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ABSTRACT

Singlemoleculemicrosopyis a versatile tool thatanbe used tanvestigatethe stepping
mechanism of motor protesrsuch as kinesimndto determine the copy numbef
subunis within membrane bound proteisisch aghe cellulose synthesis compleétep
detection algorithmprovide a means for uncoverikgy information within single

molecule microscopy data collected from these systems.

Kinesin proteins are intracellular molecular motors that utilize erfeogyadenosine
triphosphate (ATPin order to transmit force andansport cellulacargo along
microtubule tracksDespite thecurrentwealth of knowledgeegarding these proteins
many unresolvedhechanismef the kinesin stepping cycle remaf#tep detection
algorithms thatecoverunderlying pecewiseconstant signalwithin noisecorrupted,
singlemolecule ime series position dafgovide a strategy for resolving these
mechanismsThe work presented in this thesis shows tlyatréatinga positional time
seriesasan observation sequenfrem a hidden Markov modelve can applyhe model
dependent, continuous Viterbi algorithmorder to determine the mdgtely hidden

state sequence tie trackednotor protein.This approacimas the critical capability of
keeping fiphaseo of pl a,twhich allews i niote accurate g i v e n
determination of kinetic rates and motor domain displacements associated with state

transitions during stepping.

In growing plant cellsgellulose synthesis compleg(CS() exist in the plasma
membrane as silobed rosettes #t contain different cellulose synthase (CESA)
isoforms, but the number and stoichiometry of CESAs in each CSC are unknown. To
begin to address this question, we performed photobleaching efaggBd AtCESA3
containing particles in living\rabidopsis thahna cellsfollowed by step detection
analysisto estimatecopy numberThe step detection algorithriméroduced in this work
account for changes in signal variance dueninging numbers of fluorophorasorder

to avoid overfitting These procedures che applied to photobleaching data for any
complex with large numbexs fluorescently tagged subunits, providing a new analytical

tool with which to probe complex composition and stoichiometry.
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Chapter 1

Introduction

This thesidocusesontwo separatéopics within distincbiological systemsthe

mechanism othekinesin motor proteistepping cgle, andthe molecular makeugpf the
cellulose synthgis complex. Bothopicsare similar in that critical information can be
revealedusing step detection analysissafigle molecule microscopy data from these
systemsThis thesigntroduces novehigh-precision step detection algorithms designed

for thesespecificsinglemolecule data setss well as genertime series signals. Chapter

2 investigats the capdilities of these algorithms) uncoveimng information within
simulatedsignalsof kinesin motor protein stepping. Chapter 3 investigates the

capabiities of these algorithms applied to experimental and simulated cellulose synthesis

complex photobleaching data.

Thekinesin work presented hereuspublished. Alpositionalkinesin data presented in
this thesis are from simulations based current unérstanding of the kinesin stepping
cycle,as well aigh temporal and high spatial resolut&ingle molecule kinesirl
tracking dataecently acquired bieith J. MickolajczykfunpublishedJusing

interferometric scattering microscopy (iISCAT)

The cellubse synthesis work presenteglrewas recently publishejd]. N.C.D.
developedhe ttestbased step detection algoritharsd the photobleach rate estimation
and correctiomprocessY .C. developedhe Bayesian Information Criteon (BIC)-based
algorithms Gaussian Mixture Model fitting procesand created the figureg.C. and
C.T.A. performed raw data collectioAll authors contributed to the design of

experimentsoverall data analysis approaemd writing of the paper



1.1 Kinesin Motor Proteins

The intracellular molecular motor, kinesin, uses the energy from adenosine triphosphate
(ATP) hydrolysis in order to perform directeé@nsport by takingliscretefistep® along
cytoplasmic filaments called microtubules. The nuwshprehensivelgtudied kinesin is
kinesinl, commonlyreferred to asonventional kinesin. It is a dimer of two identical
polypeptide chains called kinesin heavy chains (KHCs) tindtto two separate
polypeptidescalled kinesin light chains (KLCslrromN-terminus to @&erminus, a single
KHC consists of: the globulacatalyticmotor domairor fihead which binds to the
microtubule analsobinds and hydrolyzes ATP; the relatively shiarécklinkerd which
tethers the motor domain to the stalk of a dizesttikinesin; and the stalk which is a
relatively long alpha helical @in that facilitates dimerizatioby forming a cded-coil
with another KHC stalik2, 3, 4, 5, 6, 7, 8{see Figure 1.1, frorf8]). KLC tails bind to
the Gterminus of the KHC stalks while also binding to intracellular cakg&Cs also

play a regulatory rolby suppressg futile ATP hydrolysig10].

wu s¢

coiled coil 2

75-80 nm
A

hinge 1

wu sz

coiled coil 1

neck linkers

neck t:
coiled coil ¥ 3

Figurel.1l: Schematic fronf9] of conventional kinesin (kinesih) cargo transporlong a microtubule
with approximatescaling.

Processive kinesisteppingis accomplished by lagl domains alternating between being
in a tight microtubule binding state andvaakmicrotubule binding state so that one head
can step to the next binding site while one head maintains its connection to the

2



microtubule. This process is analogous to cimglup a ladder using onty n ehanslsi
each hand alternates betwestiergripping tightly to a rung of the ladder letting go to
find the next rung. The ATP hydrolysis cycle and the mechanical strain néthkdinker
domains provid the queues armbmmunicationn this coordimated hanebverhand

process

1.1.1Physiological Relevance

There are mangtifferent types of kinesingnd they perform a vast array of critical

cellular taskg11, 12] For example, kirgn-1 facilitates anterograde axonal transport by
bindingand carryingntracellular cargoes (such as mitochongdiygaosomes, and

endoplasmic reticulujriong distances towards synapséneurors [13, 8], kinesin2

paticipates in the bidirectional intraflagellar transport prog&ds 15] and kinesirb

plays akeyrole in mitotic spindle formation during the process of cell dwvi$16].

More than onéhundred differenkinesins have been identifisthce the first kinesin

(kinesin1) was discovered by Vale et al in 1983, 17] How the many different types

of kinesinsd struct ur es eraevautioAafiytunedyfa tharl y si s

diverse cellular tasks is not well understood.

Kinesin dysfunction has been linkedgeveraheurological disorders including

amyotrophic lateral sclerosis (AL)ereditary spastic paraplegia, and Chaiatie-

Tooth digasd18]. Due to knesinfacilitating mitotic spindle formation, ialso has

highly relevant rte in proliferation ofcancer cel, and ati-cancer drugs that work by

inhibiting function ofmitotic spindle motor (kinesib) are being activelpursued19,

20,21,22,16] A better under st anwvilihavw braaflimpactsn e si n 0 ¢

on understanding these physiological problems.

1.1.2Kinesin Stepping Cycle

Conventional kinesin advancesidinectionally towards the pluend of a microtubule in
discrete steps. Tubulin dimers, the subunit of the microtubule polystienated to have

a spacing of 8.2 nif23], serve as the hding stes for kinesin headsConventional

kinesin has been shown to walk ifitandoverhand fashion[24, 25]which means

each step consists of the trailing head detaching from its microtubule binding site (one

tubulin dimer), moving past thieadingboundhead, and then binding to the site adjacent

3



to, and in front ofthe leading head. Thus, the trailing head moves the length of two
tubulin dimers (16.4 nm) while the leading head remains bound to its site. A single step,
which results in an 8.2 nm mean displacement of the entire kinesin motor, requires the
energy of one hydrolyzed ATP molecy&6, 27] On average, the motor takes more than
100 stepslong the microtubule at a rate gipgoximately 100 steps per secdrefore
dissociating27, 28]

In order to step consistently before dissociating, both heads must be highly coordinated
with one another. Without coordination, both states will redylaein a weak
microtubule binding state at the same time which will result in rapid dissociation of the

entire motor from the microtubule.

Whether a head is in a high or low microtubule affinity stapgeslominantlydetermined

by its nucleotide stateyhich is defined by the form of the nucleotide, if any, that is
bound to thenotordomain at a given point in time. Interhead tension giving rise to
gating mechanisms is also believed to control microtubule affinity of the head domains
[29, 30] Interhead tension is transmitted by tleeklinker domains that join the heads to
the stalk. Recent studies have shown tiegilinker length dictates thenloaded
processivity oimanydifferent kinesing longer, complianhecklinkers transmit strain
poorly, which diminisheghe coordination of their head domains, resulting in shorter run
lengths, while shortarecklinkers transmit strain efficientlywhich improveghe

coordination of their head domains, resulting in longa lengthg31].

A conservativanodel of kinesinl handoverhand stepping that is consistent with
experimental kineticand singlemolecule dat§32, 30, 28]provides dramewok for
understandinghe role of theATP hydrolysiscycle and interhead tensiamproviding

coordination between hea@Sigure 1.2).
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In this model, when a motor first binds to a microtubthe, tiinding head promptly

releases its ADPs{ate O t@ of Figure 1.2, thus changing to the extremely high

microtubule affinity staté the nenucleotice state. Next, ATP binds to tHa¢ad étate 2

to 3),inducingacaf or mat i onal

trailing, tetherechead towards the adjacent pkisd microtubule binding sitest@ate3).
The bound head then hydrolyzes its ATP, thus entering the ABftP (state 3 to 4).

Thetetherechead thahadtranslated towards th@us end vianecklinker docking

t he
and

c Hirekaer doekingd tbat hiased thei n e ¢ k

undergoes its diffusional seardiinds to the microtubule, promptly releases its ADP, and

becomes theewleading headstate 4 to 1). Dring state ]1the reathead gating

mechanisnsuggestshat interhead tension accel@s phosphate release and subsequent

trailing head detachment (state 1 tol2pon entering state, the cycleis back where it

beganwhile the mean positiorof theentire kinesirmotorhas advanced 8.2 nm in the

plus end direction.

Despite general agreemt withmostaspect®f this conventional kinesin model among

researchers in the field, there remain many unresolved questions regarding certain of its
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mechanismandkinetic rates ofstatetransitions Furthermore, the stepping cycle varies
between diffeent types of kinesin. Robust models for other kinesmilies are not well

established

1.1.3Unresolved Mechanisms

ATP binding is not ratdéimiting at normal physiolog&l ATP concentrations (> 1 mM)
This is evident from average velocity measuremehkin@sin motility plateauing in the
presence of ATP concentrations in the millimolar range or above (referred to as

A suartat i n {R7].Addwe\er), me controversial and unresolved question is whether
different types of kings sit in a oneor two-head bound state #sey waitfor ATP to

bind to ther front head34, 35, 36, 37{state2 or 2060 Figure 1.3
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Figurel.3: Progression of kinesistepping cycle with respectiw-microtubuleaxis and offaxis
distances of the retrailing motor domain (lefimost in state 1)Progression of states is fronfti¢o right.

Note that states 1, 2, 3, adicre identical to the ceervative model of Figure 1.0 r epr esent s t h
unknown onaxis displacement that results from trailing head detachment (state b 2)r e pr esent s t
unknown offaxis displacement associated with a head being unbound from the microtubu&. MD

and S denot e tfthemobile and siablé sequences of the initial trailing (red) motor

domain. For hmodimeric motors like kinesith the M and S sequences will be identical processes.

Singlemolecule kinesifll experimentperformed by Yildiz et alf25], in which a single

head domain was fluorescently labeled and its position tracked with nanometric
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precision provided support for a twhead bound waiting staieor at least a state in

which thetrailing head did not movaoticeablyfrom its previous microtubule binding

site upon dissociatiofu displacement in Figure 1.3 approximately O niiey were able

to fit discretesteps made by their labeled head domain, and they only observed step sizes
deviating around one modesAommented upon inéir analysisa bimodal distribution

of step sizegmodes ofi nm and 16.4 G nm)would be expected if kinesin sat in a
displacedbnehead bound state while waiting for ATP binding (see Figure 1.2).

One would not expedt (displacement from state 1 tm2Figure 1.3) to be zero given

that there is expected to be tension within the fieider in state 1. Upon trailing head
dissociation the tension should relieve by displacing the trailing head towards the
microtubule plusend now that it is free to do deurthermore, on this scalsince the
necklinker is not expected to be in a rigid conformation in statee2modynamic
fluctuations alone sjuld displace the mean position of the free head towards the origin
of its tethering § of ~ 8 nm).T h e -staté i6 not expected to be part of the regular
pathway of processive motors, as it is likely to lead to dissociation via ATP binding and
hydrolysis in the leading head causing both domains to be in weak microtubule binding
stated33]. T hstate &s@ regulawo-headboundATP-waiting-state isnot expected
given that the ADP state @&well-established weakinding state of conventional kinesin
[38], however it is possiblénat this particular stage of the cycle is an exception to that
rule. To clarify, the displayed state 1 to 2 transition implies that inorgamspitate

release leads to immedialee t achment of the trailing head,
transition suggestthat rapid dissociatioof the trailing head does not ocauntil front-
headATP bindingtakes placé st at e It shduld alsm be3nhpted that despite states 3
and 4in this modebeing in a docked nedinker conformationwhich has been
evolutionaily -tuned toallow the free head to find its next microtubule binding site, the
possibility of their oraxis distance being considerably different than the a4
microtubule lattice spacing should not be strictly ruled Butthermore, it is not

perfecty clear that necinker docking occurs immediately with ATP binding, it may

instead require ATP hydrolysis first (not shown in Figure 1.3 Sss#ion2.2.2).



Another unresolved issusvolves the determinants ahloaded and loaded processivity
across dferent N-terminal kinesinsUnloaded processivity has been shawistrongly
depend on necknker length[31] while loaded processivity depends exclusively on the
properties of the catalytic motor doma|38]. However precise mechanisms to explain
these observations have not bestablishedNecklinker length may dictate processivity
by wayof accelerating trailing head detachment from state 1 to 2 (i.e. increasig k
and/or byincreasig the rate of tethered head bindingiaknin Figure 1.2, which
transitions the motor out of a potential unbindopportunity instate 4to a stable state

1. Loaded processivitieare mostlikely dictated bykinetic rates of the cycle that
determinghe portion of time a motor spends in vulnerable-bead bound states.

The precise coupling of the ATP hydrolysis cycle and stepping cycle is still net well
establishedSingle-molecule motility assagi imagedwith high-resolution microscopy
techniques thareveal onrand offaxis displacements of labeled kinesin motors
undergoing processive steppingrovide a means for uncovering the characteristics of a

kinesinds stepping cycle and its mechanism

1.1.4Single-Molecule Motility Assays

Single-moleculekinesinmotility assaysmulate the fundamental processive stepping
behavior of the motor along a microtub(dee Figure 1.4)n these assays, stable
microtubules are fixed to the surfaceaoficroscope coversliwhile addedmotorsstep
alongindividual microtubule trackén an adequate ATBoncentrated and buffered
solution Total internal reflection fluorescen€EIRF) microscopy is often used to image
these assays since this microscopy technique allows for exclusive collection of emitted
fluorescence neahe coverslip surfageherefore reducing unwanted background noise
from the bulk of the sampld0]. In order to imag&inesinwith TIRF or any other
fluorecence microscopy techniquég proteirmust be labeled with a fluophore. The
fluorophore can be located on thet@&minus (motor domain) or the-t€rminus (stalk or
tail domain).Emitted light from the fluorophore is collected the objective lens and
thenrecorded byhe detector (camera). In general, the resulteig dfom these assays is

in the form of a stack of 2D arrays of pixel intensities representing the viewpoint normal



to the coverslip surface at each point in time (i.e. a 3D avheyethird dimension is

time).

Figurel.4: Schematidtop) anda selectedegionof typical 2D image dat#bottom)of a kinesin single
molecule motility assayiewpoint is normal to the cover slip surfadéotors and microtubules in
schematic diagram are not to sc@eld spotn tethered headspresent labelingf motor domains (N
terminal labeling)

Established image processing techniques allov2fparrays of data to be transformed
into time series traces of-Xand Y-position for each individual fluorophone the field of
view [41]. If the motors have been engineered to have-aéeridinus label, thea
properlyrotated set of these-Xand Y-positionvs. timetraces represent the -cand off

axis displacements shown in Figure 1.3.

As with any masurement, the resulting time series signals of position will be corrupted
by some degree of noise. This noise magle tocontributions from background signal,

vibrations of the microscope stage, read noise of the detectother sources-or



statiorary andphotostablgrobes X- and Y-positional noise after image processing is
well-characterized by a normal distribution of zero meansamdeconstant variangei?.

As a result of noise, the eand offaxis distances associated with each state of the

stepping cycle will be partially hidden (ssenulated signals ifigure 1.5).
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Figurel.5: Simulaton of positional time series signajsf red motor domainfrom singlemolecule kinesin
motility assag. Note that consecutive stateg, 3w, 1s, 2, 3s, 4s, and I share the same axis position
in this case (where subgaridenotes either being part of the mobile or stable sequence).

Thus, positional time series signals from singlelecule kinesin motility assays are

analogous to observation values of a hidden Markov model (HMM). An HMM describes
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a stochastic process irhwh an object transitions discretely among a set of siedeh,

with its own probability distribution that
values when the object is in that stpt2]. Only the sequence of the emitted values

(which depend dg onthe currentstateat that point in the sequerncare observable, the
sequence of states itself isoO0Onot, hence th

Significant advancements in singigleculeimagingtechnologiesincluding
interferometric scattering microscopy (iISCA#B] and total internal reflection dark

field microscopy (TIRDFM)44], are now making ifeasibleto detect these hidden state
transitions at physlogical ATP concentrationg&ather than relatively weak fluorescence
signals, hese methods rely grhotonscattering which allows for drastically improved

temporal and spatial resolution of-aand oftaxis position during stepping.

If the hidden stateequence can be recovered from these trace#l, reveala rich

source of information regarding the coupling of the stepping and hydrolysis cycles. Even
with advanced microscopy technigues, noise is relatively substantial compared to kinesin
step disphcements. Thereforeis critical to have notbiased, highlyprecise algorithms

for uncovering the underlying piecewisenstant signal within noiseorrupted time

series data sets.
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1.2 Cellulose Synthesis Complex

Cellulose is a major structural conmqemnt in the plant cell wall that regulates plant cell
growth and morphology and also has extensive commercial value for applications such as
papermaking, textile manufacturing, and biofuel produddd). However, the molecula
processes involved in the bioghesis of cellulose, which is composed of large numbers

o f  b-linked glugan chains that associate via hydrogen bonds to form cellulose
microfibrils, remain incompletely understood despite intensive research over the past 15
years[46]. It is generally believed that cellulose is synthesized at the plasma membrane
and extruded into the extracellular space by a cellulose synthesis complex (CSC). Each
CSC contains many GFHamily glucosyltransferases called cellulose synthéSESAS)

and is assembled into a large integral membrane complex with a merspeameng

rosette configuration of approximately 25 nm in diam@t@f. The complex is formed in

the Golgi and transported to the plasma membnahere it becomes active to synthesize
the glucan chains that constitute the cellulose microfih8i]. Genetic and biochemical

data indicate that a minimum of three different CESA isoforms are present in each CSC,;
in the modeplant Arabidopsis thalianaAtCESA1, AtCESA3, and AtCESAg/pe

proteins are present in CSCs that synthesize cellulose in the primary walls of growing
cells, whereas AtCESA4, AtCESA7, and AtCESAS proteins are present in CSCs during
secondary wall synthesiis cells that have ceased grovi@8, 49, 50] Estimations based

on structural stdies of cellulose microfibril§51, 52]and molecular modeling of CESAs

[53] predict that each CSC is composed of anywhere between 12 and 36 qi@dunits

46]; however, the precise stoichiometry of CESA isoforms within each CSC remains
undefined. Empirically determining protecopy numbers for intact membrabeund

CSCs through nondestructive means is challenging, especially since reconstituting active,
purified plant CSCs has proven to be extremely diffifaft, 56, 57]

One alernative method of estimating protein copy numbers in integral membrane
complexes is to count bleaching steps for subunits tagged with intrinsically fluorescent
proteins, such as green fluorescent protein (GFP), under total internal reflection
fluoresceni{TIRF) microscopy58]. However, the number of proteins that can be

estimated using current methods is limited: higher copy numbers lead to increases in both

fluctuations in the fluorescence signal and the initial rate ofgiitediching, complicating

12



the identification of discrete photobleaching steps. This issue can be addressed by using a
median filter to reduce noise in the data, and constructing pairwise distance distributions
to determine the unitary step size of phototieag [23, 59] However, implementing

this approach to estimate subunit number typically requires empirical selection of the
optimal median filter, and still does not readily resolve the precise timing and magnitude

of individual bleaching steps.

Step detection algorithms, which are frequently used to analyze the spatial steps
undertaken by motor proteins, are capable of automatically detecting change points in
data trace$50]. Numerous minods have been developed to detect steps, but most of
them depend heavily uponpsee | ect ed par a mémethodsleveloNemibya b | vy ,
Kerssemakers et al. requires an input of the number of steps to be dggftetiich is

difficult to calculate if prior information about the data is unavailable. Methods based on
information criteria are objective and do not require wkdined input parametef82].
However, they have only been implemenitedtep detection algorithms by assuming

that the variance associated with each step is corfs@ntvhich is adequate for single

motor protein stepping but not for photobleaching. Because intensity fluctuations of
individud fluorophores around their means are uncorrelated, the presence of multiple
active fluorophores in a complex will result in a higher variance in the fluorescence
intensity signal than the variance associated with a single fluorophore. Hence, algorithms
designed to detect steps in photobleaching data need to consider these variance changes
to avoid overfitting during periods of high fluorescence intensity. Another complexity in
photobleaching data is that with increasing copy number, there is an increasing
probability that two or more fluorophores will bleach within a short timeframe (e.qg.,

within a single acquisition period), which can also skew the step size distribution and
complicate the estimation of a unitary photobleaching step size. Thus, theegisis@a

need for the development of objective analytical tools to extract unitary step sizes from
stepsize distribution densities that improve upon current methods of data binning and

fitting a userdefined number of Gaussian functions.

In thiswork we ceveloped a novel procedure that combines step detection and density

estimation to determine unitary step size and copy number from experimental

13



photobleaching data. A mathematical model was constructed to generate simulated
bleaching data, and the simuldtegata were used to optimize the performance of the step
detection and density estimation algorithms and demonstrate their ability to accurately
retrieve copy numbers from simulated data with varying degrees of experimental noise. A
key goal in developinghese tools was to make them as objective as possible by
minimizing the number of usetefined parameters, and it is hoped that these procedures
will establish best practices for analyzing photobleaching data derived from complexes
with high copy numberaNe applied these analytical tools to photobleaching data
collected for GFRagged AtCESAS in intact cells éirabidopsis thalianaeedlings and
estimated the lower limit of copy number per particle to be ten.

14



1.3 Step Detection Algorithms

Step detectios a common problemncounteredh signal processing which the goal

is to identify discrete changes in the mean of a signal. This problem is trivial if the signal
containglittle or no noise, but statistical approaches must be applied when the signal is
hidden inrelatively highnoise(see Figure4.6, 1.7). Step detection can be considered a
subset of the more general class of problems referred to as change detection, or change
point detectionin whichtheaimis to identify discrete changes in manyfelient features

of a signal including: variance, spectral density, correlation, etc. These signal processing
problems are encountered in many engineering disciplines as well as in biophysics,
biology, and bioinformatic$63, 60, 64, 65]

In general, a step detection algorithm is a function that accetisecorrupted time
seriessignal as input, and then returns a list of points at which there is a discrete change
in the mean value dbke output. $ecific step detection algorithms differ in the
assumptions made about the features of the input signal. Issues that are considered
include, but are not limited to: the nature of the corrupting noise (e.g. normally
distributed, exponentially distributedcd; whether or not the variance of the corrupting
noise changes across the signal; whether or not the signal is autocorrelated; whether or

not an accuratenodel for the generation of the signal is available.

value

o 10 20 30 40 50 60 70 80
index

Figurel.6: Piecewiseconstant signal without noise
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Figurel.7: Piecewiseconstant signal hidden in white noige<0.25)

The step detection algorithms described in this thesis are designed topaecepise
constant signalsidden in Gaussian white noiéeero or negligible autocorrelatipsee
Figurel.7). The goal of the algorithms is to identify the indices (i.e. time points) at which
there is asignificant anddiscrete change in the mean valdi¢he underlying piecewise
constant signakith respect to noiselhe mean value of the sections between these
indices can then be calculated to recover the best estimate of the underlying piecewise
constant signalStep detection algorithms that dependaaninput hidden Markov model

are presented in Chapt2(Section2.1) and are applied to kinesin motor protein stepping
data. Modeindependent algorithms are presented in Ch&p{8ections3.8.37 3.8.8)

and are applied to cellulose synthesis complet@bleaching data.

16



Chapter 2

Results Kinesin Motor Proteins

The kinesin work presented here is unpublished. All positional kinesin data presented in
this thesis are from simulations based on: current understanding of the kinesin stepping
cycle, as well as hiytemporal and high spatial resolution singielecule kinesirl

tracking dataecently acquired by Keith J. Mickolajczynpublishedjusing

interferometric scattering microscopy (ISCA#®S].

2.1Model-Dependent Step Detectin

2.11 Generative Hidden Markov Model for Kinesin SingleMolecule Assays

One approach to the step detection problem is to make prior estimations of the model that
generates the observed sequence, namely in the form of a hidden Markov model (HMM).
The Viterbi algorithm[66] can be used to determine the most probable hidden state
sequence, called the Viterbi path, given an observation sequence and a set of model
parameters. Iterating this algorithm through different potenfidMHarameters

followed by error calculations of the returned sequences provides an alternate strategy for
uncovering model parameters that is more direct than riodependent step detection

approaches.

Simple HMMs are defined by the following parametéistotal number of hidden states
in the model.T: total number of observations. sequence (-by-1) of hidden states in
which element xis the true hidden state at t (any integer 1 toyN$equence (-by-1) of
observation values in which elemenis/the observed value at: transition matrix (N
by-N) in which elementadenotes the probability of the hidden state transitioning from
statei to statg given that it is currently in staiea; = P(%+1 =] | X = i). B: emission

matrix (N-by-Ai 1 @ yvhich elemenbn is a set of parameters that describe 2@/| x =

n), i.e. the probability that yakes on any value, z, in the observation variable space
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given that the current hidden states>n. U: a prior probability matrix (Noy-1) in which
element U denotes the probability that the initial hidden statgeisxstate n.

As described previously (Section 1.1), observations of simgiiecule motor protein
motility assays can be described by an HMM. Let us return to the model of the kinesin
stepping cycle and define it in the context of an HMM (see following Tallaral

Figure 21 for summary). For now we will consider only the-mrcrotubuleaxis position
data (see Figure 1.5) as the observation sequence (HMM pargnéeagiven value in

the sequence of observed-axis position of a kinesin motor, hould depend only on

the current hidden state of the motar,Dhus the set of hidden states is defined by the
states of the kinesin stepping cycle model (N = 4; states 1, 2, 3, andgdiies-1.2, 1.3,
1.5). Kinesin transitions between different states according to different kinetic rate
constants. Therefore the relative magnitudes of these individual rates and the detector
(camera) sampling rate will define the elements of the trangiiatrix, A. The expected
values of observed eaxis displacement for an-términal labeled motor given the state
are determined by the microtubule lattice spacing (16.4 nm) and the displacement
associated with trailingpead detachmeni (n Figure 1.3), though there will be some
degree of randomness due to noise in the measurement. As stated in Chapter 1, the noise
of a given positon signal of a photostable probe in singiéecule microscopy is well
characterized by the normal distrilmrt with zero mean and some constant variadite,
The emission matriX3, will contain these necessary parametess{bmeany, and h, =
variance (%) for the univariate normal distribution associated with hidden state n. Note
that for motors taking nitiple stepshn: valueswill require some form of updating. The
probabilities,U, for the initial hidden state would depend on whether the observation
sequence began with the initial binding of the motor to a microtubule, or with the
arbitrary start of dector recording. In the former case, this would suggest that the initial
hidden state is guaranteed to be state>2; U (see model in Figure 1.2). In the latter
case, initial state probability should be a function only of average time spent in each stat

Finally, the value for T is the length of the position observation time series.
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Table2.1: Summary of singlenolecule motility assay hidden Markov model (HMM) parameters assuming
the conservative kinesstepping model. Table describes the univariate observation sequence case;
observed values representmicrotubuleaxis distance of an{ierminatiabeled motor domain during
processive stepping.

Symbol| HMM parameter | Analogous kinesin singlenolecule assagarameter

N Number of hidden | Number of discrete states in the kinesin stepping c
states (N=4)

T Total observations | Total number of frames recorded by detector

A Transition matrix | Probabilities of transitioning among states as defin

by relativekinetic rates of the kinesin and detector
sampling rate

B Emission matrix Parameters of normal distributions, \§¥),
describing probability of observing a given-axis
distance value for each hidden state (note: requires
updating)

U Initial probabilities | Probabilities of starting in a given state of the stepy
cycle

o —bgq+328
/' o b3q+16.4 =byq +16.4
= b11 +32.8

- — boq +16.4

16.4 > b3q=byy=bqq+16.4

on-axis distance (nm)

bz
by

0 50 100 150 200
time index

Figure2.1: Schematic of generative hidden Markov model and simulated series for obseisdd on
distance. Numbered nodes represent the set of hidden states (humbered according to model in Figure 1.2),
connecting arrows represent elements of thesition matrixA. Normal distribution parameter elements
of the emission matrixB, including their appropriate corrections (multiples of the microtubule lattice
spacing, 16.4 nm) are shown to the right of the graph.

These parameters (summarized able 21 and Figure 2l) form a generative model for
an observed eaxis-position time series. Given an observation time seyiesnd HMM
parameterd\, B, andU, the Viterbi algorithm returns the most likely hidden state
sequence (parameters N and T barinferred from others). A brief description of the
Viterbi algorithm follows, along with a solution to the emission matrix updating

complication.
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2.1.2 Continuous Viterbi Algorithm
The Viterbi algorithn[66] is essentialya ecur si on of Bayesod6 Theor
most | ikely pr ewyforeeack possiblel ddden staet aat (s@red-loyNd
T matrix, T2). Also stored (in Noy-T matrix, T1) are the probabilities that each most
likely previous hidden statefix, transitioned to each following hidden state and then
emitted the observed value at#, fhese storing matrice$,; andT», are constructed
sequentially as described by the following pseudocode (TadleThe first column of
storing matrix,T 1, is determined from yand initial probabilitiesy.
Table2.2: Viterbi algorithm pseudocode for construction of storing matriaesdT 2. Categorical

emission variables assume|:, n] denotes all rows in th&" column of matrixA. See Appendix B for
complete MATLAB implementation of the continuous Viterbi algorithm.

A0 clo8 D

The emission probability termB[n, yi], in Table 22 are for categorical or discrete

emssion variables. These terms reference the probability mass function described by the
n" row of matrixB. For normallydistributed continuous emission variables, Bfie, v

terms can simply be replaced by the density function describing the probability

observing a certain yalue given the hidden state, n:

09 UL ThHA ——A (2.1)

Once the storing matrices have beemiscal cul
determined fronT 1

@e AOCIMA gu
The most likely hidden state path is tlatermined by tracing back through most likely

previous hidden states storedlixn This algorithm is guaranteed to return the global

maximum likelihood hidden state sequence.
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2.1.3 Modified Hidden Markov Model Construction for Viterbi Algorithm

To solvethe issue of needing to shift the mean values in the emission matrix to account
for motors taking multiple steps, we can instead construct modified HMM parameters
with an expanded set of hidden states according to the range of the given observation

seriesy. Again, we will consider only caxis position for now.

In this modified hidden state set, we compress consecutive statés, 3s, 2s, 3s, 4s,

and 1 since they will share mean emission values (recall Figure 1.5). Therefore, state

numbers in this mafied model no longer correspond to those of the kinesin stepping

cycle presented in Chapter 1. The new number of states will be determined by the

microtubule lattice spacing (16.4 nm) and the rounded maximum and minimum values of

y:

i A® i Eb
P& P&

C

Each hidden state number now defines its mean value paramgterfle value fol is
unknown (see Figure 1.3), while the variant®,can be estimated accuratelyngsthe

process described later in Sect®B.b.
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A rough estimation of the transition matrix can be made from the observation sequence as

follows (recall T = lengthy), let d = expected ratio of forward steps to backward steps):

Y7

I E pdA; p s}
| EDA; p )
I E . dA; s}
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The transition matrix in the case where N =5 is shown as an example:

L P ] ] ) LI LS
1P 51 p 1 Sl Tt m .
A T p s} p 1 s} T »n
nm 1 p st p 1 sin
U T T 1 p WU

Finally, a uniform initial probability matrix can be assumed:
5 p7.

Thus, given an observation sequence produced by the generative HMM modeéias on
position, the trudi value, and an approximate v a |1}y &confptete modified HMM

can be constructed. The continuous Viterbi algorithm can then accept these modified
HMM parameters and the observation sequence, and then return the most likely hidden
state path (modified hidden state path). The following @@ shows an example
observation sequence produced by the generative HMM model for kinesin stepping, and
the results of the continuous Viterbi algorithm given the modified HMM parameters. We
can see from Figure 2that the continuous Viterbi algorithmittvy modified HMM

parameters works as a highly precise mat#glendent step detection algorithm.
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Figure2.2: Observation sequence produced by generative hidden Markov model for kinesin stepping (cyan
line) whereli= 4 nm. Updated mean values of the generated true hidden state path (dotted black line).
Mean values of the most likely modified hidden state path as returned by the continuous Viterbi algorithm

(red line).

So far, two key assumptions about a given olzdé@n sequenchave been made that
must be addressed: (1) an nAoffseto of zero
is aligned perfectly with increments of 16.4 nm, and (2) the true valueisassumed.

Let us first address the offset prainle

2.1.4 Observation Sequence Offset Detection

Microtubule binding sites cannot be visualized in singl@ecule microscopy explicitly.

Only the onraxis distance time series obtained from the fluorophore attached to the motor
can be used to estimate thedtion of microtubule binding sites. The origin of anaxis
distance time series is arbitrary; often it is defined by the position at the first time point.
Even if this first time point represents the initial binding of the labeled motor to the
microtubue, the error due to measurement noise makes this an inaccurate estimation of a
microtubule binding site center. Thus, an observation sequence is said to have some

offset, ¥, relative to the true microtubule binding site spacing (16.4 nm lattice spacing)
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that is not expected to be zero. Said another way, plateaus of the underlying piecewise
constant signal will coincide with eaxis distances of, ¥ + 16.4,y + r8n2zand&o

on, rather than precisely 0, 16.4, and 32.8 nm. This will render the Viterlithfgo

unable to produce an accurate or meaningful result. Therefore, it is necessary to first
estimate the value aof so that the observation sequence can be properly adjusted for
input into the Viterbi algorithm. This can be accomplished using the résaritsa

modetindependent step detection algorithm, such as the Tdetectorl described previously.

Note that the output of modeldependent step detection algorithms like the Tdetector,
do not depend on the offset of the input time series data.

The declaredtep indexes (indexes at which there is a significant change in the mean
value) returned from the Tdetectorl algorithm can be used to create a set of ptateaus,
where a single plateap;, contains the set of points from one declared step index to the
next index. Given the set of plateaps,and an assumed repeated spacing (16.4 nm for
microtubule lattice), then the following steps can be taken in order to reliably estimate the

offset,¥:

(1) For a given plateay;, find all plateausp;, in which thedifference of their
mean values is within a certainaceef | e r ange, 3, of an i

That is, withp; fixed, find all indices, jjn which the following inequality is true

%l %l; %l %I,
P @ P&

(2) Repeat this process for all plateaup.ihet g; denote the subset of plateaus

that were withirrange,3 , a b6f4integermultiple ofplateaup;, includingpi.

(3) Let g« denote the subset of plateaus that has the most points within all of its

contained plateaus, and that contains at least one additional plateau thaiis not

(4) For each plateap, in the optimal subselx, shift all values irp; by the 16.4

integermultiple that is nearest the meanppf

o %1,
FELGN 1 p @ > @
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(5) Concatenate all shifted plateaus within the optimal plateau sgbsieto a
single vector of point€Q. Now, an accurate estimate of the offset can be made
from the mean o).

S %E

The following Figure 23 demonstrates the resutiboffset detection and correction on a
simulated observation sequence from the generative HMM kinesin stepping model. We
can see that the offsebrrected underlying piecewim®nstant signal (solid black line)

lies almost perfectly on integer multiple616.4 nm.

on-axis distance (nm)

0 50 100 150 200 250 300 350 400 450 500
time point

Figure2.3: Example result of offset detection and correction. Simulateakhdistance time series from
generative hidden Markov model for kinesin stepping plus an arbitrary affs@totted cyan line), and
offset underlying piecewiseonstant signal (dotted black line). Identical time series (red line) and
underlying piecewiseonstant signal (solid black line) corrected by estimated offéet,

2.1.5 Iterative Continuous Viterbi Algorithm (ICV)

Thus far, the value af used in generating observation sequences has also been assumed
when constructing a modified HMM emission matrix for input to the Viterbi algorithm.

For experimental singlenolecule motility datathe trueli v a unkrewni Is order for

the Viterbi algorithm to function as a reliable step detection algorithm, it is necessary for
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the modified HMM emission matrix to be con
this problem, we can iterate the continuous Vitatgorithm over many different

possible U values. The Viterbi path iterat
with respect to the input observation sequeggcshould be produced by the best
approximation of t h eiterbiresudts that yieldithedeast medrh er e f
squared error fit are interpreted as the matigendent step detection results (see

example results, Figure4).
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Figure2.4: Example of iterative continuous Vit@r(ICV) algorithm step detection results (green line) on
simulated oraxis distance time series (red line) produced by the generative hidden Markov model for
kinesin stepping witlli = 4 nm. Underlying piecewiseonstant signal from simulation shown with black
line. Figure inset: mean squared errors of Viterbi results for each of the tiventy siteésted Green spot
indicates the optimalalug 6 ( 4 . 3 Gwitminimum mearsquared error. The hidden state path
giventhisi® = 4.3 nm is the sequence returned by the

26



2.2 Theoretical Kinesin Motor Model
Let the following hidden Markov mod&lethe generative model for observedaxis
positon of atheoreticakinesin motorbased on the conservative model (Figure 1.2)

imaged af = 1000 frames/secorfdr T = 500 frames

ns5s BI’]

1 ™0 s 106
E INE pu- INE pnrN E 1IN
~ P E SE m P SEl’l
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1 m p sE p E s E i
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m A
I )
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Where Kk & Kdetach K2 @ oK™, Ks & Knydrolysis Ks & Kdetacr(see Figure 1.2andBM denotes

the emission matrix during the mobile sequence of stepping (see Figures 1.3, 1.5).

2.2.1 Detecting the ATRP-Waiting State

Givenobservation sequenggenerated by this model with arbitrary offsef,we can

show that by performing offset gectionfollowed byiterating the continuous Viterbi
algorithm over modified hidden Markov mode&lith varyingt values as described in
Section 21.5 (ICV algorithm), it is possible tauncover certain parameters of the stepping

cycle of this theoretical kiesin motor.
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Figure2.5; On-axis position observation sequen¢gsy lines)produced by the theoretical kinesin
generative model ATP] = 50 uM. Iterative continuous ViterlICV) step detectiomesultshave been
separatethto even and odd plateau groups. The plateau group with the greater mean plateau size within a
given trace is designated as the long plateaus dlong = gan lines; short = blue lined)inderlying
piecewiseconstant signal shown witblack line. Traces have been shiftafter step detectioto avoid
overlay.

In general, with a large enough set of observation sequences at a given ATP
concentration (see Figugeb), the combined ICV step detection results will converge to
functions ofthe generative modelrametersThe combined ICV results for step size and
plateau size from ten independent observation sequences at [SDRM:are shown in

Figure2.6.
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Figure2.6: Step size and plaau size results froiiterative continuous Viterbi (ICV) fitting dien
observation sequences (as in Fig2u® produced by the generative model at [ATP] = 50 uM. Plateau sizes
have been grouped into long and short plateau sizes (i.e. dwell times ofitheessed and ATRaiting
statesrespectively). Step sizes have been grouped according to the identity of the plateau that preceded
them. Mean plateau sizes are 37.8 time points (long) and 8.9 time points &fegrgize modes from
kernel density estiation are 5.4 nm (following long plateaus) and 10.5 nm (following short plateaus).

We can see that the modes of step sizes match well to the two expected stép sizes; 5
nmand 16.4i 4= 11.4 nmAdditionally, we can show thahe means of the longd

short plateau size distributions match well to ékpectations fodwell times. The
expected duration spent in hidden stat@fhe generative modekfore transitioning
outwill be the timeconstant () (units = time points)The value fol} is given by the

inverse of the sum of all transition probabilities that result in leaving state n:

As defined by the generative model for the theoretical kinesin motor:

Recall that in the modified model ukan ICV step detectiorgonsecutivénidden states
of the generative model are compressed, wihd#eATRwaiting state(state2w) is left

independentThereforethe time constantf the compressed state will be relatively long,
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Ubng, due to being the suof several firstorderprocess time constantshile the time
constanbf the ATRwaiting state will be relatively short}no Hidden state sequences
returned by the ICV algorithm are forced to alternate between the compressed state and
the ATRwaiting state. Therefore, even and odd plateau sizes can be meaningfully
grouped(see plateau size distributions, Fig@ré), and the means of thedistributions

should matcho Ubng andUnor. For the results in Figur2.6, we see that they do:
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We can also see that the short plateau size distribypioeeas to be exponentially
distributed while the long plateau size distribution resembles a higher order gamma
distribution(Figure2.6). This is what should be expectg@denthe processes thdefine

the underlymg piecewiseconstant signal.

Further supprt that the short plateaus represent the AVERing statecan be provided

by repeating this process of observation sequence generation and ICV analysis across a
range of ATP concentrations. As [ATP] is increased, the rate of ATP binding, k
increases mportionally,soshort plateau durations should become even shorter. Figure
2.7 shows the results dlfis analysis. We can see thatthe low[ATP] range the inverse

of mean short plateau sizespdk (i.€. k), increases proportionally and falls on the

expected line defined by the generative model paramétef&\TP] reaches about 100

uM, the values for kortflatten outdue to the ICV algorithm failing to fiéexceedingly

short plateaus consistentNevertheless, a clear relationship betweman ofshort

plateau sizeand [ATP] is evident, which indicates that short plateaus contain the ATP

waiting state as a hidden state.
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Figure2.7: Iterated continuous ViterblCV) results across a range of ATRhcentrationsThe left plot
shows the inverse of mean short plateau size as a function of [Ah&RE(K/E[pshod). The middle and
right plots show kernel density estimation modes of step sizes that follow long plateaus and short plateaus,
respectivelyas a function of [ATP]. Blue lines indicate IG&tep detection results. Red lines indicate
results given the true hidden state path. Green lines indicate the expected values given the generative model
parameters.

2.22 ATP2S Experiments to Probe NecK inker Docking

It is possible thaa kinesin motomayhave a different generative model than the one
described at the beginning of tl8ection 2.2For example, a theoretical kinesin motor
may require ATP hydrolysis before nelikker docking occurscompareFigures 2.8,
1.2):
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Figure2.8: Alternate kinesin stepping model in which ATP hydrolysis is required beforelim&ek
docking.

This model would be defined by the followinglightly altered emission ntex where B
is now set tal. Additionally, this will result in stateydof the generative model

transferringfrom the large compressed state to the formerly stdmoe ATRwaiting
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state. That is, the short plateaus will now consist of the-A@Ring sate (21) as well as
the hydrolysiswaiting state ().

Tt

,AE ]
1
P @

The slowhydrolysableATP analog, ATPS, can be used to test if this alternate model

> >

applies for a given theoretical kinesin. In the subsequent asabgswill assume

hydrolysis of ATP S is 5fold slower than ATPkz ate = 5*k3 atr s, and that ATPS and

ATP have equal binding rates; A& = k2 .atr s. As nucleotide concentration (ATP or

ATP S) is increased, thagurationof the ATRwaiting state (i) decreasesince

nucleotide binding will occur more rapidiyherefore, m the alternate model, where short
plateaus consist of bottw2and 3, this increase of nucleogdconcentration will lead to
minimized2y statecontributiors towards plateau sizét high enough nucleotide
concentrations, thev state(hydrolysiswaiting state) will therdominate the plateau size.
Consequently, if a given kinesin motor steps according to the alternate model, then high
ATP S concentrations will yield much longer plateau sizes than high ATP concentrations
(i.e. kshortin ATH' S < kshort ATP). If the given motor instead steps according to the

original model, then no difference in trends of short plateau sizes should betevide
between ATP and ATFS (see Figure.9).
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Figure2.9: Inverse mean of short plateau sizeso(& 1/E[pshod) @s a function of [ATP] (solid black) and
[ATPT S] (dotted grey). Left plot indicates IQ¥sults from sets of observation sequences produced by the
original model in which ATP/ATPS binding causes immediate ndikker docking. Right plot indicates
ICV results from observation sequences in which Aiedder dockingfollows hydrolysis of bounéhead
ATP/ATR S.

2.3 Discussion

Given sets of experimental singlolecule oraxis position traces at different ATP
concentrations, this ICV analysis should theoretically be able to identify the nature of the
ATP-waiting state. That is, it should ident#y associated displacement distatigayith
considerableaccuracy. It should also be able to elucidate whether or not subsequent neck
linker dockingoccuss immediatelywith binding of ATPR, or if ATP hydrolysis is required

first. Together, this knowledgeould be critical for determining the complete mechanism

of different kinesin motors.

The key advantage of the ICV algorittapplied tosingle molecule kinesin stepping

data, is that this step detectionteaus.gor it h
Tha is, by assuming the microtubule lattice spacing, odd and even plateau siies are
theoryguaranteed to represent two separate plateau size popu(@fidhsvaiting state

plateaus and compressed state plateatige case athe original model,Figure 1.2) Step

sizes are also separable in this way. This property allows for these distributions to be
analyzedndividually, whichrenders the process of inferrinbaracteristics of the

stepping mechanisnrastically simpler and more accurdtas not possible for a model

independent step detection algorithm to achieve this property because even a single false
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positive or missed step will lose track of the plateau phase. Since analyzing odd and even
plateaus (or step sizes)ll be meaningless this casewe would beforced to deal with
mixed distributions that wil§enerallyhave considerable overlap.

Thekey shortfall of the current ICV algorithm implementation is that the microtubule
lattice must be assumed beforehaamttithatthe spacingloes not allow fluctuationsThe
processes ajfffset detectiorand emission matrix constructicarrentlyrequirean
assumedntegermultiple-repeatfor lattice spacing which, ithis thesis,has been

assumed to be exactly.4 nm up until thipoint. Becausehis value is noperfectly
accuratethe mean values of the modified hidden Markov medassion matriused in

the ICV algorithm are guaranteed to diverge from the true microtubule lattice centers
given a long enough observation sequeiitgs will rewult in the loss of plateau phase
fidelity. Although phase is kept successfully with shorter traces, relaxing the constraint of
an integemultiple-repeat for the emission matrix mean valuesfesasible next step for

improving the ICV algorithm.

Until this point, only the ofmicrotubuleaxis position of the labeled motor domain has
been considered as the observation sequence. One of the attractive features of the
continuous Viterbi algorithm is its ability to be adapted relatively easificcept dwo-
dimensiondobservation sequence (@xisand offaxis position) and use this
information simultaneously to determine the mpibable hidden state path. This can be
done by changing the univariate normal probability density function shown in Eguatio
2.1 (Section 21.2) to the bivariate normal density function. The emission matoxid
thenrequirean additional column to provide the expected values feaxiff position

given the current hidden stated®Unm, see Figures 1.3, 1),5vhile the samvariance
parametemaybe assumedor both dimensions. By considering -@kis position, it

would then be theoretically possible to detect additional hidden states @umigue

state modified hidden Markov model ICV detectiorrather tharthe 2-unique-state
model). The @ and 4, states wouldorm a new statdiscernable from the compressed
state(4wv to 1stransition detectable by eéfxis transition frontJto 0 nm) andcritical
information related to dachcould be inferred with ATIPS experiments in a similar

fashion to thenecklinker dockinganalysis described above.
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Chapter 3

Results: Cellulose Synthesis Complex

The cellulose synthesis work presented heaie mecently publisheld]. N.C.D.

developed the-testbased step detection algorithms and the photobleach rate estimation
and correction process. Y.C. developed the Bayesian Information Criterion Bl
algorithms, Gausan Mixture Model fitting process, and created the figures. Y.C. and
C.T.A. performed raw data collection. All authors contributed to the design of

experiments, overall data analysis approach, and writing of the paper.

3.1Imaging CESA Complexes inArabidopsisSeedlings

To estimate the copy number of GRRCESA3 in membrandocalized particles in living
cells ofArabidopsis thaliana5-to-6-day-old light-grown sedlings expressing GFP
AtCESA3[49] were mounted in an imaging chaer and recordings of GFP bleaching
were carried out in hypocotyl cells containing low densities of-BEFESAS3 patrticles
(seeMovie Slof [1] Supplemental Informatignimaging was performed using variable
angle epifluorescemrcmicroscopy67], which like total internal reflection fluorescence
(TIRF) microscopy reduces background fluorescence but allows for the imaging of
proteins farther from the coverslip, such as those in the plasma membgaet aklls

that are separated from the coverslip by the cell W8l 67] (Konopka et al., 2008;
Konopka and Bednarek, 2008). To quantify photobleaching rates, time lapse recordings
were collected (Movie S1), andifirescence intensity traces for individual GFP
containing particles were measured using ImageJ3eeton3.8.2). Instead of

exhibiting discrete steps, the intensity changes during photobleaching for many traces
appeared to be relatively smooth (Fig8reA, Movie S1), suggesting that the number of

fluorophores per patrticle is relatively high.
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Figure3.1: In vivo photobleaching of GFRtCESA3. (A) Photobleaching trace of a single GREESA3
particle in typocotyl cells of Arabidopsis seedling. Video is recorded at 5 fps and total time is 100 s to
allow most GFP to be photobleached. Representative Movie S1 is included in Supplementafylpata
Inset: ensemble average of #Yombleaching traces with exponential fit to the data. (B) Quantitative
model describing photobleaching. The fluorescence signal is assumed to fall over time with constant step
sizes, matching the quantal fluorescence of a single GFP. The GFP fluoresuetive background signal

are treated as

fluorophore bleaching, T, is assumed to be exponentially distributed withlbveanl / &= wher e

Gaus s Panmndi s\ iedpective(yoOrhe tjine betore ma | (

o

photobleaching rate cotamt. The signal to noise ratio (SNR) is defined as the step size divided by the

standard

deviati on.

Si mul at ed

(C)

photobl eaching

a.u. (D) Simulated stepping data such as a kinesin walking alomga@tubule in and optical trap

experiment, with

€ =

1 ,(Figlre from[1], created byly @C%andoNaCck wa r d

The photobleaching rate constant for GRIEESA3 was estimated by ensemble

averaging all of th@hotobleaching collected traces and fitting a single exponential

function usi

ng

MATLABOS

n o n B.1Arneed).rThelfiteed s t

rate of 0.0278 + 0.0003'§mean + SEM of fit, N = 77 traces) is the expected rate of

photobleaching eants regardless of the true number of independent photobleaching units

present.
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The experimental background noise was estimated by analyzing the distribution of the
final plateau variance (as defined by the Tdetector2 step detection algorithm; see below)
for the 77 measured traces. As expected, the distribution had more than one mode (Figure
S1of[1]), due to the fact that complete photobleaching had not occurred in some of the
traces. Therefore the lowest variance mode wésatkas the background variance,

while the next mode indicates the sum of the background variance plus the variance
associated with one fluorophore. To allow for more precise quantitative analysis of
bleaching for multiple fluorophores, we developed &istteal method of photobleaching

analysis, as described below.

3.2 Generating Simulated Fluorescence Photobleachingsia

Fluorescence intensity from a single fluorophore is typically described as a Gaussian
distribution[69] with meaninte s i t y O a h(Eigure3lB,iinaehparel). While
intensity fluctuations at low photon counts are better modeled as a Poisson distribution,
added signal variance due to rapid fluorophore blinking events, fluctuations in the
background signal, anchmera read noise justify the assumption that the signal is
Gaussian. We postulate that the fluorophores are independent of one another and thus the
intensity fluctuations for each fluorophore are uncorrelated with those of neighboring
fluorophores. Thus, enn fluorophores are localized in a diffractidimited spot, the
overall intensity will be the sum of the mean intensitigs<In*u), and the overall

variance will be the sum of the variances plus the variance of the backgié(ng® =

n *2& ?). Notably, in photobleaching traces the variance scales with signal intensity,
and if background fluctuations are low and/or signal variance is high, then variance is
proportional to intensity. This situation contrasts with typicalifianal step detection
problems (for instance, identifying step displacements for motor proteins), where the
variance is independent of position and is thus constant for ead23}efs a result of

this scaled variance, viiteach intensity drop during a photobleaching experiment, there

will be an associated decrease in the signal variance.
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Another aspect of muffiuorophore photobleaching data that complicates the

identification of bleaching steps is the fact that theudesgry of photobleaching events

for an ensemble of fluorophores changes over time. Photobleaching is typically modeled

as a first order process with rate & and c
the time it takes for a single fluorophoreairset to bleach will follow an exponential

distribution with mean of T. If there are n fluorophores in a diffraetimited spot, then

the mean time before the first bleaching event will be much faster because any of the
fluorophores can bleach. Assumitigait photobleaching events are independent of one

another, the time before the first bleaching event will also follow an exponential
distribution, with a rate equal to n*a, an
event will be T/n. Thus, at theeginning of an experiment, bleaching events will be more
frequent and will be associated with larger signal variance, making it difficult to identify

individual events.

To assess the ability of step detection algorithms to detect photobleaching events, we
simulated a photobleaching signal for a complex containing 12 GFP fluorophores (Figure
3.1C), each having a mean intengitgnd variancel? that approximated the GFP

AtCESAS3 intensity trace shown in FiguBelLA. In parallel, we simulated a signhal having

a uniform stepping rate and a constant variance, similar to motor protein displacement
signals (Figure3.1D). Datasets witlarious SNR values were generated to represent a
range of possible experimental scenarios. For motor stepping data (&bDjethe

SNR is defined as ratio of step size over the standard deviafi®n Defining SNR for
bleaching traces, however, is golinated by the fact that the variance changes with the
number of active fluorophores. Thus, the SNR for the photobleaching data was defined as
the mean intensity of a single fluorophore divided by its standard deviafip(z/0).

The variance of the blground signali?, was chosen to equal the variance of a single

f 1 uor o%pbifierent SNR tralues were achieved by setting 500 a.u. and varying

the standard deviation. To objectively identify each bleaching event, we developed
multiple step deteiin algorithms that use statistical analysis to detect photobleaching

events and compared their performance using the simulated data.
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3.3 Using StepDetection Algorithms to Identify Bleaching Events

To analyze our photobleaching data, we developed tvpodsteection algorithms that use
statistical tests to identify stefsee Section8.831 3.88). For each method, approaches
were developed that assumed the different plateau regions in the signal had either equal
or unequal variances. The first methothased on the Bayesian Information Criterion
(BIC; [70]) and predicts steps purely based on statistical information in the data. Kalafut
and Visscher used this approach for step detection previously, but assumed that the
variarce within each step was constfé]. We modified this implementation to allow

for changes in variance. A second algorithm was developed based on {ientpie

test with or without assumed equal variance. These four dgwiare nameBdetectorl
andBdetectorZor the BIGbased methods assuming equal or unequal variance
respectively, and detectorland TdetectorZor the ttest based methods assuming equal

or unequal variance.
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Figure3.2: Step detection algorithms. {B): Bdetector algorithm. (A) To fit the first step, Bdetector scans

all possible change points and calculates a corresponding BIC value at each position (blue line). If the
minimum BIC is lower than the BIC vaé for not adding a step (green line), a step is added (red line) at the
position where the minimum BIC occurs. (B) Keeping the first step, Bdetector rescans all possible change
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points and calculates new corresponding BIC values (blue line), and addsa st&p at the position of
the minimum BIC (red line). This process is iteratively repeated. (C) When the minimum BIC value for
adding an additional step (blue line) is not lower than the current BIC value (green line), the program
terminates. (BEF): Tdetctor algorithm where, in contrast to the BIC, a higher significance fortése t
indicates a better fit. (D) To add the first step, the significance at each possible change point is calculated
(blue line) and is compared to the threshold (green limeyidred it is above the significance threshold, a
step is added at the point of maximum significance (red line). (E) The data are split into two segments at
the detected change point and the procedure is repeated for each segment (splitting the righinsegme
two in this case). This process is repeated for each new segment until adding a step does resultin a
significance value greater than the threshold. The algorithm then moves on to another segment. (F) When
adding a change point fails to raise tigmgicance above the threshold for every segment, the program
terminates(Figure from[1], created by Y.C. with assistance from N.¢.D

Both pairs of algorithms use a conceptually similar step detection approach of itgrativel
searching for change points until no statistically significant step can be added @&jure
and Supplemental Movie $#t[1]). The algorithms are summarized as follows:

(1) The data are scanned, and for each potential tinvbiah a step may occur,
the mean and variance is calculated for the time preceding the step and the time

following the step.

(2) Using these means and associated variances, a BIC value (Bdetector) or the
significance from a twaample ttest (Tdetectorjs calculated and used to

identify the optimal step. The optimal step is the one that leads to the lowest BIC
value (Bdetector) or the largest significance (Tdetector). If no step leads to a BIC
value smaller than the current one or a significance vddaeeaa defined

threshold then no step is chosen.

(3) The process is repeated until no additional statistically significant steps can be

detectedat which point it terminates.

To validate their performance, the step detection algorithms were first tessahulated
stepping data having SNR values from 0.4 to 5 (Fi@Be The step times were sampled
from an exponential distribution with an expected value of 100 time points per plateau,
with 90% of steps being a unit step increase and 10% being damdexcrease. At high
SNR values, the mean predicted step size was close to the actual value, but with
diminishing SNR, an additional peak corresponding to twice the unitary step size
emerged (Figur8.3A, and Figure S»f[1]). We defined two metrics, sensitivity and

precision to assess the performance of the algorithms. Sensitivity is defined as the
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proportion of the true steps that are identified by the step detection algorithm. Precision is
defined as the proportion of idéfied steps that are true steps (S=etion3.8.10).

Overfitting will lead to high sensitivity and low precision (false positives), while
underfitting results in high precision but low sensitivity (missed events). With SNR
values above 2, all four algdnins performed well and had both high sensitivity and
precision values (Figurg3, B and C). Reasonable predictions were obtained at SNR
values between 1 and 2, but sensitivity and precision both fell sharply for SNR values
below 1. The BlGbased algorithsdisplayed a tradeoff between sensitivity and
precision, with Bdetectorl (constant variance) having higher sensitivity and Bdetector2
(unequal variance) having higher precision (Figd& B and C: blue and green plots). In
contrast, for the twsample #test methods both Tdetectorl (assumed constant variance)
and Tedector2 (assumed unequal variance) performed similarly (Bigui and C: red

and black plots).
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Figure3.3: Detecting steps in simulatetkpping data. (A) Histograms of step sizes predicted by all step
detection algorithms. The simulated data have uniform step sizes of 1 with 10% backward steps and SNR
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