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ABSTRACT 
 
 
     BK virus (BKV) is one of five pathogenic human viruses in the Polyomaviridae family.  This 

polyomavirus infects more than 80% of the human population. Most clinical studies suggest that 

in immunocompetent hosts, the virus persists in many organs following a primary infection, 

although the asymptomatic infection mainly involves the kidneys and peripheral blood 

leukocytes. On the other hand, in a patient with an underlying immunocompromising condition, 

often involving T cell deficiency, reactivation of the viral infection may occur, leading to serious 

complications such as hemorrhagic cystitis in bone marrow recipients, and BKV nephropathy, a 

major cause of graft dysfunction and rejection in renal transplant recipients.  Experimental in 

vitro and in vivo models have also shown BKV to be an oncogenic agent; BKV induces tumors 

in rodents, and is associated with several human cancers. BKV, a double stranded DNA virus, 

produces three early proteins: large, small, and mini TAg (TAg, tAg, miniT).  These three 

proteins are produced by alternative splicing of a common precursor mRNA.  In this study I have 

demonstrated that miniT contributes to BKV transformating ability. I completed the sequence of 

the BKV(WT9) genome, and  created a miniT null mutant (BKV(WT9)-Δ4366) by introducing a 

point mutation at the donor splice site for the miniT transcript.  This point mutation disrupted the 

consensus donor sequence for miniT mRNA without altering the coding sequence of TAg. I used 

a dense focus assay to compare the ability of the wild type and mutant forms of the virus to 

induce transformation of the rodent cell line, Rat 2. My experiments suggest that miniT protein 

does indeed contribute to viral transforming efficiency. Isolated cells transformed by wild type 

vs. mutant viruses produced the expected early viral proteins.  
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INTRODUCTION 

 
     BK virus (BKV), a member of the Polyomaviridae family, is one of five pathogenic human 

viruses in the family [1]. It was first isolated in 1971 from the urine of an immunocompromised 

renal transplant patient with the initials B.K. [1, 2]. While more than 80% of the adult human 

populations test positive serologically for BKV, most primary infections occur during childhood 

[2].  Clinical pathologic studies suggest that in immuncompetent hosts, the virus persists in many 

organs after the primary infection, but the asymptomatic persistent infection mainly involves the 

kidneys and peripheral blood leukocytes [1, 3-4]. On the other hand, in patients with an 

immunocompromising disease, especially involving T cell deficiency, reactivation of the virus 

can occur [5, 6].  Reactivation of BKV infections can lead to serious complications such as   

hemorrhagic cystitis in bone marrow recipients, and BKV nephropathy, the major cause of graft 

dysfunction and rejection in renal transplant recipients [7-9]. Experimental in vitro and in vivo 

models have implicated BKV as an oncogenic agent; BKV induces tumors in rodents, and is 

associated with several human tumors [4, 10-14]. 

   BKV is a non-enveloped virus with a double stranded, circular DNA genome. The BKV 

genome is divided into the early coding region, the late coding region and the non-coding control 

region (NCCR) [Fig.1]. The NCCR includes the origin of DNA replication, along with binding 

sites for regulatory factors involved in transcription and replication [15]. The early region encodes 

two regulatory proteins, large T antigen and small t antigen (TAg and tAg, respectively). These 

proteins regulate viral replication and promote transformation of non-permissive cells [16, 17]. The 

late region encodes agnoprotein and the capsid proteins VP1, VP2, VP3 which are expressed 

after replication of the genome has been initiated. A third BKV T antigen protein was discovered 

in 2001, this protein is called miniT [22]; it is also known as TrunctAg [18]. 
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[Fig. 1] BKV Genome. BKV has a circular, double stranded DNA genome. The genomic map shows two 
protein coding regions separated by a non-coding regulatory region [NCRR]. The early region encodes 
proteins TAg, tAg, and miniT, while the late region encodes proteins VP1, VP2, VP3, and LP1.  

      
Early proteins [TAg, tAg] regulate viral replication and are involved in oncogenic 
activity. 

 
Late proteins [VP1, VP2, and VP3] are expressed after genomic replication has initiated 
and encode viral capsid proteins. 

 
Late protein [LP1] is a regulatory protein. 
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    BKV miniT protein consists of 136 amino acids, and shares 133 amino-terminal amino acids 

with TAg.  These shared amino acids contain an Hsc70-binding J domain and an LxCxE binding 

region for RB tumor suppressor family proteins; miniT protein also contains an E3 ubiquitin 

ligase binding domain called CUL 7, and a nuclear localization signal (NLS) [18]. TAg induces 

transformation through the actions of the J, LxCxE, and p53 domains; miniT lacks the p53 

binding sequence. Studies have demonstrated that polyomavirus TAgs bind RB proteins (pRb, 

p130, p107) through their LxCxE domain.  Once bound, TAgs recruit the molecular chaperone 

Hsc 70 through the J domain, which then promotes the release of members of the E2F family of 

transcription factors [20-23].  The RB proteins are active during the G0/G1 cell phase and prevent 

E2F-dependent transcription of genes needed for cell progression towards S phase. However, 

through their J domain and LxCxE motif, the polyomavirus TAgs deregulate the cell cycle, 

inducing premature progression of cells through the S phase and thus promoting transformation 

of non-permissive cells [19-22]. Inappropriate cell cycle activation can lead to p53-induced 

apoptosis, an activity which is controlled by the third TAg domain that binds and inactivates p53. 

Other domains, such as the CUL 7 binding motif, have also been suggested to influence       

TAg- induced transformation by inhibiting apoptosis [23]. 

      BKV miniT protein is homologous to JCV T'135, T'136, T'165 and to SV40 17KT. Much like 

miniT, these latter proteins share amino acids with their respective TAg, and possess a J domain, 

an LxCxE motif, and a NLS.  JCV T' proteins have transformation potential, with T'136 being the 

predominant T' protein expressed in transformed cells [22].  SV40 17KT has been shown to rescue 

TAg dnaJ mutants, reduce p130 levels, stimulate cell entry into S phase by releasing E2F, and 

induce transformation of human fibroblasts [24]. Therefore, although TAg is primarily responsible 

for the immortalization and transformation of non-permissive cells, transformation assays have 
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demonstrated that JCV T' proteins (T'135, T'136, and T'165) and SV40 17KT protein do contribute 

to a transformed phenotype [21-22].  Based on sequence homology and on previous transformation 

experiments with T'135, T'136, T'165 and 17KT, we hypothesize BKV miniT influences oncogenic 

transformation.  

     My project was designed to test whether the miniT protein plays a role in the transformation 

process. I have utilized a strain of BKV called pBKV(WT9). Both wild type and mutant forms of 

this BKV strain have been examined for the ability to induce transformation of the rodent cell 

line, Rat 2, using a dense focus assay. Initial studies were performed with pBKV(AS), but I have 

repeated this work with pBKV(WT9) because it transforms the rat cells more efficiently, thus 

allowing us to observe greater differences  in transformation potential of wild type versus miniT 

mutant virus. 
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METHODS 

 
Viruses / DNAs 

     In order to initiate this study, restriction enzyme digests were performed on pBKV(AS), 

pBKV(WT9), and clones pBKV(WT9)- BMSKS # 5 and # 7. Twelve 20 µl DNA samples were 

prepared for digestion, three samples (pBKV(AS), pBKV(WT9), pBKV(WT9)-BMSKS #5) 

were left uncut to serve as size markers for supercoiled DNA. The enzymes utilized for the 

digestion were EcoRI, BamHI, and Pst I; the last two, allowed us to determine the orientation of 

the two viral DNAs in the Bluescript Vector (BMSKS), a high copy number plasmid.  One 

microliter (µl) of the appropriate digestion buffer was added per sample; for those samples being 

digested by Bam HI, an additional 1 µl of BSA was added to enhance enzyme activity. The 

following table indicates the amounts of DNA, double distilled H20 (ddH20), enzyme and buffer 

added to the reaction, and the amount of 10X loading buffer added after the reaction.  

  pBKV(AS) pBKV(WT9) pBKV(WT9)-BMSKS # 5  
pBKV(WT9)-
BMSKS # 7 

Samples Uncut 1 2 3 Uncut 1 2 3 Uncut 1 2 3 1 2 3 
DNA 1 1 1 1 4.8 4.8 4.8 4.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

ddH2O 17 16 16 16 13.2 12.2 12.2 12.2 17.5 17 16.5 16.5 16.5 16.5 16.5 
10X 

Enzyme 
Buffer 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 
EcoRI 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 

Bam HI 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 
Pst I 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 
10X 

Loading 
Buffer 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

 
 
*All volumes are in microliters.  
 
Restriction enzyme digests were performed under the conditions recommended by the 

manufacturer (New England Biolabs). The samples were electrophoresed in a 1% agarose gel at 

120V for 30-60 min.  



 

6 
 

     The second step in this project was to complete the nucleotide sequence analysis of the 

pBKV(WT9) DNA that had been initiated earlier by other members of the laboratory. To do so, a 

sequencing primer was designed [5’—CTG GTG TAG ATC AGA GGG—3’] and sequence 

analysis of the pBKV(WT9) DNA was performed by the Nucleic Acid Facility at The 

Pennsylvania State University. The pBKV(WT9) sequence was compiled and compared to the 

pBKV(AS) sequence [26] utilizing sequencing software (NCBI Nucleotide Blast), since the DNA 

sequence  for these two viruses was expected to differ by about 50-100 nucleotide base pairs.  

 
Mutagenesis 

     To produce the G to A mutation that would disrupt splicing of the miniT mRNA, the 

following PAGE- purified forward and reverse primers were utilized, respectively: BKSDMf  5'-

CCA AAA AAA AAA GAA AAG TAG AAG ACC CTA AAG AC-3' and BKSDMr 5'-GTC 

TTT AGG GTC TTC TAC TTT TCT TTT TTT TTT GG-3' (altered nucleotide underline and in 

bold). A PCR reaction was carried out using 1µl of Pfu turbo polymerase [2.5U/µl], 1µl of dNTP 

mix [10mM], 1µl of forward primer [3.5nMoles, 10mM], 1µl of reverse primer [5.6nMoles, 

10mM], 2µl of magnesium [Mg2+ 1.5mM], and 5µl of 10X reaction buffer in a 50µl reaction mix 

with 1µl of the pBKV(WT9) [139ng/µl] template.  

     The PCR sample was electrophoresed on a 1% agarose gel to confirm that PCR product was 

generated. PCR product was then treated with Dpn I for 1 hour at 37° C to digest the wild type 

BKV DNA produced in bacterial cells. The original template [pBKV(WT9)-BMSKS # 5], the 

undigested PCR product [uncut 3], and the digested PCR product [DpnI 3] were electrophoresed 

on an 0.8% agarose gel to determine if most of the digested PCR product resisted Dpn I 

cleavage. 
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     PCR product (1µl) was transfected into Z competent [100µl] bacterial cells. Three samples 

were used: pBKV(WT9)-BMSKS #5 [10ng/µl], the undigested PCR product [uncut 3], and the 

digested PCR product [DpnI  3]. The bacterial cells were incubated on ice for 20 minutes. Super 

optimal broth with catabolite (SOC) media [400µl] was added to each sample at room 

temperature; samples were then placed for 45-60 minutes in the 37° C shaker.  Each sample was 

plated [200µl] on two Luria-Bertani agarose with ampicillin (LB +Amp) plates and incubated 

overnight at 37° C.  Individual colonies from the digested PCR product [DpnI 3] plate were 

selected and DNA was extracted using the Wizard Plus SV Minipreps DNA Purification System 

Kit. 

     To verify that the correct mutation was introduced into pBKV(WT9) DNA, the mT1 

sequencing primer was designed 5'- CAG TGG TTT GGC TTA GAC C-3' and DNAs prepared 

from colonies 4, 5, and 6 on the digested PCR product [DpnI 3] plate were taken to the 

sequencing facility. Several sequencing reactions were performed to identify a DNA containing 

the desired sequence mutation. 

 
Large Scale Preparation (maxi-prep) of DNA 
 
     Large scale DNA preparation of pBKV(WT9) and mutant pBKV(WT9)-ΔminiT were 

prepared using the Qiagen maxi-prep kit. Mutant pBKV(WT9)-ΔminiT DNA was sent for 

sequencing to verify the G to A point mutation at base pair 4366.  Due to changes that could 

have also occurred in the pBKV(WT9)-ΔminiT genome during site-direct mutagenesis, only a 

fragment  of the genome (2,202bp) was sequenced which included the introduced point mutation, 

and the restriction enzyme sites for  BglII. Both pBKV(WT9) and mutant pBKV(WT9)-ΔminiT 

were then digested with BglII to cleave each genome into two fragments. 
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     For this enzyme reaction, 10µg of pBKV(WT9) DNA and 20 µg of pBKV(WT9)-ΔminiT 

DNA were digested individually  in a 100µl mixture containing 4µl of Bg1 II, 10µl of 10X 

buffer and appropriate amounts of ddH2O. Samples were incubated for 90 minutes, and then 

electrophoresed on 0.8% agarose gel. A BglII digestion fragment (2,202bp) from pBKV(WT9)- 

ΔminiT was isolated and purified using The Wizard Plus Gel Purification System Kit (Promega). 

The backbone (5,974bp) containing the pBKV(WT9) sequence in BluescriptKS (BSmKS) 

vector, without the BglII fragment, was also isolated and purified.   

 
Creation of the Final pBKV(WT9)-ΔminiT Clone 
      
     To assemble the pBKV(WT9)-Δ4366 construct, the mutated DNA fragment isolated from 

pBKV(WT9)-ΔminiT was inserted into the pBKV(WT9)- BSmKS backbone  lacking the smaller  

BglII fragment. The two purified Bgl II fragments were ligated with T4 DNA ligase at room 

temperature for 24 hours. Ligated product was subjected to restriction enzyme digests with    

BglII to verify ligation of the 2,202bp fragment to the 5,974bp fragment; and, with XbaI to 

identify the orientation of the ligated fragment in the final construct.  

     A bacterial transformation was performed using ligated DNA product to obtain recombinant 

DNA clones; clones were screened to find the expected mutant. A culture of bacteria containing 

the construct pBKV(WT9)-Δ4366 was grown overnight and used to produce large-scale 

preparation of DNA. pBKV(WT9)-Δ4366 DNA was sent to the Nucleic Acid Facility of The 

Pennsylvania State University to be sequenced with primers mT4f  5’- GCC CTT GGT TTG 

GAT AGA TTG C – 3’  and  mT4r  5’- CAC ATC CTC ACA CTT TGT CTC- 3’ to verify the 

expected sequence.  
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Cell Culture 

      Rat2 cells were propagated in Dulbecco’s modified Eagle medium (DMEM) supplemented 

with 10% Fetal Bovine Serum (FBS), penicillin (100U/ml), streptomycin (100U/ml) and           

L-glutamine (2mM), and incubated at 37˚ C in an atmosphere containing 10% CO2.  

 
DNA Transfection 
 
     Rat 2 cells (4x105) were seeded on 60mm plates. After incubating cells overnight, medium 

(DMEM + 10% FBS with antibiotics) was changed four hours prior to transfection. Cells were 

transfected using the calcium phosphate procedure [27]; 1μg of plasmid DNA per 60mm plate. 

Four hours after transfection, cells were rinsed with DMEM, and medium (DMEM + 10% FBS 

with antibiotics) was added.  After 24 hours medium was changed to DMEM + 5% FBS with 

antibiotics. This medium (4ml) was changed every 5 days thereafter. Rat 2 cells were transfected 

with SV40, pBKV(WT9), pBKV(WT9)-Δ4366, and calf thymus (CT) DNAs.  

     Transformation was measured by the appearance of dense foci on the monolayer of 

transfected cells [28]. Transformed cells growing in 60mm plates were fixed with 3.5% 

formaldehyde in PBS for 60 minutes, and stained with hematoxylin for 45 minutes. Transformed 

cells were rinsed twice with ddH2O. Hematoxylin staining was fixed by adding ammonium 

hydroxide, diluted 1:40 with ddH2O. 60mm plates were inverted, allowed to dry, and dense foci 

were counted. 

     Transformed Rat 2 cell lines were isolated from dense foci growing on a monolayer of 

untransformed Rat 2 cells, and single cell clones were obtained through dilution. Each cell line 

expressed viral TAg, as detected by immunofluorescent staining.  
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Immunopercipitation/Western Blotting of Viral Proteins 
 
     To obtain cell lysates, cells growing on 100mm plates were washed twice with 4ml of cold 

STE (0.15M NaCL; 0.02 M Tris, pH 7.2; 1mM EDTA, pH 7.2), then treated with 1ml EBC 

buffer (50mM Tris; 500mM NaCl; 1% NP-40) containing protease inhibitors (leupeptin, 2µg/ml; 

Aprotinin, 1µg/ml; E-64, 2µg/ml; Pefabloc, 1mM), and phosphatase inhibitors (EDTA, 5mM; β-

glycerophosphate, 25mM; sodium vanadate, 1mM; sodium fluoride, 5mM) .  Plates were rocked 

for 15 minutes and lysed for 20 minutes at 150 rpm at 4°C. Collected extracts were centrifuged 

in a microfuge for 20 minutes at 4°C, clarified lysates stored at -80°C.  

     Viral proteins were immunopercipitated by incubating cell lysates for 60 minutes at 4°C with 

10µl each of monoclonal α-T antibodies, PAb 416, PAb 2003, and PAb 2024 [25]. Staph A cells 

were activated by replacing the storage buffer with EBC buffer containing BSA (1mg/ml) and 

incubating the cells at room temperature for 15 minutes. To the activated staph A, 9µl of           

α-mouse IgG (2µg/µl) were added, and cells were incubated for 30 minutes on ice. Activated     

staph A cells (15µl) were added to cell extracts and incubated at 4°C for 30 minutes. Immune 

complexes were pelleted by centrifugation for 1 minute, and washed three times with EBC buffer 

containing leupeptin (2µg/ml).  Sample buffer was added (12µl) to collect immune complexes. 

Samples were vortexed, heated for 5 minutes at 95°C and electrophoresed on 18% SDS-

polyacrylamide gel at 190V for 100 minutes.    

     The SDS-polyacrylamide gel was soaked in Hoffer’s transfer buffer (25mM Tris, 193mM 

Glycine, 20% methanol, 0.01% SDS) for 20 minutes, and proteins were transferred to a 

nitrocellulose membrane overnight at 30V. The membrane was rinsed with ddH20 and soaked in 

blocking buffer (6.5% Non-fat dry milk, 0.1% Tween-20, 10X TBS) twice for 30 minutes. The 

membrane was then incubated with 10ml of blocking buffer containing a monoclonal antibody 
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mix (40µl each of PAb 416, PAb 962, PAb 901, PAb 2001, PAb 2024, PAb 2030) and rocked for 

120 minutes. Blots were washed three times in 60ml of wash buffer (0.1% Tween-20, 10X TBS) 

for 5 minutes.  Blots were then incubated with 10ml blocking buffer containing the secondary 

antibody conjugated to alkaline phosphatase (Sigma, dilution 1:4000) for 75 minutes. Blots were 

washed as previously described and developed in 9ml of premixed BCIP/NBT solution (Sigma) 

for 35 minutes.  

Immunofluorescent Staining 

     A sparse layer of cells growing on a glass cover slip was fixed for 10 minutes with a 1:1 

mixture of acetone and methanol. TAg was detected after the cells were incubated for 30 minutes 

with a mixture of α-T antibodies (PAb 416, PAb 962, PAb 901, PAb 2001, PAb 2003, PAb 2024, 

PAb 2030).  After washing thoroughly, cells were incubated for 30 minutes with fluorescein-

conjugated α-mouse immunoglobulin G antibody.   
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RESULTS 

       Before I performed my initial restriction enzyme digestion, I electrophoresed all four viral 

DNAs in a 1% agarose gel to verify that the viral DNAs where in the correct vector: Bluescript 

as opposed to pBR322.  As can be seen from the gel photograph below, BKV (AS) and clones 

BKV (WT9) - #5 and #7 have the same gel migration patterns, confirming that the clones were in 

the Bluescript vector.                  

  1                                  2          3         4         5                      

 
[Fig. 2] Bluescript Vector Placement of BKV. The following gel picture demonstrates that both mutant 
pBKV(WT9)- #5 and #7 are in Bluescript, the vector desired for this  experiment.    
 
     Restriction enzyme digestion of BKV (AS), BKV (WT9), and clones pBKV (WT9) #5 and #7 

allowed me to determine the orientation of the viral DNA in the vector. The following picture is 

of a 1% agarose gel, through which the DNA samples were electrophoresed for one hour.   

           1    2   3   4    5   6   7   8    9  10 11  12 13 14  15 16             

        
[Fig. 3] Restriction enzyme digestion of pBKV(AS), pBKV(WT9), and clones pBKV(WT9) #5 and 
#7. The restriction enzyme digest demonstrates the orientation viral DNA in the vector. 

 
 
1. Marker 
2. BKV(AS) ~ Bluescript  
3. BKV(WT9) ~ pBR322 
4. BKV(WT9) - #5  
5. BKV(WT9)- # 7  

1. Marker  
 
Uncut Samples 
2.  BKV (AS)  
3.  BKV (WT9)  
4.  BKV (WT9)-# 5  
  
 
Digested with EcoRI 
5. BKV (AS) 
6. BKV (WT9) 
7. BKV (WT9)-#5 
8. BKV (WT9)-#7   
 

 
Digested with BamHI  
9. BKV (AS) 
10. BKV (WT9) 
11. BKV (WT9)-#5 
12. BKV (WT9)-#7   
 
 
Digested with Pst I  
13. BKV (AS) 
14. BKV (WT9) 
15. BKV (WT9)-#5 
16. BKV (WT9)-#7   
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Based on the base pair length of the fragments digested with the Pst I enzyme cut, the orientation 
of vector for pBKV(WT9) and pBKV(AS) is represented in Figure 4.  
 
 

 
 
[Fig. 4] Vector orientation for pBKV(WT9) and pBKV(AS). The circle represents double- stranded 
DNA. The black line in the middle of each circle serves to separate the viral DNA (left, red line), and the 
Bluescript Vector (right, blue line). Depending on the orientation of the viral DNA in the vector, Pst1 
cleavage yields either 2 fragments of dissimilar size (#1) or nearly equal size (#2).  pBKV(AS) is oriented 
in the manner represented by circle 1, and pBKV(WT9) is oriented in its vector the opposite manner, 
represented by circle 2.  
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     A partial DNA sequence for pBKV(WT9) had been obtained earlier and I completed the 

remaining sequence. To permit comparisons with previously sequenced pBKV(AS), 

pBKV(WT9) was sequenced with primers T3 and T7, and results were compared with the 

parental pBKV(WT) sequence (12 nucleotide differences out of 5216 nucleotides). Based on the 

DNA sequencing results of clone pBKV(WT9) and the blast comparison (using NCBI 

Nucleotide Blast)  to pBKV(AS), the donor-splice site for the miniT mutation was identified at 

nucleotide 4366 [Fig. 5].   The introduction of a G to A point mutation at the miniT donor splice 

site prevented the generation of a miniT transcript, and thus, the miniT protein could not be 

produced. This mutation did not alter the amino acid coding sequence for TAg protein. The 

pBKV(WT9) sequence data, also enabled the mapping of the alternative splicing of the early 

coding mRNA and their corresponding proteins [Fig. 6]. 

 

 
 
[Fig. 5]  BKV miniT mRNA donor-splice site.  The BKV miniT sequence around the protein splice site 
is depicted above in the 5 prime to 3 prime direction; the point mutation is demarcated in green at 
nucleotide 4366.  
 

4382 

4348 
G to A 
4366 

 
5'CCAAAAAAAAAAGAAAG   GUAGAAGACCCUAAAGAC 3' 

 

Alternative Splice Site 
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[Fig. 6] Alternative splicing of pBKV(WT9) early mRNA. In the top portion of the figure, the pre-
mRNA is shown as a solid black line; while the mRNA for each respective protein is depicted by the 
combination of solid and dashed lines.  The solid lines represent the exons, while the dashed lines 
represent the introns; underneath the dashed lines, the nucleotide numbers for the donor and acceptor 
splice sites are shown. Vertical black lines indicate the locations of the stop codons. The bottom portion 
of the figure depicts the translated proteins from their respective mRNAs.  
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     The primary objective of my project was to abolish the expression of pBKV miniT protein by 

introducing a mutation at the donor splice site. This mutation was previously made in 

pBKV(AS), but we found this BKV strain transforms cells inefficiently. Therefore, because 

pBKV(WT9) transforms better, we remade the miniT mutant in this BKV strain. By making the 

mutation at the donor splice site of miniT mRNA in pBKV(WT9), we predicted that we would 

be able to detect differences, if they existed, in the oncogenic activity of the wild type and 

mutant viruses. To make the mutation in pBKV(WT9), we considered swapping a restriction 

enzyme fragment of pBKV(AS) containing the already created mutation into the pBKV(WT9) 

DNA. However, sequence differences were present in the two viral DNAs near the donor site, so 

this approach was rejected. Instead I repeated the mutagenesis procedure with pBKV(WT9)-

BMSKS as the template and the long PCR-Site Directed Mutagenesis protocol.  

     Verification of the mutation in pBKV(WT9)-ΔminiT was accomplished by sequencing using 

primers mT1, mT2, and mT3. Once confirmed, maxi-preps of the mutant and the wild type 

DNAs were prepared.  Since the PCR Mutagenesis technique might cause unexpected changes 

elsewhere in the genome, DNAs were digested with Bg1II to obtain the mutated fragment from 

pBKV(WT9)-ΔminiT and this fragment was joined to the backbone fragment from  

pBKV(WT9) [Fig. 7]. 

     To ensure the identity of the mutant, DNA was sent for sequencing, and confirmed to be the 

correct construct. Upon obtaining the final recombinant DNA, the mutant and the parental DNAs 

were prepared for transfection into the Rat2 cell line to test transforming ability.  
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[Fig. 7] Construction of pBKV(WT9)-Δ4366. The right-half of the circle represents the Bluescript 
plasmid vector, and the left- half represents the double-stranded viral DNA. The BglII digest fragment 
containing the mutation is shown in blue, and it is demarcated with the introduced G to A mutation in 
green. Restriction sites for BglII are shown in red. The arrows display the separation and union of viral 
fragments to produce the final viral construct. As demonstrated in the diagram, the digested BglII 
fragment from pBKV(WT9)-∆miniT containing the mutation was inserted into the unaltered 
pBKV(WT9) backbone to produce the  construct pBKV(WT9)-∆4366; this  recombinant construct does 
not express miniT protein. 
 

    Transfected Rat2 fibroblasts were analyzed for the formation of dense foci. The number of 

foci generated is a measure of viral transforming efficiency.  Focus formation was observed in 

the BKV(WT9) transformed cells 35 days p.t., however, in the BKV(WT9)-∆4366 transformed 

cells, initial focus formation was seen 40-days p.t. To evaluate transformation efficiencies 

between WT and mutant viral genomes, foci were counted on each plate. Following hematoxylin 

staining, I counted an average number of 8 foci per plate for BKV(WT9), and 2 foci per plate for 
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BKV(WT9)-∆4366. I performed a second transformation assay and obtained comparable 

numbers for BKV(WT9) and BKV(WT9)-∆4366 transfected cells, 10 and 2 foci respectively 

[Fig.8]. No foci appeared on the control plates in either experiment.  

  

[Fig. 8] Transformation Assays Foci Count. The graph demonstrates the total foci count for each 
experiment.  In transformation assay I the foci count was 529 for SV40, 8 for BKV(WT9), 2 for 
BKV(WT9)-∆4366, and zero for CT. For transformation assay II the foci count was 160 for SV40, 10 for 
BKV(WT9), 2 for BKV(WT9)-∆4366, and zero for CT.   
 

     To ensure that the observed foci represented virally transformed cells and not spontaneous 

transformation events, foci where isolated from plates transfected with either the mutant or the 

parental BKV genome. Protein expression in the cells was analyzed via immunoprecipitation and 

Western blotting using monoclonal antibodies that recognize BKV T proteins [Fig.9]. I observed 

that cells from all foci isolated expressed the BKV tumor proteins. Cells transformed by the 

BKV mutant do not produce of miniT protein, and the absence of this protein did not appear to 

alter the expression of BKV TAg.  
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[Fig. 9] Expression of BKV early proteins in BKV-transformed Rat 2 cells. Protein (4µg) from cell 
lysates of BKV-transformed cells was immunoprecipitated and immunoblotted with a mixture of 
monoclonal antibodies that recognize the amino terminus of BKV TAg.  The miniT protein is absent in 
cells transformed by the BKV mutant. This protein is present in cells transformed by the wild type virus 
and is seen as three differentially phosphorylated forms [3]. The 17kDa molecular marker is denoted by the 
label.  
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CONCLUSION 
 
     In this study I confirmed that the two pBKV(WT9) DNA clones, 5 and 7, were assembled 

correctly and are in the desired Bluescript vector.  Restriction enzyme digestions verified the 

orientation of the viral DNAs within the vector sequence. Although, the initial digest did present 

some difficulty due either to the impurities in the original DNA sample, or to poor activity of the 

enzymes, follow-up digestions with newly-prepared DNA and a more optimal enzyme digest 

indicated that the orientations are indeed as shown in the Figure 4. I chose pBKV(WT9) for 

additional studies, including the completion of the genomic sequence. 

     Sequence comparisons revealed numerous variations between pBKV(AS) and pBKV(WT9) 

within the region containing the mutation, leading me to use a site-directed mutagenesis method 

to create the pBKV(WT9)-ΔminiT mutant.  I performed PCR mutagenesis utilizing primers 

BKsdmf and BKsdmr, and obtained a mutant which, after analysis, was confirmed to have the 

correct sequence. Large scale preparations of the BKV DNAs were made and digested with    

Bgl II to generate fragments that were used to create the final mutant construct, pBKV(WT9)- 

Δ4366. The correct construction of the mutant was confirmed, and both mutant and parental 

DNAs were transfected into the Rat 2 cell line. Dense foci appeared on the plate 35-40 days later 

and more foci were observed in cultures transfected with wild type BKV. All foci picked from 

the plates expressed BKV tumor proteins, indicating cellular transformation was virally induced 

and not spontaneous. Notably, miniT protein was shown to contribute to the oncogenic process.  

    Here, I have demonstrated for the first time that a trunctated T protein enhances 

transformation by a polyomavirus as measured by a dense focus assay. Studies with SV40 17KT 

and JCV T' proteins have shown that these proteins are expressed during transformation [22, 29-31]. 

Nevertheless, the contributions of these proteins to viral transformation ability have not been 
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directly demonstrated.  Although, SV40 17KT has been shown to reduce p130 levels, and rescue 

TAg dnaJ mutants, indicating the involvement of the protein in the transformation process [24]; 

experiments demonstrating this 17KT function did not involve the use of the whole 

polyomavirus genome cloned, but instead relied on individual plasmids encoding each viral T 

protein. It is important to note that attempts at mutating the donor splice site of 17KT have been 

unsuccessful as the viruses containing the splice site mutation do not abolish 17KT or its 

function [24]. In this study, the donor splice site mutation of miniT was successful and 

demonstrated that miniT directly contributes to the transformation ability of BKV.  

     Future studies will include transformation assays with pBKV(AS) and pBKV(WT9) parental 

and mutant genomes to directly compare transformation efficiencies in each strain. Replication 

assays have been performed with the pBKV(AS) miniT mutant construct, demonstrating that 

miniT affects viral replication. To assess the effects on replication for the pBKV(WT9) strain, 

replication assays inhuman glial cultures using both the parental and mutant genomes will be 

conducted. Lastly, further characterization of the isolated transformed cell lines will allow us to 

investigate those cellular functions regulated by the BKV tumor proteins during transformation, 

and should illuminate the role played by the BKV miniT protein.  
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