simple before. 

Dataset 

This new format changes our previous concept of aisles into a more easily generalizable 

idea of a scene, which in this implementation represents a single image.  Part of the goal with 

this implementation is to make the results of Chapter 4 more generalizable, and a crucial first 

step is to replace the retail-specific concept of discrete aisles with general scenes.  This means 

that our training grocery dataset, consisting as it does of 14 images corresponding to one 

panoramic aisle image each, cannot be used.  Our test dataset, however, contained various 

images that are not grouped by their aisle type.  Each image is a picture from only a single aisle, 

but no one image contains all of the important relationships between all objects in an aisle.  
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Some example images from each dataset can be seen in Figure 11, showing the difference 

between the much smaller segments in A versus the entire aisle in B.  For this reason, we have 

chosen to work with the test dataset. 

 

Figure 11: Differences between training and test datasets 

Methodology 

In Chapter 4, we split our training and testing into two distinct phases, the latter of which 

was additionally split into calibration and pruning phases.  As previously mentioned, having 

separate training and testing phases leads us to discard potentially valuable new relationships 

learned during testing.  Additionally, the split between calibration and pruning required us to 

know exactly when we had entered a new aisle, which is a nontrivial issue.  Since our goal is 

now to address some of these concerns in a practical way and we are abandoning aisle-level 

granularity, Dynamic ViCoNet treats all of these distinct phases as a continuum. 
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Our goal is to simulate a person walking through a store, building their ViCoNet 

incrementally, and occasionally stopping and querying ViCoNet for a classification on a specific 

item.  We therefore establish two modes of functionality: “learning”, in which we use the 

HMAX-ESVM results alone to populate ViCoNet, and “querying”, in which we use our 

knowledge of the current scene and existing object relationships to weight the HMAX-ESVM 

results and hopefully achieve better accuracy.  This should allow us to compare the performance 

of the pipeline with or without ViCoNet, as before.  Additionally, we can now explore the 

efficacy of ViCoNet with regards to time, with the hypothesis that it should improve in later 

scenes as we learn more relationships. 

Given the XML dataset format shown above, ViCoNet parses one scene at a time.  

Within a scene, it goes object-by-object with a 5% chance to enter querying mode on any given 

object.  For our purposes, learning happens much more frequently than querying on the 

assumption that a user walking down an aisle will stop and look at items somewhat infrequently 

on average.  However, this number is not based on any particular empirical measurement. 

In the learning stage, we take the top k = 20 results from HMAX/RLS and choose 

whichever has the highest ESVM score, duplicating the basic pipeline from [10] and Chapter 4.  

This value is added to a list of objects to be added to the scene, which are added as a group once 

all objects in the scene have been processed.  This group adding is important, as ViCoNet needs 

to know which objects are related to one another.  For this reason, Dynamic ViCoNet is also 

stateful with regards to our current scene.  This state both corresponds to and eliminates the need 

for the results of the stabilization phase in the previous version of ViCoNet.  Unfortunately, in 

losing our aisle knowledge “oracle”, we also lose the absolute listing of all products in an aisle, 



43 

 

so depending on how connected certain objects are, ViCoNet’s state may not be a comprehensive 

listing of relationships in an aisle.  However the hope is that over time, enough relationships 

within an aisle will be established to improve this predictive ability. 

The querying stage is slightly more complicated.  We begin by adding any objects that 

have been seen already in the same scene, if any, into ViCoNet, both establishing our state and 

taking advantage of any contextual relationships they may expose.  Then, we use the HMAX-

ESVM pipeline, augmented with ViCoNet, to perform what we hope will be an improved 

prediction on the current ROI.  A diagram of the high-level differences between the two types of 

behavior can be seen in Figure 12. 

 

Figure 12: Learning vs. Querying Behavior 

First, the vehicle queries ViCoNet for the top n candidates a given ROI at a max distance 

of h hops based on its current context.  If this particular ROI is the first in the scene, which 

means there is no context yet for ViCoNet to use, it simply performs detection using the HMAX-
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ESVM pipeline without ViCoNet.  However, we still count this detection as part of the HMAX-

ESVM-ViCoNet detection statistics.  If there is context, ViCoNet builds a candidate list as 

illustrated in Figure 13.  The overall scheme for this list-building is to take the top n candidates 

with the highest probability, and the calculation of the values in the table in Figure 13 will be 

discussed as the process is explained. 

 

Algorithm 1: ViCoNet Candidate Selection 

The overall candidate generation process is implemented as a simple greedy algorithm, 

shown above.  We choose up to n classes in order of their probability with the additional 

constraint that the nodes must be within h hops of the current context, a value which can be set to 

infinity if desired.  N is the name we use for the set of nodes in the current context, also referred 

to as the “core” nodes.  C is the list of candidates being built incrementally.  To understand this 

more fully, we must define the value of the probability of a node.  For nodes in the current 

context N, we define the probability with Equation 1 below.  The value of the function w(n) is 

the weight of node n, which corresponds to the number of times that n has been seen.  Roughly 

speaking, the probability of a core node is the ratio of its appearance count to the sum of the 

appearance counts of all nodes in the context. 
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Equation 1: Probability of a Core Node 

 

For nodes not in the core, we define their probability to be based on the edge through 

which we reach them.  Each edge contains a count that represents the number of times that the 

destination node has been seen with the source.  The probability of an edge is defined below in 

Equation 2 as the weight of the particular edge from source node i to destination node j divided 

by the sum of all outgoing edges from node i. 

 

Equation 2: Probability of Node j from Node i 

This solidifies what we mean by the probability for a given edge, but a single edge does 

not fully represent the probability associated with a node, especially since candidate nodes may 

be multiple hops from the core nodes.  We define the path P to a node as the set of nodes through 

which we reach it, as shown in Equation 3 below.  The first node in this set must additionally be 

in the current context.  We additionally define the set P as the set of all paths to a given node for 

simplicity, as some nodes may be able to be reached multiple ways from the context. 
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Equation 3: Definition of Paths 

Now we can define what we mean by probability for nodes not in N.  As previously 

mentioned, we consider probability to be edge- and therefore path-dependent.  The probability 

for a path is defined below as the probability of each node in the path multiplied together.  This 

means that we use Equation 1 for the first node, which by definition must be in N, and then use 

Equation 2 for the others.  The probability for a given node, then, is the maximum probability of 

all the paths that lead to it. 

 

 

Equation 4: Probability of a Path 

The specific definition of the probability as the edge weight divided by the sum of edge 

weights leads to some convenient properties that make the algorithm more efficient to 

implement.  At first, this may seem like a variation of Dijkstra’s algorithm in which we must 

calculate the value at any given point before we can begin our selection.  However, the 

probability definition means that the sum of outgoing probabilities from a given node is equal to 

one, and consequently that all probabilities along a spanning tree from a given node will be less 
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than or equal to the probability of the node itself.  This monotonically decreasing feature of the 

probability means that we can solve this with a simple greedy algorithm. 

 

Figure 13: How ViCoNet Calculates Probabilities 

Figure 13 shows an example intended to demonstrate the algorithm visually and show 

some important features of the decision process.  For example, the probability of Mountain Dew 

Soda Pack can take on two values depending on which path we use to reach it.  With regards to 

Fresca Soda Bottle, the edge probability is 3/(3+2) = 3/5.  With regards to Coca Cola Soda 

Bottle, it is 1/(1+1) = ½.  In addition, we consider these values in the context of the source node 

probability, leading to two final choices of (8/24)*(3/5) = ½ for Fresca Soda Bottle and 

(6/24)*(1/2) = 1/8 for Coca Cola Soda Bottle.  We take the max of these two possibilities.  

Another illustrative example is that of Mtn Dew Code Red Soda Bottle, which is an additional 

hop removed from the other nodes.  Its probability is calculated as p(Pepsi Soda Can)*p(Coca 

Cola Soda Bottle)*p(Mtn Dew Code Red Soda Bottle) = (10/24)*(4/7)*(2/6) = 5/63. 
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This entire context retrieval algorithm is based on what is at its core an inherently flawed 

way to reason about object relationship probabilities.  On our dataset, we believe it does not 

cause a major problem because the number of annotated ROIs for each class is relatively even.  

However, this particular probability model exhibits overfitting on datasets exhibiting asymmetric 

representation of objects.  For example, the initial ranking of context nodes by their appearance 

probability is based on the assumption that an object’s statistical appearance count in previous 

scenes is proportional to its probability of future appearance.  This appears to hold true in our 

dataset, but is an important consideration for future work. 

 

Figure 14: Active vs. Passive Modes 

Once the test vehicle has this candidate list, it makes use of it in one of two modes: active 

or passive, similar but not identical to the corresponding modes in the previous implementation 

of ViCoNet.  In passive mode, we take the intersection of this set of candidate nodes with the top 

k from HMAX, essentially pruning the HMAX guesses to a subset that pertains to our current 

context.  In active mode, we don’t look at the HMAX results at all and instead use all n from 

ViCoNet, giving us a larger number of classifiers to run, but potentially better accuracy.  A 
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visualization of this can be seen in Figure 14.  Finally, we run the ESVM classifiers associated 

with this subset and take the maximum response. 

Results 

We evaluated Dynamic ViCoNet’s performance with regard to a variety of variables, 

some of which have been mentioned earlier in this chapter.  As our goal is to compare to the 

results of chapter 4’s ViCoNet implementation, we set k = 20 again so we can duplicate the base 

pipeline performance of HMAX as seen in Figure 3 and Table 3.  It is also important to keep in 

mind that the goal of this new implementation was to do away with what we consider unrealistic 

behavior, such as the complete population of ViCoNet with ground truth data before any testing 

begins, so we do not expect to see results improving on the previous implementation.  Our goal 

is rather to preserve an advantage over the base pipeline in the face of these new and more 

realistic changes to the overall pipeline.  Each experiment was run twenty times and averaged.  

We set the chance to enter querying mode as 5%, as mentioned before.  We run both passive and 

active modes over a range of values of n and maximum hop count and report the configuration 

that gave the best accuracy with ViCoNet.  Additionally, we provide the results from a ViCoNet 

trained on only the ground truth information instead of the results of the detection pipeline to 

establish a theoretical upper bound and see how much of an effect the imperfect detections have 

on accuracy.  For the configuration with the best accuracy, we also present graphs showing the 

relationship of accuracy and number of classes to the values of those variables.  Finally, we show 

a histogram of the distribution of correct predictions over time for the best accuracy to explore 

whether ViCoNet becomes more accurate over time as it learns. 
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System 

Configuration 

Value 

of n 

Maximum 

Hops 

Average 

Querying 

Accuracy 

Average 

number 

of 

classes 

passive 10 0 66.4% 4.02 

active 25 0 71.8% 4.82 

passive-gt 30 3 84.0% 1.22 

active-gt 15 Infinite 96.9% 2.15 
Table 6: Best Accuracy Results for Different Configurations 

Table 6 shows our results and demonstrates some interesting trends.  The base HMAX-

ESVM pipeline provides us with the 65% accuracy established in the previous paper.  The 

average number of classes refers to how many classifiers are run on average per class within the 

querying stage.  In the learning stage, it is always 20 because that is the value of k that we take 

from HMAX.  In querying, it is either the size of the intersection of the k = 20 from HMAX and 

the n from ViCoNet in the passive pruning case, or the size of n from ViCoNet in the active case.  

It is not, however, always n, as ViCoNet does not always, or even usually, return exactly n.  

Most of the time there are substantially fewer nodes reachable from the current context.  We see 

here that querying can provide a small increase in accuracy over the baseline 65%. 

As might be expected, we see that active mode tends to perform better than passive, but 

that the number of classes is higher in active.  The explanation for this phenomenon is the same 

as it was in Chapter 4.  Additionally, we see that the number of classes is always substantially 

better than the constant 20 in the learning case.  The best accuracy appears when we are in active 

mode with n = 25 and max hops set to 0.  This is also the querying case in which we use the 

most classes for classification.  However, it is still less than 25% of what we use in the learning 

case.  To further explore the results, let’s look at the effect of n and max hops on the accuracy 

and number of classes used. 
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Figure 15: Classification Accuracy for active 

Here we see what might be a surprising trend: the accuracy drops off precipitously as the 

value of max hops increases.  The largest value on that axis corresponds to max hops being set to 

infinity.  After some careful debugging, we found that the reason for this is because the pipeline 

can only provide us 65% accuracy when we are learning.  In this stage, ViCoNet absorbs a great 

deal of noisy and inaccurate relationship information, as the HE pipeline is not terribly reliable.  

We see the highest accuracy when max hops is 0, which corresponds to ViCoNet only choosing 

nodes in the current context. The nodes in the current context are inevitably affected by this 

noisiness as well, but as soon as we begin to look at the neighbors of the nodes in the context 

(max hops 1 or greater), the nodes are now affected both by the correct classification of the 

context nodes as well as the correct classification of their neighbors in previous settings.  Each 

hop that we go out past the context multiplicatively worsens the probability of correctness by 

70% in the best possible scenario, leading to bad accuracy even at one hop.  The relationships 

learned by ViCoNet break down quickly, and for the most part, the neighbors learned don’t make 
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a great deal of sense.  We also see here that higher values of n seem to slightly improve the 

accuracy, but the relationship of n to the accuracy is much weaker.  This also makes sense, as 

taking more nodes from ViCoNet makes it more likely that the correct node will be selected. 

 

Figure 16: Average Number of Classes for active 

In Figure 16, we look at the relationship between the average number of classes and the 

values of n and max hops.  The relationships here are sensible, if not terribly enlightening.  The 

number of classes increases as n increases, as we are asking for more nodes from ViCoNet.  

Additionally, the value of max hops affects the number of classes, as there may not be n nodes 

located within a certain number of hops.  We also see that, after 3 hops, we seem to have reached 

a plateau, as the infinite hops value isn’t much larger.  This means that, within our particular data 

set, most nodes tend to be accessed within two or three hops of the core, which might help 

provide some insight about the structure of ViCoNet and may allow max hops to be selected both 

for energy and memory concerns. 



53 

 

 

Figure 17: Histogram of Accuracy over Time for active 

 

Figure 18: Histogram of Accuracy over Time for active-gt 

Finally, we look at the temporal effect of classification.  We expected that the accuracy 

would increase over time as ViCoNet is able to learn better relationships and improve its 

understanding.  However, we see the exact opposite happen!  The histograms here show the 

number of times that the pipelines got a particular detection right over 20 runs, so a value of 20 

means that it was correct each time and is the best possibility.  For the active case, we see that 

the results begin to obviously drop off fairly quickly, which does not happen in the active-gt 

case.  In the active case, this is the effect of ViCoNet learning bad relationships or context 

information from its HEV results.  We might expect the active-gt case to demonstrate the 
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increasing accuracy trend that we originally hypothesized, but the accuracy is so close to perfect 

to begin with that there isn’t much room for growth.  Additionally, our dataset exhibits the 

property that objects tend to appear more than once in an image, so taking only the context nodes 

is often good enough if we have correctly classified them.  Though undesirable in the active case, 

these results show the importance of trying to mitigate noise and bad relationships in ViCoNet, 

as over time they compound and begin to hurt accuracy. 

 This exploration of a Dynamic ViCoNet allowed us to take the proof of concept 

experiment introduced in Chapter 5 and make it more realistic by injecting noise into what was 

previously ground truth data.  In doing this, we purposely made the problem more difficult to 

solve and saw that ViCoNet still helps to improve the classification accuracy, even when it learns 

its relationships from the HMAX-ESVM pipeline that only provides 65% accuracy.  When we 

consider training ViCoNet, it may not be unreasonable to consider training it on ground truth 

data at least in the very beginning so that it can start with the best accuracy which will only help 

ViCoNet as it continues to learn.  Specifically within retail, for example, a store may have a 

planogram of the various products and their corresponding locations available that could be used 

to pre-weight ViCoNet before a user begins to shop.  An important next step here might be to 

find a way to improve the basic pipeline accuracy, as ViCoNet can only be as intelligent as the 

information on which it is trained.  Additionally, exploring ways to prune “bad” data out of 

ViCoNet might be a valuable exercise.  Overall, this experiment demonstrates that using high-

level semantic context can improve accuracy and energy consumption and is surprisingly robust 

even with a great deal of noise in its knowledge.   
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Chapter 6  
 

Conclusions and Future Work 

The work we have begun on this idea is only the beginning.  Our explorations have been 

narrow in scope and limited by things such as the lack of large datasets annotated with a fine 

enough granularity to make use of visual co-occurrence context.  Additionally, our actual 

implementations of ViCoNet were quite simple when considering the flexibility to add many 

more types of data into the relationships.  In Chapters 4 and 5, we sought to demonstrate how 

this context information can be useful, even at an extremely basic level of filtering.  In this 

chapter, we discuss some of the ideas we have considered going forward, both through 

brainstorming and also through related works, and consider how they might be represented in 

ViCoNet and what effect they may have on our decision making. 

Color HMAX 

Currently, our HMAX implementation is in greyscale for simplicity, but color can be a 

simple and extremely effective way to filter certain objects.  For example, we can be quite sure 

that an object that is bright blue is not an orange or a strawberry, and we can therefore filter out 

objects like that, even if they might share other visual characteristics with the object being 

identified.  Additionally, within our retail setting there are certain aisles with particularly low 

detection results, such as Soda, as explored at the end of Chapter 4.  Most soda bottles are a 

fairly uniform shape and additionally how some labels, like Pepsi and Diet Pepsi, are almost 

identical except for their color differences, the addition of color within the pipeline could 
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potentially boost base detection scores in the base ESVM-HMAX pipeline even before any sort 

of hierarchical support is added, which in turn can only help ViCoNet stabilize more accurately 

and provide better context support. 

One specific example of Color HMAX can be seen in [13].  This system is founded on 

the assumption that focusing only on the texture and shape pathways of the neural cortex, as is 

the case in the original HMAX, means neglecting channels within the brain that might yield 

useful information.  When evaluated on a dataset of traffic signs, which is dataset demonstrating 

a great deal of similarity in terms of shape and texture of different classes, the authors were able 

to demonstrate improvement over standard HMAX with the additional observation that the 

detection scores were lighting-invariant.  Though this change would not directly affect ViCoNet, 

the addition of color could improve HMAX’s accuracy, leading to higher confidence in initial 

scene stabilization and allowing ViCoNet to provide more accurate information.  Additionally, as 

we saw in Chapter 5, the base pipeline’s low accuracy caused ViCoNet’s learned relationships to 

be fairly unhelpful, so this could be one step towards addressing that problem. 

Spatial Relationships between Items 

 We have established that the relationships between the abstract representations of a pair 

of objects may vary based on certain variables such as the scene in which they are present.  

Within a scene, these relationships may additionally be related by the relative spatial positions of 

the objects to one another.  Consider the simple example of what objects you would expect to see 

above a tree in an image as opposed to those you would expect to see below it or nearby on the 

ground.  In [14], the authors explore this idea of spatial relationships with regards to the structure 
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of a human face.  The paper focuses on the details of the vision algorithm which are not as 

important to ViCoNet, but demonstrates that both a reduction in problem dimensionality and 

improvement in accuracy of face detection. 

 In a retail setting, for example, this sort of information could be used in a task-based 

scenario where we detect an item that we know tends to be above the item we are seeking, and a 

cue could be provided to the user to look or reach in the appropriate direction.  This would lend 

itself to another project in our lab in which a camera has been mounted on a glove that is hooked 

up to a task-based detection program.  The user tells the device what object they would like to 

locate, and the camera seeks to identify it on a shelf and directs a user’s hand with vibration on 

the sides of the glove.  These spatial relationships might help the device guess what direction a 

desired product is most likely to be in based on relationships it has seen before.  This would be 

especially helpful in the context of a specific, well-known store as long as items on the shelves 

are not rearranged.  This spatial information might not be helpful in all cases, but there are many 

in which it might provide us with valuable information on which we can filter.  

GIST 

 In Chapter 2, we discussed several alternative context extraction methods, including 

GIST.  Now, we can come back to this idea with the realization that the idea of GIST is in many 

ways similar to what we attempt to achieve with ViCoNet when we are talking about scene 

classification based on the objects in a scene.  Going forward, we can think of GIST as not an 

alternative option, but instead a complimentary one.  For example, if ViCoNet cannot say with 

enough confidence what our scene is or if it will be significantly more computationally 
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expensive than GIST, GIST might be called upon to do so instead.  The two could even 

potentially combine their guesses to determine the location with better confidence.  Another 

application for GIST might be to use it not as a location deciding algorithm but rather as a tag on 

relationships between objects.  For example, a table in a kitchen setting will have very different 

relationships to the items around it from a table in other settings, as seen in Figure 19.  We could 

tag the edges of the “table” node with the GIST vector or resultant classification from the scene 

in which each relationship was established, which could be used in concert with a scene 

prediction for an image being classified to probabilistically weight which objects are likely to be 

together in the same type of scene.  In a sense, GIST really just provides an attempt at a feature-

extraction-based way to achieve the same level of semantic knowledge that we are aiming to 

discover with ViCoNet. 

 

Figure 19: Example of GIST-weighted Relationships 
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 We spent a great deal of time early on discussing how GIST could be incorporated into 

ViCoNet before we had solidified any decisions about the datasets or setting that we would be 

using.  Within our grocery setting, GIST would not really have helped us, as the GIST for an 

image in a given aisle would not be very different from that in another aisle in the same store, 

which is what led to its abandonment.  It could be useful to distinguish one store from another 

with different lighting and décor choices, but we believe that’s not the best use of GIST as a 

filtering feature as it is overly specific and does not help us expand our horizons beyond the 

retail setting with which we began.  However, imagining a ViCoNet that operates in more 

settings, we had planned originally to group objects by GIST using a centroid and radius method.  

Objects would be tagged with a GIST vector corresponding to the locations in which they were 

seen, and then a clustering algorithm such as k-means could be used to group our objects based 

on their distance from a centroid GIST vector.  The idea here would be an unsupervised 

approach to grouping that might expose more useful relationships based on the similarities of 

GISTs as opposed to manual grouping. 

Classifier Confidence 

 We could also incorporate confidence information from the classifiers into our ViCoNet 

weighting.  We have already made use of the confidence information available to us in creating 

an “unknown” threshold.  This information might additionally be used to help decide object 

weights as we train ViCoNet.  We have previously explored the issues that can arise from 

training ViCoNet on detector output in Chapter 5 instead of the ground truth annotations in 

Chapter 4, but for simplicity, we assumed that the detector was always right and that any 
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mistakes would eventually be overshadowed by more confident, correct detections.  When 

training ViCoNet, we might consider the strength of an established relationship between objects 

to be a function of the confidence of the detection from which it is trained.  For example, in 

Chapter 5, we increment the count between objects by one each time the detector reports that 

they have been seen in the same scene.  We might instead consider weighting it by a fraction of 

one corresponding to the confidence of the detection.  The previous system requires the 

frequency of detections to wash out incorrect candidates—that is, a single incorrect detection 

weighs just as much as a single, highly confident, correct detection.  Coupled with a reasonably 

reliable detection pipeline, this modification could potentially allow us to wash out low 

confidence relationships faster. 

 Additionally, when we consider performing detections, it might be useful to weight the 

likelihood of items based on the average confidence of a detector in previous detections of said 

object.  In a high power system, this might not be as important, but in a system where we want to 

run as few detectors as possible, we might be served well by running those with which we can be 

most confident of a classification. 

Group of Objects Detection 

 Within many scenes and especially within retail, we can often expect to see multiple of 

one object in a single area.  When each of these is extracted as a salient ROI, this can lead to a 

great deal of redundancy in detection.  Theoretically, if we could know that a group of ROIs 

were all the same object, it would only be necessary to run classification on a single instance to 

determine the label for all of the objects.  Within our lab, other students are working on an 
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algorithm based on a generalized form of the Hough Algorithm [15] [16] for symmetry detection 

and the Attention by Information Maximization (AIM) algorithm [17] for saliency.  The goal is 

to be able to schedule detections based on repeating pattern detection to avoid the redundancy 

discussed previously.  The detection of repeated objects like this represents another form of 

information that could be captured in ViCoNet as a characteristic of the object node.  Different 

objects may be more likely to be seen in repeated groups than others, such as windows on a 

building versus doors.  Additionally, the scene may affect whether objects are likely to be seen in 

groups or alone.  One might expect to see one box of cereal in their kitchen and a tiling of that 

same box in a grocery store.  When extracted and stored in ViCoNet, these relationships may 

help us to decide whether we should run an algorithm to seek similar objects nearby.  The 

detection of a grouped set of objects might additionally allow us to exploit the reverse 

relationship and intuit something about our scene.  Overall, the results from a group detection 

algorithm could be another tidbit of information that can be stored within ViCoNet. 

Better Probabilistic Edge Weighting 

 Our simple implementations of ViCoNet keep a count of each occurrence of an object 

and its associated edges.  We do not make use of this in Chapter 4, and in Chapter 5 we 

determine the relative probability of relationships between objects by dividing the weight of a 

single outgoing edge by the sum of all edges.  However, this method does not really represent a 

probabilistic guessing of what might be the objects most likely to be seen with any given object.  

In fact, in the case of reweighting, it will be problematic, as a certain edge may have a large 

count already, and new counts may take a long time to “catch up” and become statistically 
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significant in comparison.  This is especially problematic when considering a version of 

ViCoNet strongly trained on a given dataset and then attempting to dynamically learn a change 

in object relationship, such as a rearrangement of a store.  Consider Figure 20, which attempts to 

illustrate this problem more clearly.  Given the recent exposure of gluten intolerance in the 

public eye, a grocery store might choose to make a separate section of the store for all of the 

gluten-free items.  The central class “Gluten-Free Bread” in this example used to be located in 

the bread aisle and had established heavy edge weights with other bread nodes, represented in 

blue.  Upon store restructuring, ViCoNet will take some time to learn the new relationships 

between this item and its new, gluten-free neighbors.  However, ViCoNet will not begin to 

predict new neighbors, such as the “Gluten-Free Crackers” class, until its edge weight becomes 

comparable to the others.  Depending on the other edge weights, this could take a very long time.  

If the previous bread relationship edges represent years of shopping in a store with the previous 

layout, it could take the same amount of time to bolster new edge weights enough to make them 

significant in comparison.  Object relationships in the world are too dynamic for us to require 

such a drastic amount of information to reweight them. 
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Figure 20: Count-Based Probability Problem 

 Clearly, some sort of probabilistic framework is needed to manage these edge 

relationships that will allow us to express the probabilities of edges independent enough of one 

another to avoid this issue.  In [18], we see an example of a system that could potentially address 

this issue.  In this paper, the authors propose and design a software framework for the declaration 

of variable of type T as Uncertain<T>, which allows their values to be conditioned on a 

probabilistic distribution instead of being given a concrete value, and provides additional 

comparative functions to compare the probability of a random variable taking on a certain value 

or range of values.  One can imagine using this framework to assign edges a probability of 

occurrence instead of a count.  We can refine our probability over time by increasing it on co-

appearances.  Additionally, to address the temporal nature of the problem, we could decrease it if 

objects are not seen together for a long time.  The ability to decrease the probability is perhaps 



64 

 

the more interesting of the two improvements, as it is not as obviously represented in a count.  

However, as shown in the example above, the ability to both increase relevant relationship 

probabilities while also decreasing those that become less relevant is crucial when considering 

how such relationships will evolve over time.  The framework for this code was not available at 

the time of writing, but it will be eventually and might be worth future consideration. 

Additional Types of Sensor Data 

 An additional application we might consider comes from the rise of other sensors in our 

world today.  In this paper, our focus has been on cameras, but even now there are other sensors 

readily available on consumer electronics.  For example, some phones now have the ability to 

detect a heart rate or scan a finger print.  A future where biological feedback is available for a 

user at any given moment is not difficult to extrapolate from our present circumstance, and with 

this comes a variety of new types of information that might inform our decision making.  For 

example, humans may have palpable reactions to certain objects: a family member or pet might 

lead to feelings of excitement or relaxation; a spider could lead to anxiety or fear.  Sensors might 

also be able to give us an intuition about the type of scene or object being observed.  The use of a 

hypergraph allows us to continue to expand our ViCoNet to collect a variety of different types of 

relationship, and this is just one example of new types of data that may become available in the 

coming years in conjunction with the data from a camera. 
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C# Performance 

 Many of these ideas involve adding more information onto the nodes and edges of our 

hypergraph.  However, a very practical concern related to this is exactly how this will affect the 

efficiency of our graph, especially as we begin to encapsulate more complex, hierarchical 

relationships.  We have not been considering the importance of this as we work as our 

simulations are still far from real-time analysis and C# provides a powerful OOP framework for 

developing and testing the different ideas for our ViCoNet implementation.  In the future, 

though, it may be important to migrate from the flexibility of C# to a more performance-oriented 

language.  Though we have not explored this, the key observation to be made is that ViCoNet 

itself exists more as an idea than a specific implementation in a given language.  C# allows us to 

evaluate the usefulness of various object relationships as we attempt to determine which will 

help us the most in terms of the vision pipeline.  Once we have established which relationships 

are most useful, ViCoNet as a framework can be implemented more efficiently—though perhaps 

less easily—in a language meant for performance. 

Energy versus Accuracy 

 Related to these programming language specific performance concerns, it may be 

important to identify places within ViCoNet where we can opt for accuracy versus performance 

depending on the specific setting.  We have already seen how the passive and active modes 

exposed this tradeoff by allowing us the flexibility to run fewer classifiers and therefore conserve 

energy at the cost of performance.  There are other areas within this framework that could be 
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exploited to provide a similar tradeoff.  For example, the dynamic ViCoNet implementation in 

Chapter 5 demonstrated flexibility in this regard by allowing the user to set, among other things, 

the number of hops to search within ViCoNet for candidates.  This could be set to a low value on 

an energy- or memory-constrained system, or could be set instead to infinity on a system with 

more available power.  The value n that determines how many candidates to extract from 

ViCoNet could also be adjusted in the same way. 

Integration in the Cloud 

 When we consider this sort of high-capacity learning with regards to wearables, it makes 

sense to additionally consider how something like ViCoNet might perform in a cloud 

environment.  Up until this point, we have been discussing various forms of ViCoNet that are 

local to a particular device or user.  However, there is some information that will become 

redundant across the individual ViCoNets of different users quickly, and if there is no 

centralization, users will need their device to learn basic relationships from the ground up 

regardless of if others have already done so. 
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Figure 21: Cloud Framework 

 This knowledge could theoretically be pooled in the cloud by individual users willing to 

upload their personal networks.  Figure 21 shows a simple diagram of five different users with 

different pet store shopping habits combining their disjoint knowledge of the store’s layout into a 

more comprehensive network.  There are obviously privacy concerns with this sort of sharing of 

personal data which would need to be considered thoroughly, but the idea at its base is a simple 

one that we believe greatly extends the learning power of any one device building a ViCoNet.  

As we discussed before, an individual’s ViCoNet may have very personalized details relating 

even to biometric sensor data which will not really translate from person to person, but the basic 

details of objects’ spatial relationships could be parsed out and shared to create a sort of “blank 

ViCoNet” available in the cloud for users to initially populate their devices.  This would allow 

users to begin using the predictive powers of ViCoNet immediately, and over time a user’s local 

version of ViCoNet would adapt and reweight the relationships to the user’s individual 

preferences. 
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Settings beyond Retail 

 The work within this paper has focused entirely on a single setting with two different 

grocery stores as representatives of this setting.  This is largely due to the difficulty involved in 

gathering and annotating datasets at the level of granularity required to establish the types of 

object relationships that we want to expose.  There are a number of annotated object datasets 

available for use, but most do not have enough annotations per image to be useful, and the 

annotations they contain tend to be too coarsely grained to exploit the finer temporal and spatial 

relationship capabilities that ViCoNet can expose.  Due to time limitations, we thought it best to 

focus our exploration within the datasets we created, especially since the aisles of a grocery store 

are so strictly organized.  However, these same relationships that exist in retail can be found in 

the real world as well, if not so rigorously organized.  We believe that this system already makes 

a powerful case for itself as a shopping aid, but much of our focus has been on how the choices 

we make are applicable outside of retail, and one of the most important next steps would be to 

take the time to put together a variety of datasets from different scenes and see if ViCoNet truly 

can hold up under a more complicated set of relationships.  This ties into a variety of previously 

discussed matters, such as the object relationship weighting explored in [5] which was not 

restricted to retail and the use of GIST to help learn and determine scenes, potentially even in an 

unsupervised fashion. 

 While developing ViCoNet, we have tried to avoid making decisions that do not 

generalize well beyond a retail setting.  For example, an important change between our original 

experiment in chapter 4 and the dynamic version in chapter 5 is that we eliminated the retail-

specific concept of aisles and instead moved to a more general representation of scenes.  While 
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any given scene still did represent images from a given aisle, the treatment of the problem 

changed to a form applicable to any sort of annotated scene instead of those arranged in discrete 

aisles.  Additionally, though we considered using GIST as a tool to differentiate between 

different stores that might have different object relationships, we believe it might be better used 

at a much higher level, such as outdoor versus indoor, which would allow for a variety of 

different settings to make use of its discriminative power. 

 

 While these ideas represent a number of possibilities for ViCoNet, they certainly do not 

represent them all.  As we move into a future where more and varied types of sensor information 

may be available at all times, we will find more opportunities for learning and improving our 

knowledge of object relationships, and hopefully this will lead to more accurate and efficient 

machine vision implementations.  
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