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ABSTRACT  

Single-molecule microscopy is a versatile tool that can be used to investigate the stepping 

mechanism of motor proteins such as kinesin, and to determine the copy number of 

subunits within membrane bound proteins such as the cellulose synthesis complex. Step 

detection algorithms provide a means for uncovering key information within single-

molecule microscopy data collected from these systems.  

Kinesin proteins are intracellular molecular motors that utilize energy from adenosine 

triphosphate (ATP) in order to transmit force and transport cellular cargo along 

microtubule tracks. Despite the current wealth of knowledge regarding these proteins, 

many unresolved mechanisms of the kinesin stepping cycle remain. Step detection 

algorithms that recover underlying piecewise-constant signals within noise-corrupted, 

single-molecule time series position data provide a strategy for resolving these 

mechanisms. The work presented in this thesis shows that by treating a positional time 

series as an observation sequence from a hidden Markov model, we can apply the model-

dependent, continuous Viterbi algorithm in order to determine the most likely hidden 

state sequence of the tracked motor protein. This approach has the critical capability of 

keeping ñphaseò of plateaus within a given time series, which allows for more accurate 

determination of kinetic rates and motor domain displacements associated with state 

transitions during stepping. 

In growing plant cells, cellulose synthesis complexes (CSCs) exist in the plasma 

membrane as six-lobed rosettes that contain different cellulose synthase (CESA) 

isoforms, but the number and stoichiometry of CESAs in each CSC are unknown. To 

begin to address this question, we performed photobleaching of GFP-tagged AtCESA3-

containing particles in living Arabidopsis thaliana cells followed by step detection 

analysis to estimate copy number. The step detection algorithms introduced in this work 

account for changes in signal variance due to changing numbers of fluorophores in order 

to avoid overfitting. These procedures can be applied to photobleaching data for any 

complex with large numbers of fluorescently tagged subunits, providing a new analytical 

tool with which to probe complex composition and stoichiometry.  
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Chapter 1  

Introduction  

This thesis focuses on two separate topics within distinct biological systems: the 

mechanism of the kinesin motor protein stepping cycle, and the molecular makeup of the 

cellulose synthesis complex. Both topics are similar in that critical information can be 

revealed using step detection analysis of single-molecule microscopy data from these 

systems. This thesis introduces novel, high-precision step detection algorithms designed 

for these specific single-molecule data sets as well as generic time series signals. Chapter 

2 investigates the capabilities of these algorithms in uncovering information within 

simulated signals of kinesin motor protein stepping. Chapter 3 investigates the 

capabilities of these algorithms applied to experimental and simulated cellulose synthesis 

complex photobleaching data. 

The kinesin work presented here is unpublished. All positional kinesin data presented in 

this thesis are from simulations based on: current understanding of the kinesin stepping 

cycle, as well as high temporal and high spatial resolution single-molecule kinesin-1 

tracking data recently acquired by Keith J. Mickolajczyk [unpublished] using 

interferometric scattering microscopy (iSCAT).  

The cellulose synthesis work presented here was recently published [1]. N.C.D. 

developed the t-test-based step detection algorithms and the photobleach rate estimation 

and correction process. Y.C. developed the Bayesian Information Criterion (BIC)-based 

algorithms, Gaussian Mixture Model fitting process, and created the figures. Y.C. and 

C.T.A. performed raw data collection. All authors contributed to the design of 

experiments, overall data analysis approach, and writing of the paper.  
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1.1 Kinesin Motor Proteins 

The intracellular molecular motor, kinesin, uses the energy from adenosine triphosphate 

(ATP) hydrolysis in order to perform directed transport by taking discrete ñstepsò along 

cytoplasmic filaments called microtubules. The most comprehensively studied kinesin is 

kinesin-1, commonly referred to as conventional kinesin.  It is a dimer of two identical 

polypeptide chains called kinesin heavy chains (KHCs) that bind to two separate 

polypeptides called kinesin light chains (KLCs). From N-terminus to C-terminus, a single 

KHC consists of: the globular, catalytic motor domain or ñheadò which binds to the 

microtubule and also binds and hydrolyzes ATP; the relatively short ñneck-linkerò which 

tethers the motor domain to the stalk of a dimerized kinesin; and the stalk which is a 

relatively long alpha helical chain that facilitates dimerization by forming a coiled-coil 

with another KHC stalk [2, 3, 4, 5, 6, 7, 8] (see Figure 1.1, from [9]). KLC tails bind to 

the C-terminus of the KHC stalks while also binding to intracellular cargo. KLCs also 

play a regulatory role by suppressing futile ATP hydrolysis [10].  

 

Figure 1.1: Schematic from [9] of conventional kinesin (kinesin-1) cargo transport along a microtubule 

with approximate scaling. 

Processive kinesin stepping is accomplished by head domains alternating between being 

in a tight microtubule binding state and a weak microtubule binding state so that one head 

can step to the next binding site while one head maintains its connection to the 
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microtubule. This process is analogous to climbing up a ladder using only oneôs hands ï 

each hand alternates between either gripping tightly to a rung of the ladder or letting go to 

find the next rung. The ATP hydrolysis cycle and the mechanical strain of the neck-linker 

domains provide the queues and communication in this coordinated hand-over-hand 

process.  

1.1.1 Physiological Relevance  

There are many different types of kinesins, and they perform a vast array of critical 

cellular tasks [11, 12]. For example, kinesin-1 facilitates anterograde axonal transport by 

binding and carrying intracellular cargoes (such as mitochondria, lysosomes, and 

endoplasmic reticulum) long distances towards synapses of neurons [13, 8], kinesin-2 

participates in the bidirectional intraflagellar transport process [14, 15], and kinesin-5 

plays a key role in mitotic spindle formation during the process of cell division [16]. 

More than one-hundred different kinesins have been identified since the first kinesin 

(kinesin-1) was discovered by Vale et al in 1985 [13, 17]. How the many different types 

of kinesinsô structures and ATP hydrolysis cycles have been evolutionarily tuned for their 

diverse cellular tasks is not well understood. 

Kinesin dysfunction has been linked to several neurological disorders including 

amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and Charcot-Marie-

Tooth disease [18]. Due to kinesin facilitating mitotic spindle formation, it also has a 

highly relevant role in proliferation of cancer cells, and anti-cancer drugs that work by 

inhibiting function of mitotic spindle motor (kinesin-5) are being actively pursued [19, 

20, 21, 22, 16]. A better understanding of kinesinôs mechanism will  have broad impacts 

on understanding these physiological problems. 

1.1.2 Kinesin Stepping Cycle 

Conventional kinesin advances unidirectionally towards the plus-end of a microtubule in 

discrete steps. Tubulin dimers, the subunit of the microtubule polymer estimated to have 

a spacing of 8.2 nm [23], serve as the binding sites for kinesin heads. Conventional 

kinesin has been shown to walk in a ñhand-over-handò fashion [24, 25] which means 

each step consists of the trailing head detaching from its microtubule binding site (one 

tubulin dimer), moving past the leading bound head, and then binding to the site adjacent 
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to, and in front of, the leading head. Thus, the trailing head moves the length of two 

tubulin dimers (16.4 nm) while the leading head remains bound to its site. A single step, 

which results in an 8.2 nm mean displacement of the entire kinesin motor, requires the 

energy of one hydrolyzed ATP molecule [26, 27]. On average, the motor takes more than 

100 steps along the microtubule at a rate of approximately 100 steps per second before 

dissociating [27, 28].  

In order to step consistently before dissociating, both heads must be highly coordinated 

with one another. Without coordination, both states will regularly be in a weak 

microtubule binding state at the same time which will result in rapid dissociation of the 

entire motor from the microtubule.  

Whether a head is in a high or low microtubule affinity state is predominantly determined 

by its nucleotide state, which is defined by the form of the nucleotide, if any, that is 

bound to the motor domain at a given point in time. Interhead tension giving rise to 

gating mechanisms is also believed to control microtubule affinity of the head domains 

[29, 30]. Interhead tension is transmitted by the neck-linker domains that join the heads to 

the stalk. Recent studies have shown that neck-linker length dictates the unloaded 

processivity of many different kinesins ï longer, compliant neck-linkers transmit strain 

poorly, which diminishes the coordination of their head domains, resulting in shorter run 

lengths, while shorter neck-linkers transmit strain efficiently, which improves the 

coordination of their head domains, resulting in longer run lengths [31]. 

A conservative model of kinesin-1 hand-over-hand stepping that is consistent with 

experimental kinetics and single-molecule data [32, 30, 28] provides a framework for 

understanding the role of the ATP hydrolysis cycle and interhead tension in providing 

coordination between heads (Figure 1.2).  
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Figure 1.2: Conservative model for conventional kinesin stepping cycle adapted from [33]. Red and blue 

triangular objects represent kinesin motor domains (heads), bold black connecting lines represent the neck-
linker and beginning of coiled-coil stalk domains. ñDò denotes the ADP state, ñDPò denotes the ADP and 

inorganic phosphate (Pi) state, ñTò denotes the ATP state, and ū denotes the no-nucleotide state. Kinetic 

rates of the cycle are denoted by kx. Grey and white tracks represent microtubule binding sites (tubulin 

dimers). 

In this model, when a motor first binds to a microtubule, the binding head promptly 

releases its ADP (state 0 to 2 of Figure 1.2), thus changing to the extremely high 

microtubule affinity state ï the no-nucleotide state. Next, ATP binds to that head (state 2 

to 3), inducing a conformational change termed ñneck-linker dockingò that biases the 

trailing, tethered head towards the adjacent plus-end microtubule binding site (state 3). 

The bound head then hydrolyzes its ATP, thus entering the ADP.Pi state (state 3 to 4). 

The tethered head that had translated towards the plus end via neck-linker docking 

undergoes its diffusional search, binds to the microtubule, promptly releases its ADP, and 

becomes the new leading head (state 4 to 1). During state 1, the rear-head gating 

mechanism suggests that interhead tension accelerates phosphate release and subsequent 

trailing head detachment (state 1 to 2). Upon entering state 2, the cycle is back where it 

began while the mean position of the entire kinesin motor has advanced 8.2 nm in the 

plus end direction.  

Despite general agreement with most aspects of this conventional kinesin model among 

researchers in the field, there remain many unresolved questions regarding certain of its 
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mechanisms and kinetic rates of state transitions. Furthermore, the stepping cycle varies 

between different types of kinesin. Robust models for other kinesin families are not well-

established. 

1.1.3 Unresolved Mechanisms 

ATP binding is not rate-limiting at normal physiological ATP concentrations (> 1 mM). 

This is evident from average velocity measurements of kinesin motility plateauing in the 

presence of ATP concentrations in the millimolar range or above (referred to as 

ñsaturating ATPò) [27]. However, one controversial and unresolved question is whether 

different types of kinesin sit in a one- or two-head bound state as they wait for ATP to 

bind to their front head [34, 35, 36, 37] (state 2 or 2ôof Figure 1.3).  

 

Figure 1.3: Progression of kinesin stepping cycle with respective on-microtubule-axis and off-axis 

distances of the red, trailing motor domain (left-most in state 1). Progression of states is from left to right. 

Note that states 1, 2, 3, and 4 are identical to the conservative model of Figure 1.2. ñŭò represents the 

unknown on-axis displacement that results from trailing head detachment (state 1 to 2). ñŮò represents the 

unknown off-axis displacement associated with a head being unbound from the microtubule. The ñ mMò 

and ñ mSò denote the beginning of the mobile and stable sequences of the initial trailing (red) motor 
domain. For homodimeric motors like kinesin-1 the M and S sequences will be identical processes. 

Single-molecule kinesin-1 experiments performed by Yildiz et al. [25], in which a single 

head domain was fluorescently labeled and its position tracked with nanometric 
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precision, provided support for a two-head bound waiting state ï or at least a state in 

which the trailing head did not move noticeably from its previous microtubule binding 

site upon dissociation (ŭ displacement in Figure 1.3 approximately 0 nm). They were able 

to fit discrete steps made by their labeled head domain, and they only observed step sizes 

deviating around one mode. As commented upon in their analysis, a bimodal distribution 

of step sizes (modes of ŭ nm and 16.4 - ŭ nm) would be expected if kinesin sat in a 

displaced one-head bound state while waiting for ATP binding (see Figure 1.2).  

One would not expect ŭ (displacement from state 1 to 2 of Figure 1.3) to be zero given 

that there is expected to be tension within the neck-linker in state 1. Upon trailing head 

dissociation the tension should relieve by displacing the trailing head towards the 

microtubule plus-end now that it is free to do so. Furthermore, on this scale, since the 

neck-linker is not expected to be in a rigid conformation in state 2, thermodynamic 

fluctuations alone should displace the mean position of the free head towards the origin 

of its tethering (ŭ of ~ 8 nm). The 2ôô-state is not expected to be part of the regular 

pathway of processive motors, as it is likely to lead to dissociation via ATP binding and 

hydrolysis in the leading head causing both domains to be in weak microtubule binding 

states [33]. The 2ô-state as a regular two-head-bound ATP-waiting-state is not expected 

given that the ADP state is a well-established weak-binding state of conventional kinesin 

[38], however it is possible that this particular stage of the cycle is an exception to that 

rule. To clarify, the displayed state 1 to 2 transition implies that inorganic phosphate 

release leads to immediate detachment of the trailing head, whereas the state 1 to 2ô 

transition suggests that rapid dissociation of the trailing head does not occur until front-

head ATP binding takes place (state 2ô to 3). It should also be noted that despite states 3 

and 4 in this model being in a docked neck-linker conformation, which has been 

evolutionarily-tuned to allow the free head to find its next microtubule binding site, the 

possibility of their on-axis distance being considerably different than the 16.4 nm 

microtubule lattice spacing should not be strictly ruled out. Furthermore, it is not 

perfectly clear that neck-linker docking occurs immediately with ATP binding, it may 

instead require ATP hydrolysis first (not shown in Figure 1.3, see Section 2.2.2). 
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Another unresolved issue involves the determinants of unloaded and loaded processivity 

across different N-terminal kinesins. Unloaded processivity has been shown to strongly 

depend on neck-linker length [31] while loaded processivity depends exclusively on the 

properties of the catalytic motor domains [39]. However, precise mechanisms to explain 

these observations have not been established. Neck-linker length may dictate processivity 

by way of accelerating trailing head detachment from state 1 to 2 (i.e. increasing kdetach) 

and/or by increasing the rate of tethered head binding, kattach in Figure 1.2, which 

transitions the motor out of a potential unbinding opportunity in state 4, to a stable state 

1. Loaded processivities are most-likely dictated by kinetic rates of the cycle that 

determine the portion of time a motor spends in vulnerable one-head bound states. 

The precise coupling of the ATP hydrolysis cycle and stepping cycle is still not well-

established. Single-molecule motility assays ï imaged with high-resolution microscopy 

techniques that reveal on- and off-axis displacements of labeled kinesin motors 

undergoing processive stepping ï provide a means for uncovering the characteristics of a 

kinesinôs stepping cycle and its mechanism. 

1.1.4 Single-Molecule Motility Assays 

Single-molecule kinesin motility assays emulate the fundamental processive stepping 

behavior of the motor along a microtubule (see Figure 1.4). In these assays, stable 

microtubules are fixed to the surface of a microscope coverslip while added motors step 

along individual microtubule tracks in an adequate ATP-concentrated and buffered 

solution. Total internal reflection fluorescence (TIRF) microscopy is often used to image 

these assays since this microscopy technique allows for exclusive collection of emitted 

fluorescence near the coverslip surface, therefore reducing unwanted background noise 

from the bulk of the sample [40]. In order to image kinesin with TIRF or any other 

fluorescence microscopy technique, the protein must be labeled with a fluorophore. The 

fluorophore can be located on the N-terminus (motor domain) or the C-terminus (stalk or 

tail domain). Emitted light from the fluorophore is collected by the objective lens and 

then recorded by the detector (camera). In general, the resulting data from these assays is 

in the form of a stack of 2D arrays of pixel intensities representing the viewpoint normal 
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to the coverslip surface at each point in time (i.e. a 3D array where third dimension is 

time).  

 

Figure 1.4: Schematic (top) and a selected region of typical 2D image data (bottom) of a kinesin single-

molecule motility assay. Viewpoint is normal to the cover slip surface. Motors and microtubules in 

schematic diagram are not to scale. Gold spots on tethered heads represent labeling of motor domains (N-

terminal labeling). 

Established image processing techniques allow for 2D arrays of data to be transformed 

into time series traces of X- and Y-position for each individual fluorophore in the field of 

view [41]. If the motors have been engineered to have an N-terminus label, then a 

properly-rotated set of these X- and Y-position vs. time traces represent the on- and off-

axis displacements shown in Figure 1.3. 

As with any measurement, the resulting time series signals of position will be corrupted 

by some degree of noise. This noise may be due to contributions from background signal, 

vibrations of the microscope stage, read noise of the detector, or other sources. For 
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stationary and photostable probes, X- and Y-positional noise after image processing is 

well-characterized by a normal distribution of zero mean and some constant variance, ů2. 

8  ͯ .πȟʎ  

9  ͯ .πȟʎ  

As a result of noise, the on- and off-axis distances associated with each state of the 

stepping cycle will be partially hidden (see simulated signals in Figure 1.5).  

 

Figure 1.5: Simulation of positional time series signals (of red motor domain) from single-molecule kinesin 
motility assays. Note that consecutive states 3M, 4M, 1S, 2S, 3S, 4S, and 1M  share the same on-axis position 

in this case (where subscript denotes either being part of the mobile or stable sequence). 

Thus, positional time series signals from single-molecule kinesin motility assays are 

analogous to observation values of a hidden Markov model (HMM). An HMM describes 
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a stochastic process in which an object transitions discretely among a set of states, each 

with its own probability distribution that defines the likelihood of ñemittingò particular 

values when the object is in that state [42]. Only the sequence of these emitted values 

(which depend only on the current state at that point in the sequence) are observable, the 

sequence of states itself is not, hence the states are said to be ñhidden.ò  

Significant advancements in single-molecule imaging technologies, including 

interferometric scattering microscopy (iSCAT) [43] and total internal reflection dark-

field microscopy (TIRDFM) [44], are now making it feasible to detect these hidden state 

transitions at physiological ATP concentrations. Rather than relatively weak fluorescence 

signals, these methods rely on photon scattering, which allows for drastically improved 

temporal and spatial resolution of on- and off-axis position during stepping. 

If the hidden state sequence can be recovered from these traces, it will reveal a rich 

source of information regarding the coupling of the stepping and hydrolysis cycles. Even 

with advanced microscopy techniques, noise is relatively substantial compared to kinesin 

step displacements. Therefore it is critical to have non-biased, highly-precise algorithms 

for uncovering the underlying piecewise-constant signal within noise-corrupted time 

series data sets. 
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1.2 Cellulose Synthesis Complex 

Cellulose is a major structural component in the plant cell wall that regulates plant cell 

growth and morphology and also has extensive commercial value for applications such as 

papermaking, textile manufacturing, and biofuel production [45]. However, the molecular 

processes involved in the biosynthesis of cellulose, which is composed of large numbers 

of ɓ(1,4)-linked glucan chains that associate via hydrogen bonds to form cellulose 

microfibrils, remain incompletely understood despite intensive research over the past 15 

years [46]. It is generally believed that cellulose is synthesized at the plasma membrane 

and extruded into the extracellular space by a cellulose synthesis complex (CSC). Each 

CSC contains many GT2-family glucosyltransferases called cellulose synthases (CESAs) 

and is assembled into a large integral membrane complex with a membrane-spanning 

rosette configuration of approximately 25 nm in diameter [47]. The complex is formed in 

the Golgi and transported to the plasma membrane, where it becomes active to synthesize 

the glucan chains that constitute the cellulose microfibril [46]. Genetic and biochemical 

data indicate that a minimum of three different CESA isoforms are present in each CSC; 

in the model plant Arabidopsis thaliana, AtCESA1, AtCESA3, and AtCESA6-type 

proteins are present in CSCs that synthesize cellulose in the primary walls of growing 

cells, whereas AtCESA4, AtCESA7, and AtCESA8 proteins are present in CSCs during 

secondary wall synthesis in cells that have ceased growth [48, 49, 50]. Estimations based 

on structural studies of cellulose microfibrils [51, 52] and molecular modeling of CESAs 

[53] predict that each CSC is composed of anywhere between 12 and 36 subunits [54, 

46]; however, the precise stoichiometry of CESA isoforms within each CSC remains 

undefined. Empirically determining protein copy numbers for intact membrane-bound 

CSCs through nondestructive means is challenging, especially since reconstituting active, 

purified plant CSCs has proven to be extremely difficult [55, 56, 57].  

One alternative method of estimating protein copy numbers in integral membrane 

complexes is to count bleaching steps for subunits tagged with intrinsically fluorescent 

proteins, such as green fluorescent protein (GFP), under total internal reflection 

fluorescent (TIRF) microscopy [58]. However, the number of proteins that can be 

estimated using current methods is limited: higher copy numbers lead to increases in both 

fluctuations in the fluorescence signal and the initial rate of photobleaching, complicating 
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the identification of discrete photobleaching steps. This issue can be addressed by using a 

median filter to reduce noise in the data, and constructing pairwise distance distributions 

to determine the unitary step size of photobleaching [23, 59]. However, implementing 

this approach to estimate subunit number typically requires empirical selection of the 

optimal median filter, and still does not readily resolve the precise timing and magnitude 

of individual bleaching steps.  

Step detection algorithms, which are frequently used to analyze the spatial steps 

undertaken by motor proteins, are capable of automatically detecting change points in 

data traces [60]. Numerous methods have been developed to detect steps, but most of 

them depend heavily upon pre-selected parameters. Notably, the ɢ2 method developed by 

Kerssemakers et al. requires an input of the number of steps to be detected [61], which is 

difficult to calculate if prior information about the data is unavailable. Methods based on 

information criteria are objective and do not require user-defined input parameters [62]. 

However, they have only been implemented in step detection algorithms by assuming 

that the variance associated with each step is constant [62], which is adequate for single 

motor protein stepping but not for photobleaching. Because intensity fluctuations of 

individual fluorophores around their means are uncorrelated, the presence of multiple 

active fluorophores in a complex will result in a higher variance in the fluorescence 

intensity signal than the variance associated with a single fluorophore. Hence, algorithms 

designed to detect steps in photobleaching data need to consider these variance changes 

to avoid overfitting during periods of high fluorescence intensity. Another complexity in 

photobleaching data is that with increasing copy number, there is an increasing 

probability that two or more fluorophores will bleach within a short timeframe (e.g., 

within a single acquisition period), which can also skew the step size distribution and 

complicate the estimation of a unitary photobleaching step size. Thus, there also exists a 

need for the development of objective analytical tools to extract unitary step sizes from 

step-size distribution densities that improve upon current methods of data binning and 

fitting a user-defined number of Gaussian functions. 

In this work we developed a novel procedure that combines step detection and density 

estimation to determine unitary step size and copy number from experimental 
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photobleaching data. A mathematical model was constructed to generate simulated 

bleaching data, and the simulated data were used to optimize the performance of the step 

detection and density estimation algorithms and demonstrate their ability to accurately 

retrieve copy numbers from simulated data with varying degrees of experimental noise. A 

key goal in developing these tools was to make them as objective as possible by 

minimizing the number of user-defined parameters, and it is hoped that these procedures 

will establish best practices for analyzing photobleaching data derived from complexes 

with high copy numbers. We applied these analytical tools to photobleaching data 

collected for GFP-tagged AtCESA3 in intact cells of Arabidopsis thaliana seedlings and 

estimated the lower limit of copy number per particle to be ten. 
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1.3 Step Detection Algorithms 

Step detection is a common problem encountered in signal processing in which the goal 

is to identify discrete changes in the mean of a signal. This problem is trivial if the signal 

contains little or no noise, but statistical approaches must be applied when the signal is 

hidden in relatively high noise (see Figures 1.6, 1.7). Step detection can be considered a 

subset of the more general class of problems referred to as change detection, or change 

point detection, in which the aim is to identify discrete changes in many different features 

of a signal including: variance, spectral density, correlation, etc. These signal processing 

problems are encountered in many engineering disciplines as well as in biophysics, 

biology, and bioinformatics [63, 60, 64, 65]. 

In general, a step detection algorithm is a function that accepts a noise-corrupted time 

series signal as input, and then returns a list of points at which there is a discrete change 

in the mean value as the output. Specific step detection algorithms differ in the 

assumptions made about the features of the input signal. Issues that are considered 

include, but are not limited to: the nature of the corrupting noise (e.g. normally 

distributed, exponentially distributed, etc.); whether or not the variance of the corrupting 

noise changes across the signal; whether or not the signal is autocorrelated; whether or 

not an accurate model for the generation of the signal is available.  

 

Figure 1.6: Piecewise-constant signal without noise 
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Figure 1.7: Piecewise-constant signal hidden in white noise (ů = 0.25) 

The step detection algorithms described in this thesis are designed to accept piecewise-

constant signals hidden in Gaussian white noise (zero or negligible autocorrelation; see 

Figure 1.7). The goal of the algorithms is to identify the indices (i.e. time points) at which 

there is a significant and discrete change in the mean value of the underlying piecewise 

constant signal with respect to noise. The mean value of the sections between these 

indices can then be calculated to recover the best estimate of the underlying piecewise-

constant signal. Step detection algorithms that depend on an input hidden Markov model 

are presented in Chapter 2 (Section 2.1) and are applied to kinesin motor protein stepping 

data. Model-independent algorithms are presented in Chapter 3 (Sections 3.8.3 ï 3.8.8) 

and are applied to cellulose synthesis complex photobleaching data. 
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Chapter 2  

Results: Kinesin Motor Proteins 

The kinesin work presented here is unpublished. All positional kinesin data presented in 

this thesis are from simulations based on: current understanding of the kinesin stepping 

cycle, as well as high temporal and high spatial resolution single-molecule kinesin-1 

tracking data recently acquired by Keith J. Mickolajczyk [unpublished] using 

interferometric scattering microscopy (iSCAT) [43]. 

 

2.1 Model-Dependent Step Detection 

2.1.1 Generative Hidden Markov Model for Kinesin Single-Molecule Assays  

One approach to the step detection problem is to make prior estimations of the model that 

generates the observed sequence, namely in the form of a hidden Markov model (HMM). 

The Viterbi algorithm [66] can be used to determine the most probable hidden state 

sequence, called the Viterbi path, given an observation sequence and a set of model 

parameters. Iterating this algorithm through different potential HMM parameters 

followed by error calculations of the returned sequences provides an alternate strategy for 

uncovering model parameters that is more direct than model-independent step detection 

approaches.  

Simple HMMs are defined by the following parameters. N: total number of hidden states 

in the model. T: total number of observations. x: sequence (T-by-1) of hidden states in 

which element xt is the true hidden state at t (any integer 1 to N). y: sequence (T-by-1) of 

observation values in which element yt is the observed value at t. A: transition matrix (N-

by-N) in which element aij denotes the probability of the hidden state transitioning from 

state i to state j given that it is currently in state i, aij = P(xt+1 = j | xt = i). B: emission 

matrix (N-by-ñ1ò) in which element bn is a set of parameters that describe P(yt = z | xt = 

n), i.e. the probability that yt takes on any value, z, in the observation variable space 
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given that the current hidden state, xt = n. U: a prior probability matrix (N-by-1) in which 

element Un denotes the probability that the initial hidden state, x1, is state n.  

As described previously (Section 1.1), observations of single-molecule motor protein 

motility assays can be described by an HMM. Let us return to the model of the kinesin 

stepping cycle and define it in the context of an HMM (see following Table 2.1 and 

Figure 2.1 for summary). For now we will consider only the on-microtubule-axis position 

data (see Figure 1.5) as the observation sequence (HMM parameter y). A given value in 

the sequence of observed on-axis position of a kinesin motor, yt, should depend only on 

the current hidden state of the motor, xt. Thus the set of hidden states is defined by the 

states of the kinesin stepping cycle model (N = 4; states 1, 2, 3, and 4 in Figures 1.2, 1.3, 

1.5). Kinesin transitions between different states according to different kinetic rate 

constants. Therefore the relative magnitudes of these individual rates and the detector 

(camera) sampling rate will define the elements of the transition matrix, A. The expected 

values of observed on-axis displacement for an N-terminal labeled motor given the state 

are determined by the microtubule lattice spacing (16.4 nm) and the displacement 

associated with trailing-head detachment (ŭ in Figure 1.3), though there will be some 

degree of randomness due to noise in the measurement. As stated in Chapter 1, the noise 

of a given positon signal of a photostable probe in single-molecule microscopy is well-

characterized by the normal distribution with zero mean and some constant variance, ů2. 

The emission matrix, B, will contain these necessary parameters (bn1 = mean, µ, and bn2 = 

variance, ů2) for the univariate normal distribution associated with hidden state n. Note 

that for motors taking multiple steps, bn1 values will require some form of updating. The 

probabilities, U, for the initial hidden state would depend on whether the observation 

sequence began with the initial binding of the motor to a microtubule, or with the 

arbitrary start of detector recording. In the former case, this would suggest that the initial 

hidden state is guaranteed to be state 2; U2 = 1 (see model in Figure 1.2). In the latter 

case, initial state probability should be a function only of average time spent in each state. 

Finally, the value for T is the length of the position observation time series.  

  



 

   

19 

 

Table 2.1: Summary of single-molecule motility assay hidden Markov model (HMM) parameters assuming 

the conservative kinesin stepping model. Table describes the univariate observation sequence case; 

observed values represent on-microtubule-axis distance of an N-terminal-labeled motor domain during 

processive stepping. 

Symbol HMM parameter Analogous kinesin single-molecule assay parameter  

N Number of hidden 

states 

Number of discrete states in the kinesin stepping cycle 

(N = 4) 

T Total observations Total number of frames recorded by detector 

A Transition matrix Probabilities of transitioning among states as defined 

by relative kinetic rates of the kinesin and detector 

sampling rate 

B Emission matrix Parameters of normal distributions, N(µ,ů2), 

describing probability of observing a given on-axis 

distance value for each hidden state (note: requires 

updating) 

U Initial probabilities Probabilities of starting in a given state of the stepping 

cycle  

 

 

Figure 2.1: Schematic of generative hidden Markov model and simulated series for observed on-axis 

distance. Numbered nodes represent the set of hidden states (numbered according to model in Figure 1.2), 

connecting arrows represent elements of the transition matrix, A. Normal distribution parameter elements 

of the emission matrix, B, including their appropriate corrections (multiples of the microtubule lattice 

spacing, 16.4 nm) are shown to the right of the graph.     

These parameters (summarized in Table 2.1 and Figure 2.1) form a generative model for 

an observed on-axis-position time series. Given an observation time series, y, and HMM 

parameters A, B, and U, the Viterbi algorithm returns the most likely hidden state 

sequence (parameters N and T can be inferred from others). A brief description of the 

Viterbi algorithm follows, along with a solution to the emission matrix updating 

complication. 
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2.1.2 Continuous Viterbi Algorithm  

The Viterbi algorithm [66] is essentially a recursion of Bayesô Theorem that stores the 

most likely previous hidden state, xôt-1, for each possible hidden state at t (stored in N-by-

T matrix, T2). Also stored (in N-by-T matrix, T1) are the probabilities that each most 

likely previous hidden state, xôt-1, transitioned to each following hidden state and then 

emitted the observed value at t, yt. These storing matrices, T1 and T2, are constructed 

sequentially as described by the following pseudocode (Table 2.2). The first column of 

storing matrix, T1, is determined from y1 and initial probabilities, U. 

Table 2.2: Viterbi algorithm pseudocode for construction of storing matrices T1 and T2. Categorical 

emission variables assumed. A[:, n] denotes all rows in the nth column of matrix A. See Appendix B for 

complete MATLAB implementation of the continuous Viterbi algorithm. 

 

ÆÏÒ Ô N ςȟσȣȟ4Ḋ 

ÆÏÒ ÎN ρȟςȣ ȟ.Ḋ   
ἢ ÎȟÔᴺÍÁØ ἢ ȡȟÔ ρ ȢzἋȡȟÎ ἌzÎȟÙ  

ἢ ÎȟÔᴺÁÒÇÍÁØ ἢ ȡȟÔ ρ ȢzἋȡȟÎ ἌzÎȟÙ  

ÅÎÄ 

ÅÎÄ 
 

 

The emission probability terms, B[n, yt], in Table 2.2 are for categorical or discrete 

emission variables. These terms reference the probability mass function described by the 

nth row of matrix B. For normally-distributed continuous emission variables, the B[n, yt] 

terms can simply be replaced by the density function describing the probability of 

observing a certain yt value given the hidden state, n: 

09 ÙȿØ ÎȟἌ
  
Å    (2.1) 

Once the storing matrices have been calculated, the most likely final hidden state, xôT, is 

determined from T1: 

Øᴂ ÁÒÇÍÁØἢ ȡȟ4  

The most likely hidden state path is then determined by tracing back through most likely 

previous hidden states stored in T2. This algorithm is guaranteed to return the global 

maximum likelihood hidden state sequence. 
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2.1.3 Modified Hidden Markov Model Construction for Viterbi Algorithm  

To solve the issue of needing to shift the mean values in the emission matrix to account 

for motors taking multiple steps, we can instead construct modified HMM parameters 

with an expanded set of hidden states according to the range of the given observation 

series, y. Again, we will consider only on-axis position for now. 

In this modified hidden state set, we compress consecutive states 3M, 4M, 1S, 2S, 3S, 4S, 

and 1M since they will share mean emission values (recall Figure 1.5). Therefore, state 

numbers in this modified model no longer correspond to those of the kinesin stepping 

cycle presented in Chapter 1. The new number of states will be determined by the 

microtubule lattice spacing (16.4 nm) and the rounded maximum and minimum values of 

y: 

.  ς
ÍÁØὁ

ρφȢτ

ÍÉÎὁ

ρφȢτ
ρ  

Each hidden state number now defines its mean value parameter (bn1). The value for ŭ is 

unknown (see Figure 1.3), while the variance, ů2, can be estimated accurately using the 

process described later in Section 3.8.5.  

Â

ừ
Ử
Ừ
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ÍÉÎὁ
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              Î ÉÓ ÏÄÄ
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ς
ɿ         Î ÉÓ ÅÖÅÎ

 

Â ʎ 

A rough estimation of the transition matrix can be made from the observation sequence as 

follows (recall T = length(y), let ɖ = expected ratio of forward steps to backward steps):  

ʇ
.

4
 

 ᶅÉ ρȡ  Áȟ ρ ʂʇ 

 ᶅÉḊ Áȟ ρ ʇ 

 ᶅÉ .ȡ  Áȟ ʂʇ 
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The transition matrix in the case where N = 5 is shown as an example: 

Ἃ

ụ
Ụ
Ụ
Ụ
ợ
ρ ʇ ʇ π π π
ρ ʂʇ ρ ʇ ʂʇ π π

π ρ ʂʇ ρ ʇ ʂʇ π

π π ρ ʂʇ ρ ʇ ʂʇ
π π π ʇ ρ ʇỨ

ủ
ủ
ủ
Ủ

 

Finally, a uniform initial probability matrix can be assumed: 

5 ρȾ.   

Thus, given an observation sequence produced by the generative HMM model for on-axis 

position, the true ŭ value, and an approximate ɖ value (~ 1), a complete modified HMM 

can be constructed. The continuous Viterbi algorithm can then accept these modified 

HMM parameters and the observation sequence, and then return the most likely hidden 

state path (modified hidden state path). The following Figure 2.2 shows an example 

observation sequence produced by the generative HMM model for kinesin stepping, and 

the results of the continuous Viterbi algorithm given the modified HMM parameters. We 

can see from Figure 2.2 that the continuous Viterbi algorithm with modified HMM 

parameters works as a highly precise model-dependent step detection algorithm.    
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Figure 2.2: Observation sequence produced by generative hidden Markov model for kinesin stepping (cyan 

line) where ŭ = 4 nm. Updated mean values of the generated true hidden state path (dotted black line). 

Mean values of the most likely modified hidden state path as returned by the continuous Viterbi algorithm 

(red line). 

So far, two key assumptions about a given observation sequence have been made that 

must be addressed: (1) an ñoffsetò of zero is assumed, i.e. the microtubule lattice spacing 

is aligned perfectly with increments of 16.4 nm, and (2) the true value for ŭ is assumed. 

Let us first address the offset problem. 

2.1.4 Observation Sequence Offset Detection 

Microtubule binding sites cannot be visualized in single-molecule microscopy explicitly. 

Only the on-axis distance time series obtained from the fluorophore attached to the motor 

can be used to estimate the location of microtubule binding sites. The origin of an on-axis 

distance time series is arbitrary; often it is defined by the position at the first time point. 

Even if this first time point represents the initial binding of the labeled motor to the 

microtubule, the error due to measurement noise makes this an inaccurate estimation of a 

microtubule binding site center. Thus, an observation sequence is said to have some 

offset, ɤ, relative to the true microtubule binding site spacing (16.4 nm lattice spacing) 
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that is not expected to be zero. Said another way, plateaus of the underlying piecewise 

constant signal will coincide with on-axis distances of ɤ, ɤ + 16.4, ɤ + 32.8 nm and so 

on, rather than precisely 0, 16.4, and 32.8 nm. This will render the Viterbi algorithm 

unable to produce an accurate or meaningful result. Therefore, it is necessary to first 

estimate the value of ɤ so that the observation sequence can be properly adjusted for 

input into the Viterbi algorithm. This can be accomplished using the results from a 

model-independent step detection algorithm, such as the Tdetector1 described previously. 

Note that the output of model-independent step detection algorithms like the Tdetector, 

do not depend on the offset of the input time series data. 

The declared step indexes (indexes at which there is a significant change in the mean 

value) returned from the Tdetector1 algorithm can be used to create a set of plateaus, p, 

where a single plateau, pi, contains the set of points from one declared step index to the 

next index. Given the set of plateaus, p, and an assumed repeated spacing (16.4 nm for 

microtubule lattice), then the following steps can be taken in order to reliably estimate the 

offset, ɤ:  

(1) For a given plateau, pi, find all plateaus, pj, in which the difference of their 

mean values is within a certain acceptable range, ɝ, of an integer multiple of 16.4. 

That is, with pi fixed, find all indices, j, in which the following inequality is true:  

%Ἰἱ %Ἰἲ

ρφȢτ

%Ἰἱ %Ἰἲ

ρφȢτ
ʊ 

(2) Repeat this process for all plateaus in p. Let qi denote the subset of plateaus 

that were within range, ɝ, of a 16.4-integer-multiple of plateau pi, including pi.    

(3) Let qk denote the subset of plateaus that has the most points within all of its 

contained plateaus, and that contains at least one additional plateau that is not pk. 

(4) For each plateau, pj, in the optimal subset qk, shift all values in pj by the 16.4-

integer-multiple that is nearest the mean of pj 

 ᶅÊȡ  ἸἲN Ἰἲ ρφȢτ
%Ἰἲ

ρφȢτ
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(5) Concatenate all shifted plateaus within the optimal plateau subset, qk, into a 

single vector of points, Q. Now, an accurate estimate of the offset can be made 

from the mean of Q. 

ʖ %Ἕ 

The following Figure 2.3 demonstrates the results of offset detection and correction on a 

simulated observation sequence from the generative HMM kinesin stepping model. We 

can see that the offset-corrected underlying piecewise-constant signal (solid black line) 

lies almost perfectly on integer multiples of 16.4 nm.  

 

Figure 2.3: Example result of offset detection and correction. Simulated on-axis distance time series from 
generative hidden Markov model for kinesin stepping plus an arbitrary offset, ɤ, (dotted cyan line), and 

offset underlying piecewise-constant signal (dotted black line). Identical time series (red line) and 

underlying piecewise-constant signal (solid black line) corrected by estimated offset, ɤô. 

 

2.1.5 Iterative Continuous Viterbi Algorithm (ICV)  

Thus far, the value of ŭ used in generating observation sequences has also been assumed 

when constructing a modified HMM emission matrix for input to the Viterbi algorithm. 

For experimental single-molecule motility data, the true ŭ value is unknown. In order for 

the Viterbi algorithm to function as a reliable step detection algorithm, it is necessary for 
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the modified HMM emission matrix to be constructed using an accurate ŭ value. To solve 

this problem, we can iterate the continuous Viterbi algorithm over many different 

possible ŭ values. The Viterbi path iteration that yields the lowest mean squared error fit 

with respect to the input observation sequence, y, should be produced by the best 

approximation of  the true ŭ value. Therefore, the Viterbi results that yield the least mean 

squared error fit are interpreted as the model-dependent step detection results (see 

example results, Figure 2.4).  

 

Figure 2.4: Example of iterative continuous Viterbi (ICV) algorithm step detection results (green line) on 

simulated on-axis distance time series (red line) produced by the generative hidden Markov model for 

kinesin stepping with ŭ = 4 nm. Underlying piecewise-constant signal from simulation shown with black 

line. Figure inset: mean squared errors of Viterbi results for each of the twenty ŭ values tested. Green spot 

indicates the optimal value, ŭô (4.3 nm), i.e. ŭ with minimum mean squared error. The hidden state path 
given this ŭô = 4.3 nm is the sequence returned by the iterative continuous Viterbi algorithm. 
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2.2 Theoretical Kinesin Motor Model 

Let the following hidden Markov model be the generative model for observed on-axis 

positon of a theoretical kinesin motor based on the conservative model (Figure 1.2) 

imaged at f = 1000 frames/second for T = 500 frames: 

. τȠ   5
ρ

.
Ƞ 

ʇ πȢρυȠ   ʂ πȢωωȠ 

Ë ʇȠ    Ë ρυ Í-  ʇȠ    Ë ρπ ʇȠ    Ë ʇȠ 

Ἃ

ụ
Ụ
Ụ
ợ
ρ Ë ʂË π ρ ʂË

ρ ʂË ρ Ë ʂË π

π ρ ʂË ρ Ë ʂË

ʂË π ρ ʂË ρ Ë Ứ
ủ
ủ
Ủ

 

ɿ υ ÎÍȠ   ʎ τ ÎÍȠ 

ἌἙ

π ʎ
ɿ ʎ
ρφȢτ ʎ
ρφȢτ ʎ

 

Where k1 å kdetach, k2 å kon
ATP, k3 å khydrolysis, k4 å kdetach (see Figure 1.2), and BM denotes 

the emission matrix during the mobile sequence of stepping (see Figures 1.3, 1.5). 

2.2.1 Detecting the ATP-Waiting State 

Given observation sequences generated by this model with arbitrary offset, ɤ, we can 

show that by performing offset correction followed by iterating the continuous Viterbi 

algorithm over modified hidden Markov models with varying ŭ values as described in 

Section 2.1.5 (ICV algorithm), it is possible to uncover certain parameters of the stepping 

cycle of this theoretical kinesin motor. 



 

   

28 

 

 

Figure 2.5: On-axis position observation sequences (grey lines) produced by the theoretical kinesin 

generative model at [ATP] = 50 uM. Iterative continuous Viterbi (ICV) step detection results have been 

separated into even and odd plateau groups. The plateau group with the greater mean plateau size within a 

given trace is designated as the long plateaus group (long = cyan lines; short = blue lines). Underlying 

piecewise-constant signal shown with black lines. Traces have been shifted after step detection to avoid 

overlay. 

In general, with a large enough set of observation sequences at a given ATP 

concentration (see Figure 2.5), the combined ICV step detection results will converge to 

functions of the generative model parameters. The combined ICV results for step size and 

plateau size from ten independent observation sequences at [ATP] = 50 uM are shown in 

Figure 2.6.  
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Figure 2.6: Step size and plateau size results from iterative continuous Viterbi (ICV) fitting of ten 

observation sequences (as in Figure 2.5) produced by the generative model at [ATP] = 50 uM. Plateau sizes 

have been grouped into long and short plateau sizes (i.e. dwell times of the compressed and ATP-waiting 

states, respectively). Step sizes have been grouped according to the identity of the plateau that preceded 

them. Mean plateau sizes are 37.8 time points (long) and 8.9 time points (short). Step size modes from 

kernel density estimation are 5.4 nm (following long plateaus) and 10.5 nm (following short plateaus).    

We can see that the modes of step sizes match well to the two expected step sizes; ŭ = 5 

nm and 16.4 ï ŭ = 11.4 nm. Additionally, we can show that the means of the long and 

short plateau size distributions match well to the expectations for dwell times. The 

expected duration spent in hidden state, n, of the generative model before transitioning 

out will be the time constant, Űn (units = time points). The value for Űn is given by the 

inverse of the sum of all transition probabilities that result in leaving state n: 

ʐ
ρ

В Áȟ

ρ

ρ Áȟ
 

As defined by the generative model for the theoretical kinesin motor: 

ʐ
ρ

Ë
 

Recall that in the modified model used in ICV step detection, consecutive hidden states 

of the generative model are compressed, while the ATP-waiting state (state 2M) is left 

independent. Therefore, the time constant of the compressed state will be relatively long, 
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Űlong, due to being the sum of several first-order-process time constants, while the time 

constant of the ATP-waiting state will be relatively short, Űshort. Hidden state sequences 

returned by the ICV algorithm are forced to alternate between the compressed state and 

the ATP-waiting state. Therefore, even and odd plateau sizes can be meaningfully 

grouped (see plateau size distributions, Figure 2.6), and the means of these distributions 

should match to Űlong and Űshort. For the results in Figure 2.6, we see that they do: 

ʐ ʐ
ρ

Ë

ρ

ρυ Í-  πȢπυπ Í-  ʇ
ψȢψψ ÔÉÍÅ ÐÏÉÎÔÓ 

%Ἰ ψȢω 

ʐ ʐ ʐ ʐ ʐ ʐ ʐ ʐ σφȢψψ ÔÉÍÅ ÐÏÉÎÔÓ 

%Ἰ σχȢψ ÔÉÍÅ ÐÏÉÎÔÓ 

We can also see that the short plateau size distribution appears to be exponentially 

distributed while the long plateau size distribution resembles a higher order gamma 

distribution (Figure 2.6). This is what should be expected given the processes that define 

the underlying piecewise-constant signal. 

Further support that the short plateaus represent the ATP-waiting state can be provided 

by repeating this process of observation sequence generation and ICV analysis across a 

range of ATP concentrations. As [ATP] is increased, the rate of ATP binding, k2, 

increases proportionally, so short plateau durations should become even shorter. Figure 

2.7 shows the results of this analysis. We can see that in the low [ATP] range, the inverse 

of mean short plateau sizes, kshort (i.e. k2), increases proportionally and falls on the 

expected line defined by the generative model parameters. As [ATP] reaches about 100 

uM, the values for kshort flatten out due to the ICV algorithm failing to fit exceedingly 

short plateaus consistently. Nevertheless, a clear relationship between mean of short 

plateau sizes and [ATP] is evident, which indicates that short plateaus contain the ATP-

waiting state as a hidden state.  
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Figure 2.7: Iterated continuous Viterbi (ICV) results across a range of ATP concentrations. The left plot 

shows the inverse of mean short plateau size as a function of [ATP] (kshort = 1/E[pshort]). The middle and 

right plots show kernel density estimation modes of step sizes that follow long plateaus and short plateaus, 

respectively, as a function of [ATP]. Blue lines indicate ICV step detection results. Red lines indicate 

results given the true hidden state path. Green lines indicate the expected values given the generative model 

parameters.   

2.2.2 ATPɔS Experiments to Probe Neck-Linker Docking 

It is possible that a kinesin motor may have a different generative model than the one 

described at the beginning of this Section 2.2. For example, a theoretical kinesin motor 

may require ATP hydrolysis before neck-linker docking occurs (compare Figures 2.8, 

1.2): 

 

Figure 2.8: Alternate kinesin stepping model in which ATP hydrolysis is required before neck-linker 

docking. 

This model would be defined by the following, slightly altered emission matrix where b31 

is now set to ŭ. Additionally, this will result in state 3M of the generative model 

transferring from the large compressed state to the formerly stand-alone ATP-waiting 
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state. That is, the short plateaus will now consist of the ATP-waiting state (2M) as well as 

the hydrolysis-waiting state (3M).  

ἌἙ

π ʎ
ɿ ʎ
ɿ ʎ
ρφȢτ ʎ

 

The slow-hydrolysable ATP analog, ATP‎S, can be used to test if this alternate model 

applies for a given theoretical kinesin. In the subsequent analysis we will assume 

hydrolysis of ATP‎S is 5-fold slower than ATP; k3,ATP = 5*k3,ATP‎S, and that ATP‎S and 

ATP have equal binding rates; k2,ATP = k2,ATP‎S. As nucleotide concentration (ATP or 

ATP‎S) is increased, the duration of the ATP-waiting state (2M) decreases since 

nucleotide binding will occur more rapidly. Therefore, in the alternate model, where short 

plateaus consist of both 2M and 3M, this increase of nucleotide concentration will lead to 

minimized 2M state contributions towards plateau size. At high enough nucleotide 

concentrations, the 3M state (hydrolysis-waiting state) will then dominate the plateau size. 

Consequently, if a given kinesin motor steps according to the alternate model, then high 

ATP‎S concentrations will yield much longer plateau sizes than high ATP concentrations 

(i.e. kshort in ATP‎S < kshort ATP). If the given motor instead steps according to the 

original model, then no difference in trends of short plateau sizes should be evident 

between ATP and ATP‎S (see Figure 2.9).   
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Figure 2.9: Inverse mean of short plateau sizes (kshort = 1/E[pshort]) as a function of [ATP] (solid black) and 

[ATP‎S] (dotted grey). Left plot indicates ICV results from sets of observation sequences produced by the 

original model in which ATP/ATP‎S binding causes immediate neck-linker docking. Right plot indicates 

ICV results from observation sequences in which neck-linker docking follows hydrolysis of bound-head 

ATP/ATP‎S. 

2.3 Discussion 

Given sets of experimental single-molecule on-axis position traces at different ATP 

concentrations, this ICV analysis should theoretically be able to identify the nature of the 

ATP-waiting state. That is, it should identify an associated displacement distance, ŭ, with 

considerable accuracy. It should also be able to elucidate whether or not subsequent neck-

linker docking occurs immediately with binding of ATP, or if ATP hydrolysis is required 

first. Together, this knowledge would be critical for determining the complete mechanism 

of different kinesin motors. 

The key advantage of the ICV algorithm applied to single-molecule kinesin stepping 

data, is that this step detection algorithm is able to keep track of the ñphaseò of plateaus. 

That is, by assuming the microtubule lattice spacing, odd and even plateau sizes are in 

theory guaranteed to represent two separate plateau size populations (ATP-waiting state 

plateaus and compressed state plateaus in the case of the original model, Figure 1.2). Step 

sizes are also separable in this way. This property allows for these distributions to be 

analyzed individually, which renders the process of inferring characteristics of the 

stepping mechanism drastically simpler and more accurate. It is not possible for a model-

independent step detection algorithm to achieve this property because even a single false 
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positive or missed step will lose track of the plateau phase. Since analyzing odd and even 

plateaus (or step sizes) will  be meaningless in this case, we would be forced to deal with 

mixed distributions that will generally have considerable overlap.  

The key shortfall of the current ICV algorithm implementation is that the microtubule 

lattice must be assumed beforehand, and that the spacing does not allow fluctuations. The 

processes of offset detection and emission matrix construction currently require an 

assumed integer-multiple-repeat for lattice spacing which, in this thesis, has been 

assumed to be exactly 16.4 nm up until this point. Because this value is not perfectly 

accurate, the mean values of the modified hidden Markov model emission matrix used in 

the ICV algorithm are guaranteed to diverge from the true microtubule lattice centers 

given a long enough observation sequence. This will result in the loss of plateau phase 

fidelity. Although phase is kept successfully with shorter traces, relaxing the constraint of 

an integer-multiple-repeat for the emission matrix mean values is a feasible next step for 

improving the ICV algorithm.        

Until this point, only the on-microtubule-axis position of the labeled motor domain has 

been considered as the observation sequence. One of the attractive features of the 

continuous Viterbi algorithm is its ability to be adapted relatively easily to accept a two-

dimensional observation sequence (on-axis and off-axis position) and use this 

information simultaneously to determine the most-probable hidden state path. This can be 

done by changing the univariate normal probability density function shown in Equation 

2.1 (Section 2.1.2) to the bivariate normal density function. The emission matrix would 

then require an additional column to provide the expected values for off-axis position 

given the current hidden state (0 or Ů nm, see Figures 1.3, 1.5), while the same variance 

parameter may be assumed for both dimensions. By considering off-axis position, it 

would then be theoretically possible to detect additional hidden states (i.e. a 3-unique-

state modified hidden Markov model for ICV detection rather than the 2-unique-state 

model). The 3M and 4M states would form a new state discernable from the compressed 

state (4M to 1S transition detectable by off-axis transition from Ů to 0 nm), and critical 

information related to kattach could be inferred with ATP‎S experiments in a similar 

fashion to the neck-linker docking analysis described above. 
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Chapter 3  

Results: Cellulose Synthesis Complex 

The cellulose synthesis work presented here was recently published [1]. N.C.D. 

developed the t-test-based step detection algorithms and the photobleach rate estimation 

and correction process. Y.C. developed the Bayesian Information Criterion (BIC)-based 

algorithms, Gaussian Mixture Model fitting process, and created the figures. Y.C. and 

C.T.A. performed raw data collection. All authors contributed to the design of 

experiments, overall data analysis approach, and writing of the paper.  

 

3.1 Imaging CESA Complexes in Arabidopsis Seedlings 

To estimate the copy number of GFP-AtCESA3 in membrane-localized particles in living 

cells of Arabidopsis thaliana, 5-to-6-day-old light-grown seedlings expressing GFP-

AtCESA3 [49] were mounted in an imaging chamber and recordings of GFP bleaching 

were carried out in hypocotyl cells containing low densities of GFP-AtCESA3 particles 

(see Movie S1 of [1] Supplemental Information). Imaging was performed using variable-

angle epifluorescence microscopy [67], which like total internal reflection fluorescence 

(TIRF) microscopy reduces background fluorescence but allows for the imaging of 

proteins farther from the coverslip, such as those in the plasma membrane of plant cells 

that are separated from the coverslip by the cell wall [68, 67] (Konopka et al., 2008; 

Konopka and Bednarek, 2008). To quantify photobleaching rates, time lapse recordings 

were collected (Movie S1), and fluorescence intensity traces for individual GFP-

containing particles were measured using ImageJ (see Section 3.8.2). Instead of 

exhibiting discrete steps, the intensity changes during photobleaching for many traces 

appeared to be relatively smooth (Figure 3.1A, Movie S1), suggesting that the number of 

fluorophores per particle is relatively high.  
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Figure 3.1: In vivo photobleaching of GFP-AtCESA3. (A) Photobleaching trace of a single GFP-AtCESA3 

particle in hypocotyl cells of Arabidopsis seedling. Video is recorded at 5 fps and total time is 100 s to 

allow most GFP to be photobleached. Representative Movie S1 is included in Supplementary Data of [1]. 
Inset: ensemble average of 77 photobleaching traces with exponential fit to the data. (B) Quantitative 

model describing photobleaching. The fluorescence signal is assumed to fall over time with constant step 

sizes, matching the quantal fluorescence of a single GFP. The GFP fluorescence and the background signal 

are treated as Gaussian distributions, Normal (ɛ, ů2) and Normal (0, ŭ2), respectively. The time before 

fluorophore bleaching, T, is assumed to be exponentially distributed with mean Ű = 1/ɚ where ɚ is the 

photobleaching rate constant. The signal to noise ratio (SNR) is defined as the step size divided by the 

standard deviation. (C) Simulated photobleaching trace from 12 fluorophores with ɛ = 500 a.u., ů = ŭ = 250 

a.u. (D) Simulated stepping data such as a kinesin walking along a microtubule in and optical trap 

experiment, with ɛ = 1, ů = 1 and 10% backward steps. (Figure from [1], created by Y.C. and N.C.D.) 

The photobleaching rate constant for GFP-AtCESA3 was estimated by ensemble 

averaging all of the photobleaching collected traces and fitting a single exponential 

function using MATLABôs nonlinear least squares method (Figure 3.1A inset). The fitted 

rate of 0.0278 ± 0.0003 s-1 (mean ± SEM of fit, N = 77 traces) is the expected rate of 

photobleaching events regardless of the true number of independent photobleaching units 

present.  
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The experimental background noise was estimated by analyzing the distribution of the 

final plateau variance (as defined by the Tdetector2 step detection algorithm; see below) 

for the 77 measured traces. As expected, the distribution had more than one mode (Figure 

S1 of [1]), due to the fact that complete photobleaching had not occurred in some of the 

traces. Therefore the lowest variance mode was defined as the background variance, 

while the next mode indicates the sum of the background variance plus the variance 

associated with one fluorophore. To allow for more precise quantitative analysis of 

bleaching for multiple fluorophores, we developed a statistical method of photobleaching 

analysis, as described below.  

 

3.2 Generating Simulated Fluorescence Photobleaching Data 

Fluorescence intensity from a single fluorophore is typically described as a Gaussian 

distribution [69] with mean intensity Õ and variance ů2 (Figure 3.1B, inset panel). While 

intensity fluctuations at low photon counts are better modeled as a Poisson distribution, 

added signal variance due to rapid fluorophore blinking events, fluctuations in the 

background signal, and camera read noise justify the assumption that the signal is 

Gaussian. We postulate that the fluorophores are independent of one another and thus the 

intensity fluctuations for each fluorophore are uncorrelated with those of neighboring 

fluorophores. Thus, when n fluorophores are localized in a diffraction-limited spot, the 

overall intensity will be the sum of the mean intensities (Itot = n*µ), and the overall 

variance will be the sum of the variances plus the variance of the background, ŭ2 (ůtot
2 = 

n*ů2 + ŭ2). Notably, in photobleaching traces the variance scales with signal intensity, 

and if background fluctuations are low and/or signal variance is high, then variance is 

proportional to intensity. This situation contrasts with typical positional step detection 

problems (for instance, identifying step displacements for motor proteins), where the 

variance is independent of position and is thus constant for each step [23]. As a result of 

this scaled variance, with each intensity drop during a photobleaching experiment, there 

will be an associated decrease in the signal variance. 
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Another aspect of multi-fluorophore photobleaching data that complicates the 

identification of bleaching steps is the fact that the frequency of photobleaching events 

for an ensemble of fluorophores changes over time. Photobleaching is typically modeled 

as a first order process with rate ɚ and characteristic bleach time T, where ɚ = 1/T. Thus, 

the time it takes for a single fluorophore in a set to bleach will follow an exponential 

distribution with mean of T. If there are n fluorophores in a diffraction-limited spot, then 

the mean time before the first bleaching event will be much faster because any of the 

fluorophores can bleach. Assuming that photobleaching events are independent of one 

another, the time before the first bleaching event will also follow an exponential 

distribution, with a rate equal to n*ɚ, and the mean time before the first photobleaching 

event will be T/n. Thus, at the beginning of an experiment, bleaching events will be more 

frequent and will be associated with larger signal variance, making it difficult to identify 

individual events. 

To assess the ability of step detection algorithms to detect photobleaching events, we 

simulated a photobleaching signal for a complex containing 12 GFP fluorophores (Figure 

3.1C), each having a mean intensity ɛ and variance ů2 that approximated the GFP-

AtCESA3 intensity trace shown in Figure 3.1A. In parallel, we simulated a signal having 

a uniform stepping rate and a constant variance, similar to motor protein displacement 

signals (Figure 3.1D). Datasets with various SNR values were generated to represent a 

range of possible experimental scenarios. For motor stepping data (Figure 3.1D), the 

SNR is defined as ratio of step size over the standard deviation (ɛ/ů). Defining SNR for 

bleaching traces, however, is complicated by the fact that the variance changes with the 

number of active fluorophores. Thus, the SNR for the photobleaching data was defined as 

the mean intensity ɛ of a single fluorophore divided by its standard deviation ů, (ɛ/ů). 

The variance of the background signal, ŭ2, was chosen to equal the variance of a single 

fluorophore, ů2. Different SNR values were achieved by setting ɛ = 500 a.u. and varying 

the standard deviation. To objectively identify each bleaching event, we developed 

multiple step detection algorithms that use statistical analysis to detect photobleaching 

events and compared their performance using the simulated data. 
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3.3 Using Step Detection Algorithms to Identify Bleaching Events 

To analyze our photobleaching data, we developed two step detection algorithms that use 

statistical tests to identify steps (see Sections 3.8.3 ï 3.8.8). For each method, approaches 

were developed that assumed the different plateau regions in the signal had either equal 

or unequal variances. The first method is based on the Bayesian Information Criterion 

(BIC; [70]) and predicts steps purely based on statistical information in the data. Kalafut 

and Visscher used this approach for step detection previously, but assumed that the 

variance within each step was constant [62]. We modified this implementation to allow 

for changes in variance. A second algorithm was developed based on the two-sample t-

test with or without assumed equal variance. These four algorithms are named Bdetector1 

and Bdetector2 for the BIC-based methods assuming equal or unequal variance 

respectively, and Tdetector1 and Tdetector2 for the t-test based methods assuming equal 

or unequal variance. 

 

Figure 3.2: Step detection algorithms. (A-C): Bdetector algorithm. (A) To fit the first step, Bdetector scans 
all possible change points and calculates a corresponding BIC value at each position (blue line). If the 

minimum BIC is lower than the BIC value for not adding a step (green line), a step is added (red line) at the 

position where the minimum BIC occurs. (B) Keeping the first step, Bdetector rescans all possible change 
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points and calculates new corresponding BIC values (blue line), and adds a second step at the position of 

the minimum BIC (red line). This process is iteratively repeated. (C) When the minimum BIC value for 

adding an additional step (blue line) is not lower than the current BIC value (green line), the program 

terminates. (D-F): Tdetector algorithm where, in contrast to the BIC, a higher significance for the t-test 

indicates a better fit. (D) To add the first step, the significance at each possible change point is calculated 

(blue line) and is compared to the threshold (green line). Provided it is above the significance threshold, a 
step is added at the point of maximum significance (red line). (E) The data are split into two segments at 

the detected change point and the procedure is repeated for each segment (splitting the right segment into 

two in this case). This process is repeated for each new segment until adding a step does result in a 

significance value greater than the threshold. The algorithm then moves on to another segment. (F) When 

adding a change point fails to raise the significance above the threshold for every segment, the program 

terminates. (Figure from [1], created by Y.C. with assistance from N.C.D.) 

Both pairs of algorithms use a conceptually similar step detection approach of iteratively 

searching for change points until no statistically significant step can be added (Figure 3.2 

and Supplemental Movie S2 of [1]). The algorithms are summarized as follows: 

(1) The data are scanned, and for each potential time at which a step may occur, 

the mean and variance is calculated for the time preceding the step and the time 

following the step.  

(2) Using these means and associated variances, a BIC value (Bdetector) or the 

significance from a two-sample t-test (Tdetector) is calculated and used to 

identify the optimal step. The optimal step is the one that leads to the lowest BIC 

value (Bdetector) or the largest significance (Tdetector). If no step leads to a BIC 

value smaller than the current one or a significance value above a defined 

threshold then no step is chosen.  

(3) The process is repeated until no additional statistically significant steps can be 

detected, at which point it terminates. 

To validate their performance, the step detection algorithms were first tested on simulated 

stepping data having SNR values from 0.4 to 5 (Figure 3.3). The step times were sampled 

from an exponential distribution with an expected value of 100 time points per plateau, 

with 90% of steps being a unit step increase and 10% being a unit step decrease. At high 

SNR values, the mean predicted step size was close to the actual value, but with 

diminishing SNR, an additional peak corresponding to twice the unitary step size 

emerged (Figure 3.3A, and Figure S2 of [1]). We defined two metrics, sensitivity and 

precision to assess the performance of the algorithms. Sensitivity is defined as the 
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proportion of the true steps that are identified by the step detection algorithm. Precision is 

defined as the proportion of identified steps that are true steps (see Section 3.8.10). 

Overfitting will lead to high sensitivity and low precision (false positives), while 

underfitting results in high precision but low sensitivity (missed events). With SNR 

values above 2, all four algorithms performed well and had both high sensitivity and 

precision values (Figure 3.3, B and C). Reasonable predictions were obtained at SNR 

values between 1 and 2, but sensitivity and precision both fell sharply for SNR values 

below 1. The BIC-based algorithms displayed a tradeoff between sensitivity and 

precision, with Bdetector1 (constant variance) having higher sensitivity and Bdetector2 

(unequal variance) having higher precision (Figure 3.3, B and C: blue and green plots). In 

contrast, for the two-sample t-test methods both Tdetector1 (assumed constant variance) 

and Tedector2 (assumed unequal variance) performed similarly (Figure 3.3, B and C: red 

and black plots).  

 

Figure 3.3: Detecting steps in simulated stepping data. (A) Histograms of step sizes predicted by all step 

detection algorithms. The simulated data have uniform step sizes of 1 with 10% backward steps and SNR 


































































































