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ABSTRACT 

 

This paper compares the effectiveness of the of the Binomial Options Pricing model, 

Black-Scholes model, and Monte Carlo model in pricing American call options on large-cap 

non-dividend paying equities. These models are implemented on 32 options contracts that span 

the relatively volatile fourth quarters of 2011 and 2012. This study did not result in any of the 

models performing consistently better than the others during these time periods. 
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Chapter 1  
 

Introduction 

In this paper, I evaluate the effectiveness of the Binomial Options Pricing, Black-Scholes, 

and Monte Carlo methods for American call pricing of non-dividend paying equities over the 

periods of increasing volatility in the fourth quarters of 2011 and 2012. The models that I use 

take historical data as parameters without adjusting for future expectancies. The parameters used 

in a valuation model are arguably more important than the model used, so it is reasonable to 

expect that in times of high market volatility that all pricing methods based on historical data 

produce prices that deviate further from the market price. More model variance implies that there 

is more opportunity for the models to deviate from each other. Honig (2009) finds no statistically 

significant difference in the pricing capabilities of these models. In this paper, I check the 

robustness of his results by examining the pricing ability of each method during periods with 

rapidly increasing volatility. 

In August of 2011, there was a sharp increase in market volatility. There were several 

causes for this including concerns about a double dip recession in the U.S. following the global 

financial crisis as well as the potential for Europe to enter a banking crisis. Given that the events 

of 2008 were not far from investors’ minds, weakening economic data, the debt ceiling debate in 

Washington, and problems with European sovereign debt were enough to cause mass fear and 

panic in the markets. This fear led to a more than doubling of the CBOE Volatility Index (VIX). 

In December of 2012, investors once again pushed the VIX higher, albeit not as high as in 2011, 

when the federal government approached the fiscal cliff where federal spending could have been 
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drastically cut and tax rates increased. In both of these time periods, the VIX increased more than 

40% in a matter of months. Since volatility is such an important measure in options pricing 

models, it is reasonable to assume that the models using inputs based on historical data would 

perform worse in scenarios where volatility is expected to be much different in the future. This 

study does not find any of the models to consistently produce more accurate forecasts than the 

others in the analyzed time periods. 

Chapter 2 is a literature review of previous work in the area of options pricing. Chapter 3 

is a description of the data collection process. Chapter 4 is an introduction to the options pricing 

models that I use. Chapter 5 is a discussion of the data analysis techniques used in the paper. 

Chapter 6 provides the empirical results of the study, and Chapter 7 is a summary of the results.  
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Chapter 2  
 

Literature Review 

In their landmark 1973 paper, “The Pricing of Options and Corporate Liabilities,” Fisher 

Black and Myron Scholes published their pricing method for non-dividend paying European 

options. This paper is foundational in the finance industry because it created a new, scientific 

way of analyzing options. The Black-Scholes model requires the inputs of the current stock 

price, strike price, time to expiration, risk-free rate, and volatility. It assumes a log-normal 

distribution of stock prices. The model allows market participants to create more complex 

trading and hedging strategies, which led to an increase in options trading at the time of its 

publication. While the Black-Scholes equation works well for European options on non-dividend 

paying equities, it becomes less effective for other types of options. As investors realized the 

model’s limitations, many other models were created to price options. Given that the Black-

Scholes model is one of the most prominent, if not the most prominent options pricing model, I 

selected it as one of the models to analyze in my study. 

Another widely used model for options pricing is the Binomial Options Pricing model. 

Cox, Ross, and Rubinstein developed the model in their 1979 paper, “Option Pricing: A 

Simplified Approach.” The Binomial Options Pricing model assumes that the underlying stock 

price follows a multiplicative binomial process in discrete time. This is unlike the Black-Scholes 

model, which assumes that stock prices are a log-normally distributed continuous random 

variable. Despite the differences between models, the model can be constructed such that its 

underlying volatility and return assumptions match that of the Black-Scholes model. Other 
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assumptions in the Binomial Options Pricing model include no taxes, transaction costs, or 

margin requirements and the ability to short any stock. Using a no-arbitrage assumption, Cox, 

Ross, and Rubinstein showed that their model could accurately price options under these 

conditions. As with most models, the method is not perfect due to imperfect assumptions, 

however it does provide a relatively simple numerical method. 

As computer processing speeds improved, additional numerical models were developed, 

including the Monte Carlo method which was first described by Boyle in his 1977 paper 

"Options: A Monte Carlo Approach." This model simulates all potential paths for a stock and 

calculates options prices based on averages of these paths. The model incorporates the same 

underlying assumptions as the Black-Scholes model and provides a way to simulate options 

prices. Taken together, these three models provide a strong base for options models, as they all 

work with somewhat different assumptions and calculation methods. 

Once the theoretical framework for valuing options had been built, it became a 

comparatively simple task to implement the models in computer algorithms. In their 1998 book, 

Implementing Derivatives Models, Clewlow and Strickland shared algorithms to implement 

options pricing models including the Black-Scholes, Binomial, and Monte Carlo methods. 

Additionally, in their 2009 paper “Implementing Binomial Trees,” Gilli and Schumann describe 

MATLAB code for pricing options using a binomial tree model. The pseudo-code from these 

papers was foundational in the development of my analytical processes. 

Honig (2009) conducts a study that compared the overall effectiveness of the Black-

Scholes, Binomial Pricing, and Monte Carlo methods. Honig produces a study of 10 stocks with 

10 puts and 10 calls per stock (for a total of 200 contracts). He examines trading data for these 

options over a 30-day period from January 21, 2009 through March 4, 2009. Honig’s volatility 
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estimates are taken from the stock price performance during the preceding 3 months from the 

start of data collection. He then compares the actual market prices of the options to his calculated 

intrinsic values. He finds that different models were more accurate for pricing different types of 

options at varying levels of moneyness, and that there is not one best model. He does find, 

however, that the Black-Scholes model is the least effective overall. 

Honig (2009) serves as a framework for this paper, as I use very similar methodology. 

While Honig evaluates options data for approximately one month, my data set spans the entire 

life of the options that I analyze, approximately 3 months per contract. I also obtain statistics for 

the option model inputs from the past two years of data, rather than the 3 months that Honig 

uses. I used similar statistical methods to evaluate which models are most effective in the fourth 

quarters of 2011 and 2012 where the VIX increased more than 40% over a period of several 

months. 

In addition, other papers have addressed how options pricing is impacted by the type of 

volatility impact in the model in addition to the volatility in the market. Buraschi and Jackwerth 

(1999) evaluate the effectiveness of options pricing models that have various volatility 

assumptions. They deduce that the models using deterministic volatility assumptions, although 

easier to fit to the market data, do not explain all of the nuances of options pricing. The authors 

also determine that volatility is generally priced into the market prices of options and that 

stochastic models tend to perform better than the deterministic models. 

With regards to actual options pricing during times of economic distress, Cheng, Fung, 

and Chan (2000) addresses options pricing efficiency. The authors examine whether put-call-

futures parity held during the Asian financial crisis between January 1996 and August 1998. 
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Cheng et al. analyze the data using a multiple regression analysis, and they conclude that during 

the crisis, greater mispricing occurred leading to increased arbitrage opportunities.   

Cheng et al. (2000) implies that volatility will lead to mispricing of the options models. I 

can also infer that although the intrinsic value of the options that I calculate from the models will 

most likely deviate from the observed price in the market, some of this variance will not be due 

only to the change in forward volatility. It is probable that some of the variation is attributable to 

lower liquidity and irrational trading behavior from market participants. I do not quantify these 

factors in the study, however it is important to be aware of the limitations of the models. 

The results of these papers and studies both create a foundation upon which to base my 

study and support the reasonable expectation that the models perform worse in periods of 

increasing volatility. Although the models that I use are more simplistic than those used by 

investors, especially with regards to the use of historical performance as a predictor of future 

performance, they are still used by many market participants. 
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Chapter 3  
 

Data Description 

The process that I use to select stock and options contracts is described in this chapter. I 

first collect a current (as of October 2014) list of stocks in the S&P 500 along with each stock’s 

dividend yield. I then sort the stocks to find those with no dividend yield. Then, to select the 

stocks, I only select stocks which had been public since at least 2009 and had not paid dividends 

in the past. This requirement is important, as I needed to be able to obtain stock trading data 

beginning in 2009 due to my use of 2 year historical trading data. Additionally, I make sure to 

select companies that operated in different industries to account for the possibility that the 

options models act differently on different types of stocks. The final list of stocks is not an 

exhaustive list of stocks that fit the above criteria. 

Next, to select the options contracts, I obtain stock price data from each of the stocks 

prior to October 2011 and December 2012 and search the Bloomberg historical options database 

for out of the money American call options that fulfilled two criteria: 1) have sufficient trading 

volume such that the market price could be assumed to be a relatively accurate intrinsic value, 

and 2) have daily price data for market trading days. Table 1 includes the options analyzed in this 

study. 

Based on the above criteria, the stocks that I analyze were CELG, CMG, EBAY, ETFC, 

FOSL, GOOG, MNST, PCLN, and UA. Due to a lack of data availability, ETFC and UA 

contracts for December 2012 are excluded from the analysis. Using this methodology, I select 32 
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contracts to analyze. The sources of my data are the CRSP database for stock returns, Bloomberg 

for options prices, and Kenneth French’s website for risk free rate returns. 

 

Table 1: Selected Options 

Ticker Maturity Strike 

CELG Oct-11 60 

CELG Oct-11 65 

CMG Oct-11 350 

CMG Oct-11 300 

EBAY Oct-11 30 

EBAY Oct-11 35 

ETFC Oct-11 10 

ETFC Oct-11 15 

FOSL Oct-11 95 

FOSL Oct-11 105 

GOOG Oct-11 600 

GOOG Oct-11 500 

MNST Oct-11 95 

MNST Oct-11 80 

PCLN Oct-11 500 

PCLN Oct-11 450 

UA Oct-11 80 

UA Oct-11 70 

CELG Dec-12 75 

CELG Dec-12 80 

CMG Dec-12 250 

CMG Dec-12 300 

EBAY Dec-12 50 

EBAY Dec-12 45 

FOSL Dec-12 90 

FOSL Dec-12 80 

GOOG Dec-12 700 

GOOG Dec-12 650 

MNST Dec-12 50 

MNST Dec-12 45 

PCLN Dec-12 600 

PCLN Dec-12 650 
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Chapter 4  
 

Models 

Common inputs for each of the three models are: 

 S – Current stock price 

 K – Strike price of the contract 

 r – Risk free rate (one month Treasury bill) 

 T – Number of days until maturity/365 

 σ – Annualized volatility 

Binomial Options Pricing Model 

This model uses a risk-neutral approach and finds the intrinsic value of an option by 

finding the option’s final payoff at maturity then discounting it by the risk free rate. Using this 

model, an option’s value at time t is the discounted expected value of the option at time t + 1. I 

use daily time steps for the model. The formula for the intrinsic value is applied starting at the 

day before maturity until the value at time 0 is reached. The final payoff for the option at 

maturity is max(ST – K, 0). At any given node that is not maturity (a node is defined as a given 

combination of up and down movements that can be in any point of time from [0,T]), the value 

of the option using the daily step model is: 

V = max[e-r/(30*12)[pVu + (1-p)Vd], St – K] 

Where: 

  Vu = value of option with an up movement in the stock 
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  Vd = value of option with a down movement in the stock 

u =  eσ∗√1/365 - daily percent stock price change in an “up” movement 

d = 1/u - daily percent stock price change in a “down” movement 

 p =
(er/(12∗30)−d)

(u−d)
 - risk-neutral probability of an “up” movement 

Figure 1 below is a visualization of a one step binomial tree. This process can be repeated 

for any number of steps, with each node acting as its own one step model. 

 

Figure 1: One Step Binomial Tree Visualization 

 

If we assume a stock with inputs: 

S0 = 10 

K = 11 

r = 0.002 

T = 60/365 

σ = 0.30 

Then the one step binomial tree calculation for the valuation of this option is: 

u =  e0.30∗√60/365 = 1.1293 
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d =  1/1.1293 = 0.8854 

p =
(e0.002∗60/365 − 0.8854)

(1.1293 − 0.8854)
= 0.4710 

 

Figure 2: One Step Binomial Tree Example 

 

Black-Scholes Model 

It is important to note that this model is used with the assumption that American calls on 

non-dividend paying stocks will never be exercised before maturity. Therefore, the same model 

can be used for both European and American call options. The model calculates a price as 

follows: 

V = S ∗ N(d1) − Ke(−r∗T) ∗ N(d2) 

Where: 

d1 =
ln (

S
K) + (r +

σ2

2 ) T

σ√T
 

𝑑2 =
ln (

S
K) + (𝑟 −

𝜎2

2 ) 𝑇

𝜎√𝑇
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N(dn) = standard normal cumulative density function 

Using the same inputs as the example in the binomial tree section, we find the following intrinsic 

value using the Black-Scholes model. 

d1 =
ln (

10
11) + (0.002 +

0.302

2 ) 60/365

0.30√60/365
=  −0.7201 

d2 =
ln (

10
11) + (0.002 −

0.302

2 ) 60/365

0.30√60/365
=  −0.8417 

V = 10 ∗ N(−0.7201) − 11e(−0.002∗
60

365
) ∗ N(−0.8417) = 0.16 

Monte Carlo Model 

I implement the model described by Clelow and Strickland for European call options. 

Using the same assumption as described above, the model for European and American options 

for non-dividend paying stocks is the same. The model uses the same assumptions as the Black-

Scholes model, but performs a simulation in discrete time. Instead of finding a closed-form 

solution, the model simulates a certain number of paths and then takes an average of the 

discounted options value to find an intrinsic value. I perform 1,000 simulations for each contract, 

each using daily steps for stock price movements. The evolution of the stock prices is simulated 

with the formula: 

ln(St) = ln(St−1) + ν ∗
1

365
+ σ ∗ √

1

365
∗ ε 

Where: 

 𝜈 = (𝑟 − 0.5𝜎2) ∗ 1/365 
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 ε~N(0, 1) 

The option payoffs at maturity are then calculated, averaged together, and then 

discounted with the risk free rate to calculate the mode’s intrinsic value. 

I performed this process with 1,000 simulations and the parameters in the examples in the 

previous model sections and found an intrinsic value of 0.16.  
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Chapter 5  
 

Data Analysis Methodology 

Mean Squared Error 

 The mean squared error (MSE) of a model is the average squared difference between a 

model’s output and the actual value of the metric that the model is attempting to forecast. In the 

case of this paper, the MSE for a model is the average of the squared difference between the 

options model and the market value of the contract over the life of the contract. This metric is 

useful in comparing errors across models, however, it is important to note that the absolute value 

of the MSE is relatively meaningless, as a model that forecasts the value of a contract with a high 

price will tend to have a higher MSE than a contract with a lower price due solely to the larger 

dollar amount. A MSE close to 0 implies that a model is more accurate. The formula for the 

MSE is: 

MSE =
1

n
∗ ∑(x̂𝑖

𝑛

𝑖=1

− xi) 

Where: 

 n = number of observations (number of days in contract life) 

 x̂𝑖 = model′s predicted value  

 x𝑖 = market value of the option  

 I calculate the MSE for all 32 contracts then rank the MSE for each contract from 

smallest to largest and count the number of each model that ranked the smallest. This process is 
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designed to rank the models from best to worst by their prediction error. If one model 

consistently produces forecasts with the smallest MSE, then it would be the best using this 

metric. 

 I then perform a relative Theil MSE decomposition, breaking the MSE into its relative 

bias, variance, and noise terms. These three terms are important as they provide us with further 

insight into the errors of the model. The bias term measures the difference in the average of the 

forecasts against the average of the predicted series’ value. In the case of this paper, I am 

comparing the average predicted model value against the average of the contract’s market value 

over the course of its life. The decomposition of MSE provides a squared term, so it will always 

be a positive number, and the size demonstrates a systematic mispricing of a contract. An 

unbiased model has a bias of 0, meaning that the average model forecast is the same as the actual 

series. 

 The second term of the decomposition, variance, shows whether a model’s forecasts are 

more or less volatile than the underlying series. Like bias, this term is a squared number, so one 

cannot draw directional conclusions, however, the variance term of a more accurate model is 

closer to 0 than a less accurate model. A value further from 0 indicates a model that is either over 

or under-predicting the volatility of the actual observations. 

 The final noise term of this decomposition accounts for unpredictable, random errors. An 

accurate model has a high noise term relative to the total MSE, as it shows a model that is 

unbiased with similar variance to the underlying series and with small random errors. 

 

The MSE decomposition formulas are below: 

MSE = (mean(x) −  mean(x̂𝑖))2 + (𝜎𝑥 − 𝜎x̂)2 + 2 ∗ (1 − 𝜌) ∗ 𝜎𝑥 ∗ 𝜎x̂ 
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          = bias2 + variance + noise 

Where: 

 x = contract market values 

 x̂ = model forecasts 

After breaking the MSE of each model for each contract into its three parts, I calculate 

each term as a percentage of MSE. The absolute value of these terms is not useful in comparing 

across contracts, so scaling the MSE components makes it possible to evaluate model 

performance across contracts. The contracts that performed best in these comparisons are the 

ones that have low absolute MSEs and high noise terms relative to the MSE. 

Diebold-Mariano Statistic 

The Diebold-Mariano statistic quantitatively tests whether the MSE of different 

forecasting models is the same. Performing this statistical test to compare models is critical since 

it allows one to conclude whether model forecast differences are due to chance or due to actual 

underlying differences in the efficacy of the models. The null hypothesis of the test is that the 

MSE are equivalent and the alternative hypothesis is that they are not equivalent. The test 

statistic used in this test is constructed below: 

S =  
mean(d𝑡)

√2πf𝑑(0)/T
 

Where: 

 d𝑡 = L(εt+h|t
1 ) −  L(εt+h|t

2 ) 

 L(εt+h|t
1 ) = MSE loss of first model 
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 L(εt+h|t
1 ) = MSE loss of second model 

 h = lag 

fd(0) = spectral density of dt at frequency 0 

S ~ N(0, 1) 

 

 I perform this test at a 95% significance level, rejecting the null hypothesis with a p-value 

absolute value below 0.05. I use a lag of 15 to replicate Honig’s methodology which found that 

the Diebold-Mariano statistics stabilized with a lag of 15. Additionally, the p-values that I 

produce from these calculations have a directional component. A positive p-value less than 0.05 

indicates a forecast with a statistically significant higher (worse) MSE values and a negative p-

value indicates a statistically significant lower (better) MSE. 
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Chapter 6  
 

Empirical Results 

Mean Squared Error 

The results of the mean squared error rankings are inconclusive. I analyze the MSEs with 

the following process: I first calculate the MSE of each model for each contract. I then rank the 

MSEs from lowest (rank 1) to highest (rank 3) for each contract. The cells in Table 2 contain the 

total number of outcomes by model for each rank (e.g. the cell at the intersection of Rank 1 and 

Binomial Tree has a value of 10, meaning that 10/32 of the binomial tree calculations that I 

performed had the lowest MSE of the three models for those 10 contracts). 

 

Table 2: Mean Squared Error Rankings (Number of Contracts) 

 Binomial Tree Black-Scholes Monte Carlo Total 

Rank 1 10 15 7 32 

Rank 2 18 10 4 32 

Rank 3 4 7 21 32 

Total 32 32 32 96 

 

 While the rankings of the model’s MSEs do not indicate a clear best model, it would 

appear that the Monte Carlo method performs the worst of all models when comparing them 

solely on MSE. Of the 32 contracts that I analyze, the Monte Carlo pricing method produced 

forecasts with the highest MSE 21 times (66% of the contracts). This assertion is not statistically 
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significant, however, as this methodology only analyzes the data at a quick glance. The Diebold-

Mariano tests later in the paper do not support this statistical significance. 

 Table 3 includes the summary statistics for the MSEs of the models. The models all show 

similar results, but there are some slight differences between the Monte Carlo model and the 

other two. The Monte Carlo MSEs are higher than and they have a tighter standard deviation 

than the other two models. The higher MSEs of the Monte Carlo model is consistent with the 

above results, as the higher error accounts for the model performing worst in the MSE rankings. 

 

Table 3: MSE Summary Statistics 

 Binomial Tree Black-Scholes Monte Carlo 

Mean 19.77 19.73 20.12 

Standard Deviation 58.81 58.73 58.36 

Minimum 0.04 0.04 0.04 

Q1 0.23 0.23 0.24 

Median 1.64 1.64 1.71 

Q3 9.57 9.49 12.03 

Maximum 316.69 316.18 314.23 

 

 In Table 4, I take the average proportions of the bias, variance, and noise terms as a 

percentage of the total MSE. While the decompositions of the MSEs are all very similar, the 

Monte Carlo has a more positive skew towards the noise term than do the other two models. 

Though the decomposition of the Monte Carlo MSEs may be more favorable than the other 

models, albeit by a small margin, the MSEs of the Monte Carlo forecasts tend to be higher on 

average as found above. 
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Table 4: Theil MSE Decomposition 

 MSE Bias Variance Noise 

Binomial Tree 100.00% 49.25% 8.19% 42.56% 

Black-Scholes 100.00% 49.34% 8.30% 42.36% 

Monte Carlo 100.00% 46.93% 7.08% 45.99% 

 

 Table 5 provides the summary statistics for the Theil Decomposition. Similar to the 

previous results in this paper, there are no glaringly large differences between the models. There 

are, however, slight differences between the Monte Carlo model and the other two. As indicated 

above in Table 4, the Monte Carlo method produces a Theil decomposition with a higher noise 

term on average. In addition, the standard deviation of all terms is lower for the Monte Carlo 

model than the other two. These results indicate that the Monte Carlo method produces more 

consistent results than the other models, however, as shown in Table 2, the errors are consistently 

less accurate than the other two. 

 

Table 5: Theil Decomposition Summary Statistics 

 Bias Variance Noise 

 BT BS MC BT BS MC BT BS MC 

Mean 49.25% 49.34% 46.93% 8.19% 8.30% 7.08% 42.56% 42.36% 45.99% 

St. Dev. 28.05% 28.05% 27.75% 9.73% 9.72% 9.11% 27.60% 27.60% 27.22% 

Min 0.07% 0.09% 0.07% 0.01% 0.01% 0.00% 2.64% 2.65% 4.82% 

Q1 29.01% 29.46% 28.24% 1.71% 1.72% 1.63% 21.75% 20.93% 25.27% 

Median 59.65% 59.59% 55.99% 6.09% 6.41% 4.56% 31.33% 31.47% 36.80% 

Q3 74.57% 74.49% 70.54% 12.38% 12.05% 9.32% 62.46% 62.37% 63.77% 

Max 84.40% 84.43% 84.78% 49.14% 49.06% 48.75% 93.88% 93.69% 96.32% 
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Diebold-Mariano Statistics 

The Diebold-Mariano tests are also inconclusive. The results of these tests are 

summarized in Table 6. Each cell in the table is the directional p-value for the Diebold-Mariano 

statistic of the first listed model against the second model. Since there are 32 contracts with 3 

pairs per contract, there are 96 total p-values. 

 

Table 6: Diebold-Mariano Statistics 

Ticker Maturity Strike State BT vs. BS BT vs. MC BS vs. MC 

CELG Oct-11 60 ITM 0.4025 -0.1933 -0.2028 

CELG Oct-11 65 ITM -0.1073 -0.2209 -0.2577 

CMG Oct-11 350 OTM -0.2546 -0.2332 -0.3076 

CMG Oct-11 300 ITM 0.0000 -0.4962 0.4180 

EBAY Oct-11 30 ITM -0.0070 -0.0586 -0.0704 

EBAY Oct-11 35 OTM 0.0651 -0.0482 -0.0171 

ETFC Oct-11 10 OTM -0.0343 -0.0989 -0.1056 

ETFC Oct-11 15 OTM 0.1102 0.0201 0.0256 

FOSL Oct-11 95 OTM -0.1453 0.2959 0.2104 

FOSL Oct-11 105 OTM -0.2889 -0.1337 -0.1667 

GOOG Oct-11 600 OTM 0.0000 -0.2200 -0.0729 

GOOG Oct-11 500 ITM -0.2040 -0.4858 0.4899 

MNST Oct-11 95 OTM 0.3081 -0.4101 -0.3414 

MNST Oct-11 80 ITM -0.0022 0.3288 0.3036 

PCLN Oct-11 500 OTM -0.4290 -0.0507 -0.0386 

PCLN Oct-11 450 ITM 0.1489 0.3426 0.3667 

UA Oct-11 80 OTM -0.3587 0.0689 0.0719 

UA Oct-11 70 ITM 0.0000 0.0525 0.0350 

CELG Dec-12 75 ITM 0.3298 -0.0714 -0.0621 

CELG Dec-12 80 OTM 0.0068 0.4306 -0.1530 

CMG Dec-12 250 ITM 0.0610 -0.0714 -0.0669 

CMG Dec-12 300 OTM -0.4580 -0.0770 -0.0780 

EBAY Dec-12 50 ITM 0.0000 -0.0551 -0.0216 

EBAY Dec-12 45 ITM 0.3288 -0.4167 -0.4131 

FOSL Dec-12 90 ITM 0.0007 -0.1312 -0.0916 

FOSL Dec-12 80 ITM 0.0079 -0.1187 -0.0890 

GOOG Dec-12 700 ITM 0.0001 -0.0034 -0.0022 

GOOG Dec-12 650 ITM 0.0130 -0.0001 0.0000 

MNST Dec-12 50 ITM -0.0050 0.2399 0.2233 
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MNST Dec-12 45 ITM -0.1844 -0.0282 -0.0307 

PCLN Dec-12 600 ITM 0.0676 -0.2944 -0.1891 

PCLN Dec-12 650 OTM 0.0052 0.2863 -0.4940 

 

 The Diebold-Mariano statistics in Table 6 are unusual in that they do not show any 

systematic outperformers or underperformers of the models. Of the 96 comparisons in the above 

table, 27 (28%) show significance in MSE differences, as indicated by gray cells. This number is 

far higher than the roughly 5 significant values (5% of 96) that one would expect if the entire 

process were random, but the pattern of significance, if it exists, is not clear. Although the 

objective of this study is not to distinguish between contracts of varying moneyness, I include the 

ending state of each option contract to examine whether a pattern exists in the significant pairs 

based on the contract’s ending moneyness. 

 The Binomial Tree versus Black-Scholes statistics have the most number of significant 

pairs (14 out of 32), but they are not all directionally consistent. Of these 14 pairs, 4 contracts 

lead to a better forecast from the Binomial Tree method, and the remaining 10 lead to a worse 

forecast. Though this number is skewed towards a worse forecast for the Binomial Tree model, 

15 p-values of the total pairs indicate a better forecast, and the other 17 indicate a worse 

forecast—essentially split in half. There is no relationship between whether the contracts 

finished in-the-money or out-of-the-money. 

 The Binomial Tree versus Monte Carlo statistics have fewer significant pairs than the 

previously mentioned pairing, however the significant pairs are more directionally consistent. Of 

the 5 significant pairs, 4 indicate better predictions from the Binomial Tree model. Additionally, 

23 of the 32 overall contracts show a favorable result towards the Binomial Tree method. Again, 

the results of these Diebold-Mariano tests are not strong enough to make a definitive statement 
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on the efficacy of the Binomial Tree method versus the Monte Carlo method, however, based on 

the above numbers, the Binomial Tree method seems to be slightly better. 

 The final pairing of the Diebold-Mariano test, the Black-Scholes model versus Monte 

Carlo model does not provide much more insight into the effectiveness of these models. Eight of 

the 32 contracts show statistically significant results. Five are in favor of the Black-Scholes 

model and the other 3 are in favor of the Monte Carlo model. Since roughly half of the 

significant results are in favor of each, we cannot draw any meaningful conclusions. Overall, 23 

of the 32 contracts are in favor of the Black-Scholes model, but since the majority are not 

statistically significant, we cannot conclude that either the Black-Scholes model or Monte Carlo 

model forecasts with more accuracy than the other. 

 Compared to Honig (2009), this research finds a higher proportion of statistically 

significant contracts (28% versus 5%), and while it would be tempting to conclude that the 

heightened volatility of the time period of this study was responsible for the results, the 

discrepancy could be due to several factors. These factors include a different profile of the types 

of companies whose stocks were analyzed, the fact that none of the stocks analyzed in this paper 

pay dividends, differing moneyness states, and the difference in volatility characteristics of the 

markets. Similar to Honig, this paper finds no statistically significant result in the comparison of 

the models to each other through either the decomposition of MSE or the Diebold-Mariano 

analysis.
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Chapter 7  
 

Conclusion 

This paper attempts to quantify which, if any, of the Binomial Tree, Black-Scholes, or 

Monte Carlo methods of valuing American call options on non-dividend paying equities during 

the fourth quarters of 2011 and 2012 where volatility rapidly increased would have been most 

effective. An analysis of each model for each of 32 contracts is performed on the models’ MSE, 

its decomposition, and a Diebold-Mariano test. 

The analyses performed in this study are inconclusive. A comparison of MSEs suggests 

that the Monte Carlo method is the least effective model, with 21 out of 32 of its MSEs being the 

highest (worst) of the models used. A relative Theil decomposition of the MSEs yields very 

similar results across models, though the Monte Carlo method does produce a slightly better 

decomposition than the other models with lower bias and variance terms. Though the 

decomposition is more favorable for the Monte Carlo method, as found in the MSE rankings, the 

Monte Carlo ranks worse in the absolute value of its MSEs. The above findings are empirically 

unsupported, however, as the Diebold-Marinao test does not indicate significance of any of the 

relationships. There is an abnormally high number of statistically significant Diebold-Mariano 

statistics found (greater than 5% of the total), however there are no patterns to the significance 

that would indicate superiority of one model compared to the others. 

Additionally, while the outcomes all of the analyses performed in the paper are slightly 

different than Honig (2009), the predominant results are the same in that none of the models can 

consistently forecast options prices with more accuracy than the others. The difference in the 
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statistical outcome cannot be attributed solely to the differing market environment, as there are 

several different factors in the way these studies were conducted. These factors include different 

stocks analyzed, the fact that none of the stocks in this paper paid dividends, differing 

moneyness profiles, and the overall volatility characteristics of the market.  

These results are not entirely unexpected, as the models were implemented with the same 

underlying assumptions. In fact, these results could be taken as a testament to the robustness of 

the different models and fact that there are many options pricing models that come to similar 

conclusions in different ways. 
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Appendix A 

 

Selected Case Studies 

GOOG 700 December 2012 Call 

The first contract that I would like to draw further attention to is the $700 strike 

December 2012 call for GOOG since it is one of two contracts that I analyzed that had 3 

significant pairings under the Diebold-Mariano test. Based on the Diebold-Mariano tests, the 

ranking of the three models from best to worst for this contract are Black-Scholes, Binomial 

Tree, and Monte Carlo. 

 

Figure 3: GOOG Stock Price and 700 December 2012 Option Prices 
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Figure 3 shows the GOOG stock price over the same period as the lifetime of this 

contract. The sharp drop in both the stock and option price were due to a weak earnings report 

for the quarter. This sudden change in price is likely the reason for the relatively large 

discrepancies between the pricing models. 

 

Figure 4: GOOG 700 December 2012 Pricing Model Forecasts vs. Market Price 

 

Figure 5: GOOG 700 December 2012 Model Errors 
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Figure 4 shows the models’ forecasted option price for a particular day against the actual 

options price. There is a positive bias from the models (as seen by the forecast tendencies to be 

higher than the actual price), but overall they track the actual price relatively closely.  As seen in 

Figure 5, the model errors remain on a downward trend, excluding the period of several days 

where the stock price rapidly dropped. 

 

Table 7: GOOG December 2012 700 Theil MSE Decomposition 

 MSE Bias Variance Noise 

Binomial Tree 100.00% 75.00% 6.72% 18.29% 

Black-Scholes 100.00% 75.01% 6.73% 18.27% 

Monte Carlo 100.00% 69.96% 1.64% 28.41% 

 

Table 7 includes the relative MSE decomposition for each of the models. While the 

Monte Carlo model performs worst in the Diebold-Mariano test, its relative MSE decomposition 

is the most favorable of the models, as the noise component was significantly higher than the 

other two. 

Overall, the increased stock specific volatility is the likely cause for the different 

performance from each of the models. This result supports the original hypothesis that volatility 

changes the effectiveness of the pricing models, but in this case, company specific volatility has 

a much larger effect than did market volatility on the forecasts. 

GOOG 650 December 2012 Call 

The second contract to discuss further in depth is the GOOG $650 strike December 2012 

call. This contract is interesting for two reasons: 1) all 3 model pairs are significant in the 
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Diebold-Mariano test, and 2) despite having the exact same inputs as the $700 strike, except for 

strike price, the Diebold-Mariano and MSE results are different than the other contract. 

 

Figure 6: GOOG Stock Price and 650 December 2012 Option Prices 

 

Figure 6 demonstrates essentially the same pattern as Figure 1, with the exception of the 

option price and its sensitivity to price changes in the underlying stock. Since the strike price of 

this contract is lower than the previous contract analyzed, the contract’s delta (price sensitivity) 

is higher. 
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Figure 7: GOOG 650 December 2012 Pricing Model Forecasts vs. Market Price 

 

Figure 8: GOOG December 2012 650 Model Errors 

 

The patterns in the above graphs nearly mirror the patterns seen in the other GOOG 

December 2012 contract. Since the underlying stock for both contracts was the exact same, it is 

reasonable to expect the Diebold-Mariano test to produce similar significant results, but the 

difference in significance patterns is strange. 
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Table 8: GOOG 650 December 2012 Theil MSE Decomposition 

 MSE Bias Variance Noise 

Binomial Tree 100.00% 43.10% 24.50% 32.40% 

Black-Scholes 100.00% 42.91% 24.38% 32.71% 

Monte Carlo 100.00% 38.12% 13.38% 48.50% 

 

The Theil decomposition of the 650 strike contract is much different than the 

decomposition of the 750 strike contract. The biases are all lower while the variance terms are 

higher. Additionally, the noise terms are all higher. The same pattern of the Monte Carlo noise 

term being higher than that of the other two models remains the same. It is possible that the 

different relative composition of the MSEs of the models of the 650 strike contract are 

responsible for the different Diebold-Mariano results. The results could also be driven by the 

higher delta of the 650 strike contract, skewing the sensitivities of the models to price changes in 

the underlying stock. 
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CELG 60 October 2011 Call 

The final contract that is examined further in depth is the CELG 60 October 2011 as it 

represents a typical contract that I analyze. 

 

Figure 9: CELG Stock Price and 60 October 2011 Option Prices 

 

As seen in Figure 9, this CELG contract finished strongly in the money. There is a clear 

positive relationship between the stock and the price of the option (as we would expect), and 

there were no large price swings in the underlying stock. 
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Figure 10: CELG 60 October 2011 Pricing Model Forecasts vs. Market Price 

 

Figure 11: CELG 60 October 2011 Pricing Model Errors 

 

Similar to the GOOG contracts, the CELG contract model forecasts track the observed 

market price over the life of the contract. Unlike the GOOG contracts, however, the CELG 

models tend to have a negative bias. This negative bias can potentially be attributed to the 

heightened volatility seen in the markets—as expected future volatility was higher than the 
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trailing 2 year volatility, the market price of the option increased faster than the models which 

used historical data. This explanation for the negative bias may not be entirely correct, however, 

as the GOOG contracts both experienced significant stock-specific volatility. 

 

Table 9: CELG 60 October 2011 Theil MSE Decomposition 

 MSE Bias Variance Noise 

Binomial Tree 100.00% 37.99% 0.70% 61.32% 

Black-Scholes 100.00% 38.18% 0.61% 61.21% 

Monte Carlo 100.00% 35.53% 1.03% 63.44% 

 

Unlike the GOOG contracts, the Theil MSE Decomposition of the CELG models is more 

consistent. All three models produced relatively similar breakdowns. Additionally, the noise term 

of the models is higher than for the GOOG contracts, a better indicator for the models. The 

variance terms are extremely small as well. 

There are several conclusions that we can draw from these three case studies. First, 

volatility driven by internal company events can have a much stronger influence over the pricing 

of the stock’s options than does a general market increase in volatility. Second, while there are 

some patterns exhibited by the options models that are consistent across contracts, there are 

many factors that influence volatility and options pricing in general. And finally, though models 

based on historical data are not entirely accurate, they do provide a quick way to price options 

that is simple and relatively close to market prices.  
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