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ABSTRACT 
 

The purpose of this study is to understand how automobiles are vulnerable to cyber-attack, to 

identify the level of control outside parties can secure over a vehicle, and to determine the feasibility of an 

individual with malicious intent to put those using our transportation system in danger. The question of 

whether outside parties can access the network inside an automobile has already been answered. IEEE has 

a very stunning paper about their research into controlling a car remotely and proved that it was possible 

to enter the network a number of different ways (Checkoway, 2014). It is this study and the research 

performed by Dr. Charlie Miller and Chris Valasek, outlined in their paper “Adventures in Automotive 

Networks and Control Units,” that has largely inspired this thesis (Miller, 2013). This paper will explain 

in simpler terms how networks are run in modern vehicles, where they are most vulnerable, what an 

attacker with access to a vehicle network is capable of, and how these networks can be improved to 

ensure safer road transportation. No cyber-attack has ever been recorded so far by vehicle owners or 

manufacturers. However, there is no detection system currently to record an attack should one occur, and 

likely if an attacker caused an incident it would be thought of as a malfunction. Through analysis, it is 

clear that the addition of detection systems and improved security is necessary to ensure customer safety. 

It is up to car manufacturers to determine what level of improvement customers will expect and be willing 

to pay for moving forward. 
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Chapter 1  
 

Background 

Vehicle networks have expanded rapidly in the past few decades. As more and more electronic 

systems presented themselves in vehicles the number of wired connections became a problem. This is not 

only because of the sheer number of connections, but because the weight of the metal from wiring 

throughout the vehicle was negatively impacting performance. To combat this problem a type of network 

was implemented called the Controller Area Network, run on a single twisted wire pair connection 

between all of the Electronic Control Units (ECUs) of an automobile in which all system traffic is sent 

and received. The wires and connections to these ECUs together are called the CAN-bus. Many machine 

networks operate with CAN besides automobiles, such as elevators, boats, airplanes, and industrial 

equipment. 

Research into the basic frameworks and set-up of CAN and automobile networking and 

communication is largely available to the public. Specifically, diagnostic information is standard in all 

vehicles and is needed for mechanics to understand what is broken on a vehicle in need of repair. A 

number of tools are available to interact with vehicles through their diagnostics port located under the 

steering wheel of all vehicles. Diagnostic messages themselves are simply for the purpose of mechanics; 

therefore these messages, when sent to a vehicle, will have no actual effect on an automobile. This 

diagnostics port, however, is an access point to the overall network of the vehicle as well, which contains 

many other important messages transmitted between different controllers in the vehicle.  

These non-diagnostic messages provide important information to the ECUs of a car so they may 

perform their tasks. Modern automobiles can have up to forty separate ECUs that control everything from 

seat-belt tightening in the event of a crash to activating the anti-lock brake system. Thankfully, the 



2 

messages sent to ECUs which cause a vehicle to alter behavior are proprietary and kept a closely guarded 

secret by vehicle and systems manufacturers to prevent people from altering their systems. Therefore, the 

only means to discover the meaning of data that would cause vehicle behavior as altering information on 

the dash, turning off anti-lock brakes, or shutting down the engine due to a critical failure is through 

analyzing traffic on the network as the vehicle is running, or by reverse engineering an ECU. 

 Few vehicle owners have the skills or time necessary to reverse engineer their systems, but the 

select few have made a number of modifications, such as integrated turbo additions to engines and 

improved sound systems. The unintended ability to make additions to the CAN-bus has some customer 

value, but the ease of entering the network and being able to make upgrades in this manner also leaves a 

door open to intruders. Research has proven that these doors are numerous and extend wirelessly beyond 

physical access points like the On Board Diagnostics (OBD-II) port under the steering wheel. These doors 

include wireless transmitting from the Tire Pressure Management System (TPMS), the On-Star system, 

Bluetooth amenities, telematics, and MP3 and other media amenities (Barry, 2011). Research in this paper 

will largely consist of analysis conducted from a direct connection. However, wireless intrusion can have 

the same capabilities once a connection to the bus is established.  

Watching network traffic directly from an exterior device, such as a laptop, requires a means to 

transform live data to a format understood by a computer. Special connectors that attach to the OBD-II 

port and perform this task are only moderately expensive. However, the ability to receive data means 

nothing without knowing how to organize it. Interestingly, this is rather straight forward as instructions on 

a CAN-bus are transmitted in a very uniform way. One would only have to write a simple script to 

organize the data into the fields specific to CAN packets and print the fields in real time to be able to 

match instructions with actual actions of the vehicle. Software is also available for this purpose, but can 

be expensive, and is not necessary to anyone with network programming experience. 

Every manufacturer has different identifiers for types of messages sent across the bus, and 

communication can differ drastically even between yearly models of the same type of vehicle. This is 
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great news for the security of our own vehicles as discovering which instructions perform which actions 

can be a time consuming process for just one automobile. To map the traffic on a large number of 

vehicles in this way would be a daunting task and one that would require access to each specific make, 

model, and year of vehicle. However, an entire understanding of the information on a CAN-bus is not 

necessary to cause havoc in an automobile. In fact, problems can be caused without knowing any of this 

information at all.  

The ability to read data is not dangerous in itself, but CAN in automobiles has a fatal flaw that 

leaves vehicles vulnerable to attack. Traffic across the network is accepted from all sources, which could 

include a laptop or other device that is attached to the network, either directly or wirelessly. If an 

identifier for an important system is known, a message with false information could be fabricated and sent 

over the network to alter the vehicle’s behavior. With the appropriate set of commands an individual 

could even rewrite the behavior of an ECU.  

Simple methods of protection would provide the automobile CAN-bus with a much-needed added 

level of security. For instance, encryption of traffic would add yet another obstacle to a hacker. The need 

to register a device with the network with a specific command before accepting information from it would 

be another avenue. Protection of this network has largely gone without research as vehicles were never 

thought to be in danger from cyber criminals until recently. It is important for vehicle manufacturers to 

take security into account for the modern CAN-bus, especially since wireless access points are increasing 

in vehicles each year. 

The remainder of this paper will go into the breakdown of CAN-bus communication in detail, 

specifically the network traffic of a 2007 Lexus RX350. From this analysis current security measures will 

be evaluated and recommendations for safer communication will be provided. 
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Chapter 2  
 

Analysis 

Introduction 

“Car Hacking” is a popular topic among media outlets today, usually highlighting what people 

can do to cars remotely through various channels described in the introduction. However, a large topic 

that is left out of these reports is how these results were achieved and most segments leave the public with 

the idea that controlling any car could be done quickly with an iPhone with no prior exposure or 

identification of the vehicle. Reality is slightly less frightening. Despite the lack of coverage on the topic, 

numerous security measures exist on automobile CAN buses. Bypassing them is not as simple as one 

would think by listening to NBC news and requires a detailed knowledge of the subject. 

Most of the research for this thesis has been performed on a 2007 Toyota Lexus RX350, which 

has been a rather popular car in the past several years and will suffice as a good control. This section will 

discuss how the interface was prepared with the vehicle from a personal computer and also discuss the 

various levels of security found on the network. Then the discussion will relate this network in its 

similarity to other vehicles. Thus, a common degree of security can be confirmed across several 

manufacturers. 
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CAN in the Automobile 

Though CAN was designed to require only one wired connection throughout an entire network, 

modern automobiles do not 

simply run on one bus alone. 

A picture of the basic 

structure of a CAN network 

can be found in Figure 1. 

As can be seen, only 

one pair of wires connects all 

devices and transmits all 

information to and from 

every ECU. Therefore all 

communication can be read 

from any access point to this wire and all messages are transmitted, though not necessarily accepted, by 

every ECU. Usually there are at least two different speed CAN-buses in a vehicle that run communication 

between modules separately. The reason behind this is partly to separate critical functions of an 

automobile with the non-critical and prevent errors in non-critical aspects to affect critical modules. A 

high-speed network always exists which runs communication from the engine and other key functions as 

the Anti-lock Braking System (ABS), Transmission Control Module (TCM), Powertrain Module (PTM), 

and other important control units that need real time information down to the millisecond. A low-speed 

bus would control aspects such as power windows, entertainment systems, and door locks. These systems 

are usually bridged by connections to a singular ECU allowing signals to be sent from one network to the 

next, but this is more extensive than the experiments conducted in this thesis. 

Figure 1. Vehicle CAN bus 
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CAN Messages 

 There are many types of CAN messages on a network, but all have a similar structure that can be 

used to easily identify one type from the next. The most important aspect in understanding CAN is to 

know the two main parts that make up a message: the Identifier, and the Data field. The packet structure 

that makes up a typical message can be seen in Figure 2.  

 

Figure 2. CAN Message Frame Formats 

 Both Message Frame Formats above can be expected from passenger automobiles, though the 

typical small number of proprietary information message types usually only requires the 11-bit identifier 

format, as is used in our control vehicle. The only two fields that will be manipulated in this paper are the 

Identifier section of the Arbitration Field and the Data Field, as the construction of the other parts of the 

CAN packet will be handled by a third party device discussed in the next section. 

 Identifiers in CAN packets hold a significant role in message flow as ECUs accept messages with 

a priority queue. Therefore, messages with more recessive priority identifiers are accepted first as they 

hold more important information. Identifiers also determine the message type and tell an ECU if it should 

and how to interpret information in the data field. Information in the data field will be presented uniquely 

for each message type (ISO 15765 CAN Diagnostics, 2012).  
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Experimentation Set-up 

To begin gathering data a device called an Ecom Cable, developed by EControls Inc., that was 

also used by Miller and Valasek was bought for approximately $200. This cable allows for CAN 

messages to be interpreted by a laptop and vice versa through a USB connection. The Ecom Cable is 

created with an EPC connector that is designed to attach to the engine harness. However, in order to 

attach this device to the OBD-II diagnostics port under the dash a unique connector was created. As the 

vehicles used in this experiment for testing are owned by various third parties this was the easiest access 

point to the network without having to remove parts of the dash or under the hood.  

An OBD-II cable was acquired and cut open to attach to the EPC end of the Ecom Cable. The 

materials used are shown in Figure 3. Wires can be easily matched to pins on the OBD-II cable by using a 

multi-meter and high gauge wire strippers since OBD-II wires are very small. 

Only connections between four OBD-II pins and three Ecom wires are necessary to enable 

Figure 3. Materials and Identifying Pinouts 
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communication. Steps for the creation of this connector are shown in Figures 4-6. 

After creating the connector the windows drivers for the Ecom Cable can be downloaded off of 

the cancapture.com website.  

The drivers are known to be 

successfully installed if the light on 

the Ecom turns from red to green 

when plugged into the computer. A 

picture of the connector attaching the 

Lexus to a laptop can be found in 

Figure 7. Once connected a simple 

written script allows easy access to the traffic flow 

present on the CAN-bus of the vehicle. Although the 

Ecom device can only transmit or receive data at one 

time, a second device could be connected to perform 

both functions at the same time. For this experiment 

that was not necessary.  

Data Analysis 

It is important to note that nearly all 

messages on the CAN-bus are not commands. The 

messages describe the state of the car and do not 

tell the car to go faster or to turn the steering wheel to a specific position. However, these messages are 

necessary for ECUs to enact their internal functions. An example would be if the car is slipping on ice, 

Figure 4. Attaching the Ecom to OBD-II 

Figure 5. Installing Ecom Drivers 
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determined by information on the bus pertaining to each tire’s wheel rotation and speed, to perform anti-

lock braking. 

Intercepted messages, structured as 11-bit identifier CAN packets, were carefully analyzed to 

determine their meaning. The difficultly of identifying the meaning of unique message types is due to the 

complexity of cars today. For instance a change in one message when you press the brake does not 

necessarily mean that that message has anything to do with the braking module.  In fact, it could be 

intended for the cruise control module which would turn off, since the brake was pressed. Single 

messages can also hold multiple segments of information about the car beyond a single aspect. 

Theoretically every single bit in the data field of a CAN message could tell the status of a different state 

of the vehicle and there are 128 separate data bits per message type. Many different buses also exist in a 

vehicle of various message speeds and not all are connected. Therefore, it cannot be expected to see a 

difference in a message seen in the high speed bus when the seat warmers are turned on, the door is ajar, 

or the lights are turned on. It is more likely that those non-crucial functions are controlled by a low-speed 

bus. 

Through several 20 minute trips out in the Lexus, 43 unique types of messages were identified 

from our access point. Specific confirmed messages identified included wheel speed, steering position, 

brake pressure, and engine coolant temperature, though the confirmed meaning of other messages proved 

elusive. The data was interesting in that messages of low, moderate, and high importance were easily 

identifiable since they are broadcast at vastly different rates. The breakdown of this data can be found in 

Table 1. 
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Network Manipulation 

 After confirming a few types 

of messages, manipulated packets of 

the confirmed types were created and 

sent over the network with rapid speed 

to fill the ECUs priority queues with 

our data and less of the correct data. 

As sending the wrong messages over 

the network could have an adverse 

effect on the tested vehicles only 

packets confirmed to do no damage 

were sent.  

 The first attempt was to 

simply alter a gauge on the dashboard 

to see if the ECUs would accept 

messages from an outside source. The 

engine coolant gauge was chosen as a 

relatively harmless metric to alter 

artificially for a small period. A script 

called Send.c located in Appendix A, 

was created to send messages over the network that the engine coolant temperature was as low as 

possible. It was determined that the first byte of the data field contained the actual temperature 

information and thus the test message contained a byte value of 00. The range of the temperature in the 

first data byte of this message is unknown. A value of 00 could mean 0 degrees Fahrenheit or -23 degrees. 

However, this is the lowest value possible to send and thus should show a decrease in temperature on the 

Breakdown of Toyota CAN Packet Observation 

ID Packets PPS Function (Bold if Confirmed) Data Behavior 

420 222 0.996552 

Less Critical 

Static 

423 221 0.992063 Static 

520 215 0.96513 Dynamic 

526 446 2.002083 Dynamic 

540 228 1.023486 Shift Lever Dynamic 

552 44 0.197515 

Less Critical 

Static 

553 22 0.098757 Static 

583 222 0.996552 Static 

591 739 3.317353 Static 

3B2 738 3.312864 Static 

4C1 244 1.09531 Static 

4C3 239 1.072865 Static 

4C6 232 1.041442 Static 

4C7 230 1.032464 Static 

4CE 215 0.96513 Static 

52C 222 0.996552 Engine Coolant Temp Static 

56A 223 1.001041 

Less Critical 

Static 

56F 527 2.36569 Static 

57A 223 1.001041 Start change 

57F 222 0.996552 Lights Static 

5B8 223 1.001041 

Less Critical 

Static 

5C8 222 0.996552 Static 

5CD 223 1.001041 Dynamic 

5D2 223 1.001041 Static 

5D4 237 1.063887 Dynamic 

5D5 527 2.36569 Dynamic 

5D7 223 1.001041 Static 

5F8 222 0.996552 Static 

223 9229 41.42875 Important Dynamic 

224 9229 41.42875 Brake Pressure Dynamic 

320 4615 20.71662 
Important 

Toggle 

340 4629 20.77947 Dynamic 

2C1 7019 31.50812 Gas Pedal Dynamic 

2C4 9460 42.4657 RPM Dynamic 

2C6 7019 31.50812   Toggle 

2D0 7018 31.50363   Dynamic 

20 18458 82.8575 Likely Engine Info Static 

22 18458 82.8575 Steering Dynamic 

23 18458 82.8575 Steering Dynamic 

25 18458 82.8575 Steering Dynamic 

B2 18458 82.8575 Wheel Speed Dynamic 

B4 18458 82.8575 Wheel Speed Dynamic 

B0 18459 82.86199 Wheel Speed Dynamic 

Table 1. Lexus Data Breakdown 
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gauge visibly to prove the message worked. After connecting to the OBD-II port, however, and sending 

the message at a rapid rate of 200 packets per second there was no response on the dash.  

 Looking at the history of this packet it was interesting to see that the second byte of the data field 

increased by a single digit with each message. 

The script was altered to incorporate the second 

byte of the data field to then be a rolling 

counter and the test was run again. This time 

the gauge showed a rapid decrease barely 

pumping up every so often when a true packet 

was recognized. The system was fooled to 

thinking the oil temperature was much lower 

than it was. Thus, it is proven that messages 

can be created and accepted by ECUs on the 

network as valid information through the 

diagnostics port. Figure 8 shows a laptop 

communicating with the vehicle. 

 The counter byte was interesting, 

however, in that it had no purpose other than to 

verify message flow. This byte, though not 

necessarily intentionally, acts as a security 

measure inside the engine coolant CAN packet 

against bad data as the ECU will only accept continuous information if the counter is present. After 

further analysis into this concept multiple other message flow bytes were evident beyond simple counters. 

Without these bytes in the correct format information is not recognized as valid by an ECU. An evident 

control flow byte is found in the last byte of a wheel speed message as well. This type of byte must equal 

Figure 6. Laptop to Vehicle communication 
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the rolling addition of all other bytes in the message, and the packet will not be accepted as valid 

information unless this is the case. 

 With this discovery, it was necessary to determine if these control flow bytes were present in 

other vehicles and if the location and function of each was constant, and thus could be predetermined by 

attackers. Traffic from several other vehicles was observed, including a Honda, Hyundai, and a Subaru.  

 Through comparison of wheel speed messages in each of these vehicles, control flow bytes were 

present in each of them of the same addition type. However, the location of this byte varied among 

vehicles. As records of information such as this are not existent without being self-created, having access 

to many years, makes, and models of vehicles, these bytes could prove to be substantial roadblocks in 

sending accepted messages to ECUs. 

Network Message Scrambling 

 Experimentation discussed thus far has been focused on attempting to perform specific actions to 

a vehicle. However, a faster and more realistic attempt to cause a car to malfunction would be through 

sending random data at the network with the intent to send a message that would cause a failure in a 

critical component of the vehicle. On-Star is known to be able to send a specific message that would 

safely shut down an engine, but malformed information on a network could cause ECU and engine 

failures that could result in significant damage to the vehicle (Klimas, 2014). 

 Attempting to break a device through malformed or malicious data is a common practice that 

programmers use to test durability and security in their software. Thus, there are numerous free 

applications that are easily accessible to those who would attempt to use them in an illegal manner. 

Experimentation was needed to determine how vulnerable ECUs are to malformed data.  

 An ABS ECU from a truck was acquired to measure the robustness of the controller to attacks 

with malformed information. An open-source fuzzer, called Peach was selected as a good method to 
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inject malformed packets into a home-made CAN-bus hooked up to the ECU. Peach was decided to be 

one of the free, popular, easiest to customize, and fastest methods of creating and sending test cases to the 

ECU. Peach also has built-in ability to recognize faults that occur with a device and will log each event 

since it is difficult to see changes at the speed of data sent over the network. A custom Peach pitfile that 

fits the data length of CAN messages was created to send mutated CAN data and discover any faults that 

may occur when an ECU is presented with rapid amounts of random information. The ECU was 

monitored to identify if it would send data different than the two standard Electronic Brake Controller 

1(F001) and Wheel Speed Information (FEBF) messages that it communicates when monitoring normal 

traffic. The Peach pitfile can be found in Appendix A. 

 As this ECU was from a truck it utilized a specific CAN-Extended ID message frame standard 

developed by the Society of Automotive Engineers called J1939. This format is well documented online, 

and is also used on boats, airplanes, and many other large and industrial vehicles. The format of a J1939 

packet is very similar to the standard CAN extended message frame format; however, the identifier is 

more specific. A detailed look at the beginning of this packet standard can be found in Figure 9.  

 

Figure 7. J1939 Identifier Format 

 J1939 information packets are distinguished by their 29-bit identifiers that are divided into four 

parts that this report is concerned with. The beginning 3 bits after the Start of Frame bit, as custom with 

CAN packets, contains the priority of the message. The interior 16 bits, divided by the substitute remote 

request and identifier extension flags that are not part of the identifier, represent the message type called 

the Protocol Group Number (PGN). The remaining 8 bit section contains a source address from the ECU 

or device of which the message originated (Understanding SAE J1939, n.d.). Other types of messages 
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exist in the J1939 standard, such as error messages and information request packets, however, this is the 

identifier format that contains normal information read by vehicle ECUs, and will be the easiest message 

type to be manipulated to provoke vulnerabilities. 

 While manipulating this format in each round, testing over several days was conducted with all of 

the data mutators that are provided with Peach. No faults, responses, or alteration of data were detected 

from the ABS unit. It was determined that only a recognizable CAN packet would be accepted by the 

ABS to trigger a possible reaction. Thus, a Peach custom mutator and several strategies were created that 

would send packet structured data that is familiar with the ABS. These files determine how Peach creates 

test cases to send to a device and are easily included into the community Peach-nightly-build freely 

available online. A custom Peach mutator and strategy are included in Appendix A. With these mutators, 

identifier and data bytes could be configured to remain static or increment dynamically to narrow the test 

cases that are sent at the ABS unit. As J1939 CAN packet message frames consist of 12 hexadecimal 

pairs of data, about 256
12

 packet combinations are possible. With peach running test cases at a rate of 200 

packets per second, it is easily understood why narrowing the information to include static hex bytes and 

thus minimizing the exponent value is necessary. Cycling every combination of three byte pairs would 

take nearly one day. Though this rate of data entry seems exceedingly slow, part of the restriction is due 

to inefficiencies in the code and the rate our Ecom device can send data onto the network. 

 As the PGN in a J1939 packet is only two hex-bytes long all possible message types were cycled 

with different data that was thought to possibly provoke a response from the ECU. It was thought that this 

would be the most likely way to trigger a fault in the unit. Numerous data values and some mutated data 

bytes were tested for several weeks. Fuzzing, in this timeframe, proved unsuccessful to affect this singular 

device and it was decided to attempt specific packet injection known to J1939 that should be successful in 

this regard. Fuzzing was not attempted on an actual vehicle network as it was determined too dangerous 

by vehicle volunteers. 
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Packet Injection 

 Though sending malformed and large amounts of random data to find specific harmful messages 

is not difficult, the ability to input packets at will to a network has other effects more likely to cause harm. 

By sending accepted but incorrect high priority data quickly, an ECU queue can fill up with incorrect 

information. Intrusion similar to a denial of service attack on a website is possible and could result in 

malfunction of a vehicle. For instance, if a message that measures ignition timing is being sent over the 

network to the ECM (Engine Control Module) and is required to wait in a long message queue by many 

false messages to the ECM, the ECM may have an inability to detect knock, a potentially destructive 

condition for an engine.  

 An accepted message by an ECU must still meet variable checksums built into the packets as 

described above and nearly all messages to important units like the ECM require them. However, by 

simply copying a pasting message on the bus, important information can be delayed to a unit. This type of 

attack is the easiest to perform as it requires little knowledge of a CAN network. Simply sending static 

data in a message of a type with regularly variable data can delay key functions for a vehicle such as 

valve control, air/fuel ratio, and shifting. 

 Though car manufacturers are installing many helpful automatic features into their new 

automobiles, these features could put drivers at risk from this type of attack. By listening to packet traffic 

when a vehicle uses a backup collision intervention system, as in the 2015 Infinity QX60 commercial, it 

would be possible to replicate this traffic and cause braking when a vehicle should not be (Infinity, 2015). 

The dangers of these features can be further described in the Forbes report with Charlie Miller and Chris 

Valasek when they convinced a vehicle to perform park assist functionality when driving down the road 

(Greenberg, 2013). 
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ECU Re-flashing 

 The most dangerous ability a hacker could obtain on a vehicle system would be accessing writing 

privileges to an ECU. Previous discussion has been focused on misinforming ECUs by providing false 

information and causing them to behave as if the vehicle were in a different state than it actually is. 

However, with a successful attack of this nature an ECU would perform as an attacker would program it 

to when provided normal information. 

 With the ability to re-flash, or re-program, an ECU an attacker could alter the functions that the 

ECU does to perform physical actions in a vehicle. For instance, a function could be input into the ECU 

that controls braking to apply maximum pressure to brakes once a message has been received that the 

vehicle has reached a speed of 70mph. Alternatively, an attacker with access to this privilege could 

simply erase all of the instructions on an ECU. This ability clearly would be extremely dangerous for an 

outside party, or even a vehicle owner, to be able to access, therefore, this capability has very secure 

security measures around it.  

 Car manufacturers utilize a seed/key security system for this purpose in that after a request for 

access an ECU will send a message containing a seed (bit sequence). A key can then be determined from 

using this seed in a proprietary algorithm and transmitting the key (algorithm output) within a certain 

amount of time. There are multiple levels of security that manufacturers utilize to keep others from 

beating this security. The lowest level would be using a simple math algorithm that causes a key to be the 

seed plus or minus some secret number. Some ECUs change the seed or even prevent access entirely until 

the vehicle is restarted after a certain amount of incorrect attempts, making discovery of the algorithm 

more difficult. The highest level of security that has been observed is an altering of the algorithm itself as 

well as the seed after a certain number of attempts have failed. Without utilizing a manufacturer’s tool to 

attempt to re-engineer and discover the algorithms involved in this sense it would be very difficult to 

access vehicle privileges in this manner (Rouf, 2010). It would be recommended that all car 

manufacturers extend their security to the highest level currently available for writing access. 



17 

 The time and resources it would take to determine the correct algorithm and find the key to 

unlock an ECU would make it extremely improbable for an individual to access the internal functions of a 

random passing automobile. Therefore, everyday drivers should be reassured that there is little need to 

worry about outsiders re-programming their vehicles on the road. However, previously discussed data 

manipulation is still a valid risk.
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Chapter 3  
 

New Proposed Security Measures 

Intrusion detection

A simple addition to security in the vehicle CAN bus would be the addition of an intrusion 

detection system on the network. Not only would this provide a warning to drivers that their car could be 

behaving strangely due to message traffic intrusion, but also there would also be a way to actually tell if 

automotive cyber intrusion is occurring today in society. 

The installation would be relatively cheap and simple for this addition as all would be needed is a 

function that could be input to an already existing ECU, small amounts of dedicated memory to capture 

network traffic during a detected time of intrusion, and a new light on the driver dashboard. Thus, a 

vehicle manufacturer could analyze the traffic to determine if abnormal network behavior was the result 

of an intrusion or a malfunctioning ECU or sensor. 

Detecting unusual behavior on the bus would be rather simple. As shown in Table 1 only a small 

number of identification numbers are ever present on the bus relative to the thousands of combinations 

possible. Also these IDs are transmitted at a specific rate of speed. If a number of CAN messages that 

contain unused IDs or the packet traffic of specific used IDs begins to exceed normal transmission rates 

this can be evidence that the network is being manipulated. When conducting experimentation it was 

determined that only by sending messages faster than normal data could the ECU be fooled enough that 

false instructions would affect the car. Therefore, intrusion that would be detrimental to consumer safety 

would be easy to spot by this means. 
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Encryption of network traffic 

Encryption may be the oldest tool used in network security and it is curious why automotive 

networks do not already use it in their systems. Encryption, even in the simplest form with a singular 

proprietary key would be another obstacle for a would-be hacker to circumvent. Though, automobile 

manufacturers would need to work together with ECU manufacturers, custom encryption with public keys 

for each vehicle would be the safest option. Encryption keys could be included in the user manual of a car 

or even be proprietary numbers unknown to anyone but the manufacturer. Encryption in this sense would 

take long periods to crack without knowledge of the key and prevent outside signals from providing 

misleading information on the bus. 

Encryption of CAN messages is not a new concept. In fact in some systems it is present, as in the 

CANlink GSM (ProEmion, 2014). Patents also exist for CAN communication encryption devices 

(Vasicheck, 2009). The only step left is actually including these controllers and security measures in 

vehicles. Investment in this existing technology will have backlash from those who customize their own 

vehicles by adding their own devices, such as a radar detector light to a dashboard (Szczys, 2013). 

However, this security could be crucial to preventing attacks. 

Consumer Awareness 

 It is important to note that a car owner can take steps to safeguard their vehicle from the threat of 

hackers by utilizing protection already built into the vehicle that they may be unaware of. Bluetooth in 

particular requires a four digit password for connection to pair with an outside device. This password is 

usually default to 0000 or 1234 (Kumar, 2013). Simply changing this password to a different number 

could prevent easy access by another individual. Additionally, illegally downloaded music attached to an 

MP3 player could be malicious, and it would be wise not to connect a device with such material to your 
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vehicle (Koscher, 2014). Consumers should be instructed about safety measures that require their input 

upon receiving a vehicle. 
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Chapter 4  
 

Conclusions 

Through analysis of available vehicles this thesis has explored automobile cyber vulnerabilities 

for malfunction of ECUs due to malformed packet injection, specific targeted packet injection on a 

vehicle CAN bus, network dilution to prevent reception of important vehicle information, and security to 

unlock ECU developer permissions. It has been determined through this research that malicious hacking 

to create a safety threat for drivers of modern automobiles is feasible for someone with enough drive to 

try to cause harm in this way. However, even though this threat is feasible the chance of causing physical 

harm to a driver or passenger seems relatively low, even if a failure causes damage to the vehicle. 

This paper has outlined the security measures present in several automobiles that an average 

driver would own. It is a relief to know that security measures do exist to make cyber-attacks more 

difficult by a perpetuator, whether they were designed for that purpose or not. It is also important to 

understand what can be done to improve security in automobile CAN through means that are not yet 

utilized, such as network encryption.  

No attacks have ever been recorded of a cyber-attack on a passenger automobile at this point in 

history. However, the increase in interest and research of the subject and the increase in cyber 

connectivity of vehicles could leave consumers at risk. Without intrusion detection systems in place it 

would be unlikely that even if an attack of this nature had caused a vehicle to behave irrationally the 

driver would attribute the malfunction to network intrusion, rather than a malfunctioning internal unit. 

Collecting data to see if cyber-attacks actually occur on the road is an important first step to determine if 

further security is necessary. 
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Car manufacturers will need to consider carefully how to improve their network security as 

vehicles evolve. Increase in security will cause increase in cost for consumers, make scrapping of cars 

easier as more expensive electronics are damaged in collisions, and require more expensive equipment for 

vehicle maintenance. Though car manufacturers have a duty to keep their customers safe it is possible that 

drivers would not accept the added cost that is attached to a more cyber-secure vehicle. Consumer 

research on this subject would need to be explored. 

New vehicles that are equipped with Wi-Fi and electric and self-driving cars will have entirely 

new security holes and require even more consideration towards security. Manufacturers should consider 

network security as they are developing these new vehicles rather than as an afterthought.  

This report is not exhaustive for this subject. Access to further materials and testing on various 

other automotive devices, ECUs, and vehicles is needed to further enlighten this topic. Limitations on 

funding and access to equipment were certainly evident in this study. Recognition of network security is 

an important factor to consider as vehicles are becoming more and more connected electronically, 

internally, and externally through wireless internet and other airwave communication. Continuous study 

and testing is required to maintain a safe transportation environment for passengers and materials. 

Specific limitations that existed when conducting research were the inability to experiment with 

causing a critical or dangerous fault in an automobile, access to other ECUs that control critical functions 

as an Engine Control Module or a Power-train Module, testing through wireless or Bluetooth 

communication, access to a complete vehicle bus through means other than the OBD-ii port, and 

successful testing to re-flash an ECU.
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Appendix A 

 

Scripts Used in Data Collection and Analysis 

Send.c 

//Created by Michael Dulan 

 

#include <stdio.h> 

#include <time.h> 

#include "ecommlib.h" 

#include <conio.h> 

 

 

HANDLE ECOMHandle; //This will be the HANDLE to our ECOM device used for all function calls  35921 

HANDLE deviceHandle[5]; 

// Number of ECOM devices 

int device_count; 

// Flag used to stop the sending of packets to client 

int stop_flag; 

unsigned long number; 

HANDLE h; 

 

void SendTruckInBox() 

{ 

 EFFMessage newMessage; 

 newMessage.ID = 12; 

 newMessage.DataLength = 8; 

 newMessage.options = 0; 

 newMessage.data[0] = 0; 

 newMessage.data[1] = 0; 

 newMessage.data[2] = 0; 

 newMessage.data[3] = 0; 

 newMessage.data[4] = 0; 

 newMessage.data[5] = 8;     //First digit         Speed = (Firstdigit SecondDigit /100) kmph 

 newMessage.data[6] = 8;     //Second digit  

 newMessage.data[7] = 8;  

 int timestamp = 12; 

 EFFMessage newMessage2; 

 while(!kbhit()) 

 { 

  Sleep(20); 

  newMessage.TimeStamp = timestamp + 12; 

  CANTransmitMessageEx(deviceHandle[0], &newMessage); 

  timestamp++; 

 } 

} 
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void Test() 

{ 

 EFFMessage newMessage; 

 newMessage.ID = 12; 

 newMessage.DataLength = 8; 

 newMessage.options = 0; 

 newMessage.data[0] = 0; 

 newMessage.data[1] = 0; 

 newMessage.data[2] = 0; 

 newMessage.data[3] = 0; 

 newMessage.data[4] = 0; 

 newMessage.data[5] = 8;     //First digit         Speed = (Firstdigit SecondDigit /100) kmph 

 newMessage.data[6] = 8;     //Second digit  

 newMessage.data[7] = 8;  //Checksum 

 int timestamp = 12; 

 while(!kbhit()) 

 { 

  Sleep(20); 

  newMessage.TimeStamp = timestamp + 12; 

  CANTransmitMessageEx(deviceHandle[0], &newMessage); 

  timestamp++; 

 } 

} 

 

void SpeedTest()  //0B4 

{ 

 SFFMessage newMessage; 

 newMessage.IDH = 0;       

 newMessage.IDL = 180;      //B4 

 newMessage.DataLength = 8; 

 newMessage.options = 0; 

 newMessage.data[0] = 0; 

 newMessage.data[1] = 0; 

 newMessage.data[2] = 0; 

 newMessage.data[3] = 0; 

 newMessage.data[4] = 0; 

 newMessage.data[5] = 4;     //First digit         Speed = (Firstdigit SecondDigit /100) kmph 

 newMessage.data[6] = 28;    //Second digit  

 newMessage.data[7] = (180 + 8 + 5 + 28) % 256; //Checksum 

 int timestamp = 12; 

 while(!kbhit()) 

 { 

  Sleep(2); 

  newMessage.TimeStamp = timestamp + 12; 

  CANTransmitMessage(deviceHandle[0], &newMessage); 

  timestamp++; 

 } 

} 
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void UnknownTest()  //320 

{ 

 SFFMessage newMessage; 

 newMessage.IDH = 3;        //3 

 newMessage.IDL = 32;       //20 

 newMessage.DataLength = 3; 

 newMessage.options = 0; 

 newMessage.data[0] = 0; 

 newMessage.data[1] = 40;   //20 or 28 

 newMessage.data[2] = (180 + 8 + 5 + 28) % 256;  //Checksum 

 newMessage.data[3] = 0; 

 newMessage.data[4] = 0; 

 newMessage.data[5] = 0; 

 newMessage.data[6] = 0; 

 newMessage.data[7] = 0; 

 int timestamp = 12; 

 while(!kbhit()) 

 { 

  Sleep(20); 

  newMessage.TimeStamp = timestamp + 12; 

  CANTransmitMessage(deviceHandle[0], &newMessage); 

  timestamp++; 

 } 

} 

 

 

void LockTest()  //750 

{ 

 int count; 

 SFFMessage newMessage; 

 newMessage.IDH = 7;        //7 

 newMessage.IDL = 80;       //50 

 newMessage.DataLength = 8; 

 newMessage.options = 0; 

 newMessage.data[0] = 64;  //40 

 newMessage.data[1] = 5;    

 newMessage.data[2] = 48;  //30 

 newMessage.data[3] = 17;  //11 

 newMessage.data[4] = 0; 

 newMessage.data[5] = 64;  //40 unlock, 80 lock all, 00 unlock trunk 

 newMessage.data[6] = 0;   //80 unlock trunk, 0 else 

 newMessage.data[7] = 0; 

 int timestamp = 12; 

 while(!kbhit()) 

 { 

  Sleep(10); 

  newMessage.TimeStamp = timestamp + 12; 

  CANTransmitMessage(deviceHandle[0], &newMessage); 

  timestamp++; 

 } 

} 
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void FuelTest()  //7C0 

{ 

 SFFMessage newMessage; 

 newMessage.IDH = 3;        //7 

 newMessage.IDL = 192;      //C0 

 newMessage.DataLength = 8; 

 newMessage.options = 0; 

 newMessage.data[0] = 4; 

 newMessage.data[1] = 48;   //30 

 newMessage.data[2] = 3;   

 newMessage.data[3] = 0;    

 newMessage.data[4] = 32;   //20 == 3/4 full 

 newMessage.data[5] = 0; 

 newMessage.data[6] = 0; 

 newMessage.data[7] = 0; 

 int timestamp = 12; 

 while(!kbhit()) 

 { 

  Sleep(5); 

  newMessage.TimeStamp = timestamp + 12; 

  CANTransmitMessage(deviceHandle[0], &newMessage); 

  timestamp++; 

 } 

} 

 

 

void LightsTest()  //57F 

{ 

 SFFMessage newMessage; 

 newMessage.IDH = 5;        //5 

 newMessage.IDL = 127;      //7F 

 newMessage.DataLength = 8; 

 newMessage.options = 0; 

 newMessage.data[0] = 232;  //E8 

 newMessage.data[1] = 56;   //30 = On, 38 = High, 0 = Off, 10 = Parking 

 newMessage.data[2] = 10;   

 newMessage.data[3] = 0; 

 newMessage.data[4] = 0; 

 newMessage.data[5] = 0; 

 newMessage.data[6] = 0; 

 newMessage.data[7] = 0;    //80 if off 

 int timestamp = 12; 

 while(!kbhit()) 

 { 

  Sleep(5); 

  newMessage.TimeStamp = timestamp + 12; 

  CANTransmitMessage(deviceHandle[0], &newMessage); 

  timestamp++; 

 } 

} 
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void EngineCoolantTest()  //52C 

{ 

 SFFMessage newMessage; 

 newMessage.IDH = 5;        //5 

 newMessage.IDL = 44;       //2C 

 newMessage.DataLength = 2; 

 newMessage.options = 0; 

 newMessage.data[0] = 2; 

 newMessage.data[1] = 20;   //temp 0.5 Celcius per bit 

 newMessage.data[2] = 0;   

 newMessage.data[3] = 0; 

 newMessage.data[4] = 0; 

 newMessage.data[5] = 0; 

 newMessage.data[6] = 0; 

 newMessage.data[7] = 0; 

 int timestamp = 12; 

 while(!kbhit()) 

 { 

  Sleep(10); 

  newMessage.data[1] = ((newMessage.data[1]+1))%256; 

  newMessage.TimeStamp = timestamp + 12; 

  CANTransmitMessage(deviceHandle[0], &newMessage); 

  timestamp++; 

 } 

} 

 

DeviceInfo *GetECOMDevicesEx() 

{ 

 BYTE baud, ReturnError; 

 DeviceInfo deviceInfoStruct; 

 DEV_SEARCH_HANDLE searchHandle = StartDeviceSearch(FIND_ALL); 

 int deviceCount = 0; 

 DeviceInfo *toret = (DeviceInfo *) malloc(sizeof(DeviceInfo) * 10); 

 memset(toret, 0, sizeof(DeviceInfo)*10); 

 if (searchHandle == NULL){ 

  printf("Unexpected error allocating memory for device search\n"); 

 } 

 

    while(FindNextDevice(searchHandle, &deviceInfoStruct) == ECI_NO_ERROR){ 

  memcpy((void *) &toret[deviceCount++], &deviceInfoStruct, sizeof(DeviceInfo)); 

    } 

 printf("%lu\n",toret->SerialNumber); 

 printf("%lu\n",toret->DeviceHandle); 

 CloseDeviceSearch(searchHandle); 

 device_count = 0; 

 if (toret->SerialNumber == 0){ 

  printf("Problem getting ECOM devices\n"); 

 } 

 while ( (toret + device_count)->SerialNumber != 0) { 

  ULONG serial = (toret + device_count)->SerialNumber; 

  baud = CAN_BAUD_250K; 

  deviceHandle[device_count] = CANOpen(serial, baud, &ReturnError);  

  (toret + device_count)->DeviceHandle = deviceHandle[device_count]; 

  printf("Return Error: %s",ReturnError); 

  if (!deviceHandle || ReturnError != 0){ 
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   char ErrMsg[400]; 

   printf("Error Message"); 

   GetFriendlyErrorMessage(ReturnError, ErrMsg, 400); 

   printf("CANOpen failed with error message: "); 

  } 

  ReturnError = CANSetupDevice(deviceHandle[device_count], CAN_CMD_TRANSMIT, 

                                                                                  CAN_PROPERTY_ASYNC);  

  device_count++; 

 } 

 printf("Devices: %d",device_count); 

 return toret;  

} 

 

DeviceInfo *GetECOMDevices() 

{ 

 BYTE baud, ReturnError; 

 DeviceInfo deviceInfoStruct; 

 DEV_SEARCH_HANDLE searchHandle = StartDeviceSearch(FIND_ALL); 

 int deviceCount = 0; 

 DeviceInfo *toret = (DeviceInfo *) malloc(sizeof(DeviceInfo) * 10); 

 memset(toret, 0, sizeof(DeviceInfo)*10); 

 if (searchHandle == NULL){ 

  printf("Unexpected error allocating memory for device search\n"); 

 } 

 

 while(FindNextDevice(searchHandle, &deviceInfoStruct) == ECI_NO_ERROR){ 

  memcpy((void *) &toret[deviceCount++], &deviceInfoStruct, sizeof(DeviceInfo)); 

 } 

 printf("SN: %lu\n",toret->SerialNumber); 

 printf("DH: %lu\n",toret->DeviceHandle); 

 CloseDeviceSearch(searchHandle); 

 device_count = 0; 

 if (toret->SerialNumber == 0){ 

  printf("Problem getting ECOM devices\n"); 

 } 

 while ( (toret + device_count)->SerialNumber != 0) { 

  ULONG serial = (toret + device_count)->SerialNumber; 

  baud = CAN_BAUD_500K; 

  deviceHandle[device_count] = CANOpen(serial, baud, &ReturnError);  

  (toret + device_count)->DeviceHandle = deviceHandle[device_count]; 

  printf("Return Error: %s\n",ReturnError); 

  if (!deviceHandle || ReturnError != 0){ 

   char ErrMsg[400]; 

   GetFriendlyErrorMessage(ReturnError, ErrMsg, 400); 

   printf("CANOpen failed with error message: "); 

  } 

  ReturnError = CANSetupDevice(deviceHandle[device_count], CAN_CMD_TRANSMIT, 

                                                                                  CAN_PROPERTY_ASYNC);  

  device_count++; 

 } 

 printf("Devices: %d",device_count); 

 return toret;  

} 

 

int main() 
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{ 

 DeviceInfo * lolz; 

 int i; 

 BYTE ReturnError = 0;  //This will be used for all error return status codes 

 lolz = GetECOMDevicesEx(); 

 //lolz = GetECOMDevices(); 

 

 //This executes until keyboard is hit. 

 //SendTruckInBox(); 

 //Test();      //J1939 

 //SpeedTest(); 

 //UnknownTest(); 

 //LockTest(); 

 //FuelTest(); 

 //LightsTest(); 

 EngineCoolantTest(); 

 //Now we are all done, so clean up by closing the ECOM 

 while ((lolz+i)->DeviceHandle){ 

  CloseDevice((lolz+i)->DeviceHandle); 

  i++; 

 } 

 return 0; 

}
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CAN Peach Pitfile 

<Peach xmlns="http://peachfuzzer.com/2012/Peach" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:schemaLocation="http://peachfuzzer.com/2012/Peach ../peach.xsd"> 

   

  <DataModel name="ID1"> 

     

    <Number mutable="true" name="ID11" signed="true" size="8" value="00" valueType="hex" /> 

    <Number mutable="true" name="ID12" signed="true" size="8" value="00" valueType="hex" /> 

    <Number mutable="true" name="ID13" signed="true" size="8" value="00" valueType="hex" />     

    <Number mutable="true" name="ID14" signed="true" size="8" value="00" valueType="hex" /> 

    <Number mutable="false" name="IDOPT" signed="true" size="8" value="00" valueType="hex" /> 

    <Number mutable="true" name="IDTIME" size="32" value="00 00 00 00" valueType="hex" /> 

    <Number mutable="false" name="ID1LEN" signed="true" size="8" value="11" valueType="hex" /> 

    <Number mutable="false" name="ID1DATA1" signed="true" size="8" value="08" valueType="hex" /> 

    <Number mutable="true" name="ID1DATA2" signed="true" size="8" value="00" valueType="hex" /> 

    <Number mutable="true" name="ID1DATA3" signed="true" size="8" value="00" valueType="hex" /> 

    <Number mutable="true" name="ID1DATA4" signed="true" size="8" value="00" valueType="hex" /> 

    <Number mutable="true" name="ID1DATA5" signed="true" size="8" value="00" valueType="hex" /> 

    <Number mutable="true" name="ID1DATA6" signed="true" size="8" value="00" valueType="hex" /> 

    <Number mutable="true" name="ID1DATA7" signed="true" size="8" value="00" valueType="hex" /> 

    <Number mutable="true" name="ID1DATA8" signed="true" size="8" value="00" valueType="hex" /> 

  </DataModel> 

 

  <DataModel name="DataResponse"> 

    <String name="response" token="true" /> 

  </DataModel> 

   

  <StateModel initialState="Initial" name="StateID1"> 

    <State name="Initial"> 

      <Action type="connect" /> 

      <Action type="output"><DataModel ref="ID1" /></Action>  

      <Action type="input"><DataModel ref="DataResponse" /></Action> 

      <Action type="close" /> 

    </State> 

  </StateModel> 

 

<Agent name="LocalAgent"> 

     

 <Monitor class="Socket"> 

  <Param name="Timeout" value="3000" /> 

  <Param name="Host" value="127.0.0.1" /> 

  <Param name="Port" value="15765" /> 

 </Monitor> 

  

</Agent> 

 

<Agent location="tcp://127.0.0.1:15765" name="RemoteAgent">  

 <Monitor class="WindowsDebugger"> 

  <Param name="CommandLine" value="C:\Users\Albany\Desktop\ecom final.exe" /> 
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  <Param name="WinDbgPath" value="C:\Windows\System32\debug.exe" /> 

 </Monitor> 

</Agent> 

 

  <Test name="Default"> 

 <Mutators mode="include"> 

  <Mutator class="HexMutator" /> 

 </Mutators> 

     

    <StateModel ref="StateID1" /> 

    <Publisher class="TcpClient"> 

      <Param name="Host" value="127.0.0.1" /> 

      <Param name="Port" value="15765" /> 

    </Publisher> 

 <Strategy class="Sequential" /> 

 

    <Logger class="Filesystem"> 

      <Param name="Path" value="logs" /> 

    </Logger> 

  </Test> 

 

</Peach> 
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Peach Custom Mutator 

 

// 

// Copyright (c) Michael Eddington 

// 

// Permission is hereby granted, free of charge, to any person obtaining a copy  

// of this software and associated documentation files (the "Software"), to deal 

// in the Software without restriction, including without limitation the rights  

// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell  

// copies of the Software, and to permit persons to whom the Software is  

// furnished to do so, subject to the following conditions: 

// 

// The above copyright notice and this permission notice shall be included in  

// all copies or substantial portions of the Software. 

// 

// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR  

// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,  

// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE  

// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER  

// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 

// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 

// SOFTWARE. 

// 

 

// Authors: 

//   Michael Eddington (mike@dejavusecurity.com) 

//   Michael Dulan (michael.dulan@gmail.com) 

 

// $Id$ 

 

using System; 

using System.Collections.Generic; 

using System.Text; 

using Peach.Core.Dom; 

 

namespace Peach.Core.Mutators 

{ 

    [Mutator("HexMutator")] 

    [Description("Increment each <Number> element")] 

    public class HexMutator : Mutator 

    { 

        // members 

        // 

        int n; 

        int size; 

        int _value;  

        bool signed; 

        uint currentCount; 
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        long minValue; 

        ulong maxValue; 

        int counter; 

 

        // CTOR 

        // 

        public HexMutator(DataElement obj) 

        { 

            name = "HexMutator"; 

            currentCount = 0; 

            n = getN(obj, 0); 

            counter = 0; 

 

            if (obj is Number) 

            { 

                signed = ((Number)obj).Signed; 

                size = (int)((Number)obj).lengthAsBits; 

                minValue = ((Number)obj).MinValue; 

                maxValue = ((Number)obj).MaxValue; 

                _value = (int)(((Number)obj).Value.ReadByte()); 

            } 

        } 

 

        // GET N 

        // 

        public int getN(DataElement obj, int n) 

        { 

       n = (int)(n + ((Number)obj).lengthAsBits);        //calculate total length of all elements in bits 

       n = (int)(n / 8);                                                    //convert bits to bytes 

       n = (int)(Math.Pow(16,n));                                 //create total iterations 

       n = 256*256*256; 

       return n; 

        } 

 

        // MUTATION 

        // 

        public override uint mutation 

        { 

            get { return currentCount; } 

            set { currentCount = value; } 

        } 

 

        // COUNT 

        // 

        public override int count 

        { 

            get { return n; } 

        } 

 

        // SUPPORTED 

        // 

        public new static bool supportedDataElement(DataElement obj) 

        { 

            // Ignore numbers != 8 bits 
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            if (obj is Number && obj.isMutable) 

                if (((Number)obj).lengthAsBits%8 == 0) 

 { 

                    return true; 

 } 

            return false; 

        } 

 

        // SEQUENTIAL_MUTATION 

        // 

        public override void sequentialMutation(DataElement obj) 

        { 

              dynamic val; 

 counter++; 

 val = counter; 

 if (val > 255) //FF 

 { 

         // Restart mutation count 

         val = 0; 

         counter = 0; 

 } 

 

/*            if (signed) 

            { 

                if (size < 32) 

                    val = context.Random.Next((int)minValue, (int)maxValue); 

                else if (size == 32) 

                    val = context.Random.NextInt32(); 

                else if (size < 64) 

                    val = context.Random.Next((long)minValue, (long)maxValue); 

                else 

                    val = context.Random.NextInt64(); 

            } 

            else 

            { 

                if (size < 32) 

                    val = context.Random.Next((uint)minValue, (uint)maxValue); 

                else if (size == 32) 

                    val = context.Random.NextUInt32(); 

                else if (size < 64) 

                    val = context.Random.Next((ulong)minValue, (ulong)maxValue); 

                else 

                    val = context.Random.NextUInt64(); 

            }*/ 

 

            obj.MutatedValue = new Variant(val); 

            obj.DefaultValue = new Variant(val); 

            obj.mutationFlags = MutateOverride.Default; 

            obj.mutationFlags = MutateOverride.Transformer; 

        } 

 

        // RANDOM_MUTAION 

        // 

        public override void randomMutation(DataElement obj) 

        { 
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             // Only called via the Sequential mutation strategy, which should always have a consistent seed 

            //randomMutation(obj); 

            dynamic val; 

            val = counter;   

    

           //counter = counter; 

 

            obj.MutatedValue = new Variant(val); 

            obj.DefaultValue = new Variant(val); 

            //obj.fixup = new Variant(val); 

            //obj.InternalValue = new Variant(val); 

            //obj.GenerateValue(); 

            //obj.mutationFlags = MutateOverride.Fixup; 

            obj.mutationFlags = MutateOverride.Default; 

            //obj.mutationFlags = MutateOverride.Transformer; 

        } 

    } 

} 

 

// end 
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Custom Peach Strategy 

 

// 

// Copyright (c) Michael Eddington 

// 

// Permission is hereby granted, free of charge, to any person obtaining a copy  

// of this software and associated documentation files (the "Software"), to deal 

// in the Software without restriction, including without limitation the rights  

// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell  

// copies of the Software, and to permit persons to whom the Software is  

// furnished to do so, subject to the following conditions: 

// 

// The above copyright notice and this permission notice shall be included in  

// all copies or substantial portions of the Software. 

// 

// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR  

// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,  

// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE  

// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER  

// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 

// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 

// SOFTWARE. 

// 

 

// Authors: 

//   Michael Eddington (mike@dejavusecurity.com) 

//   Michael Dulan (michael.dulan@gmail.com) 

// $Id$ 

 

using System; 

using System.Collections.Generic; 

using System.Text; 

using Peach.Core.Dom; 

using System.Reflection; 

using System.Linq; 

 

using NLog; 

 

namespace Peach.Core.MutationStrategies 

{ 

 [MutationStrategy("CAN", true)] 

 [Serializable] 

 public class CAN : MutationStrategy 

 { 

  //int[] counter = new int[18]; 

  int placeholder; 

  int lastByteCurrentlyFuzzing = 0; 
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  protected class Iterations : List<Tuple<string, Mutator, string>> { } 

 

  [NonSerialized] 

  protected static NLog.Logger logger = LogManager.GetCurrentClassLogger(); 

 

  [NonSerialized] 

  protected IEnumerator<Tuple<string, Mutator, string>> _enumerator; 

 

  [NonSerialized] 

  protected Iterations _iterations = new Iterations(); 

 

  private List<Type> _mutators = null; 

  private uint _count = 1; 

  private uint _iteration = 1; 

 

  public CAN(Dictionary<string, Variant> args) 

   : base(args) 

  { 

  } 

 

  public override void Initialize(RunContext context, Engine engine) 

  { 

   base.Initialize(context, engine); 

 

   // Force seed to always be the same 

   context.config.randomSeed = 33333; 

 

   Core.Dom.Action.Starting += new ActionStartingEventHandler(Action_Starting); 

   Core.Dom.State.Starting += new StateStartingEventHandler(State_Starting); 

context.engine.IterationFinished += new 

Engine.IterationFinishedEventHandler(engine_IterationFinished); 

context.engine.IterationStarting += new 

Engine.IterationStartingEventHandler(engine_IterationStarting); 

   _mutators = new List<Type>(); 

   _mutators.AddRange(EnumerateValidMutators()); 

  } 

 

  void engine_IterationStarting(RunContext context, uint currentIteration, uint? totalIterations) 

  { 

   if (context.controlIteration && context.controlRecordingIteration) 

   { 

    // Starting to record 

    _iterations = new Iterations(); 

    _count = 0; 

   } 

  } 

 

  void engine_IterationFinished(RunContext context, uint currentIteration) 

  { 

   // If we were recording, end of iteration is end of recording 

   if(context.controlIteration && context.controlRecordingIteration) 

    OnDataModelRecorded();  

  } 

 

  public override void Finalize(RunContext context, Engine engine) 
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  { 

   base.Finalize(context, engine); 

 

   Core.Dom.Action.Starting -= Action_Starting; 

   Core.Dom.State.Starting -= State_Starting; 

   context.engine.IterationStarting -= engine_IterationStarting; 

   context.engine.IterationFinished -= engine_IterationFinished; 

  } 

 

  protected virtual void OnDataModelRecorded() 

  { 

  } 

 

  public override bool UsesRandomSeed 

  { 

   get 

   { 

    return false; 

   } 

  } 

 

  public override bool IsDeterministic 

  { 

   get 

   { 

    return true; 

   } 

  } 

 

  public override uint Iteration 

  { 

   get 

   { 

    return _iteration; 

   } 

   set 

   { 

    SetIteration(value); 

    SeedRandom(); 

   } 

  } 

 

  private void SetIteration(uint value) 

  { 

   System.Diagnostics.Debug.Assert(value > 0); 

 

   if (_context.controlIteration && _context.controlRecordingIteration) 

   { 

    return; 

   } 

 

   if (_iteration == 1 || value < _iteration) 

   { 

    _iteration = 1; 

    _enumerator = _iterations.GetEnumerator(); 
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    _enumerator.MoveNext(); 

    _enumerator.Current.Item2.mutation = 0; 

   } 

 

   uint needed = value - _iteration; 

 

   if (needed == 0) 

    return; 

 

   while (true) 

   { 

    var mutator = _enumerator.Current.Item2; 

    uint remain = (uint)mutator.count - mutator.mutation; 

 

    if (remain > needed) 

    { 

     mutator.mutation += needed; 

     _iteration = value; 

     return; 

    } 

 

    needed -= remain; 

    _enumerator.MoveNext(); 

    _enumerator.Current.Item2.mutation = 0; 

   } 

  } 

 

  private void Action_Starting(Core.Dom.Action action) 

  { 

   // Is this a supported action? 

   if (!action.outputData.Any()) 

    return; 

 

   if (!_context.controlIteration) 

    MutateDataModel(action); 

 

   else if(_context.controlIteration && _context.controlRecordingIteration) 

    RecordDataModel(action); 

  } 

 

  void State_Starting(State state) 

  { 

   if (_context.controlIteration && _context.controlRecordingIteration) 

   { 

    foreach (Type t in _mutators) 

    { 

     // can add specific mutators here 

     if (SupportedState(t, state)) 

     { 

      var mutator = GetMutatorInstance(t, state); 

      var key = "Run_{0}.{1}".Fmt(state.runCount, state.name); 

      _iterations.Add(new Tuple<string, Mutator, string>(key,  

        mutator, null)); 

      _count += (uint)mutator.count; 

     } 
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    } 

   } 

  } 

 

  // Recursively walk all DataElements in a container. 

  // Add the element and accumulate any supported mutators. 

  private void GatherMutators(string instanceName, DataElementContainer cont) 

  { 

   List<DataElement> allElements = new List<DataElement>(); 

   RecursevlyGetElements(cont, allElements); 

   int length = allElements.Count(); 

 

   //for (int i = 0; i < length; i++) 

   // counter[i] = 0; 

 

   foreach (DataElement elem in allElements) 

   { 

    var elementName = elem.fullName;   

     

    foreach (Type t in _mutators) 

    { 

     if (SupportedDataElement(t, elem)) 

     { 

      var mutator = GetMutatorInstance(t, elem); 

      _iterations.Add(new Tuple<string, Mutator,  

      string>(elementName, mutator, instanceName)); 

      _count += (uint)mutator.count; 

     } 

    } 

   } 

  } 

 

  private void RecordDataModel(Core.Dom.Action action) 

  { 

   // ParseDataModel should only be called during iteration 0 

   System.Diagnostics.Debug.Assert(_context.controlIteration &&  

       _context.controlRecordingIteration); 

 

   foreach (var item in action.outputData) 

   { 

    var instanceName = item.instanceName; 

    GatherMutators(instanceName, item.dataModel); 

   } 

  } 

 

  /// <summary> 

  /// Allows mutation strategy to affect state change. 

  /// </summary> 

  /// <param name="state"></param> 

  /// <returns></returns> 

  public override State MutateChangingState(State state) 

  { 

   if (_context.controlIteration) 

    return state; 
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   var key = "Run_{0}.{1}".Fmt(state.runCount, state.name); 

   if (key == _enumerator.Current.Item1) 

   { 

    OnStateMutating(state, _enumerator.Current.Item2); 

    logger.Debug("MutateChangingState: Fuzzing state change: " + state.name); 

    logger.Debug("MutateChangingState: Mutator: " +  

      _enumerator.Current.Item2.name); 

    return _enumerator.Current.Item2.changeState(state); 

   } 

 

   return state; 

  } 

 

  private void ApplyMutation(ActionData data) 

  { 

   // Ensure we are on the right model 

   bool check; 

   if (_enumerator.Current.Item3 != data.instanceName) 

    return; 

   var fullName = _enumerator.Current.Item1; 

   var dataElement = data.dataModel.find(fullName); 

    

    

   if (dataElement != null) 

   { 

    // Apply increment mutation to first byte 

    var mutator = _enumerator.Current.Item2; 

    OnDataMutating(data, dataElement, mutator); 

    logger.Debug("ApplyMutation: Fuzzing: JHJHJHJJHHJ" + fullName); 

    logger.Debug("ApplyMutation: Mutator: " + mutator.name); 

    mutator.sequentialMutation(dataElement); 

    placeholder = 0; 

     

    // Increment the element(s) after FF's 

    while ((int)(dataElement.DefaultValue) == 0 && lastByteCurrentlyFuzzing > 0) 

    { 

     placeholder++; 

     check = _enumerator.MoveNext(); 

     if (!check) 

     { 

      lastByteCurrentlyFuzzing = 0; 

     } 

     else 

     { 

      fullName = _enumerator.Current.Item1; 

      dataElement = data.dataModel.find(fullName); 

      mutator = _enumerator.Current.Item2; 

      OnDataMutating(data, dataElement, mutator); 

      logger.Debug("ApplyMutation: Fuzzing: " + fullName); 

      logger.Debug("ApplyMutation: Mutator: " + mutator.name); 

      mutator.sequentialMutation(dataElement); 

     } 

    } 

     

    // Increment the pointer to the last element currently being incremented 
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    if ((placeholder > lastByteCurrentlyFuzzing) || ((int)(dataElement.DefaultValue)  

          == 255 && lastByteCurrentlyFuzzing == 0)) 

    { 

     lastByteCurrentlyFuzzing++; 

    } 

     

    // Keep all other bytes the same by "mutating" them 

    for (int i=placeholder; i<lastByteCurrentlyFuzzing; i++) 

    { 

     check = _enumerator.MoveNext(); 

     if (check) 

     { 

      fullName = _enumerator.Current.Item1; 

      dataElement = data.dataModel.find(fullName); 

      mutator = _enumerator.Current.Item2; 

      OnDataMutating(data, dataElement, mutator); 

      logger.Debug("ApplyMutation: Fuzzing: " + fullName); 

      logger.Debug("ApplyMutation: Mutator: " + mutator.name); 

      mutator.randomMutation(dataElement); 

     } 

    } 

     

    _enumerator.Reset(); //set to element before first 

    check = _enumerator.MoveNext(); //first element 

   } 

  } 

 

  private void MutateDataModel(Core.Dom.Action action) 

  {    

   // MutateDataModel should only be called after ParseDataModel 

   System.Diagnostics.Debug.Assert(_count >= 1); 

   System.Diagnostics.Debug.Assert(_iteration > 0); 

   System.Diagnostics.Debug.Assert(!_context.controlIteration); 

    

   foreach (var item in action.outputData) 

   { 

    ApplyMutation(item); 

   } 

  } 

 

  public override uint Count 

  { 

   get 

   { 

    return _count; 

   } 

  } 

 } 

} 

 

// end
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