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ABSTRACT 

Single-molecule microscopy is a versatile tool that can be used to investigate the stepping 

mechanism of motor proteins such as kinesin, and to determine the copy number of 

subunits within membrane bound proteins such as the cellulose synthesis complex. Step 

detection algorithms provide a means for uncovering key information within single-

molecule microscopy data collected from these systems.  

Kinesin proteins are intracellular molecular motors that utilize energy from adenosine 

triphosphate (ATP) in order to transmit force and transport cellular cargo along 

microtubule tracks. Despite the current wealth of knowledge regarding these proteins, 

many unresolved mechanisms of the kinesin stepping cycle remain. Step detection 

algorithms that recover underlying piecewise-constant signals within noise-corrupted, 

single-molecule time series position data provide a strategy for resolving these 

mechanisms. The work presented in this thesis shows that by treating a positional time 

series as an observation sequence from a hidden Markov model, we can apply the model-

dependent, continuous Viterbi algorithm in order to determine the most likely hidden 

state sequence of the tracked motor protein. This approach has the critical capability of 

keeping “phase” of plateaus within a given time series, which allows for more accurate 

determination of kinetic rates and motor domain displacements associated with state 

transitions during stepping. 

In growing plant cells, cellulose synthesis complexes (CSCs) exist in the plasma 

membrane as six-lobed rosettes that contain different cellulose synthase (CESA) 

isoforms, but the number and stoichiometry of CESAs in each CSC are unknown. To 

begin to address this question, we performed photobleaching of GFP-tagged AtCESA3-

containing particles in living Arabidopsis thaliana cells followed by step detection 

analysis to estimate copy number. The step detection algorithms introduced in this work 

account for changes in signal variance due to changing numbers of fluorophores in order 

to avoid overfitting. These procedures can be applied to photobleaching data for any 

complex with large numbers of fluorescently tagged subunits, providing a new analytical 

tool with which to probe complex composition and stoichiometry.  
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Chapter 1  

Introduction 

This thesis focuses on two separate topics within distinct biological systems: the 

mechanism of the kinesin motor protein stepping cycle, and the molecular makeup of the 

cellulose synthesis complex. Both topics are similar in that critical information can be 

revealed using step detection analysis of single-molecule microscopy data from these 

systems. This thesis introduces novel, high-precision step detection algorithms designed 

for these specific single-molecule data sets as well as generic time series signals. Chapter 

2 investigates the capabilities of these algorithms in uncovering information within 

simulated signals of kinesin motor protein stepping. Chapter 3 investigates the 

capabilities of these algorithms applied to experimental and simulated cellulose synthesis 

complex photobleaching data. 

The kinesin work presented here is unpublished. All positional kinesin data presented in 

this thesis are from simulations based on: current understanding of the kinesin stepping 

cycle, as well as high temporal and high spatial resolution single-molecule kinesin-1 

tracking data recently acquired by Keith J. Mickolajczyk [unpublished] using 

interferometric scattering microscopy (iSCAT).  

The cellulose synthesis work presented here was recently published [1]. N.C.D. 

developed the t-test-based step detection algorithms and the photobleach rate estimation 

and correction process. Y.C. developed the Bayesian Information Criterion (BIC)-based 

algorithms, Gaussian Mixture Model fitting process, and created the figures. Y.C. and 

C.T.A. performed raw data collection. All authors contributed to the design of 

experiments, overall data analysis approach, and writing of the paper.  
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1.1 Kinesin Motor Proteins 

The intracellular molecular motor, kinesin, uses the energy from adenosine triphosphate 

(ATP) hydrolysis in order to perform directed transport by taking discrete “steps” along 

cytoplasmic filaments called microtubules. The most comprehensively studied kinesin is 

kinesin-1, commonly referred to as conventional kinesin.  It is a dimer of two identical 

polypeptide chains called kinesin heavy chains (KHCs) that bind to two separate 

polypeptides called kinesin light chains (KLCs). From N-terminus to C-terminus, a single 

KHC consists of: the globular, catalytic motor domain or “head” which binds to the 

microtubule and also binds and hydrolyzes ATP; the relatively short “neck-linker” which 

tethers the motor domain to the stalk of a dimerized kinesin; and the stalk which is a 

relatively long alpha helical chain that facilitates dimerization by forming a coiled-coil 

with another KHC stalk [2, 3, 4, 5, 6, 7, 8] (see Figure 1.1, from [9]). KLC tails bind to 

the C-terminus of the KHC stalks while also binding to intracellular cargo. KLCs also 

play a regulatory role by suppressing futile ATP hydrolysis [10].  

 

Figure 1.1: Schematic from [9] of conventional kinesin (kinesin-1) cargo transport along a microtubule 

with approximate scaling. 

Processive kinesin stepping is accomplished by head domains alternating between being 

in a tight microtubule binding state and a weak microtubule binding state so that one head 

can step to the next binding site while one head maintains its connection to the 
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microtubule. This process is analogous to climbing up a ladder using only one’s hands – 

each hand alternates between either gripping tightly to a rung of the ladder or letting go to 

find the next rung. The ATP hydrolysis cycle and the mechanical strain of the neck-linker 

domains provide the queues and communication in this coordinated hand-over-hand 

process.  

1.1.1 Physiological Relevance  

There are many different types of kinesins, and they perform a vast array of critical 

cellular tasks [11, 12]. For example, kinesin-1 facilitates anterograde axonal transport by 

binding and carrying intracellular cargoes (such as mitochondria, lysosomes, and 

endoplasmic reticulum) long distances towards synapses of neurons [13, 8], kinesin-2 

participates in the bidirectional intraflagellar transport process [14, 15], and kinesin-5 

plays a key role in mitotic spindle formation during the process of cell division [16]. 

More than one-hundred different kinesins have been identified since the first kinesin 

(kinesin-1) was discovered by Vale et al in 1985 [13, 17]. How the many different types 

of kinesins’ structures and ATP hydrolysis cycles have been evolutionarily tuned for their 

diverse cellular tasks is not well understood. 

Kinesin dysfunction has been linked to several neurological disorders including 

amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and Charcot-Marie-

Tooth disease [18]. Due to kinesin facilitating mitotic spindle formation, it also has a 

highly relevant role in proliferation of cancer cells, and anti-cancer drugs that work by 

inhibiting function of mitotic spindle motor (kinesin-5) are being actively pursued [19, 

20, 21, 22, 16]. A better understanding of kinesin’s mechanism will have broad impacts 

on understanding these physiological problems. 

1.1.2 Kinesin Stepping Cycle 

Conventional kinesin advances unidirectionally towards the plus-end of a microtubule in 

discrete steps. Tubulin dimers, the subunit of the microtubule polymer estimated to have 

a spacing of 8.2 nm [23], serve as the binding sites for kinesin heads. Conventional 

kinesin has been shown to walk in a “hand-over-hand” fashion [24, 25] which means 

each step consists of the trailing head detaching from its microtubule binding site (one 

tubulin dimer), moving past the leading bound head, and then binding to the site adjacent 
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to, and in front of, the leading head. Thus, the trailing head moves the length of two 

tubulin dimers (16.4 nm) while the leading head remains bound to its site. A single step, 

which results in an 8.2 nm mean displacement of the entire kinesin motor, requires the 

energy of one hydrolyzed ATP molecule [26, 27]. On average, the motor takes more than 

100 steps along the microtubule at a rate of approximately 100 steps per second before 

dissociating [27, 28].  

In order to step consistently before dissociating, both heads must be highly coordinated 

with one another. Without coordination, both states will regularly be in a weak 

microtubule binding state at the same time which will result in rapid dissociation of the 

entire motor from the microtubule.  

Whether a head is in a high or low microtubule affinity state is predominantly determined 

by its nucleotide state, which is defined by the form of the nucleotide, if any, that is 

bound to the motor domain at a given point in time. Interhead tension giving rise to 

gating mechanisms is also believed to control microtubule affinity of the head domains 

[29, 30]. Interhead tension is transmitted by the neck-linker domains that join the heads to 

the stalk. Recent studies have shown that neck-linker length dictates the unloaded 

processivity of many different kinesins – longer, compliant neck-linkers transmit strain 

poorly, which diminishes the coordination of their head domains, resulting in shorter run 

lengths, while shorter neck-linkers transmit strain efficiently, which improves the 

coordination of their head domains, resulting in longer run lengths [31]. 

A conservative model of kinesin-1 hand-over-hand stepping that is consistent with 

experimental kinetics and single-molecule data [32, 30, 28] provides a framework for 

understanding the role of the ATP hydrolysis cycle and interhead tension in providing 

coordination between heads (Figure 1.2).  
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Figure 1.2: Conservative model for conventional kinesin stepping cycle adapted from [33]. Red and blue 

triangular objects represent kinesin motor domains (heads), bold black connecting lines represent the neck-
linker and beginning of coiled-coil stalk domains. “D” denotes the ADP state, “DP” denotes the ADP and 

inorganic phosphate (Pi) state, “T” denotes the ATP state, and Φ denotes the no-nucleotide state. Kinetic 

rates of the cycle are denoted by kx. Grey and white tracks represent microtubule binding sites (tubulin 

dimers). 

In this model, when a motor first binds to a microtubule, the binding head promptly 

releases its ADP (state 0 to 2 of Figure 1.2), thus changing to the extremely high 

microtubule affinity state – the no-nucleotide state. Next, ATP binds to that head (state 2 

to 3), inducing a conformational change termed “neck-linker docking” that biases the 

trailing, tethered head towards the adjacent plus-end microtubule binding site (state 3). 

The bound head then hydrolyzes its ATP, thus entering the ADP.Pi state (state 3 to 4). 

The tethered head that had translated towards the plus end via neck-linker docking 

undergoes its diffusional search, binds to the microtubule, promptly releases its ADP, and 

becomes the new leading head (state 4 to 1). During state 1, the rear-head gating 

mechanism suggests that interhead tension accelerates phosphate release and subsequent 

trailing head detachment (state 1 to 2). Upon entering state 2, the cycle is back where it 

began while the mean position of the entire kinesin motor has advanced 8.2 nm in the 

plus end direction.  

Despite general agreement with most aspects of this conventional kinesin model among 

researchers in the field, there remain many unresolved questions regarding certain of its 
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mechanisms and kinetic rates of state transitions. Furthermore, the stepping cycle varies 

between different types of kinesin. Robust models for other kinesin families are not well-

established. 

1.1.3 Unresolved Mechanisms 

ATP binding is not rate-limiting at normal physiological ATP concentrations (> 1 mM). 

This is evident from average velocity measurements of kinesin motility plateauing in the 

presence of ATP concentrations in the millimolar range or above (referred to as 

“saturating ATP”) [27]. However, one controversial and unresolved question is whether 

different types of kinesin sit in a one- or two-head bound state as they wait for ATP to 

bind to their front head [34, 35, 36, 37] (state 2 or 2’of Figure 1.3).  

 

Figure 1.3: Progression of kinesin stepping cycle with respective on-microtubule-axis and off-axis 

distances of the red, trailing motor domain (left-most in state 1). Progression of states is from left to right. 

Note that states 1, 2, 3, and 4 are identical to the conservative model of Figure 1.2. “δ” represents the 

unknown on-axis displacement that results from trailing head detachment (state 1 to 2). “ε” represents the 

unknown off-axis displacement associated with a head being unbound from the microtubule. The “↦ M” 

and “↦ S” denote the beginning of the mobile and stable sequences of the initial trailing (red) motor 
domain. For homodimeric motors like kinesin-1 the M and S sequences will be identical processes. 

Single-molecule kinesin-1 experiments performed by Yildiz et al. [25], in which a single 

head domain was fluorescently labeled and its position tracked with nanometric 
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precision, provided support for a two-head bound waiting state – or at least a state in 

which the trailing head did not move noticeably from its previous microtubule binding 

site upon dissociation (δ displacement in Figure 1.3 approximately 0 nm). They were able 

to fit discrete steps made by their labeled head domain, and they only observed step sizes 

deviating around one mode. As commented upon in their analysis, a bimodal distribution 

of step sizes (modes of δ nm and 16.4 - δ nm) would be expected if kinesin sat in a 

displaced one-head bound state while waiting for ATP binding (see Figure 1.2).  

One would not expect δ (displacement from state 1 to 2 of Figure 1.3) to be zero given 

that there is expected to be tension within the neck-linker in state 1. Upon trailing head 

dissociation the tension should relieve by displacing the trailing head towards the 

microtubule plus-end now that it is free to do so. Furthermore, on this scale, since the 

neck-linker is not expected to be in a rigid conformation in state 2, thermodynamic 

fluctuations alone should displace the mean position of the free head towards the origin 

of its tethering (δ of ~ 8 nm). The 2’’-state is not expected to be part of the regular 

pathway of processive motors, as it is likely to lead to dissociation via ATP binding and 

hydrolysis in the leading head causing both domains to be in weak microtubule binding 

states [33]. The 2’-state as a regular two-head-bound ATP-waiting-state is not expected 

given that the ADP state is a well-established weak-binding state of conventional kinesin 

[38], however it is possible that this particular stage of the cycle is an exception to that 

rule. To clarify, the displayed state 1 to 2 transition implies that inorganic phosphate 

release leads to immediate detachment of the trailing head, whereas the state 1 to 2’ 

transition suggests that rapid dissociation of the trailing head does not occur until front-

head ATP binding takes place (state 2’ to 3). It should also be noted that despite states 3 

and 4 in this model being in a docked neck-linker conformation, which has been 

evolutionarily-tuned to allow the free head to find its next microtubule binding site, the 

possibility of their on-axis distance being considerably different than the 16.4 nm 

microtubule lattice spacing should not be strictly ruled out. Furthermore, it is not 

perfectly clear that neck-linker docking occurs immediately with ATP binding, it may 

instead require ATP hydrolysis first (not shown in Figure 1.3, see Section 2.2.2). 



 

   

8 

 

Another unresolved issue involves the determinants of unloaded and loaded processivity 

across different N-terminal kinesins. Unloaded processivity has been shown to strongly 

depend on neck-linker length [31] while loaded processivity depends exclusively on the 

properties of the catalytic motor domains [39]. However, precise mechanisms to explain 

these observations have not been established. Neck-linker length may dictate processivity 

by way of accelerating trailing head detachment from state 1 to 2 (i.e. increasing kdetach) 

and/or by increasing the rate of tethered head binding, kattach in Figure 1.2, which 

transitions the motor out of a potential unbinding opportunity in state 4, to a stable state 

1. Loaded processivities are most-likely dictated by kinetic rates of the cycle that 

determine the portion of time a motor spends in vulnerable one-head bound states. 

The precise coupling of the ATP hydrolysis cycle and stepping cycle is still not well-

established. Single-molecule motility assays – imaged with high-resolution microscopy 

techniques that reveal on- and off-axis displacements of labeled kinesin motors 

undergoing processive stepping – provide a means for uncovering the characteristics of a 

kinesin’s stepping cycle and its mechanism. 

1.1.4 Single-Molecule Motility Assays 

Single-molecule kinesin motility assays emulate the fundamental processive stepping 

behavior of the motor along a microtubule (see Figure 1.4). In these assays, stable 

microtubules are fixed to the surface of a microscope coverslip while added motors step 

along individual microtubule tracks in an adequate ATP-concentrated and buffered 

solution. Total internal reflection fluorescence (TIRF) microscopy is often used to image 

these assays since this microscopy technique allows for exclusive collection of emitted 

fluorescence near the coverslip surface, therefore reducing unwanted background noise 

from the bulk of the sample [40]. In order to image kinesin with TIRF or any other 

fluorescence microscopy technique, the protein must be labeled with a fluorophore. The 

fluorophore can be located on the N-terminus (motor domain) or the C-terminus (stalk or 

tail domain). Emitted light from the fluorophore is collected by the objective lens and 

then recorded by the detector (camera). In general, the resulting data from these assays is 

in the form of a stack of 2D arrays of pixel intensities representing the viewpoint normal 
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to the coverslip surface at each point in time (i.e. a 3D array where third dimension is 

time).  

 

Figure 1.4: Schematic (top) and a selected region of typical 2D image data (bottom) of a kinesin single-

molecule motility assay. Viewpoint is normal to the cover slip surface. Motors and microtubules in 

schematic diagram are not to scale. Gold spots on tethered heads represent labeling of motor domains (N-

terminal labeling). 

Established image processing techniques allow for 2D arrays of data to be transformed 

into time series traces of X- and Y-position for each individual fluorophore in the field of 

view [41]. If the motors have been engineered to have an N-terminus label, then a 

properly-rotated set of these X- and Y-position vs. time traces represent the on- and off-

axis displacements shown in Figure 1.3. 

As with any measurement, the resulting time series signals of position will be corrupted 

by some degree of noise. This noise may be due to contributions from background signal, 

vibrations of the microscope stage, read noise of the detector, or other sources. For 
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stationary and photostable probes, X- and Y-positional noise after image processing is 

well-characterized by a normal distribution of zero mean and some constant variance, σ2. 

Xnoise  ~ N(0,σ
2) 

Ynoise  ~ N(0, σ
2) 

As a result of noise, the on- and off-axis distances associated with each state of the 

stepping cycle will be partially hidden (see simulated signals in Figure 1.5).  

 

Figure 1.5: Simulation of positional time series signals (of red motor domain) from single-molecule kinesin 
motility assays. Note that consecutive states 3M, 4M, 1S, 2S, 3S, 4S, and 1M  share the same on-axis position 

in this case (where subscript denotes either being part of the mobile or stable sequence). 

Thus, positional time series signals from single-molecule kinesin motility assays are 

analogous to observation values of a hidden Markov model (HMM). An HMM describes 
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a stochastic process in which an object transitions discretely among a set of states, each 

with its own probability distribution that defines the likelihood of “emitting” particular 

values when the object is in that state [42]. Only the sequence of these emitted values 

(which depend only on the current state at that point in the sequence) are observable, the 

sequence of states itself is not, hence the states are said to be “hidden.”  

Significant advancements in single-molecule imaging technologies, including 

interferometric scattering microscopy (iSCAT) [43] and total internal reflection dark-

field microscopy (TIRDFM) [44], are now making it feasible to detect these hidden state 

transitions at physiological ATP concentrations. Rather than relatively weak fluorescence 

signals, these methods rely on photon scattering, which allows for drastically improved 

temporal and spatial resolution of on- and off-axis position during stepping. 

If the hidden state sequence can be recovered from these traces, it will reveal a rich 

source of information regarding the coupling of the stepping and hydrolysis cycles. Even 

with advanced microscopy techniques, noise is relatively substantial compared to kinesin 

step displacements. Therefore it is critical to have non-biased, highly-precise algorithms 

for uncovering the underlying piecewise-constant signal within noise-corrupted time 

series data sets. 
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1.2 Cellulose Synthesis Complex 

Cellulose is a major structural component in the plant cell wall that regulates plant cell 

growth and morphology and also has extensive commercial value for applications such as 

papermaking, textile manufacturing, and biofuel production [45]. However, the molecular 

processes involved in the biosynthesis of cellulose, which is composed of large numbers 

of β(1,4)-linked glucan chains that associate via hydrogen bonds to form cellulose 

microfibrils, remain incompletely understood despite intensive research over the past 15 

years [46]. It is generally believed that cellulose is synthesized at the plasma membrane 

and extruded into the extracellular space by a cellulose synthesis complex (CSC). Each 

CSC contains many GT2-family glucosyltransferases called cellulose synthases (CESAs) 

and is assembled into a large integral membrane complex with a membrane-spanning 

rosette configuration of approximately 25 nm in diameter [47]. The complex is formed in 

the Golgi and transported to the plasma membrane, where it becomes active to synthesize 

the glucan chains that constitute the cellulose microfibril [46]. Genetic and biochemical 

data indicate that a minimum of three different CESA isoforms are present in each CSC; 

in the model plant Arabidopsis thaliana, AtCESA1, AtCESA3, and AtCESA6-type 

proteins are present in CSCs that synthesize cellulose in the primary walls of growing 

cells, whereas AtCESA4, AtCESA7, and AtCESA8 proteins are present in CSCs during 

secondary wall synthesis in cells that have ceased growth [48, 49, 50]. Estimations based 

on structural studies of cellulose microfibrils [51, 52] and molecular modeling of CESAs 

[53] predict that each CSC is composed of anywhere between 12 and 36 subunits [54, 

46]; however, the precise stoichiometry of CESA isoforms within each CSC remains 

undefined. Empirically determining protein copy numbers for intact membrane-bound 

CSCs through nondestructive means is challenging, especially since reconstituting active, 

purified plant CSCs has proven to be extremely difficult [55, 56, 57].  

One alternative method of estimating protein copy numbers in integral membrane 

complexes is to count bleaching steps for subunits tagged with intrinsically fluorescent 

proteins, such as green fluorescent protein (GFP), under total internal reflection 

fluorescent (TIRF) microscopy [58]. However, the number of proteins that can be 

estimated using current methods is limited: higher copy numbers lead to increases in both 

fluctuations in the fluorescence signal and the initial rate of photobleaching, complicating 
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the identification of discrete photobleaching steps. This issue can be addressed by using a 

median filter to reduce noise in the data, and constructing pairwise distance distributions 

to determine the unitary step size of photobleaching [23, 59]. However, implementing 

this approach to estimate subunit number typically requires empirical selection of the 

optimal median filter, and still does not readily resolve the precise timing and magnitude 

of individual bleaching steps.  

Step detection algorithms, which are frequently used to analyze the spatial steps 

undertaken by motor proteins, are capable of automatically detecting change points in 

data traces [60]. Numerous methods have been developed to detect steps, but most of 

them depend heavily upon pre-selected parameters. Notably, the χ2 method developed by 

Kerssemakers et al. requires an input of the number of steps to be detected [61], which is 

difficult to calculate if prior information about the data is unavailable. Methods based on 

information criteria are objective and do not require user-defined input parameters [62]. 

However, they have only been implemented in step detection algorithms by assuming 

that the variance associated with each step is constant [62], which is adequate for single 

motor protein stepping but not for photobleaching. Because intensity fluctuations of 

individual fluorophores around their means are uncorrelated, the presence of multiple 

active fluorophores in a complex will result in a higher variance in the fluorescence 

intensity signal than the variance associated with a single fluorophore. Hence, algorithms 

designed to detect steps in photobleaching data need to consider these variance changes 

to avoid overfitting during periods of high fluorescence intensity. Another complexity in 

photobleaching data is that with increasing copy number, there is an increasing 

probability that two or more fluorophores will bleach within a short timeframe (e.g., 

within a single acquisition period), which can also skew the step size distribution and 

complicate the estimation of a unitary photobleaching step size. Thus, there also exists a 

need for the development of objective analytical tools to extract unitary step sizes from 

step-size distribution densities that improve upon current methods of data binning and 

fitting a user-defined number of Gaussian functions. 

In this work we developed a novel procedure that combines step detection and density 

estimation to determine unitary step size and copy number from experimental 
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photobleaching data. A mathematical model was constructed to generate simulated 

bleaching data, and the simulated data were used to optimize the performance of the step 

detection and density estimation algorithms and demonstrate their ability to accurately 

retrieve copy numbers from simulated data with varying degrees of experimental noise. A 

key goal in developing these tools was to make them as objective as possible by 

minimizing the number of user-defined parameters, and it is hoped that these procedures 

will establish best practices for analyzing photobleaching data derived from complexes 

with high copy numbers. We applied these analytical tools to photobleaching data 

collected for GFP-tagged AtCESA3 in intact cells of Arabidopsis thaliana seedlings and 

estimated the lower limit of copy number per particle to be ten. 
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1.3 Step Detection Algorithms 

Step detection is a common problem encountered in signal processing in which the goal 

is to identify discrete changes in the mean of a signal. This problem is trivial if the signal 

contains little or no noise, but statistical approaches must be applied when the signal is 

hidden in relatively high noise (see Figures 1.6, 1.7). Step detection can be considered a 

subset of the more general class of problems referred to as change detection, or change 

point detection, in which the aim is to identify discrete changes in many different features 

of a signal including: variance, spectral density, correlation, etc. These signal processing 

problems are encountered in many engineering disciplines as well as in biophysics, 

biology, and bioinformatics [63, 60, 64, 65]. 

In general, a step detection algorithm is a function that accepts a noise-corrupted time 

series signal as input, and then returns a list of points at which there is a discrete change 

in the mean value as the output. Specific step detection algorithms differ in the 

assumptions made about the features of the input signal. Issues that are considered 

include, but are not limited to: the nature of the corrupting noise (e.g. normally 

distributed, exponentially distributed, etc.); whether or not the variance of the corrupting 

noise changes across the signal; whether or not the signal is autocorrelated; whether or 

not an accurate model for the generation of the signal is available.  

 

Figure 1.6: Piecewise-constant signal without noise 
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Figure 1.7: Piecewise-constant signal hidden in white noise (σ = 0.25) 

The step detection algorithms described in this thesis are designed to accept piecewise-

constant signals hidden in Gaussian white noise (zero or negligible autocorrelation; see 

Figure 1.7). The goal of the algorithms is to identify the indices (i.e. time points) at which 

there is a significant and discrete change in the mean value of the underlying piecewise 

constant signal with respect to noise. The mean value of the sections between these 

indices can then be calculated to recover the best estimate of the underlying piecewise-

constant signal. Step detection algorithms that depend on an input hidden Markov model 

are presented in Chapter 2 (Section 2.1) and are applied to kinesin motor protein stepping 

data. Model-independent algorithms are presented in Chapter 3 (Sections 3.8.3 – 3.8.8) 

and are applied to cellulose synthesis complex photobleaching data. 
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Chapter 2  

Results: Kinesin Motor Proteins 

The kinesin work presented here is unpublished. All positional kinesin data presented in 

this thesis are from simulations based on: current understanding of the kinesin stepping 

cycle, as well as high temporal and high spatial resolution single-molecule kinesin-1 

tracking data recently acquired by Keith J. Mickolajczyk [unpublished] using 

interferometric scattering microscopy (iSCAT) [43]. 

 

2.1 Model-Dependent Step Detection 

2.1.1 Generative Hidden Markov Model for Kinesin Single-Molecule Assays  

One approach to the step detection problem is to make prior estimations of the model that 

generates the observed sequence, namely in the form of a hidden Markov model (HMM). 

The Viterbi algorithm [66] can be used to determine the most probable hidden state 

sequence, called the Viterbi path, given an observation sequence and a set of model 

parameters. Iterating this algorithm through different potential HMM parameters 

followed by error calculations of the returned sequences provides an alternate strategy for 

uncovering model parameters that is more direct than model-independent step detection 

approaches.  

Simple HMMs are defined by the following parameters. N: total number of hidden states 

in the model. T: total number of observations. x: sequence (T-by-1) of hidden states in 

which element xt is the true hidden state at t (any integer 1 to N). y: sequence (T-by-1) of 

observation values in which element yt is the observed value at t. A: transition matrix (N-

by-N) in which element aij denotes the probability of the hidden state transitioning from 

state i to state j given that it is currently in state i, aij = P(xt+1 = j | xt = i). B: emission 

matrix (N-by-“1”) in which element bn is a set of parameters that describe P(yt = z | xt = 

n), i.e. the probability that yt takes on any value, z, in the observation variable space 
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given that the current hidden state, xt = n. U: a prior probability matrix (N-by-1) in which 

element Un denotes the probability that the initial hidden state, x1, is state n.  

As described previously (Section 1.1), observations of single-molecule motor protein 

motility assays can be described by an HMM. Let us return to the model of the kinesin 

stepping cycle and define it in the context of an HMM (see following Table 2.1 and 

Figure 2.1 for summary). For now we will consider only the on-microtubule-axis position 

data (see Figure 1.5) as the observation sequence (HMM parameter y). A given value in 

the sequence of observed on-axis position of a kinesin motor, yt, should depend only on 

the current hidden state of the motor, xt. Thus the set of hidden states is defined by the 

states of the kinesin stepping cycle model (N = 4; states 1, 2, 3, and 4 in Figures 1.2, 1.3, 

1.5). Kinesin transitions between different states according to different kinetic rate 

constants. Therefore the relative magnitudes of these individual rates and the detector 

(camera) sampling rate will define the elements of the transition matrix, A. The expected 

values of observed on-axis displacement for an N-terminal labeled motor given the state 

are determined by the microtubule lattice spacing (16.4 nm) and the displacement 

associated with trailing-head detachment (δ in Figure 1.3), though there will be some 

degree of randomness due to noise in the measurement. As stated in Chapter 1, the noise 

of a given positon signal of a photostable probe in single-molecule microscopy is well-

characterized by the normal distribution with zero mean and some constant variance, σ2. 

The emission matrix, B, will contain these necessary parameters (bn1 = mean, µ, and bn2 = 

variance, σ2) for the univariate normal distribution associated with hidden state n. Note 

that for motors taking multiple steps, bn1 values will require some form of updating. The 

probabilities, U, for the initial hidden state would depend on whether the observation 

sequence began with the initial binding of the motor to a microtubule, or with the 

arbitrary start of detector recording. In the former case, this would suggest that the initial 

hidden state is guaranteed to be state 2; U2 = 1 (see model in Figure 1.2). In the latter 

case, initial state probability should be a function only of average time spent in each state. 

Finally, the value for T is the length of the position observation time series.  
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Table 2.1: Summary of single-molecule motility assay hidden Markov model (HMM) parameters assuming 

the conservative kinesin stepping model. Table describes the univariate observation sequence case; 

observed values represent on-microtubule-axis distance of an N-terminal-labeled motor domain during 

processive stepping. 

Symbol HMM parameter Analogous kinesin single-molecule assay parameter  

N Number of hidden 

states 

Number of discrete states in the kinesin stepping cycle 

(N = 4) 

T Total observations Total number of frames recorded by detector 

A Transition matrix Probabilities of transitioning among states as defined 

by relative kinetic rates of the kinesin and detector 

sampling rate 

B Emission matrix Parameters of normal distributions, N(µ,σ2), 

describing probability of observing a given on-axis 

distance value for each hidden state (note: requires 

updating) 

U Initial probabilities Probabilities of starting in a given state of the stepping 

cycle  

 

 

Figure 2.1: Schematic of generative hidden Markov model and simulated series for observed on-axis 

distance. Numbered nodes represent the set of hidden states (numbered according to model in Figure 1.2), 

connecting arrows represent elements of the transition matrix, A. Normal distribution parameter elements 

of the emission matrix, B, including their appropriate corrections (multiples of the microtubule lattice 

spacing, 16.4 nm) are shown to the right of the graph.     

These parameters (summarized in Table 2.1 and Figure 2.1) form a generative model for 

an observed on-axis-position time series. Given an observation time series, y, and HMM 

parameters A, B, and U, the Viterbi algorithm returns the most likely hidden state 

sequence (parameters N and T can be inferred from others). A brief description of the 

Viterbi algorithm follows, along with a solution to the emission matrix updating 

complication. 
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2.1.2 Continuous Viterbi Algorithm 

The Viterbi algorithm [66] is essentially a recursion of Bayes’ Theorem that stores the 

most likely previous hidden state, x’t-1, for each possible hidden state at t (stored in N-by-

T matrix, T2). Also stored (in N-by-T matrix, T1) are the probabilities that each most 

likely previous hidden state, x’t-1, transitioned to each following hidden state and then 

emitted the observed value at t, yt. These storing matrices, T1 and T2, are constructed 

sequentially as described by the following pseudocode (Table 2.2). The first column of 

storing matrix, T1, is determined from y1 and initial probabilities, U. 

Table 2.2: Viterbi algorithm pseudocode for construction of storing matrices T1 and T2. Categorical 

emission variables assumed. A[:, n] denotes all rows in the nth column of matrix A. See Appendix B for 

complete MATLAB implementation of the continuous Viterbi algorithm. 

 

for t ← 2,3… , T ∶ 

for n ← 1,2… , N ∶   
𝐓𝟏[n, t] ← max  (𝐓𝟏[: , t − 1] .∗ 𝐀[: , n] ∗ 𝐁[n, yt]) 

𝐓𝟐[n, t] ← argmax  (𝐓𝟏[: , t − 1] .∗ 𝐀[: , n] ∗ 𝐁[n, yt]) 

end 

end 
 

 

The emission probability terms, B[n, yt], in Table 2.2 are for categorical or discrete 

emission variables. These terms reference the probability mass function described by the 

nth row of matrix B. For normally-distributed continuous emission variables, the B[n, yt] 

terms can simply be replaced by the density function describing the probability of 

observing a certain yt value given the hidden state, n: 

P(Y = yt|xt = n,𝐁) =
1

√2π bn2 
e
{−

(yt−bn1)
2

(2 bn2)
}
  (2.1) 

Once the storing matrices have been calculated, the most likely final hidden state, x’T, is 

determined from T1: 

x′T = argmax
n

(𝐓𝟏[: , T]) 

The most likely hidden state path is then determined by tracing back through most likely 

previous hidden states stored in T2. This algorithm is guaranteed to return the global 

maximum likelihood hidden state sequence. 
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2.1.3 Modified Hidden Markov Model Construction for Viterbi Algorithm 

To solve the issue of needing to shift the mean values in the emission matrix to account 

for motors taking multiple steps, we can instead construct modified HMM parameters 

with an expanded set of hidden states according to the range of the given observation 

series, y. Again, we will consider only on-axis position for now. 

In this modified hidden state set, we compress consecutive states 3M, 4M, 1S, 2S, 3S, 4S, 

and 1M since they will share mean emission values (recall Figure 1.5). Therefore, state 

numbers in this modified model no longer correspond to those of the kinesin stepping 

cycle presented in Chapter 1. The new number of states will be determined by the 

microtubule lattice spacing (16.4 nm) and the rounded maximum and minimum values of 

y: 

N =  2 (⌈
max(𝐲)

16.4
⌉ − ⌊

min(𝐲)

16.4
⌋ + 1) 

Each hidden state number now defines its mean value parameter (bn1). The value for δ is 

unknown (see Figure 1.3), while the variance, σ2, can be estimated accurately using the 

process described later in Section 3.8.5.  

bn1 =

{
 
 

 
 16.4(⌊

min(𝐲)

16.4
⌋ +

n − 1

2
)               n is odd

16.4(⌊
min(𝐲)

16.4
⌋ +

n − 2

2
) + δ         n is even

 

bn2 = σ
2 

A rough estimation of the transition matrix can be made from the observation sequence as 

follows (recall T = length(y), let η = expected ratio of forward steps to backward steps):  

λ =
N

T
 

∀ i ≠ 1:  ai,(i−1) = (1 − η)λ 

∀ i ∶  ai,i = 1 − λ 

∀ i ≠ N:  ai,(i+1) = ηλ 
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The transition matrix in the case where N = 5 is shown as an example: 

𝐀 =

[
 
 
 
 
1 − λ λ 0 0 0

(1 − η)λ 1 − λ (η)λ 0 0

0 (1 − η)λ 1 − λ (η)λ 0

0 0 (1 − η)λ 1 − λ (η)λ
0 0 0 λ 1 − λ]

 
 
 
 

 

Finally, a uniform initial probability matrix can be assumed: 

Un = 1/N   

Thus, given an observation sequence produced by the generative HMM model for on-axis 

position, the true δ value, and an approximate η value (~ 1), a complete modified HMM 

can be constructed. The continuous Viterbi algorithm can then accept these modified 

HMM parameters and the observation sequence, and then return the most likely hidden 

state path (modified hidden state path). The following Figure 2.2 shows an example 

observation sequence produced by the generative HMM model for kinesin stepping, and 

the results of the continuous Viterbi algorithm given the modified HMM parameters. We 

can see from Figure 2.2 that the continuous Viterbi algorithm with modified HMM 

parameters works as a highly precise model-dependent step detection algorithm.    
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Figure 2.2: Observation sequence produced by generative hidden Markov model for kinesin stepping (cyan 

line) where δ = 4 nm. Updated mean values of the generated true hidden state path (dotted black line). 

Mean values of the most likely modified hidden state path as returned by the continuous Viterbi algorithm 

(red line). 

So far, two key assumptions about a given observation sequence have been made that 

must be addressed: (1) an “offset” of zero is assumed, i.e. the microtubule lattice spacing 

is aligned perfectly with increments of 16.4 nm, and (2) the true value for δ is assumed. 

Let us first address the offset problem. 

2.1.4 Observation Sequence Offset Detection 

Microtubule binding sites cannot be visualized in single-molecule microscopy explicitly. 

Only the on-axis distance time series obtained from the fluorophore attached to the motor 

can be used to estimate the location of microtubule binding sites. The origin of an on-axis 

distance time series is arbitrary; often it is defined by the position at the first time point. 

Even if this first time point represents the initial binding of the labeled motor to the 

microtubule, the error due to measurement noise makes this an inaccurate estimation of a 

microtubule binding site center. Thus, an observation sequence is said to have some 

offset, ω, relative to the true microtubule binding site spacing (16.4 nm lattice spacing) 
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that is not expected to be zero. Said another way, plateaus of the underlying piecewise 

constant signal will coincide with on-axis distances of ω, ω + 16.4, ω + 32.8 nm and so 

on, rather than precisely 0, 16.4, and 32.8 nm. This will render the Viterbi algorithm 

unable to produce an accurate or meaningful result. Therefore, it is necessary to first 

estimate the value of ω so that the observation sequence can be properly adjusted for 

input into the Viterbi algorithm. This can be accomplished using the results from a 

model-independent step detection algorithm, such as the Tdetector1 described previously. 

Note that the output of model-independent step detection algorithms like the Tdetector, 

do not depend on the offset of the input time series data. 

The declared step indexes (indexes at which there is a significant change in the mean 

value) returned from the Tdetector1 algorithm can be used to create a set of plateaus, p, 

where a single plateau, pi, contains the set of points from one declared step index to the 

next index. Given the set of plateaus, p, and an assumed repeated spacing (16.4 nm for 

microtubule lattice), then the following steps can be taken in order to reliably estimate the 

offset, ω:  

(1) For a given plateau, pi, find all plateaus, pj, in which the difference of their 

mean values is within a certain acceptable range, ξ, of an integer multiple of 16.4. 

That is, with pi fixed, find all indices, j, in which the following inequality is true:  

E[𝐩𝐢] − E[𝐩𝐣]

16.4
− ‖

E[𝐩𝐢] − E[𝐩𝐣]

16.4
‖ ≤ ξ 

(2) Repeat this process for all plateaus in p. Let qi denote the subset of plateaus 

that were within range, ξ, of a 16.4-integer-multiple of plateau pi, including pi.    

(3) Let qk denote the subset of plateaus that has the most points within all of its 

contained plateaus, and that contains at least one additional plateau that is not pk. 

(4) For each plateau, pj, in the optimal subset qk, shift all values in pj by the 16.4-

integer-multiple that is nearest the mean of pj 

∀ j:  𝐩𝐣 ← (𝐩𝐣 − 16.4 ‖
E[𝐩𝐣]

16.4
‖) 
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(5) Concatenate all shifted plateaus within the optimal plateau subset, qk, into a 

single vector of points, Q. Now, an accurate estimate of the offset can be made 

from the mean of Q. 

ω′ = E[𝐐] 

The following Figure 2.3 demonstrates the results of offset detection and correction on a 

simulated observation sequence from the generative HMM kinesin stepping model. We 

can see that the offset-corrected underlying piecewise-constant signal (solid black line) 

lies almost perfectly on integer multiples of 16.4 nm.  

 

Figure 2.3: Example result of offset detection and correction. Simulated on-axis distance time series from 
generative hidden Markov model for kinesin stepping plus an arbitrary offset, ω, (dotted cyan line), and 

offset underlying piecewise-constant signal (dotted black line). Identical time series (red line) and 

underlying piecewise-constant signal (solid black line) corrected by estimated offset, ω’. 

 

2.1.5 Iterative Continuous Viterbi Algorithm (ICV) 

Thus far, the value of δ used in generating observation sequences has also been assumed 

when constructing a modified HMM emission matrix for input to the Viterbi algorithm. 

For experimental single-molecule motility data, the true δ value is unknown. In order for 

the Viterbi algorithm to function as a reliable step detection algorithm, it is necessary for 
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the modified HMM emission matrix to be constructed using an accurate δ value. To solve 

this problem, we can iterate the continuous Viterbi algorithm over many different 

possible δ values. The Viterbi path iteration that yields the lowest mean squared error fit 

with respect to the input observation sequence, y, should be produced by the best 

approximation of  the true δ value. Therefore, the Viterbi results that yield the least mean 

squared error fit are interpreted as the model-dependent step detection results (see 

example results, Figure 2.4).  

 

Figure 2.4: Example of iterative continuous Viterbi (ICV) algorithm step detection results (green line) on 

simulated on-axis distance time series (red line) produced by the generative hidden Markov model for 

kinesin stepping with δ = 4 nm. Underlying piecewise-constant signal from simulation shown with black 

line. Figure inset: mean squared errors of Viterbi results for each of the twenty δ values tested. Green spot 

indicates the optimal value, δ’ (4.3 nm), i.e. δ with minimum mean squared error. The hidden state path 
given this δ’ = 4.3 nm is the sequence returned by the iterative continuous Viterbi algorithm. 
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2.2 Theoretical Kinesin Motor Model 

Let the following hidden Markov model be the generative model for observed on-axis 

positon of a theoretical kinesin motor based on the conservative model (Figure 1.2) 

imaged at f = 1000 frames/second for T = 500 frames: 

N = 4;   Un =
1

N
; 

λ = 0.15;    η = 0.99; 

k1 = λ;     k2 = 15 mMATP
−1  λ;     k3 = 10 λ;     k4 = λ; 

𝐀 =

[
 
 
 
1 − k1 (η)k1 0 (1 − η)k1

(1 − η)k2 1 − k2 (η)k2 0

0 (1 − η)k3 1 − k3 (η)k3
(η)k4 0 (1 − η)k4 1 − k4 ]

 
 
 

 

δ = 5 nm;    σ = 4 nm; 

𝐁𝐌 = [

0 σ2

δ σ2

16.4 σ2

16.4 σ2

] 

Where k1 ≈ kdetach, k2 ≈ kon
ATP, k3 ≈ khydrolysis, k4 ≈ kdetach (see Figure 1.2), and BM denotes 

the emission matrix during the mobile sequence of stepping (see Figures 1.3, 1.5). 

2.2.1 Detecting the ATP-Waiting State 

Given observation sequences generated by this model with arbitrary offset, ω, we can 

show that by performing offset correction followed by iterating the continuous Viterbi 

algorithm over modified hidden Markov models with varying δ values as described in 

Section 2.1.5 (ICV algorithm), it is possible to uncover certain parameters of the stepping 

cycle of this theoretical kinesin motor. 
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Figure 2.5: On-axis position observation sequences (grey lines) produced by the theoretical kinesin 

generative model at [ATP] = 50 uM. Iterative continuous Viterbi (ICV) step detection results have been 

separated into even and odd plateau groups. The plateau group with the greater mean plateau size within a 

given trace is designated as the long plateaus group (long = cyan lines; short = blue lines). Underlying 

piecewise-constant signal shown with black lines. Traces have been shifted after step detection to avoid 

overlay. 

In general, with a large enough set of observation sequences at a given ATP 

concentration (see Figure 2.5), the combined ICV step detection results will converge to 

functions of the generative model parameters. The combined ICV results for step size and 

plateau size from ten independent observation sequences at [ATP] = 50 uM are shown in 

Figure 2.6.  
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Figure 2.6: Step size and plateau size results from iterative continuous Viterbi (ICV) fitting of ten 

observation sequences (as in Figure 2.5) produced by the generative model at [ATP] = 50 uM. Plateau sizes 

have been grouped into long and short plateau sizes (i.e. dwell times of the compressed and ATP-waiting 

states, respectively). Step sizes have been grouped according to the identity of the plateau that preceded 

them. Mean plateau sizes are 37.8 time points (long) and 8.9 time points (short). Step size modes from 

kernel density estimation are 5.4 nm (following long plateaus) and 10.5 nm (following short plateaus).    

We can see that the modes of step sizes match well to the two expected step sizes; δ = 5 

nm and 16.4 – δ = 11.4 nm. Additionally, we can show that the means of the long and 

short plateau size distributions match well to the expectations for dwell times. The 

expected duration spent in hidden state, n, of the generative model before transitioning 

out will be the time constant, τn (units = time points). The value for τn is given by the 

inverse of the sum of all transition probabilities that result in leaving state n: 

τn =
1

∑ an,ii≠n
=

1

1 − an,n
 

As defined by the generative model for the theoretical kinesin motor: 

τn =
1

kn
 

Recall that in the modified model used in ICV step detection, consecutive hidden states 

of the generative model are compressed, while the ATP-waiting state (state 2M) is left 

independent. Therefore, the time constant of the compressed state will be relatively long, 
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τlong, due to being the sum of several first-order-process time constants, while the time 

constant of the ATP-waiting state will be relatively short, τshort. Hidden state sequences 

returned by the ICV algorithm are forced to alternate between the compressed state and 

the ATP-waiting state. Therefore, even and odd plateau sizes can be meaningfully 

grouped (see plateau size distributions, Figure 2.6), and the means of these distributions 

should match to τlong and τshort. For the results in Figure 2.6, we see that they do: 

τshort = τ2 =
1

k2
=

1

15 mMATP
−1  (0.050 mMATP) λ

= 8.88̅ time points 

≈ E[𝐩short] = 8.9 

τlong = τ3M + τ4M + τ1S + τ2S + τ3S + τ4S + τ1M = 36.88̅ time points 

≈ E[𝐩long] = 37.8 time points 

We can also see that the short plateau size distribution appears to be exponentially 

distributed while the long plateau size distribution resembles a higher order gamma 

distribution (Figure 2.6). This is what should be expected given the processes that define 

the underlying piecewise-constant signal. 

Further support that the short plateaus represent the ATP-waiting state can be provided 

by repeating this process of observation sequence generation and ICV analysis across a 

range of ATP concentrations. As [ATP] is increased, the rate of ATP binding, k2, 

increases proportionally, so short plateau durations should become even shorter. Figure 

2.7 shows the results of this analysis. We can see that in the low [ATP] range, the inverse 

of mean short plateau sizes, kshort (i.e. k2), increases proportionally and falls on the 

expected line defined by the generative model parameters. As [ATP] reaches about 100 

uM, the values for kshort flatten out due to the ICV algorithm failing to fit exceedingly 

short plateaus consistently. Nevertheless, a clear relationship between mean of short 

plateau sizes and [ATP] is evident, which indicates that short plateaus contain the ATP-

waiting state as a hidden state.  
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Figure 2.7: Iterated continuous Viterbi (ICV) results across a range of ATP concentrations. The left plot 

shows the inverse of mean short plateau size as a function of [ATP] (kshort = 1/E[pshort]). The middle and 

right plots show kernel density estimation modes of step sizes that follow long plateaus and short plateaus, 

respectively, as a function of [ATP]. Blue lines indicate ICV step detection results. Red lines indicate 

results given the true hidden state path. Green lines indicate the expected values given the generative model 

parameters.   

2.2.2 ATPγS Experiments to Probe Neck-Linker Docking 

It is possible that a kinesin motor may have a different generative model than the one 

described at the beginning of this Section 2.2. For example, a theoretical kinesin motor 

may require ATP hydrolysis before neck-linker docking occurs (compare Figures 2.8, 

1.2): 

 

Figure 2.8: Alternate kinesin stepping model in which ATP hydrolysis is required before neck-linker 

docking. 

This model would be defined by the following, slightly altered emission matrix where b31 

is now set to δ. Additionally, this will result in state 3M of the generative model 

transferring from the large compressed state to the formerly stand-alone ATP-waiting 
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state. That is, the short plateaus will now consist of the ATP-waiting state (2M) as well as 

the hydrolysis-waiting state (3M).  

𝐁𝐌 = [

0 σ2

δ σ2

δ σ2

16.4 σ2

] 

The slow-hydrolysable ATP analog, ATP𝛾S, can be used to test if this alternate model 

applies for a given theoretical kinesin. In the subsequent analysis we will assume 

hydrolysis of ATP𝛾S is 5-fold slower than ATP; k3,ATP = 5*k3,ATP𝛾S, and that ATP𝛾S and 

ATP have equal binding rates; k2,ATP = k2,ATP𝛾S. As nucleotide concentration (ATP or 

ATP𝛾S) is increased, the duration of the ATP-waiting state (2M) decreases since 

nucleotide binding will occur more rapidly. Therefore, in the alternate model, where short 

plateaus consist of both 2M and 3M, this increase of nucleotide concentration will lead to 

minimized 2M state contributions towards plateau size. At high enough nucleotide 

concentrations, the 3M state (hydrolysis-waiting state) will then dominate the plateau size. 

Consequently, if a given kinesin motor steps according to the alternate model, then high 

ATP𝛾S concentrations will yield much longer plateau sizes than high ATP concentrations 

(i.e. kshort in ATP𝛾S < kshort ATP). If the given motor instead steps according to the 

original model, then no difference in trends of short plateau sizes should be evident 

between ATP and ATP𝛾S (see Figure 2.9).   
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Figure 2.9: Inverse mean of short plateau sizes (kshort = 1/E[pshort]) as a function of [ATP] (solid black) and 

[ATP𝛾S] (dotted grey). Left plot indicates ICV results from sets of observation sequences produced by the 

original model in which ATP/ATP𝛾S binding causes immediate neck-linker docking. Right plot indicates 

ICV results from observation sequences in which neck-linker docking follows hydrolysis of bound-head 

ATP/ATP𝛾S. 

2.3 Discussion 

Given sets of experimental single-molecule on-axis position traces at different ATP 

concentrations, this ICV analysis should theoretically be able to identify the nature of the 

ATP-waiting state. That is, it should identify an associated displacement distance, δ, with 

considerable accuracy. It should also be able to elucidate whether or not subsequent neck-

linker docking occurs immediately with binding of ATP, or if ATP hydrolysis is required 

first. Together, this knowledge would be critical for determining the complete mechanism 

of different kinesin motors. 

The key advantage of the ICV algorithm applied to single-molecule kinesin stepping 

data, is that this step detection algorithm is able to keep track of the “phase” of plateaus. 

That is, by assuming the microtubule lattice spacing, odd and even plateau sizes are in 

theory guaranteed to represent two separate plateau size populations (ATP-waiting state 

plateaus and compressed state plateaus in the case of the original model, Figure 1.2). Step 

sizes are also separable in this way. This property allows for these distributions to be 

analyzed individually, which renders the process of inferring characteristics of the 

stepping mechanism drastically simpler and more accurate. It is not possible for a model-

independent step detection algorithm to achieve this property because even a single false 
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positive or missed step will lose track of the plateau phase. Since analyzing odd and even 

plateaus (or step sizes) will be meaningless in this case, we would be forced to deal with 

mixed distributions that will generally have considerable overlap.  

The key shortfall of the current ICV algorithm implementation is that the microtubule 

lattice must be assumed beforehand, and that the spacing does not allow fluctuations. The 

processes of offset detection and emission matrix construction currently require an 

assumed integer-multiple-repeat for lattice spacing which, in this thesis, has been 

assumed to be exactly 16.4 nm up until this point. Because this value is not perfectly 

accurate, the mean values of the modified hidden Markov model emission matrix used in 

the ICV algorithm are guaranteed to diverge from the true microtubule lattice centers 

given a long enough observation sequence. This will result in the loss of plateau phase 

fidelity. Although phase is kept successfully with shorter traces, relaxing the constraint of 

an integer-multiple-repeat for the emission matrix mean values is a feasible next step for 

improving the ICV algorithm.        

Until this point, only the on-microtubule-axis position of the labeled motor domain has 

been considered as the observation sequence. One of the attractive features of the 

continuous Viterbi algorithm is its ability to be adapted relatively easily to accept a two-

dimensional observation sequence (on-axis and off-axis position) and use this 

information simultaneously to determine the most-probable hidden state path. This can be 

done by changing the univariate normal probability density function shown in Equation 

2.1 (Section 2.1.2) to the bivariate normal density function. The emission matrix would 

then require an additional column to provide the expected values for off-axis position 

given the current hidden state (0 or ε nm, see Figures 1.3, 1.5), while the same variance 

parameter may be assumed for both dimensions. By considering off-axis position, it 

would then be theoretically possible to detect additional hidden states (i.e. a 3-unique-

state modified hidden Markov model for ICV detection rather than the 2-unique-state 

model). The 3M and 4M states would form a new state discernable from the compressed 

state (4M to 1S transition detectable by off-axis transition from ε to 0 nm), and critical 

information related to kattach could be inferred with ATP𝛾S experiments in a similar 

fashion to the neck-linker docking analysis described above. 
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Chapter 3  

Results: Cellulose Synthesis Complex 

The cellulose synthesis work presented here was recently published [1]. N.C.D. 

developed the t-test-based step detection algorithms and the photobleach rate estimation 

and correction process. Y.C. developed the Bayesian Information Criterion (BIC)-based 

algorithms, Gaussian Mixture Model fitting process, and created the figures. Y.C. and 

C.T.A. performed raw data collection. All authors contributed to the design of 

experiments, overall data analysis approach, and writing of the paper.  

 

3.1 Imaging CESA Complexes in Arabidopsis Seedlings 

To estimate the copy number of GFP-AtCESA3 in membrane-localized particles in living 

cells of Arabidopsis thaliana, 5-to-6-day-old light-grown seedlings expressing GFP-

AtCESA3 [49] were mounted in an imaging chamber and recordings of GFP bleaching 

were carried out in hypocotyl cells containing low densities of GFP-AtCESA3 particles 

(see Movie S1 of [1] Supplemental Information). Imaging was performed using variable-

angle epifluorescence microscopy [67], which like total internal reflection fluorescence 

(TIRF) microscopy reduces background fluorescence but allows for the imaging of 

proteins farther from the coverslip, such as those in the plasma membrane of plant cells 

that are separated from the coverslip by the cell wall [68, 67] (Konopka et al., 2008; 

Konopka and Bednarek, 2008). To quantify photobleaching rates, time lapse recordings 

were collected (Movie S1), and fluorescence intensity traces for individual GFP-

containing particles were measured using ImageJ (see Section 3.8.2). Instead of 

exhibiting discrete steps, the intensity changes during photobleaching for many traces 

appeared to be relatively smooth (Figure 3.1A, Movie S1), suggesting that the number of 

fluorophores per particle is relatively high.  



 

   

36 

 

 

Figure 3.1: In vivo photobleaching of GFP-AtCESA3. (A) Photobleaching trace of a single GFP-AtCESA3 

particle in hypocotyl cells of Arabidopsis seedling. Video is recorded at 5 fps and total time is 100 s to 

allow most GFP to be photobleached. Representative Movie S1 is included in Supplementary Data of [1]. 
Inset: ensemble average of 77 photobleaching traces with exponential fit to the data. (B) Quantitative 

model describing photobleaching. The fluorescence signal is assumed to fall over time with constant step 

sizes, matching the quantal fluorescence of a single GFP. The GFP fluorescence and the background signal 

are treated as Gaussian distributions, Normal (μ, σ2) and Normal (0, δ2), respectively. The time before 

fluorophore bleaching, T, is assumed to be exponentially distributed with mean τ = 1/λ where λ is the 

photobleaching rate constant. The signal to noise ratio (SNR) is defined as the step size divided by the 

standard deviation. (C) Simulated photobleaching trace from 12 fluorophores with μ = 500 a.u., σ = δ = 250 

a.u. (D) Simulated stepping data such as a kinesin walking along a microtubule in and optical trap 

experiment, with μ = 1, σ = 1 and 10% backward steps. (Figure from [1], created by Y.C. and N.C.D.) 

The photobleaching rate constant for GFP-AtCESA3 was estimated by ensemble 

averaging all of the photobleaching collected traces and fitting a single exponential 

function using MATLAB’s nonlinear least squares method (Figure 3.1A inset). The fitted 

rate of 0.0278 ± 0.0003 s-1 (mean ± SEM of fit, N = 77 traces) is the expected rate of 

photobleaching events regardless of the true number of independent photobleaching units 

present.  
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The experimental background noise was estimated by analyzing the distribution of the 

final plateau variance (as defined by the Tdetector2 step detection algorithm; see below) 

for the 77 measured traces. As expected, the distribution had more than one mode (Figure 

S1 of [1]), due to the fact that complete photobleaching had not occurred in some of the 

traces. Therefore the lowest variance mode was defined as the background variance, 

while the next mode indicates the sum of the background variance plus the variance 

associated with one fluorophore. To allow for more precise quantitative analysis of 

bleaching for multiple fluorophores, we developed a statistical method of photobleaching 

analysis, as described below.  

 

3.2 Generating Simulated Fluorescence Photobleaching Data 

Fluorescence intensity from a single fluorophore is typically described as a Gaussian 

distribution [69] with mean intensity µ and variance σ2 (Figure 3.1B, inset panel). While 

intensity fluctuations at low photon counts are better modeled as a Poisson distribution, 

added signal variance due to rapid fluorophore blinking events, fluctuations in the 

background signal, and camera read noise justify the assumption that the signal is 

Gaussian. We postulate that the fluorophores are independent of one another and thus the 

intensity fluctuations for each fluorophore are uncorrelated with those of neighboring 

fluorophores. Thus, when n fluorophores are localized in a diffraction-limited spot, the 

overall intensity will be the sum of the mean intensities (Itot = n*µ), and the overall 

variance will be the sum of the variances plus the variance of the background, δ2 (σtot
2 = 

n*σ2 + δ2). Notably, in photobleaching traces the variance scales with signal intensity, 

and if background fluctuations are low and/or signal variance is high, then variance is 

proportional to intensity. This situation contrasts with typical positional step detection 

problems (for instance, identifying step displacements for motor proteins), where the 

variance is independent of position and is thus constant for each step [23]. As a result of 

this scaled variance, with each intensity drop during a photobleaching experiment, there 

will be an associated decrease in the signal variance. 

 



 

   

38 

 

Another aspect of multi-fluorophore photobleaching data that complicates the 

identification of bleaching steps is the fact that the frequency of photobleaching events 

for an ensemble of fluorophores changes over time. Photobleaching is typically modeled 

as a first order process with rate λ and characteristic bleach time T, where λ = 1/T. Thus, 

the time it takes for a single fluorophore in a set to bleach will follow an exponential 

distribution with mean of T. If there are n fluorophores in a diffraction-limited spot, then 

the mean time before the first bleaching event will be much faster because any of the 

fluorophores can bleach. Assuming that photobleaching events are independent of one 

another, the time before the first bleaching event will also follow an exponential 

distribution, with a rate equal to n*λ, and the mean time before the first photobleaching 

event will be T/n. Thus, at the beginning of an experiment, bleaching events will be more 

frequent and will be associated with larger signal variance, making it difficult to identify 

individual events. 

To assess the ability of step detection algorithms to detect photobleaching events, we 

simulated a photobleaching signal for a complex containing 12 GFP fluorophores (Figure 

3.1C), each having a mean intensity μ and variance σ2 that approximated the GFP-

AtCESA3 intensity trace shown in Figure 3.1A. In parallel, we simulated a signal having 

a uniform stepping rate and a constant variance, similar to motor protein displacement 

signals (Figure 3.1D). Datasets with various SNR values were generated to represent a 

range of possible experimental scenarios. For motor stepping data (Figure 3.1D), the 

SNR is defined as ratio of step size over the standard deviation (μ/σ). Defining SNR for 

bleaching traces, however, is complicated by the fact that the variance changes with the 

number of active fluorophores. Thus, the SNR for the photobleaching data was defined as 

the mean intensity μ of a single fluorophore divided by its standard deviation σ, (μ/σ). 

The variance of the background signal, δ2, was chosen to equal the variance of a single 

fluorophore, σ2. Different SNR values were achieved by setting μ = 500 a.u. and varying 

the standard deviation. To objectively identify each bleaching event, we developed 

multiple step detection algorithms that use statistical analysis to detect photobleaching 

events and compared their performance using the simulated data. 
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3.3 Using Step Detection Algorithms to Identify Bleaching Events 

To analyze our photobleaching data, we developed two step detection algorithms that use 

statistical tests to identify steps (see Sections 3.8.3 – 3.8.8). For each method, approaches 

were developed that assumed the different plateau regions in the signal had either equal 

or unequal variances. The first method is based on the Bayesian Information Criterion 

(BIC; [70]) and predicts steps purely based on statistical information in the data. Kalafut 

and Visscher used this approach for step detection previously, but assumed that the 

variance within each step was constant [62]. We modified this implementation to allow 

for changes in variance. A second algorithm was developed based on the two-sample t-

test with or without assumed equal variance. These four algorithms are named Bdetector1 

and Bdetector2 for the BIC-based methods assuming equal or unequal variance 

respectively, and Tdetector1 and Tdetector2 for the t-test based methods assuming equal 

or unequal variance. 

 

Figure 3.2: Step detection algorithms. (A-C): Bdetector algorithm. (A) To fit the first step, Bdetector scans 
all possible change points and calculates a corresponding BIC value at each position (blue line). If the 

minimum BIC is lower than the BIC value for not adding a step (green line), a step is added (red line) at the 

position where the minimum BIC occurs. (B) Keeping the first step, Bdetector rescans all possible change 
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points and calculates new corresponding BIC values (blue line), and adds a second step at the position of 

the minimum BIC (red line). This process is iteratively repeated. (C) When the minimum BIC value for 

adding an additional step (blue line) is not lower than the current BIC value (green line), the program 

terminates. (D-F): Tdetector algorithm where, in contrast to the BIC, a higher significance for the t-test 

indicates a better fit. (D) To add the first step, the significance at each possible change point is calculated 

(blue line) and is compared to the threshold (green line). Provided it is above the significance threshold, a 
step is added at the point of maximum significance (red line). (E) The data are split into two segments at 

the detected change point and the procedure is repeated for each segment (splitting the right segment into 

two in this case). This process is repeated for each new segment until adding a step does result in a 

significance value greater than the threshold. The algorithm then moves on to another segment. (F) When 

adding a change point fails to raise the significance above the threshold for every segment, the program 

terminates. (Figure from [1], created by Y.C. with assistance from N.C.D.) 

Both pairs of algorithms use a conceptually similar step detection approach of iteratively 

searching for change points until no statistically significant step can be added (Figure 3.2 

and Supplemental Movie S2 of [1]). The algorithms are summarized as follows: 

(1) The data are scanned, and for each potential time at which a step may occur, 

the mean and variance is calculated for the time preceding the step and the time 

following the step.  

(2) Using these means and associated variances, a BIC value (Bdetector) or the 

significance from a two-sample t-test (Tdetector) is calculated and used to 

identify the optimal step. The optimal step is the one that leads to the lowest BIC 

value (Bdetector) or the largest significance (Tdetector). If no step leads to a BIC 

value smaller than the current one or a significance value above a defined 

threshold then no step is chosen.  

(3) The process is repeated until no additional statistically significant steps can be 

detected, at which point it terminates. 

To validate their performance, the step detection algorithms were first tested on simulated 

stepping data having SNR values from 0.4 to 5 (Figure 3.3). The step times were sampled 

from an exponential distribution with an expected value of 100 time points per plateau, 

with 90% of steps being a unit step increase and 10% being a unit step decrease. At high 

SNR values, the mean predicted step size was close to the actual value, but with 

diminishing SNR, an additional peak corresponding to twice the unitary step size 

emerged (Figure 3.3A, and Figure S2 of [1]). We defined two metrics, sensitivity and 

precision to assess the performance of the algorithms. Sensitivity is defined as the 



 

   

41 

 

proportion of the true steps that are identified by the step detection algorithm. Precision is 

defined as the proportion of identified steps that are true steps (see Section 3.8.10). 

Overfitting will lead to high sensitivity and low precision (false positives), while 

underfitting results in high precision but low sensitivity (missed events). With SNR 

values above 2, all four algorithms performed well and had both high sensitivity and 

precision values (Figure 3.3, B and C). Reasonable predictions were obtained at SNR 

values between 1 and 2, but sensitivity and precision both fell sharply for SNR values 

below 1. The BIC-based algorithms displayed a tradeoff between sensitivity and 

precision, with Bdetector1 (constant variance) having higher sensitivity and Bdetector2 

(unequal variance) having higher precision (Figure 3.3, B and C: blue and green plots). In 

contrast, for the two-sample t-test methods both Tdetector1 (assumed constant variance) 

and Tedector2 (assumed unequal variance) performed similarly (Figure 3.3, B and C: red 

and black plots).  

 

Figure 3.3: Detecting steps in simulated stepping data. (A) Histograms of step sizes predicted by all step 

detection algorithms. The simulated data have uniform step sizes of 1 with 10% backward steps and SNR 



 

   

42 

 

of 1. Real step sizes are calculated by comparing the means of plateau regions on either side of a step. The 

mode at +1 represents forward steps and the mode at -1 represents backward steps. The four algorithms 

detect unitary forward and backward steps, but also have modes centered at +2, corresponding to twice the 

single step size and representing missed steps. (B) Sensitivity plots for the four algorithms. The missed 

steps corresponding to the lower sensitivity of Bdetector2 can be seen in (A) by the population centered at 

+2 step size. (C) Precision plots for the four algorithms. Bdetector1 had problems with overfitting, resulting 
in lower precision and a number of steps between 0 and 1 in (A). (Figure from [1], created by Y.C. with 

assistance from N.C.D.) 

After benchmarking the step detection algorithms on the stepping data, the algorithms 

were used to detect unitary steps in the simulated photobleaching data. For ease of 

comparison, the step size was fixed at 500 a.u. for all simulated data and the variance was 

altered to achieve different SNR values. As seen in Figure 3.4A, both algorithms 

identified similar steps in the simulated photobleaching data with SNR = 2. Considering 

the performance at different SNR values, the methods assuming unequal variance 

(Bdetector2 and Tdetector2) resulted in higher precision but lower sensitivity compared 

with the methods assuming equal variance (Bdetector1 and Tdetector1, Figure 3.4, B and 

C).  

 

Figure 3.4: Detecting steps in simulated photobleaching data. (A) Simulated photobleaching data (black) 

with step detection by the Tdetector2 (red) and Bdetector2 (blue) algorithms. (B, C) Precision and 

sensitivity plots for the four algorithms. The two algorithms not assuming equal variance (Bdetector2 and 

Tdetector2) gave better precision but missed events, whereas Bdetector1 and Tdetector1 gave better 

sensitivity but led to false positives. (Figure from [1], created by Y.C. with assistance from N.C.D.) 

For estimating subunit numbers from photobleaching data, the most important factor is 

properly estimating the amplitude of a quantal photobleaching event (the first mode). 

Hence, a loss in sensitivity corresponding to missed steps (resulting in higher modes) is 

acceptable. In contrast, the falsely identified steps corresponding to low precision can 

lead to underestimating the quantal photobleaching amplitude. Based on these 

considerations, the two methods assuming constant variance were inferior to the methods 
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assuming unequal variance. The Tdetector2 algorithm performed the best overall and was 

chosen for the subsequent analyses described below.  

 

3.4 Determining Unitary Step Size from Step Detection Results  

After identifying steps, the next task in analyzing photobleaching data is to use the 

identified step amplitudes to extract the amplitude of a unitary photobleaching event. The 

total subunit number is subsequently estimated by dividing the initial (high) fluorescence 

amplitudes by this quantal unit. We initially focused on results from the simulated dataset 

shown in Figure 3.4A having a SNR = 2 and a GFP copy number of 12. A histogram of 

step amplitudes predicted by the Tdetector2 algorithm suggests the presence of at least 

two modes (Figure 3.5A). The simplest method of estimating the unitary step size is to fit 

the binned histogram data with multiple Gaussian functions corresponding to the 

different modes. However, estimation by this method is strongly dependent on bin size 

(Figure 3.5A and B), and there are no existing objective methods for identifying the 

optimal bin size. 
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Figure 3.5: Comparing methods of fitting photobleaching step size distributions to extract unitary step size. 

Histograms represent step size distributions from Tdetector2 applied to simulated photobleaching data with 

copy number 12 and SNR = 2. The distribution is made up of 570 detected steps. (A) Fit of two Gaussian 

functions to the data using a bin size of 50. Fit parameters are μ1 = 510 a.u., σ1 = 55, μ2 = 836 a.u., and σ2 = 

335. (B) Fit of two Gaussian functions to the data using a bin size of 150. Fit parameters are μ1 = 568 a.u., 

σ1 = 67, μ2 = 873 a.u., and σ2 = 342. In both cases fits to more than two Gaussians did not converge. (C) 

Identifying modes by KDE. A histogram with bin size 50 is plotted for the purpose of visual comparison 
but is not used for fitting. Smooth curve is the estimation of multiple Gaussians (kernels) by KDE. (Figure 

from [1], created by Y.C.) 

Kernel Density Estimation (KDE) is a non-parametric method of density estimation that 

can be used to identify modes without requiring data binning. In short, each step 

represents a probability of 1/N, where N is total number of steps, and a Gaussian centered 
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at each step is used to estimate the distribution of this 1/N probability, resulting to a total 

of N Gaussians. The overall probability density is obtained by the sum of these N 

Gaussians [71]. Although the main peak from the KDE is obvious, it is difficult to 

retrieve information for subsequent modes because there are poorly separated (Figure 

3.5C).  

Density estimation by a Gaussian Mixture Model (GMM) can provide predictions of peak 

position for each mode in a way that avoids the drawbacks of KDE. In this method the 

distribution of steps is estimated by a mixture of Gaussians and the means and variances 

of these Gaussians are obtained by maximizing the expected posterior probability, 

computationally achieved by expectation–maximization (EM) algorithms [72]. However, 

one uncertainty of this method is choosing the number of Gaussians (K) to be fit to the 

data, which can alter the fitting results. To provide an objective method for choosing the 

number of Gaussians, the step amplitude data were fit using the Gaussian Mixture Model 

by an increasing number of Gaussians and the Bayesian Information Criterion (BIC) 

value associated with each fit was determined. The optimal number of Gaussians was 

defined as the number that gave the lowest BIC value, which for the simulated 

photobleaching data was 5 (Figure 3.6A and B). The different peaks were assumed to be 

multiples of the unitary photobleaching amplitude, and the mean unitary step size was 

calculated as a weighted average of each peak, giving a value of 528.3 a.u. This estimate 

is within 6% of the step size value of 500 a.u. that was chosen for this simulated 

photobleaching data.  
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Figure 3.6: Step size and copy number determination for simulated photobleaching data. (A) BIC values 

using different numbers of Gaussians in the GMM density estimation for the same distribution used in 

Figure 3.5. The best fit (smallest BIC value) was achieved with 5 Gaussians. (B) Corresponding fit of 5 

Gaussians to the step size data (histogram is for display only and is not used by the GMM procedure). Red, 

green, yellow, pink, and purple traces represent the five Gaussians in the GMM fit, with corresponding 

means of 560, 921, 1376, 1811, 2343 a.u., and relative weights of 0.461, 0.341, 0.162, 0.028, and 0.008. 

The standard deviation, which is assumed to be identical for all modes, is 135.9 a.u. Blue line is the overall 

density. The unitary step size is calculated as Σ(i = 1 to k) ((Pi * μi)/i), where Pi and μi are the relative weight 

and the mean, respectively, of the ith peak, resulting in a value of 528.3 a.u. (C) Predicted unitary step size 

as a function of SNR and copy number, demonstrating good performance for copy numbers of below 12 at 
SNR of 1 and above, and for copy number of 20 at SNR of 2 and above. Actual step size in simulated data 

was 500 a.u. (D) Predicted copy number from simulated photobleaching data with SNR of 2 and copy 

number 12. Peak position from KDE (black line) corresponds to mean copy number of 12.3. (E) Predicted 

copy number across different SNR ratios. Similar to the step size estimate, a break point at SNR below 2 

was seen for prediction on copy number 20. (Figure from [1], created by Y.C. with assistance from N.C.D.) 

To further assess the performance of this method in estimating copy number from diverse 

photobleaching data, we performed identical analyses on simulated bleaching data with 

copy numbers from 2 to 20 at a range of SNR values (Figure 3.6C). Strikingly, for 

simulated data with copy numbers below 12, the analysis method predicts the value of the 

unitary step within 10% even down to an SNR of 1 (Figure 3.6C). With a copy number of 

20, predicted step sizes are within 7% of the true step size for SNR of 2 and above, but 

rise toward twice the true step size at lower SNR values. Based on these results, the 

ability of this method to estimate copy numbers from photobleaching data is limited for 
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data with both very high copy numbers (20 and above) and low SNR values (below 2). In 

these cases, the design of the photobleaching experiment should be further optimized to 

improve the SNR. 

 

3.5 Using Unitary Step Size to Estimate Fluorophore Copy Number 

The final task in estimating the number of fluorophores in a complex is to calculate the 

amplitude of the overall fluorescence drop by taking the difference between the initial 

fluorescence and the value of the final plateau and dividing by the unitary step size. 

Accurately estimating the total amplitude of the photobleaching signal can be 

challenging, however, due to uncertainties in measuring the initial fluorescence amplitude 

and uncertainties in whether the final plateau represents full bleaching. The first few time 

points of photobleaching traces have the most variability due to the fast rate of 

photobleaching and high signal variance associated with a large number of fluorophores. 

Simply averaging over the first few points reduces the noise but also leads to 

underestimating the true maximum fluorescence. To avoid introducing any bias, we 

chose to simply take the initial fluorescence value as the maximum for each trace.  

The proportion of fluorophores that are expected to bleach during the finite acquisition 

time can be estimated by fitting an exponential to the ensemble average of the 

photobleaching traces (see Section 3.8.9). The simulated photobleaching data had a 

duration of 100 s and, because it was modeled on the experimental data, was well fit by 

an exponential with a rate constant of 0.0278 s-1. Thus, 93.9% of the fluorophores are 

expected to bleach (see Equation 3.1), and the overall intensity drop of the simulated data 

was corrected upward by dividing by 0.939. Dividing the total intensity drop of each 

trace by the unitary step size results in a distribution of copy numbers with a mean of 

12.3 estimated by KDE (Figure 3.6D), within 3% of the correct copy number of 12. Copy 

number errors were within 10% for SNR = 1 and above for copy numbers of below 12, 

and for SNR = 1.8 and above for a copy number of 20 (Figure 3.6E).  
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3.6 Estimating Copy Number for Kinesin-4XGFP 

To validate the ability of the developed methods to estimate copy numbers from a protein 

with a known number of GFP subunits, we engineered a kinesin construct containing four 

GFPs (see Section 3.8.1). Proteins were attached to the coverslip surface through non-

specific interactions and imaged using TIRF microscopy [28]. Steps were fit to the 71 

acquired photobleaching traces using the Tdetector2 algorithm (Figure 3.7A), resulting in 

455 detected steps. The step size distribution was fit using the Gaussian Mixture Model 

and based on the calculated BIC values, the optimal number of modes was determined to 

be four (Figure 3.7B).  When the step size distribution was fit using four modes, the 

corresponding unitary step size was determined to be 60.8 a.u. (Figure 3.7C). Based on 

this step size and the standard deviation of noise in the traces, the SNR was calculated to 

be 1.1 for these measurements. 

 

Figure 3.7: Estimating copy number for kinesin-4xGFP. (A) Trace of kinesin-4xGFP bleaching (black) 

with steps fitted by Tdetector2 (red). (B) The BIC search leads to a best fit of k = 4 Gaussians for fitting the 

step size distribution. (C) Estimating the unitary step size (60.8 a.u.) from the step size distribution (455 

total detected steps). The mean values of the four modes were 63.9, 109.9, 165.8, and 258.1 a.u., relative 

weights were 0.622, 0.289, 0.062, and 0.027, and the SD was 19.6 a.u. (D) Copy number distribution. 

There were two peaks, centered at 3.28 and 6.65. These peaks are consistent with the binomial nature 
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leading to a slight shift from four toward lower copy number and with a double-aggregate population at 

roughly twice the copy number of the first peak. Histograms (black boxes) are also plotted in C and D for 

reference but not used in the GMM fitting. (Figure from [1], created by Y.C. with assistance from N.C.D.) 

The resulting copy number distribution can be influenced by several factors. First, the 

probability that a GFP will fluoresce is not expected to be unity, which leads to the 

distribution having a binomial nature. Second, the probability of observing every single 

bleaching event during an experiment is less than unity due to the finite acquisition time, 

meaning that the number of acquired bleaching events from each sub-population of 

fluorescing GFPs will itself be binomially distributed. Third, due to normal intensity 

fluctuations, the overall intensity drop for each trace will have an associated error value 

simply from the fluorescence fluctuations. Fourth, it is difficult to rule out the presence of 

a small percentage of aggregates in the sample or pairs of complexes residing in the same 

diffraction-limited spot. Due to these factors, the expected copy number distribution will 

be a binomial distribution broadened by Gaussian noise. As a conservative approach, we 

chose to fit the copy number distribution using the Gaussian Mixture Model.  

To estimate fluorophore copy number, the total intensity drop for each photobleaching 

trace was calculated by taking the difference of the initial point and the mean value of the 

final plateau. Each intensity drop was then divided by the estimated unitary step size of 

60.8 a.u. to generate a copy number estimate. The fit to the copy number distribution 

shows two peaks at 3.28 and 6.65 (Figure 3.7D). Given an expected copy number of four, 

these peaks are consistent with the binomial nature leading to a slight shift towards lower 

copy number for the first mode, and the second mode corresponding to pairs of 

complexes either due to aggregates or to two surface-bound complexes being within the 

same diffraction-limited spot. These results demonstrate that the method can give an 

accurate prediction of minimum protein copy number even in a data set having a SNR of 

1.1. 
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3.7 Estimating Copy Number for GFP-AtCESA3 

After developing an objective method for estimating subunit copy number for protein 

complexes tagged with large numbers of fluorophores and assessing its performance on 

simulated photobleaching data, we applied the technique to a set of photobleaching data 

for GFP-AtCESA3 particles (Figure 3.8A). Based on the trend of BIC values (Figure 

3.8B), a model consisting of six Gaussians was used to estimate the distribution of 

predicted step sizes, and the final estimate for a single step was calculated to be 445.4 a.u. 

(Figure 3.8C). This step size indicates that the SNR is roughly 2 to 2.5, within the range 

that our methods can reliably uncover copy number. However, in the final copy number 

histogram, instead of seeing a single mode as for the simulated data, two modes, one 

around 10 and the other around 20, are apparent (Figure 3.8D). This factor of two 

suggests that a subpopulation of the analyzed particles might be composed of two 

complexes within the focal limited spot, either because there are two populations of CSCs 

in cells or because pairs of CSCs occasionally exist in close proximity, especially when 

they are immobile as was the case for this dataset. A fit consisting of two Gaussians 

identifies peaks at 9.56 and 23.5 copies. Considering that protein misfolding, incomplete 

maturation of GFP, and bleaching events occurring before data acquisition can all 

potentially lead to underestimating the true number of GFPs present , we conclude that 

the 10 copies is a lower limit for the estimated number of GFP-AtCESA3 subunits in 

each CSC particle. 
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Figure 3.8: Copy number estimation for GFP-AtCESA3 particles. (A) Trace of GFP-AtCESA3 
photobleaching (black) with steps fitted by Tdetector2 (blue). (B) BIC values for step detection at 

increasing number of Gaussians, showing the minimum at k = 6. (C) Estimation of unitary step size (445.4 

a.u.) by GMM based on 730 total detected steps. Step size distribution was fitted by six Gaussians, shown 

in red, green, yellow, pink, and purple. Mean values were 453, 864, 1337, 1799, 2335, and 3082 a.u., 

relative weights were 0.4953, 0.3325, 0.1252, 0.0367, 0.0074, and 0.0027, and the SD was 160 a.u. Overall 

fit from GMM is shown in blue. Histogram (black boxes) is also plotted for reference but not used in the 

GMM fitting. (D) Copy number distribution for GFP-AtCESA3 particles. Two peaks are evident from the 

histograms, and fitting two Gaussians (red and green curves) gives means of 9.56 and 23.5 and ratio of 

0.844 and 0.156, with SD of 4.03. (Figure from [1], created by Y.C. with assistance from N.C.D.) 
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3.8 Materials and Methods 

3.8.1 Photobleaching Experiments 

Arabidopsis thaliana seeds of the genotype AtCESA3je5 GFP-CESA3 [49] were surface-

sterilized for 20 min in 30% bleach + 0.1% SDS, washed 4X with sterile water, and 

stored in sterile 0.15% agar at 4 °C for 3 days before being sown on square petri plates 

containing MS medium (2.2 g/L Murashige and Skoog salts (Caisson Laboratories, 

Logan, UT) + 0.6 g/L 2-(N-morpholino)-ethanesulfonic acid (MES, Research Organics, 

Cleveland, OH) + 8 g/L agar-agar (Research Organics), + 10 g/L sucrose, pH 5.6). The 

plates were incubated in a 22 °C growth chamber under 24h illumination for 5-6 days 

before use in microscopy experiments. Seedlings were mounted on glass slides between 

two pieces of permanent double-stick tape (3M, St. Paul, MN), 30 µL of sterile water was 

added to the seedling, and a 24 x 40 mm #1.5 coverslip was adhered to the tape to 

generate an imaging chamber. Seedlings were imaged on a Nikon TE2000 microscope in 

variable-angle mode with a 60X 1.4 NA oil immersion objective and a 100 mW 488 nm 

excitation laser. Hypocotyl cells containing sparse GFP-AtCESA3-positive particles were 

imaged using a Photometrics Cascade 512b camera in streaming mode using maximum 

gain with 200 msec exposure time for 500-600 frames, during which time many particles 

bleached to background levels. 

As a control, Drosophila kinesin heavy chain truncated at residue 559 was modified to 

have GFP at both the N- and C-termini, generating a dimer containing four GFP 

fluorophores.  The protein was bacterially expressed and Ni column purified as 

previously described [28]. Surface-immobilized fluorophores were imaged by TIRF 

illumination [28] and acquired in an identical manner to the GFP-AtCESA3 data.  

3.8.2 Image Analysis 

Image stacks were processed in ImageJ (http://imagej.nih.gov/ij/) as follows. First, the 

Background Subtract tool (10 pixel radius, sliding paraboloid) was used to subtract 

background fluorescence from each frame in the stack. Next, an Average Projection of 

the stack was generated and used to select 7-pixel-radius circular regions of interest 

(ROI) surrounding immobile GFP-AtCESA3 particles. Finally, photobleaching traces 
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were generated from the background-subtracted image stack by measuring the total pixel 

intensity of each ROI for every frame of the stack. A total of 77 particles were analyzed. 

3.8.3 Tdetector1 Algorithm 

The Tdetector1 algorithm carries out a modified, iterative two-sample t-test that assumes 

the expected variance throughout the entire input signal to be constant. As stated 

previously, it also assumes that the input is a piecewise-constant signal hidden in 

normally distributed white noise. There are no user-defined parameters, and the only 

input to the algorithm is the signal in the form of a vector or series of values, X. 

To begin, the algorithm must calculate the variance of the corrupting white noise, σ2, of 

the input signal. The conventional method of calculating variance (Var(X) =

E[(X − μ)2]) cannot be used because the data is expected to contain steps that would 

result in a large overestimation of the corrupting variance. Instead a pairwise difference 

calculation must be used (Equation 3.1). Pairwise differences that are significantly 

greater in magnitude compared to the rest (possibly due to a large step there) are 

discounted from the calculation (see Section 3.8.5 for further details). 

σ2 ≈
∑ (xi+1−xi)

2(L−1)
i

2(L−1)
  (3.1) 

Where X = input signal, σ2 = variance of corrupting noise in X, L = length of X, i = index 

of X. 

The first round of the step detection process iterates through every possible way of 

splitting X into two sections and calculates the difference of means (DOM) of those two 

sections. Each DOM is then rated for significance based on the expected distribution of 

DOMs that would result from splitting a normal random vector of the same length, with 

no steps, at that respective index (given in Equation 3.2). This process is similar to 

comparing to the t-distribution as in a two-sample t-test. 

DOMs ~ N (0, σ2 (
1

i
+

1

L−i
))  (3.2) 

Where σ2 = variance of corrupting noise in X, L = length of current subset of X (for first 

round of step detection: L = length of entire X series), i = index of splitting. 
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If there is a calculated DOM that is significant (see Section 3.8.6) compared to the 

normal distribution shown in Equation 3.2, then the null hypothesis – that the observed 

DOM is due to variations of a normal random vector without a step – is rejected, the two 

sections are declared as two separate plateaus, and a possible step is declared at that 

index. For each round of step detection, only the most significant DOM results in a 

declared step. After the first round of step detection, the process is repeated on each new 

plateau, and any new plateaus from a round of step detection will go through the same 

process until no new plateaus are declared. 

Finally, the algorithm undergoes a step-checking phase that performs DOM significance 

testing for all adjacent plateaus declared. MATLAB code for the Tdetector algorithm is 

included in Appendix A. 

3.8.4 Tdetector2 Algorithm 

The Tdetector2 algorithm is nearly identical to Tdetector1, except that it assumes that 

different sections of the data have different expected variances (as found in 

photobleaching traces where higher numbers of unbleached fluorophores lead to higher 

variances). Again, it assumes the input is a piecewise constant signal hidden in normally 

distributed white noise, and it requires only a single series of data, X, as input to the 

algorithm. 

The first task of the algorithm is to find sections of the data that have significantly 

different variances from one another. To accomplish this, it first calculates the variance 

of corrupting noise throughout all of X using the same process described for Tdetector1 

(Equation 3.1). Next, it uses the same process that the Tdetector1 algorithm uses to test 

each possible DOM for significance, but instead of comparing means it tests each 

possible difference of variances (DOV) for significance. The expected distribution of 

DOVs is approximated as normal, with a variance (Equation 3.3, derivation in Section 

3.8.7) that depends on nearly the same variables defining the variance of DOMs in 

Equation 3.2. The only difference is that σ2 is always the corrupting variance of the entire 

X vector in Equation 3.2, while in Equation 3.3 it is the corrupting variance of only the 

subset of X that is currently being split into two sections.  
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DOVs ~ N (0, σ4 [
i2+i−3

(i−1)2
+

(L−i)2+(L−i)−3

((L−i)−1)
2 − 2])  (3.3) 

Where σ2 = variance of corrupting noise in current subset of X, L = length of current 

subset of X, i = index of splitting. 

As in the iterative step fitting process of Tdetector1, this variance-sectioning continues to 

declare and test new plateaus until no new significant variance sections are declared. 

Once the algorithm has completed the variance-sectioning process, it begins the same 

step detection process as in the Tdetector1 algorithm, with two exceptions: (1) For DOM 

significance testing, Tdetector2 uses σ2 = mean corrupting variance of the current subset 

of X in Equation 3.2 rather than the corrupting variance of the entire X series; and (2) 

Once the most significant index of splitting has been determined, the resulting DOM is 

again tested for significance with respect to a slightly different distribution of DOMs 

shown by Equation 3.4 (similar to Welch’s t-test [73]). This distribution takes into 

account the possibility of unequal variances between the two sections. If both tests have 

shown significance with respect to their distributions, then a step and two new plateaus 

are declared at that index. 

DOMs ~ N (0,
σ1

2

i
+

σ2
2

L−i
)  (3.4) 

Where σ1
2 = corrupting variance of the first section, σ2

2 = corrupting variance of the 

second section, L = length of current subset of X, i = index of splitting. 

3.8.5 Calculation of Variance of Corrupting Noise 

Let X be a vector of L independent random variables with a mean of 0, and variance of 

σ2. Let Y be a piecewise-constant vector of L values, containing a step of amplitude d 

between indexes i and i+1. Now let the sum of these two vectors, Z = X + Y, represent a 

data vector given to the Tdetector step detection algorithm (see Figure 3.9). 

X = [x1, x2, … , xL−1, xL], Y = [0,0,… , d, d], Z = [x1, x2, … , xL−1 + d, xL + d]  
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Figure 3.9: Plots of theoretical X, Y, Z vectors where σ2 = 1, d = 5, L = 100, and i = 40 

The goal is to estimate σ2 (the variance of the corrupting noise, X), but we are given only 

the vector Z. Using the conventional calculation of variance on Z would yield an answer 

composed of both σ2 and the value of d (step amplitude of Y). 

Var(Z) = Var(X + Y) 

= Var(X)  + Var(Y) 

= E[(X− E[X])2] + E[(Y − E[Y])2] 

= σ2 +
i(L − i)

L2
d2 

If Z contained more than one step, Var(Z) would be an even greater overestimation of σ2. 

Therefore, a method aimed at calculating the variance of only the corrupting noise – a 

pairwise difference calculation – should be used instead. Generally speaking, it calculates 

variance based on the difference between neighboring data points rather than the 

difference of each data point from the mean. The following demonstrates how one-half of 

the expected value of squared pairwise differences of X equates to the variance of X, σ2. 

∑ (xn+1 − xn)
2(L−1)

n=1

2(L − 1)
=
E[(xn+1 − xn)

2]

2
=
E[xn+1

2 − 2xn+1xn + xn
2 ]

2
 

Since X is an independent random vector with a mean of zero: 

=
E[xn+1

 2 ] − 2E[xn+1]E[xn] + E[xn
2] 

2
=
E[xn+1

 2 ] + E[xn
2] 

2
=
σ2 + σ2

2
=  σ2 

This yields Equation 3.1 given in the Tdetector1 Algorithm Section 3.8.3: 
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Var(X) =
∑ (xn+1 − xn)

2(L−1)
n=1

2(L − 1)
 

This equation holds only if all values in X have an expected value of zero. If it is instead 

applied to Z, a piecewise constant step function hidden in noise, then the equation does 

not give Var(Z), but rather a value composed of the variance of corrupting noise and a 

relatively small contribution from d (step amplitude of Y). 

∑ (zn+1 − zn)
2(L−1)

n=1

2(L − 1)
= σ2 +

1

2(L − 1)
d2 

As is, this approach yields a much better estimate of the variance of corrupting noise than 

simply using the variance of Z (when L ≥ 4). However, an even better estimation of σ2 

can be obtained by performing an iterative outlier analysis on the pairwise difference 

values of Z before taking their mean. If the magnitude of any pairwise difference is 

significantly greater than the rest, then we can hypothesize that it is due to a step in the 

data vector, consider it an outlier, and therefore exclude it from the average. More 

specifically, if its magnitude is greater than three times the standard deviation of pairwise 

differences of X (√2σ) then it should be excluded. Of course we do not know the value of 

σ, so we use the current best estimate. This process is iterated until there are no outliers 

remaining. Iterations are necessary because each time an outlier is removed, the value of 

σ changes slightly. The following Table 3.1 describes the iterative process explicitly.  
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Table 3.1: Pseudo/MATLAB code of iterative pairwise difference outlier removal 

 

L = length(Z); 

  

% construct pairwise differences of Z vectors 

for i = 1:L-1 

    pdz(i) = Z(i+1) - Z(i); 

    pdz2(i) = (Z(i+1) - Z(i))^2; 

end 

  

while true     

    % current estimate of sigma of X 

    sigmaC = (mean(pdz2)/2)^0.5; 

  

    % remove outlier values from pdz vectors 

    pdz2(abs(pdz) > 3*(2^.5)*sigmaC) = []; 

    pdz(abs(pdz) > 3*(2^.5)*sigmaC) = []; 

  

    % new estimate of sigma of X 

    sigmaN = (mean(pdz2)/2)^0.5; 

     

    if sigmaN == sigmaC 

        break 

    end 

end 

 

% final sigma estimate 

sigma = sigmaN; 

 

 

3.8.6 Difference of Means Significance Testing 

A difference of means (DOM) is declared significant by the Tdetector algorithm if its 

absolute value is greater than a certain value (the multiplier) times the standard deviation 

of its respective DOM distribution (Equation 3.2). The multiplier determines the 

frequency of incorrect rejections of the null hypothesis (i.e. false positives). For a given 

data series of length, L, there are L-1 ways to split the data into two sections, hence that 

many DOM values being tested for significance (i.e. opportunities for a false positive to 

occur). 

We want the probability that a given data vector will return a false positive to be 0.05, but 

choosing the corresponding multiplier is analytically difficult due to the fact that DOM 

values are not independent of one another. If they were independent, the relation would 

be simple; given L-1 opportunities for a false positive, the probability, p, that a single 

DOM should yield a false positive must be: 

p =  1 − (0.95)
1
L−1 
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The normal distribution standard deviation multiplier (as a function of L) that would 

yield this probability can be calculated using the inverse error function as follows. 

multiplier(L) = − √2 erfinv(−(0.95)
1
L−1) 

This relation was used as guidance for estimating multiplier values empirically. 

Multiplier values in the range of this relation were tested on several generated random 

vectors of different lengths L in order to achieve a 0.05 false positive probability. The 

resulting empirical multiplier lookup table is as follows (Table 3.2). 

Table 3.2: Empirically calculated standard deviation multiplier lookup table for DOM significance testing. 

Data vector lengths, L, are rounded values of 2(n/2) where n = 0,1,2, …, 26. Multipliers between given L 

values can be linearly interpolated with good reliability. The last two L values in the table are untested 

extrapolations of the trend. 

L multiplier  L multiplier 

1 0.0000  181 3.1207 

2 1.9600  256 3.1500 

3 2.1700  362 3.1975 

4 2.3400  512 3.2400 

6 2.4700  724 3.2801 

8 2.6000  1024 3.3048 

11 2.6563  1448 3.3183 

16 2.7500  2048 3.3252 

23 2.8156  2896 3.3295 

32 2.9000  4096 3.3311 

45 2.9406  5793 3.3328 

64 3.0000  8192 3.3332 

91 3.0422  10000 3.3333 

128 3.1000  1e+10 3.3333 
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3.8.7 Differences of Variances 

Let X be a vector of L independent normally distributed random variables with a mean of 

0, and variance of σ2. 

X = [x1, x2, x3, … , xL] 

Next, if X is split into two sections, XA and XB, of length N and M respectively,  

XA = [x1, x2, x3, … , xN] ,  XB = [xN+1, xN+2, xN+3, … , xN+M] 

Then both XAand XBwill have their own sample variance. The difference of these two 

variances is referred to here as the DOV. 

DOV = Var(XA) − Var(XB) 

If this process was repeated on many randomly generated X vectors of length L, split into 

two sections of lengths N and M, and a DOV was calculated each time, then the resulting 

collection of DOVs would have a variance itself. 

Var(DOV) = Var(Var(XA) − Var(XB)) 

We wish to know Var(DOV) in order to test for the significance of a given DOV 

calculated from a data vector. Even though XAand XB as we have stated in this derivation 

are not expected to contain steps, we must represent their variance with the pairwise 

difference method (Equation 3.1) because that is how variance values for DOV of a given 

data vector will be calculated (see Appendix C for more detail).  

Var(DOV) = Var (
∑ (xn+1 − xn)

2(N−1)
n=1

2(N − 1)
−
∑ (xn+1 − xn)

2(N+M−1)
n=N+1

2(M − 1)
)  

These two terms, Var(XA) and Var(XB), are independent of one another, therefore: 

Var(DOV) = Var (
∑ (xn+1 − xn)

2(N−1)
n=1

2(N − 1)
) + Var (

∑ (xn+1 − xn)
2(N+M−1)

n=N+1

2(M − 1)
) 

We can simplify the variances above, Var(Var(XA)) and Var(Var(XB)), to functions of 

the population variance of X, σ2, that depend on lengths N and M respectively, using the 
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conventional formula (Var(X) = E[(X − E(X))2] = E[X2] − (E[X])2). The simplification 

of Var(Var(XA)) is as follows. 

Var (
∑ (xn+1 − xn)

2(N−1)
n=1

2(N − 1)
)

= E [(
∑ (xn+1 − xn)

2(N−1)
n=1

2(N − 1)
)

2

] − (E [
∑ (xn+1 − xn)

2(N−1)
n=1

2(N − 1)
])

2

 

= E [(
∑ (xn+1 − xn)

2(N−1)
n=1

2(N − 1)
)

2

] − (σ2)2 

= E [(
1

2(N − 1)
)
2

( ∑ (xn+1 − xn)
2

(N−1)

n=1

)

2

] − σ4 

= (
1

2(N − 1)
)
2

E [( ∑ (xn+1 − xn)
2

(N−1)

n=1

)

2

] − σ4 

= (
1

4(N − 1)2
) E [( ∑ (xn+1 − xn)

2

(N−1)

n=1

)

2

] − σ4 

Next, we can simplify the term highlighted in blue to a multiple (defined by length N) of 

the squared population variance of X, σ4. 

E [( ∑ (xn+1 − xn)
2

(N−1)

n=1

)

2

] = E [(x1
2 − 2( ∑ xnxn+1

(N−1)

n=1

) + 2( ∑ xn+1
2

(N−2)

n=1

) + xN
2)

2

]  
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= E

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x1
4 − 2x1

2 ( ∑ xnxn+1

(N−1)

n=1

)+ 2x1
2( ∑ xn+1

2

(N−2)

n=1

)+ x1
2xN

2 …

−2x1
2 ( ∑ xnxn+1

(N−1)

n=1

)+ 4( ∑ xnxn+1

(N−1)

n=1

)

2

− 4( ∑ xnxn+1

(N−1)

n=1

)( ∑ xn+1
2

(N−2)

n=1

)− 2xN
2 ( ∑ xnxn+1

(N−1)

n=1

)…

+2x1
2 ( ∑ xn+1

2

(N−2)

n=1

)− 4( ∑ xnxn+1

(N−1)

n=1

)( ∑ xn+1
2

(N−2)

n=1

)+ 4( ∑ xn+1
2

(N−2)

n=1

)

2

+ 2xN
2 ( ∑ xn+1

2

(N−2)

n=1

)…

+x1
2xN

2 − 2xN
2 ( ∑ xnxn+1

(N−1)

n=1

)+ 2xN
2 ( ∑ xn+1

2

(N−2)

n=1

)+ xN
4

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

When expanded, the expected value of each term within all red terms will be equal to 

zero. This is because each term will contain at least one value raised to the first power 

(xn
1), which has an expected value of zero, resulting in the expected value of that entire 

term being equal to zero. Therefore all red terms above can be dropped. 

= E[x1
4] + 2E [x1

2 ( ∑ xn+1
2

(N−2)

n=1

)] + E[x1
2xN

2 ] + 4E [( ∑ xnxn+1

(N−1)

n=1

)

2

]

+ 2E [x1
2 ( ∑ xn+1

2

(N−2)

n=1

)] + 4E[( ∑ xn+1
2

(N−2)

n=1

)

2

] + 2E [xN
2 ( ∑ xn+1

2

(N−2)

n=1

)]

+ E[x1
2xN

2 ] + 2E [xN
2 ( ∑ xn+1

2

(N−2)

n=1

)] + E[xN
4 ] 

Recall: σ2 = E[xn
2] − E[xn]

2 = E[xn
2], and E[xn

2xm
2 ] = E[xn

2]E[xm
2 ] = σ4 since xn ⊥

xmwhere n ≠ m 

Note: the 4th central moment of a normal random variable, E[xn
4] = 3σ4 

E [( ∑ (xn+1 − xn)
2

(N−1)

n=1

)

2

]

= 3σ4 + 2(N − 2)σ4 + σ4 + 4(N − 1)σ4 + 2(N − 2)σ4

+ 4[(N − 2)2 − (N − 2) + 3(N − 2)]σ4 + 2(N − 2)σ4 + σ4 + 2(N − 2)σ4 + 3σ4 

= (4N2 + 4N − 12)σ4 
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This term can now be plugged back in for the blue highlighted term: 

Var (
∑ (xn+1 − xn)

2(N−1)
n=1

2(N − 1)
) = (

1

4(N− 1)2
) E [( ∑ (xn+1 − xn)

2

(N−1)

n=1

)

2

] − σ4 

= (
1

4(N − 1)2
) (4N2 + 4N − 12)σ4 − σ4 

= (
N2 + N− 3

(N − 1)2
)σ4 − σ4 

= (
N2 +N − 3

(N− 1)2
− 1)σ4 

Now this term for Var(Var(XA)) and its counterpart representing Var(Var(XB)) in terms 

of M can be plugged into the Var(DOV) equation. 

Var(DOV) = Var (
∑ (xn+1 − xn)

2(N−1)
n=1

2(N − 1)
) + Var (

∑ (xn+1 − xn)
2(N+M−1)

n=N+1

2(M − 1)
) 

= (
N2 + N− 3

(N − 1)2
− 1)σ4 + (

M2 +M− 3

(M − 1)2
− 1)σ4  

= [
N2 + N − 3

(N− 1)2
+
M2 +M− 3

(M− 1)2
− 2] σ4 

Instead of using N and M, we can represent the lengths of XA and XB with i and (L − i) 

respectively. This yields the variance shown in Equation 3.3. 

Var(DOV) =  [
i2 + i − 3

(i − 1)2
+
(L − i)2 + (L − i) − 3

((L − i) − 1)2
− 2]σ4 
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3.8.8 Bdetector Algorithms 

The Bdetector1 algorithm is identical to the method described in [62], with the algorithm 

implemented in R (http://www.r-project.org). The Bdetector2 algorithm was developed 

by modifying Bdetector1 to allow for changing variance, as follows:  

For a data with points xi (i is from 1 to N), if k steps are fitted at position l1, l2, … , lk, and 

for notational simplicity, let l0 = 0, and lk+1 = N, then the maximum likelihood estimator 

for mean and variance are: 

𝜇𝑗 =
1

𝑙𝑗 − 𝑙𝑗−1
 ∑ 𝑥𝑖

𝑙𝑗

𝑖=𝑙𝑗−1

 

Where j = 1, …, k + 1 

𝜎𝑗
2 =

1

𝑙𝑗 − 𝑙𝑗−1
 ∑ (𝑥𝑖 − 𝜇𝑗)

2

𝑙𝑗

𝑖=𝑙𝑗−1

 

 

Recall that the BIC for a statistical model is calculated as:  

𝐵𝐼𝐶 = −2 ∗ 𝑙𝑜𝑔𝐿 + 𝑝 ∗ 𝑙𝑛 (𝑁) 

Where logL is the log-likelihood of a model, and p is the number of parameters to 

estimate. 

Thus, the BIC for fitting k steps will be: 

𝐵𝐼𝐶 =∑(𝑙𝑗−𝑙𝑗−1) ∗ 𝑙𝑛 (𝜎𝑗
2)

𝑘+1

𝑗=1

+  𝑁 ∗ 𝑙𝑛(2𝜋) + 𝑁 +  𝑝 ∗ 𝑙𝑜𝑔(𝑁) 

Where p = 2*(k+1) = 2k + 2. 

To add a step, Bdetector2 scans each potential step position and calculates a BIC value. If 

the difference between the minimal BIC value and BIC from not adding a step is greater 

than 5 [74] a new step is added at the position that leads to smallest BIC value. While 

holding all previous steps, this process is then repeated to detect subsequent steps. 

Bdetector2 terminates when no more steps that result in a lower BIC value can be added. 
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3.8.9 Photobleaching Rate Estimation 

By ensemble averaging many photobleaching traces and fitting to an exponential, the 

photobleaching rate constant can be estimated with high accuracy. Because each GFP 

photobleaches independently of one another, the rate constant for the exponential decay 

of the ensemble average will be the same as the first-order bleaching rate of a single GFP.  

Comparing the photobleaching rate constant to the total acquisition time also allows for a 

correction due to photobleaching events that are expected to be missed due to the finite 

acquisition time of the experiment. Based on the known acquisition time and calculated 

photobleaching rate, Equation 3.1 calculates the fraction of photobleaching events that 

are expected to occur during acquisition. This number is critical because the final copy 

number is estimated by dividing the total intensity drop for each photobleaching trace by 

the experimentally-determined unitary step size. If the photobleaching trace has not fallen 

all the way to background, then copy number will be underestimated. Hence, to correct 

for missed photobleaching events, the total intensity drop for each trace is corrected by 

dividing by the expected fraction of observed events given by: 

Fraction observed = 1 − e−ak  (3.1) 

Where a = acquisition time in seconds, k = fitted photobleach rate in inverse seconds  

According to our fitted photobleaching rate (0.0278 ± 0.0003 s-1) and acquisition time (a 

= 100 s), we expect to observe ~ 93% of the photobleaching process. 

3.8.10 Definition of Sensitivity and Precision for Step Detection Algorithms 

The ability of each step detection algorithm to correctly identify steps was tested using 

simulated data with added white noise containing steps at known indexes. Each algorithm 

was given the same collection of simulated data, and then the indexes at which each 

algorithm declared steps were compared to the true step indexes. If a declared step index 

was within a certain range of a true step index, then it was regarded as a correct declared 

step (i.e. if Equation 3.2 is satisfied). The range was defined by a constant percentage 

multiplier (0.05) of the two true plateau lengths on either side of a true step index. 

−‖0.05 p1‖ ≤ (ideclared − itrue) ≤ ‖0.05 p2‖ (3.2) 
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Where p1 = # of data points in plateau that precedes the true step, p2 = # of data points in 

plateau that follows the true step, ideclared = index of the declared step, itrue = index of a 

true step. 

Once a declared step is defined as correct, the true step to which it was matched is no 

longer allowed to be matched to again. This means that if there are multiple declared 

steps within a certain range of the true step, only one of those declared steps is allowed to 

be defined as correct.  

The sensitivity of an algorithm was defined as the fraction of true steps that have a 

declared step within their range (detected true steps). The precision of an algorithm was 

defined as the fraction of declared steps that are correct:  

sensitivity =
detected true steps

total true steps
 

precision =
correct declared steps

total declared steps
 

Underfitting the data will result in low sensitivity and generally higher precision, while 

overfitting will result in low precision and generally higher sensitivity. 

3.8.11 Density Estimation 

Least-squares fitting on binned histogram data was carried out in R with nonlinear least-

squares fitting. Center of bins and bin height are used. For Kernel Density Estimation, 

bandwidth is as specified by Scott [75]. The “normalmixEM” function in the R package 

“mixtools” [76] was used to implement the Gaussian Mixture Model, and the variance of 

each Gaussian was assumed to be the same while means were unconstrained. The BIC 

value, is calculated based on the log-likelihood of each fitting, and was used to 

objectively determine the number of Gaussians to use in the final model. 
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3.9 Discussion 

Determining the stoichiometry of proteins in large multi-subunit membrane complexes by 

biochemical methods is challenging, and despite producing a highly abundant and useful 

biopolymer, the molecular makeup of the cellulose synthesis complex, one such protein 

complex, has remained enigmatic. The goal of this work was to quantify the number of 

CESA subunits in cellulose synthesis complexes by non-destructive in vivo 

photobleaching. Plant seedlings expressing GFP-AtCESA3 were imaged using variable-

angle epifluorescence microscopy and the fluorescence intensities of individual GFP-

AtCESA3-containing particles were recorded as the signals bleached to near background 

levels. However, despite efforts to maximize the SNR, individual photobleaching steps 

were not easily identified by eye, preventing an objective estimate of CESA copy 

number. This hurdle motivated us to develop a set of statistical tools to estimate unitary 

step size and fluorophore copy number from photobleaching data involving many 

fluorophores.  

Using imaging to quantify subunit copy number for intact protein complexes in vivo 

provides a method to probe the quaternary structure of these complexes that circumvents 

the difficulty and potential disruption of the complex inherent in biochemical 

purification. For copy numbers under five, it is often easy to simply estimate the number 

of steps by eye [58, 77]. In other cases, it is possible to estimate unitary step intensity by 

measuring the amplitude of the last step, but that approach ignores much of the rich 

information present in the data. Because small errors in the estimation of the unitary step 

intensity can propagate to larger errors in the copy number estimation, it is important to 

use as much of the available information as possible to achieve the best possible estimate 

for unitary photobleaching. In our photobleaching data analysis, we identified three major 

challenges to accurately measuring high copy numbers: 1) detecting steps in traces 

having non-uniform variances due to the summed fluctuations of multiple fluorophores, 

2) precisely identifying the unitary step size from step size distribution densities, and 3) 

accurately quantifying the total intensity drop corresponding to bleaching for all of the 

subunits in the complex. We developed a solution for each of these challenges, and we 

hope that this set of tools will be adopted as “best practices” for analyzing 

photobleaching data in other systems with high protein copy number. 



 

   

68 

 

While signal variance in molecular motor stepping data is independent of the motor 

position, photobleaching data present the unique challenge of signal variance that scales 

with intensity. Previous step detection methods have used the approach of constructing 

pairwise distance distributions to estimate unitary step size for each step [23, 59], but 

assumed a constant variance. This variance is important because it is used in tests to 

determine statistical significance. Applying step detection algorithms that assume 

constant variance to photobleaching data results in overfitting of steps in early time 

points when both the signal and variance are high. Thus the technique developed here to 

estimate the time-dependent variance of the signal was a key advance that improved the 

performance of both the BIC-based and t-test-based step detection algorithms over those 

assuming constant variance. 

The step detection algorithms output a step size distribution density that needs to be 

analyzed to extract the unitary step size. We found Kernel Density Estimation to be a 

vastly superior approach over the traditional technique of binning the data and fitting 

multiple Gaussians because it eliminated the decision of what bin size to use. However, 

one weakness of KDE was fitting to higher modes. The Gaussian Mixture Model proved 

to be the optimal tool for identifying the modes of step intensity and assigning them 

proper weights. The multiple modes of step sizes can be explained by at least two 

reasons. First, it is possible that two or more fluorophores can bleach at the same time, 

resulting in larger steps. This probability grows with increasing copy number. Second, a 

step detection algorithm might group two steps into one when fitting the two steps 

separately is not statistically significant. This can happen when noise is high, which also 

often correlates with high copy numbers. The probability of observing single steps 

consisting of multiple bleaching events is represented by the proportion of each mode in 

the GMM density estimation.  

The final technique that we developed was a best estimate of the total photobleaching 

amplitude, taking into account the bleaching rate. From the ensemble average, a 

photobleaching rate constant could be readily extracted. This parameter will vary with 

excitation intensity, cellular conditions, and other factors, and so needs to be measured 

for each experiment. If the duration of the experiment is longer than five times the 
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photobleaching time constant, then it is expected that 99% of the signal has bleached, 

minimizing the need for any correction. However, long acquisition times are not always 

possible due to stage or sample drift, camera memory, and underlying cellular dynamics. 

Hence, correcting for the expected maximum amplitude is important to avoid 

underestimating copy number.  

While the statistical analysis indicated an average copy number of 10 GFP-CESA3 in the 

observed complexes, we consider this to be a lower limit for the following reasons. First, 

the GFP-AtCESA3 transgene is present in a background of the partial-loss-of-function 

AtCESA3je5 allele of AtCESA3 [49], meaning that endogenous non-fluorescent 

AtCESA3 can potentially still be expressed and comprise a portion of each CSC. Second, 

the time required for microscope focus adjustments necessary to pinpoint the focal plane 

of the membrane means that some GFP molecules might bleach before images are 

recorded.  Third, it is impossible to rule out the presence of GFP molecules that are 

misfolded or have not matured (though the estimated 15 minute maturation time constant 

for eGFP is expected to be sufficiently fast for the present measurements [78]). To 

improve upon this initial result, we are engineering plants that contain GFP-AtCESA3 

expressed in a CESA3 null background. We are also exploring the use of slow-bleaching 

versions of fluorescent proteins in order to minimize pre-bleaching. Slow bleaching will 

also improve the ability of step detection algorithms to detect early bleaching steps. An 

additional uncertainty is whether the two peaks in the copy number distribution indicate 

that some particles are aggregates of multiple complexes or that two different populations 

of CSCs exist. To distinguish these two hypotheses, future experiments will focus on 

photobleaching analysis of motile GFP-AtCESA particles, which presumably represent 

single CSCs. 

In conclusion, we have developed a reliable method for determining copy number in 

multi-subunit complexes from in vivo photobleaching data. The statistical analysis 

combines step detection and density estimation to accurately determine the unitary 

photobleaching step and takes into consideration the bleaching rate constant when 

determining the maximum fluorescence signal. This method is generic and can be used to 

estimate the stoichiometry of other membrane-bound complexes and can be applied to 
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fluorophores other than GFP.  Because the signal variance and unitary step size are 

calculated directly from the raw data, it is not necessary to carry out new controls for 

different fluorophores, but fluorophores that display more prominent and prolonged dark 

states such as YFP are expected to have lower SNR, which may set an upper limit on 

maximum copy numbers that can be reliably estimated.  These algorithms can also be 

adapted to analyze molecular motor stepping data. Applying this method to in vivo 

photobleaching data gave a lower limit of 10 copies of GFP-AtCESA3 in cellulose 

synthesis complexes. 
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Chapter 4  

Conclusion 

The model-independent algorithms presented in this thesis provide a less biased and 

higher-precision approach to the step detection problem compared with other methods 

used in single-molecule microscopy time series analysis [61, 62] (see Section 3.3). These 

algorithms provide a solution to the significant problem of changing variance within a 

stepped time series signal and can be used alongside other analysis methods presented 

here in order to determine copy numbers of multi-subunit complexes from single-

molecule photobleaching data. 

This thesis also shows that the iterative continuous Viterbi (ICV) algorithm, a model-

dependent step detection approach, is a powerful method for uncovering parameters of a 

generative hidden Markov model of kinesin stepping. This is due to the fact that the ICV 

algorithm has the critical capability of keeping “phase” of plateaus within a given 

observation sequence. Therefore, different populations of plateau size and different 

populations of step size can be analyzed individually, which drastically improves the 

simplicity and accuracy of subsequent analyses. In tandem with developing advances in 

high temporal and spatial resolution single-molecule microscopy imaging technologies, 

this algorithm provides a promising method for elucidating unresolved mechanisms of 

the kinesin stepping cycle. 
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Appendix A: 

Tdetector Step Detection Algorithm 

The following MATLAB code is a current working version of the Tdetector1 and 

Tdetector2 algorithms [1]. The text can be saved as an m file and then it can be called 

from the workspace just as with a native MATLAB function. 

%% TDETECTOR Step Detection Algorithm (Tdetector1 and Tdetector2) 

% [Y,out] = tdetector(X,var_option) 

% 

% REQUIRED INPUT: 

% ------------------------------------------------------------------- 

% X: vector of a piecewise constant function hidden in white noise 

% 

% OPTIONAL INPUT: 

% ------------------------------------------------------------------- 

% var_option (Tdetector1 or Tdetector2): 

%   [1] assume the corrupting variance of X is constant throughout (default) 

%   [2] assume the corrupting variance of X changes throughout 

% 

% OUTPUTS: 

% ------------------------------------------------------------------- 

% Y: column vector showing step function fit of X (same length as X) 

% out: structure containing information of fitting 

%   di: column vector of the declared step indexes (index of each new plateau) 

%   ssz: column vector of each step size 

%   psz: column vector of each plateau size 

%   vx: column vector of the variance at each index 

%  

% for additional info, visit: 

% <a href="matlab:web('http://www.bioe.psu.edu/labs/Hancock-

Lab/tdetector.html','-browser')">http://www.bioe.psu.edu/labs/Hancock-

Lab/tdetector.html</a> 

  

% NOTES: 

% ------------------------------------------------------------------- 

% - The "out" structure output and the "var_option" input do not have to be 

%   included when calling the function. Y = tdetector(X); is valid. 

% 

% - Cell titles for secondary functions in the code below include the  

%   var_options that utilize that respective function in parentheses. 

  

% EXAMPLES: 

% ------------------------------------------------------------------- 

% 1. Demonstrate Tdetector1: 

% 

% X = randn(1000,1); 

% X(200:end) = X(200:end) + 5; 

% X(400:end) = X(400:end) + 5; 

% X(600:end) = X(600:end) + 5; 

% plot(X,'b'); hold on 

% [Y,out] = tdetector(X); 

% disp('declared step indexes:');disp(out.di) 

% plot(Y,'g'); 

% 

% 2. Demonstrate Tdetector2: 
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% 

% X = [1*randn(199,1);2*randn(200,1);3*randn(200,1);8*randn(401,1);]; 

% X(200:end) = X(200:end) + 5; 

% X(400:end) = X(400:end) + 5; 

% X(600:end) = X(600:end) + 5; 

% plot(X,'b'); hold on 

% [Y,out] = tdetector(X,2); 

% disp('declared step indexes:');disp(out.di) 

% plot(Y,'g'); 

  

% Nathan Deffenbaugh 

% ncd50561234@gmail.com, ncd5056@psu.edu 

% (2014 June 10) 

  

%% tdetector 

  

function [Y,out] = tdetector(X,var_option) 

  

% check the var_option, store as VO 

VO = 1; % (default to constant variance) 

if exist('var_option','var') 

    if var_option == 2 

        VO = 2; 

    end 

end 

  

% define full data length 

Lo = length(X); 

  

% calculate corrupting variance or variance sections (vx) 

if VO == 1 

    SIG = getSig(X,1); 

    out.vx = SIG^2*ones(Lo,1); 

else 

    vx = varSect(X); 

    out.vx = vx'; 

end 

  

% define the empirical multiplier lookup table and linearly interpolate 

multTab = 

[1,0;2,2;3,2.17;4,2.34;6,2.47;8,2.60;11,2.656250;16,2.75;23,2.815625;32,2.90;45

,2.940625;64,3;91,3.0421875000;128,3.10;181,3.1207031250;256,3.15;362,3.1975471

6981100;512,3.24;724,3.280080;1024,3.304768;1448,3.318336;2048,3.325240;2896,3.

329480;4096,3.331096;5793,3.332793;8192,3.3331644000;1e4,3.333300;1e10,3.333300

]; 

multTab = interp1(multTab(:,1),multTab(:,2),1:Lo); 

  

% step detecting loop 

plats_array = [1,Lo]; 

found = []; 

while ~isempty(plats_array) 

    Bound = plats_array(end,:); 

    % look for a step in this current section of the data 

    if VO == 1 

        [step_index,status] = detectStep1(X(Bound(1):Bound(2)),Bound(1),SIG, 

multTab); 

    else 

        [step_index,status] = 

detectStep2(X(Bound(1):Bound(2)),Bound(1),vx(Bound(1):Bound(2)), multTab); 

    end 

    % if a significant step is detected  

    if status == 1 

        found(end+1,1) = step_index; 
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        plats_array(end+1,:) = [plats_array(end,1),step_index-1]; 

        plats_array(end+1,:) = [step_index,plats_array(end-1,2)]; 

        plats_array(end-2,:) = []; 

    elseif status == -1 

        plats_array(end,:) = []; 

    end 

end 

  

% sort the found steps 

found = [found;1;Lo]; 

found = sortrows(found); 

  

% check found steps and build Y vector 

if VO == 1 

    [checked] = checkSteps(found, X, SIG, multTab, VO); 

else 

    [checked] = checkSteps(found, X, vx, multTab, VO); 

end 

checked = [1;checked;Lo+1]; 

for ii = 1:(length(checked)-1) 

    Y(checked(ii):checked(ii+1)-1) = mean(X(checked(ii):checked(ii+1)-1)); 

end 

Y = Y'; 

  

% calculate step sizes 

step_sizes = zeros(length(checked) - 2,1); 

for ii = 2:length(checked)-1 

    step_sizes(ii-1) = Y(checked(ii)) - Y(checked(ii) - 1); 

end 

out.ssz = step_sizes; 

  

% calculate plateau sizes (how many indexes exist between each found step) 

out.psz = checked(2:end) - checked(1:end-1); 

  

% output declared step indexes 

out.di = checked(2:end-1); 

  

end 

  

%% getSig (1,2) 

  

function [SIG] = getSig(Xs,expnt) 

  

% define pairwise difference vectors 

diff1 = diff(Xs); 

diff2 = diff(Xs).^2; 

  

while true 

    % current estimate of sigma of X 

    sigmaC = (mean(diff2)/2)^0.5; 

     

    % remove outlier values from diff vectors 

    diff2(abs(diff1) > 3*(2^.5)*sigmaC) = []; 

    diff1(abs(diff1) > 3*(2^.5)*sigmaC) = []; 

     

    % new estimate of sigma of X 

    sigmaN = (mean(diff2)/2)^0.5; 

     

    if sigmaN == sigmaC 

        break 

    end 

end 

% empirical correction for underestimation 
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SIG = sigmaN*1.015; 

SIG = SIG^expnt; 

  

end 

  

%% getSigLoop (2) 

% getSig function altered slightly to improve speed during a loop 

  

function [SIG] = getSigLoop(Xs,expnt,sd2,ld2) 

  

% Sig Equation 

diff1 = diff(Xs); 

diff2 = diff(Xs).^2; 

  

% initiate sum to subtract 

sts = 0; 

% initiate length to subtract 

lts = 0; 

  

STOP = 0; 

while (STOP == 0) 

    SIG = ((sd2-sts)/(ld2-lts)/2)^0.5; 

   

    sd2 = sd2-sts; 

    ld2 = ld2-lts; 

     

    icurrpeaks = (abs(diff1) > (3*(2^.5))*SIG); 

    currpeaks = diff2(icurrpeaks); 

    % sum to subtract 

    sts = sum(currpeaks); 

    % length to subtract 

    lts = length(currpeaks); 

     

    % zero out peaks 

    diff1(icurrpeaks) = 0; 

     

    if (lts == 0) 

        break 

    end 

end 

SIG = SIG*1.015; 

SIG = SIG^expnt; 

  

end 

  

%% varSect (2) 

  

function [vx] = varSect(X) 

  

% define full data length 

Lo = length(X); 

  

% variance sectioning loop 

plats_array = [1,Lo]; 

found = []; 

while ~isempty(plats_array) 

    Bound = plats_array(end,:); 

    [step_index,status] = detectVars(X(Bound(1):Bound(2)),Bound(1)); 

     

    if status == 1 

        found(end+1,1) = step_index; 

        plats_array(end+1,:) = [plats_array(end,1),step_index-1]; 

        plats_array(end+1,:) = [step_index,plats_array(end-1,2)]; 
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        plats_array(end-2,:) = []; 

    elseif status == -1 

        plats_array(end,:) = []; 

    end 

end 

  

% sort the found variance steps 

found = [found;1;Lo]; 

found = sortrows(found); 

  

% check found variance steps 

[checked] = checkVars(found,X); 

checked = [1;checked;Lo+1]; 

  

% build vx vector 

for ii = 1:(length(checked)-1) 

    vx(checked(ii):checked(ii+1)-1) = getSig(X(checked(ii):checked(ii+1)-1),2); 

end 

  

end 

  

%% detectVars (2) 

  

function [mxi,status] = detectVars(Xs,i_1) 

% in order for any pairwise difference value to be > z*(2^.5)sig and hence 

excluded, 

%  the length, n, of the diff vector must be n >= z^2 + 1; L >= 2(z^2 + 2). For  

%  z = 3, L >= 22. Requiring L >= 22 is necessary to ensure that large pairwise 

%  differences due to true steps in the data do not influence the calculated 

%  variance of that section. 

  

% define L and default values 

L = length(Xs); 

status = -1; 

mxi = 0; 

  

if (L >= 22) 

    d2 = diff(Xs).^2; 

  

    % get sigma of noise 

    SIG = getSig(Xs,1); 

  

    % DOV significance rating 

    Asd2 = sum(d2(1:9)); 

    Bsd2 = sum(d2(11:end)); 

    RVD = zeros(L-2,1); 

    for ii = 11:L-10 

        Asd2 = Asd2 + d2(ii-1); 

        Bsd2 = Bsd2 - d2(ii); 

  

        A = Xs(1:ii); 

        B = Xs(ii+1:end); 

  

        VA = getSigLoop(A,2,Asd2,ii-1); 

        VB = getSigLoop(B,2,Bsd2,L-ii-1); 

        DOV = VA - VB; 

         

        LA = ii; 

        LB = L - ii; 

        sigma_squared = ( ((LA^2 + LA -3)/((LA-1)^2)) + ((LB^2 + LB -3)/((LB-

1)^2)) - 2 )*SIG^4; 

         

        RVD(ii) = DOV/(sigma_squared^.5)/3; 
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    end 

  

    % find the index of the max RVD (rated difference of variance) 

    mxi = find(abs(RVD) == max(abs(RVD))); 

    mxi = max(mxi); 

  

    % determine the status of the section based on the RVD 

    if (abs(RVD(mxi)) > 1) 

        status = 1; 

        % globalize the step index 

        mxi = mxi + i_1;    

    end 

end 

  

end 

  

%% detectStep1 (1) 

  

function [mxi,status] = detectStep1(Xs,i_1,SIG,multTab) 

  

% define L and default values 

L = length(Xs); 

status = -1; 

mxi = 0; 

  

if (L >= 2) 

  

    % declare sigma multiplier 

    mult = multTab(L); 

  

    % DOM significance rating 

    RMD = zeros(L,1); 

    m1 = 0; 

    m2 = sum(Xs); 

    for ii = 1:L-1 

  

        m1 = m1 + Xs(ii); 

        m2 = m2 - Xs(ii); 

        DOM = m2/(L-ii) - m1/(ii); 

        sigma = SIG*(1/ii + 1/(L-ii))^.5; 

  

        RMD(ii+1) = DOM/(sigma*mult); 

  

    end 

  

    % find the index of the max RMD (rated difference of mean) 

    mxi = find(abs(RMD) == max(abs(RMD))); 

    mxi = max(mxi); 

  

    % determine the status of the section based on the RMD 

    status = -1; 

    if (abs(RMD(mxi)) > 1) 

        status = 1; 

        % globalize the step index 

        mxi = mxi + i_1 - 1;    

    end 

end 

  

end 

  

%% detectStep2 (2) 
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function [mxi,status] = detectStep2(Xs,i_1,vx,multTab) 

  

% define L and default values 

L = length(Xs); 

status = -1; 

mxi = 0; 

  

if (L >= 2) 

  

    % get sigma of noise 

    SIG = mean(vx)^.5; 

  

    % declare sigma multiplier 

    mult = multTab(L); 

  

    % DOM significance rating 

    RMD = zeros(L,1); 

    m1 = 0; 

    m2 = sum(Xs); 

    for ii = 1:L-1 

  

        m1 = m1 + Xs(ii); 

        m2 = m2 - Xs(ii); 

        DOM = m2/(L-ii) - m1/(ii); 

        sigma = SIG*(1/ii + 1/(L-ii))^.5; 

  

        RMD(ii+1) = DOM/(sigma*mult); 

  

    end 

  

    % find the index of the max RMD (rated difference of mean) 

    mxi = find(abs(RMD) == max(abs(RMD))); 

    mxi = max(mxi); 

  

    % define the RMD_vx value 

    sigma_vx = (( sum(vx(1:(mxi - 1)))/((mxi - 1)^2) ) + ( 

sum(vx((mxi):end))/((L-mxi+1)^2) ))^.5; 

    DOM = mean(Xs(1:(mxi - 1))) - mean(Xs(mxi:end)); 

    RMD_vx = DOM/(mult*sigma_vx); 

  

    % determine the status of the section based on the RMD and RMD_vx 

    status = -1; 

    if (abs(RMD(mxi)) > 1 && abs(RMD_vx) > 1) 

        status = 1; 

        % globalize the step index 

        mxi = mxi + i_1 - 1;    

    end 

end 

  

end 

  

%% checkVars (2) 

  

function [checked] = checkVars(found, rx) 

  

% shift last index 

found(end) = found(end) + 1; 

  

% initialize 

checked = []; 

cc = 0; 

endW = 0; 
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% if there are no found sections to check, do not enter checking loop 

if (length(found) == 2) 

    endW = 1; 

end 

  

% variance section checking loop 

ii = 1; 

while (endW == 0) 

    ii = ii + 1; 

    % check variance steps now based on adjacent variance plateaus 

    [step_index,status] = detectVars(rx(found(ii-1):found(ii+1)-1),found(ii-

1)); 

     

    % if the step is still significant based on adjacent plateaus, store it to 

the checked vector 

    if (status == 1) 

        cc = cc + 1; 

        checked(cc,1) = step_index; 

    % else, remove it from the found vector 

    else 

        found(ii) = []; 

        ii = ii - 1;         

    end 

     

    % if there are no more steps to check, end this while loop 

    if ((ii + 1) == length(found)) 

        endW = 1; 

    end 

end 

  

end 

  

%% checkSteps (1,2) 

  

function [checked] = checkSteps(found, rx, noise_input, multTab, VO) 

  

% store noise_input 

if VO == 1 

    SIG = noise_input; 

else 

    vx = noise_input; 

end 

  

% shift last index 

found(end) = found(end) + 1; 

  

% initialize 

checked = []; 

cc = 0; 

endW = 0; 

  

% if there are no found steps to check, do not enter checking loop 

if (length(found) == 2) 

    endW = 1; 

end 

  

% step checking loop 

ii = 1; 

while (endW == 0) 

    ii = ii + 1; 

    % check steps now based on adjacent plateaus (depending on variance option, 

VO) 

    if VO == 1 
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        [step_index,status] = detectStep1(rx(found(ii-1):found(ii+1)-

1),found(ii-1),SIG, multTab); 

    else 

        [step_index,status] = detectStep2(rx(found(ii-1):found(ii+1)-

1),found(ii-1),vx(found(ii-1):found(ii+1)-1), multTab); 

    end 

     

    % if the step is still significant based on adjacent plateaus, store it to 

the checked vector 

    if (status == 1) 

        cc = cc + 1; 

        checked(cc,1) = step_index; 

    % else, remove it from the found vector 

    else 

        found(ii) = []; 

        ii = ii - 1; 

    end 

     

    % if there are no more steps to check, end this while loop 

    if ((ii + 1) == length(found)) 

        endW = 1; 

    end 

end 

  

end 
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Appendix B: 

Iterative Continuous Viterbi Algorithm 

The following MATLAB code performs the iterative continuous Viterbi (ICV) Hidden 

Markov Model step detection algorithm.  

%% icv (iterative continuous-Viterbi algorithm) 

% [ret,R,o] = icv(y,[Fss,delta_incr,skip_offset]) 

% 

% Inputs 

% --------------------------------------------- 

% y: piecewise constant vector corrupted by noise (emission values from a 

%    hidden markov model of a stepping motor) 

%  

% optional inputs ... 

% 

% Fss: full step size of motor (16.4 nm default) 

% delta_incr: number of delta increments tested (20 default) 

% det_offset: if set to 0 then offset detect is skipped (1 default) 

% 

% Outputs: 

% --------------------------------------------- 

% ret: vector of step trace HMM fit that returned lowest mean squared error 

%      (same size as input y). Values are locked to means of this optimal 

%      HMM emission matrix. 

% 

% R: matrix of delta values tested (column 1) and their 

%    respective mean squared errors of fitting (column 2) 

% 

% o(1): structure containing other information of HMM fitting 

%   mvar: mean variance of input y (calculation from tdetector function) 

%   off: offset of input y based on expected full step size of Fss or 16.4 

%        by default (calculation from odetect function) 

%   A: HMM transition matrix 

%   U: HMM initial probabilities matrix 

%   lambda: HMM inverse of expected plateau length (data points) 

%   N: HMM length of transition matrix 

%   toc: analysis run time 

%   opti: optimal delta value (lowest mean squared error) 

%   di: declared indexes of stepping from optimal HMM fit (Y) 

%   Y: optimal HMM fit, similar to "ret" output, but with each plataeu as 

%      the mean of input data (y) in that section 

%   ssz: step sizes from Y fit 

%   psz: plateau sizes from Y fit 

%   even: structure of even plateau sizes and step sizes 

%   odd: structure of odd plateau sizes and step sizes 

% 

% o(n).x: vector of HMM fit for each tested delta value. The highest 

%   value of n = delta_incr, or 20 by default. Whichever tested delta 

%   yielded the lowest mean squared error will have its o(n).x = ret. 

  

%% icv (requires Tdetector function) 

  

function [ret,R,o] = icv(y,Fss,delta_incr,det_offset) 

% perform preliminary step detection (Tdetector) for offset detector inputs  

[tdet_x,tdet_o] = tdetector(y); 

o(1).mvar = mean(tdet_o.vx); 
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% shift data to make tdet_x(1) = 0 

y = y - tdet_x(1); 

  

% set input defaults 

if nargin < 2 

    Fss = 16.4; % default full step size (microtubule binding site spacing) 

end 

if nargin < 3; 

    delta_incr = 20; % default increment number (arbitrary) 

end 

if nargin < 4; 

    det_offset = 1; % default to offset detection 

end 

  

% perform offset detection, and offset input y vector 

if det_offset == 1 

    od = odetect(y,tdet_o,Fss); 

    y = y + od(1).off; 

    o(1).off = od(1).off - tdet_x(1); 

    o(1).od = od; 

end 

  

% begin ICV analysis ... 

tic 

T = length(y); 

  

% build estimated transition matrix 

N = 2*(ceil(max(y)/Fss) - floor(min(y)/Fss) + 1); 

lambda = N/T; 

A = HMMbuildTransition(lambda,N); 

  

% initial probs 

U = 1/N*ones(1,N); 

  

% build emission matrix and perform continuous-Viterbi (iterative) 

delta = linspace(0,Fss,delta_incr); 

R(:,1) = delta; 

for ii = 1:length(delta) 

    B = HMMbuildEmission(delta(ii),0,tdet_o.vx(1)^0.5,N,Fss); 

    [o(ii).s,R(ii,2)] = vitec(y,A,B,U); 

    o(ii).x = B(o(ii).s,1); 

    o(ii).delta = delta(ii); 

end 

% R(:,2) = 1./R(:,2); 

  

o(1).A = A; 

o(1).U = U; 

o(1).lambda = lambda; 

o(1).N = N; 

o(1).toc = toc; 

  

% return optimal delta value 

[dum,ind] = min(R(:,2)); 

o(1).opti = o(ind).delta; 

ret = o(ind).x; 

  

% calculate declared step indexes 

o(1).di = find(diff(ret) ~= 0) + 1; 

step_indexes = [1;o(1).di;T+1]; 

  

% calc noise corrupted step sizes 

for ii = 1:(length(step_indexes)-1) 
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    Y(step_indexes(ii):step_indexes(ii+1)-1) = 

mean(y(step_indexes(ii):step_indexes(ii+1)-1)); 

end 

o(1).Y = Y'; 

step_sizes = zeros(length(step_indexes) - 2,1); 

for ii = 2:length(step_indexes)-1 

    step_sizes(ii-1) = Y(step_indexes(ii)) - Y(step_indexes(ii) - 1); 

end 

o(1).ssz = step_sizes; 

  

% calculate plateau sizes (how many indexes exist between each found step) 

o(1).psz = step_indexes(2:end) - step_indexes(1:end-1); 

  

% sort even and odd index step sizes and plateaus 

inds = 1:length(o(1).ssz); 

o(1).even.ssz = o(1).ssz(find(rem(inds,2)*-1+1)); 

o(1).odd.ssz = o(1).ssz(find(rem(inds,2))); 

inds = 1:length(o(1).psz); 

o(1).even.psz = o(1).psz(find(rem(inds,2)*-1+1)); 

o(1).odd.psz = o(1).psz(find(rem(inds,2))); 

  

  

end 

  

%% odetect (offset detector) 

% [ret] = odetect(x,o,ss); 

% 

% Inputs: 

% ---------------------------------- 

% x: piecewise constant signal corrupted by noise. This is also the 

%    emission values from a Hidden Markov Model 

% o: output structure from the Tdetector algorithm. 

% ss: step size for which the x data offset is to be calculated 

% 

% Outputs: 

% ---------------------------------- 

% ret: structure containing the following: 

%   

  

function ret = odetect(x,o,ss) 

% acceptable range parameter 

arp = 0.05; 

arv = arp.*ones(size(o.psz)); 

  

% normalize fit to start from zero and by unit step size 

Q = [0;cumsum(o.ssz)]./ss; 

  

for i = 1:length(Q) 

    % shift Q so that the ith plateau is at zero 

    q = Q - Q(i); 

    % calc q absolute error 

    qae = abs(q - round(q)); 

    % truth list if each plat is within acceptable range 

    z = arv >= qae; 

    ret(i).z = z; 

    % declare plateau scores 

    ret(i).zs = sum(o.psz(find(z))); % z score (plat point count) 

    ret(i).zc = sum(z); % z count 

end 

  

ret(1).Q = Q; 

% cumulative plateau size 

cps = [0;cumsum(o.psz)]; 
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% initialize optimal plateau score 

opt_zs = 0; 

for i = 1:length(o.psz) 

    ret(i).plat = x(cps(i) + 1:cps(i+1)); 

    % check for optimal reference plateau 

    if (ret(i).zc >= 2) && (ret(i).zs >= opt_zs) 

        % update 

        ret(1).opt = i; 

        opt_zs = ret(i).zs; 

    end 

end 

% if no synced plateaus found 

if opt_zs == 0; ret(1).opt = 0; end 

  

% define Qr 

Qr = round(Q - Q(ret(1).opt)); 

ret(1).Qr = Qr; 

  

% calculate offset 

if size(x,1) == 1; 

    x = x'; % make sure x is a column vector 

end 

plat_vect = []; 

plat1s = find(ret(ret(1).opt).z); 

for i = 1:length(plat1s) 

    plat_vect = [plat_vect;ret(plat1s(i)).plat - Qr(plat1s(i))*ss]; 

end 

ret(1).plat_vect = plat_vect; 

ret(1).plat1s = plat1s;  

ret(1).mpv = mean(plat_vect); 

% calc offset (what to shift so that a plateau exactly on mpv would be an 

% integer multiple of the ss) 

ret(1).off = round(ret(1).mpv/ss)*ss - ret(1).mpv; 

  

% organize plateaus within acceptable range for plotting 

ARP = []; 

for ii = 1:length(ret(ret(1).opt).z) 

    if ret(ret(1).opt).z(ii) == 1 

        pp = mean(ret(ii).plat).*ones(size(ret(ii).plat)); 

    else 

        pp = Inf*ret(ii).plat; 

    end 

    ARP = [ARP;pp]; 

end 

ret(1).arp = ARP; 

  

end 

  

%% HMMbuildTransition 

% builds HMM transition matrix for kinesin stepping 

% A = HMMbuildTransition(g,K) 

  

function A = HMMbuildTransition(lambda,N) 

  

eta = 0.999; 

A = (1 - lambda)*eye(N); 

A(1,2) = lambda; 

for i = 2:N-1 

    A(i,i+1) = eta*lambda; 

    A(i,i-1) = (1-eta)*lambda; 

end 

A(N,N-1) = lambda; 

if sum(sum(A,2)) ~= N 
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    disp 'TRANSITION MATRIX ERROR' 

end 

  

end 

  

%% HMMbuildEmission 

% builds HMM emission matrix for kinesin stepping 

  

function B = HMMbuildEmission(delta,offset,Nstd,N,Fss) 

B = Nstd*ones(N,2); 

B(1,1) = 0; 

  

for i = 2:N 

    if rem(i,2) == 0 

        B(i,1) = B(i-1,1) + delta; 

    else 

        B(i,1) = (i-1)/2*Fss; 

    end 

end 

  

B(:,1) = B(:,1) + offset; 

  

end 

  

%% vitec (viterbi-continuous algorithm) 

% [x,r] = vitec(y,A,B,U) 

%  

% INPUTS: 

% ------------------------------------- 

% y: observation series (1xT or Tx1 vector) 

% A: transition matrix (NxN array)  

%    where A(i,j) is the probability of transitioning from state i to  

%    state j. P(x(t) = j | x(t-1) = i) 

% B: emission matrix (Nx2 array)  

%    where y(i) ~ N( B(x(i),1), B(x(i),2) ), that is ~ normal distribution  

%    with mean = B(x(i),1), and std = B(x(i),2)  

% U: initial probability vector (Nx1 or 1xN vector)  

%    where U(i) = P(x(1) = i)  

% 

% OUTPUTS: 

% ------------------------------------- 

% x: most probable state sequence (1xT vector) 

% r: rating, (sum of squared residuals)/T 

  

function [x,r] = vitec(y,A,B,U) 

  

T = length(y); 

N = length(A); 

  

T1 = zeros(N,T); 

T2 = T1; 

  

% calculate P(x_i|y_1) 

for i = 1:N 

    T1(i,1) = U(i)*pdens(B(i,:),y(1)); 

    T2(i,1) = 0; 

end 

  

% construct T1 and T2 

for i = 2:T 

    for j = 1:N 

        % [max,argmax] = max(); 

        [T1(j,i),T2(j,i)] = max( T1(:,i-1).*A(:,j)*pdens(B(j,:),y(i)) ); 
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        % T1(j,i) is the relative probability that x(i) = j, given y(1:i) 

        % T2(j,i) is the most likely x(i-1) given that x(i) = j 

    end 

    T1(:,i) = T1(:,i)/sum(T1(:,i)); 

end 

  

% find most likely final state 

[dum,z(T)] = max(T1(:,T)); 

x(T) = z(T); 

  

% trace back through most likely path 

for i = T:-1:2 

    z(i-1) = T2(z(i),i); 

    x(i-1) = z(i-1); 

end 

  

% calculate rating 

if size(y,1) ~= 1; 

    y = y'; 

end 

bx = B(x,1); 

r = sum((bx' - y).^2)/T; 

  

end 

  

%% pdens [called by: vitec] 

  

function ret = pdens(b,y) 

ret = 1/(b(2)*(2*pi)^.5).*exp( -((y-b(1)).^2) / (2*b(2)^2) ); 

end 
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Appendix C: 

Differences of Variance; Pairwise Differences vs. χ2  

In the Tdetector algorithms, the variance of corrupting noise of the input signal or 

sections of the input signal are calculated using the pairwise difference method described 

in Section 3.8.5. Therefore, when the difference of variances (DOV) between two 

sections are being tested for significance, it is necessary to test according to the 

Var(DOV) given in Equation 3.3 (as derived in Section 3.8.7) rather than simply the 

Var(DOV) from comparing two χ2 distributions given in Equation A.1: 

Var(DOVχ) = σDOV χ2
2 = σ4 (

2

i
+

2

L−i
)  (A.1) 

The differences in the two ways of calculating Var(DOV) are evident in Figure A.1 as 

produced by MATLAB code in Table A.1. 

 

Figure A.1: Var(DOV) calculations on generated random vectors with respect to different indices of 

splitting. Analytical Var(DOV) from Equation 3.3 (red line), analytical Var(DOV) from Equation A.1 

(black line), Var(DOV) from pairwise difference calculation (blue dotted line), Var(DOV) from 

conventional calculation (green dotted line). 
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Table A.1: MATLAB code used to generate and calculate Var(DOV) for different indices of splitting. 

 

% define length of X vector and index of splitting, i 

L = 80; 

i = 1:L-1; 

sig2 = 3; 

  

% analytical calculations of expected var(DOV) 

VDOV_pds = sig2^2*((i.^2+i-3)./(i-1).^2 + ( (L-i).^2+(L-i)-3 )./((L-i)-1).^2 - 2); 

VDOV_Chi = sig2^2*(2./(i) + 2./(L-i)); 

  

% generate random X vectors, split at i, then calculate variance of DOVs 

h = waitbar(0,'Please wait...'); 

for i = 1:L-1 

    % iteratations for each index of splitting 

    ites = 10000; 

    X = sig2^.5*randn(L,ites); 

    % split X 

    Xa = X(1:i,:); 

    Xb = X(i+1:end,:); 

     

    % calc DOV by conventional method and pairwise difference method 

    dov_chi = var(Xa) - var(Xb); 

    dov_pds = (mean(diff(Xa).^2)/2) - (mean(diff(Xb).^2)/2); 

     

    % store the variance of DOVs 

    vdov_chi(i) = var(dov_chi); 

    vdov_pds(i) = var(dov_pds); 

    waitbar(i / L) 

end 

close(h) 

  

% plotting 

figure 

plot(VDOV_pds,'.-r') 

hold on 

plot(VDOV_Chi,'.-k') 

plot(vdov_chi,'--g') 

plot(vdov_pds,'--b') 

xlabel('index of splitting, i') 

ylabel('var(DOV)') 
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