

THE PENNSYLVANIA STATE UNIVERSITY

SCHREYER HONORS COLLEGE

DEPARTMENT OF BIOMEDICAL ENGINEERING

SINGLE-MOLECULE MICROSCOPY STEP DETECTION ALGORITHMS:

KINESIN MOTOR PROTEINS AND

THE CELLULOSE SYNTHESIS COMPLEX

NATHAN DEFFENBAUGH

SPRING 2015

A thesis

submitted in partial fulfillment

of the requirements

for a baccalaureate degree

in Bioengineering

with honors in Bioengineering

Reviewed and approved* by the following:

William O. Hancock

Professor of Biomedical Engineering

Thesis Supervisor, Honors Adviser

Peter J. Butler

Professor of Biomedical Engineering

Faculty Reader

Justin L. Brown

Assistant Professor of Biomedical Engineering

Faculty Reader

* Signatures are on file in the Schreyer Honors College.

i

ABSTRACT

Single-molecule microscopy is a versatile tool that can be used to investigate the stepping

mechanism of motor proteins such as kinesin, and to determine the copy number of

subunits within membrane bound proteins such as the cellulose synthesis complex. Step

detection algorithms provide a means for uncovering key information within single-

molecule microscopy data collected from these systems.

Kinesin proteins are intracellular molecular motors that utilize energy from adenosine

triphosphate (ATP) in order to transmit force and transport cellular cargo along

microtubule tracks. Despite the current wealth of knowledge regarding these proteins,

many unresolved mechanisms of the kinesin stepping cycle remain. Step detection

algorithms that recover underlying piecewise-constant signals within noise-corrupted,

single-molecule time series position data provide a strategy for resolving these

mechanisms. The work presented in this thesis shows that by treating a positional time

series as an observation sequence from a hidden Markov model, we can apply the model-

dependent, continuous Viterbi algorithm in order to determine the most likely hidden

state sequence of the tracked motor protein. This approach has the critical capability of

keeping “phase” of plateaus within a given time series, which allows for more accurate

determination of kinetic rates and motor domain displacements associated with state

transitions during stepping.

In growing plant cells, cellulose synthesis complexes (CSCs) exist in the plasma

membrane as six-lobed rosettes that contain different cellulose synthase (CESA)

isoforms, but the number and stoichiometry of CESAs in each CSC are unknown. To

begin to address this question, we performed photobleaching of GFP-tagged AtCESA3-

containing particles in living Arabidopsis thaliana cells followed by step detection

analysis to estimate copy number. The step detection algorithms introduced in this work

account for changes in signal variance due to changing numbers of fluorophores in order

to avoid overfitting. These procedures can be applied to photobleaching data for any

complex with large numbers of fluorescently tagged subunits, providing a new analytical

tool with which to probe complex composition and stoichiometry.

ii

TABLE OF CONTENTS

LIST OF FIGURES ... iv

LIST OF TABLES .. xi

Chapter 1 Introduction ...1

1.1 Kinesin Motor Proteins ..2

1.1.1 Physiological Relevance ..3

1.1.2 Kinesin Stepping Cycle ...3

1.1.3 Unresolved Mechanisms..6

1.1.4 Single-Molecule Motility Assays ...8

1.2 Cellulose Synthesis Complex ... 12

1.3 Step Detection Algorithms ... 15

Chapter 2 Results: Kinesin Motor Proteins.. 17

2.1 Model-Dependent Step Detection... 17

2.1.1 Generative Hidden Markov Model for Kinesin Single-Molecule Assays........ 17

2.1.2 Continuous Viterbi Algorithm ... 20

2.1.3 Modified Hidden Markov Model Construction for Viterbi Algorithm 21

2.1.4 Observation Sequence Offset Detection ... 23

2.1.5 Iterative Continuous Viterbi Algorithm (ICV) ... 25

2.2 Theoretical Kinesin Motor Model .. 27

2.2.1 Detecting the ATP-Waiting State... 27

2.2.2 ATPγS Experiments to Probe Neck-Linker Docking 31

2.3 Discussion ... 33

Chapter 3 Results: Cellulose Synthesis Complex ... 35

3.1 Imaging CESA Complexes in Arabidopsis Seedlings ... 35

3.2 Generating Simulated Fluorescence Photobleaching Data 37

3.3 Using Step Detection Algorithms to Identify Bleaching Events 39

iii

3.4 Determining Unitary Step Size from Step Detection Results 43

3.5 Using Unitary Step Size to Estimate Fluorophore Copy Number 47

3.6 Estimating Copy Number for Kinesin-4XGFP ... 48

3.7 Estimating Copy Number for GFP-AtCESA3 .. 50

3.8 Materials and Methods ... 52

3.8.1 Photobleaching Experiments ... 52

3.8.2 Image Analysis .. 52

3.8.3 Tdetector1 Algorithm .. 53

3.8.4 Tdetector2 Algorithm .. 54

3.8.5 Calculation of Variance of Corrupting Noise ... 55

3.8.6 Difference of Means Significance Testing ... 58

3.8.7 Differences of Variances ... 60

3.8.8 Bdetector Algorithms .. 64

3.8.9 Photobleaching Rate Estimation .. 65

3.8.10 Definition of Sensitivity and Precision for Step Detection Algorithms 65

3.8.11 Density Estimation .. 66

3.9 Discussion ... 67

Chapter 4 Conclusion .. 71

Appendix A: Tdetector Step Detection Algorithm.. 72

Appendix B: Iterative Continuous Viterbi Algorithm ... 81

Appendix C: Differences of Variance; Pairwise Differences vs. χ2 87

REFERENCES .. 89

iv

LIST OF FIGURES

Figure 1.1: Schematic from [9] of conventional kinesin (kinesin-1) cargo transport along

a microtubule with approximate scaling. ...2

Figure 1.2: Conservative model for conventional kinesin stepping cycle adapted from

[33]. Red and blue triangular objects represent kinesin motor domains (heads), bold

black connecting lines represent the neck-linker and beginning of coiled-coil stalk

domains. “D” denotes the ADP state, “DP” denotes the ADP and inorganic phosphate

(Pi) state, “T” denotes the ATP state, and Φ denotes the no-nucleotide state. Kinetic

rates of the cycle are denoted by kx. Grey and white tracks represent microtubule

binding sites (tubulin dimers). ...5

Figure 1.3: Progression of kinesin stepping cycle with respective on-microtubule-axis and

off-axis distances of the red, trailing motor domain (left-most in state 1). Progression

of states is from left to right. Note that states 1, 2, 3, and 4 are identical to the

conservative model of Figure 1.2. “δ” represents the unknown on-axis displacement

that results from trailing head detachment (state 1 to 2). “ε” represents the unknown

off-axis displacement associated with a head being unbound from the microtubule.

The “↦ M” and “↦ S” denote the beginning of the mobile and stable sequences of the

initial trailing (red) motor domain. For homodimeric motors like kinesin-1 the M and

S sequences will be identical processes. ..6

Figure 1.4: Schematic (top) and a selected region of typical 2D image data (bottom) of a

kinesin single-molecule motility assay. Viewpoint is normal to the cover slip surface.

Motors and microtubules in schematic diagram are not to scale. Gold spots on tethered

heads represent labeling of motor domains (N-terminal labeling).9

Figure 1.5: Simulation of positional time series signals (of red motor domain) from

single-molecule kinesin motility assays. Note that consecutive states 3M, 4M, 1S, 2S, 3S,

4S, and 1M share the same on-axis position in this case (where subscript denotes either

being part of the mobile or stable sequence). ... 10

v

Figure 1.6: Piecewise-constant signal without noise ... 15

Figure 1.7: Piecewise-constant signal hidden in white noise (σ = 0.25) 16

Figure 2.1: Schematic of generative hidden Markov model and simulated series for

observed on-axis distance. Numbered nodes represent the set of hidden states

(numbered according to model in Figure 1.2), connecting arrows represent elements of

the transition matrix, A. Normal distribution parameter elements of the emission

matrix, B, including their appropriate corrections (multiples of the microtubule lattice

spacing, 16.4 nm) are shown to the right of the graph. ... 19

Figure 2.2: Observation sequence produced by generative hidden Markov model for

kinesin stepping (cyan line) where δ = 4 nm. Updated mean values of the generated

true hidden state path (dotted black line). Mean values of the most likely modified

hidden state path as returned by the continuous Viterbi algorithm (red line). 23

Figure 2.3: Example result of offset detection and correction. Simulated on-axis distance

time series from generative hidden Markov model for kinesin stepping plus an

arbitrary offset, ω, (dotted cyan line), and offset underlying piecewise-constant signal

(dotted black line). Identical time series (red line) and underlying piecewise-constant

signal (solid black line) corrected by estimated offset, ω’. ... 25

Figure 2.4: Example of iterative continuous Viterbi (ICV) algorithm step detection results

(green line) on simulated on-axis distance time series (red line) produced by the

generative hidden Markov model for kinesin stepping with δ = 4 nm. Underlying

piecewise-constant signal from simulation shown with black line. Figure inset: mean

squared errors of Viterbi results for each of the twenty δ values tested. Green spot

indicates the optimal value, δ’ (4.3 nm), i.e. δ with minimum mean squared error. The

hidden state path given this δ’ = 4.3 nm is the sequence returned by the iterative

continuous Viterbi algorithm. .. 26

Figure 2.5: On-axis position observation sequences (grey lines) produced by the

theoretical kinesin generative model at [ATP] = 50 uM. Iterative continuous Viterbi

(ICV) step detection results have been separated into even and odd plateau groups.

The plateau group with the greater mean plateau size within a given trace is designated

vi

as the long plateaus group (long = cyan lines; short = blue lines). Underlying

piecewise-constant signal shown with black lines. Traces have been shifted after step

detection to avoid overlay. .. 28

Figure 2.6: Step size and plateau size results from iterative continuous Viterbi (ICV)

fitting of ten observation sequences (as in Figure 2.5) produced by the generative

model at [ATP] = 50 uM. Plateau sizes have been grouped into long and short plateau

sizes (i.e. dwell times of the compressed and ATP-waiting states, respectively). Step

sizes have been grouped according to the identity of the plateau that preceded them.

Mean plateau sizes are 37.8 time points (long) and 8.9 time points (short). Step size

modes from kernel density estimation are 5.4 nm (following long plateaus) and 10.5

nm (following short plateaus). ... 29

Figure 2.7: Iterated continuous Viterbi (ICV) results across a range of ATP

concentrations. The left plot shows the inverse of mean short plateau size as a function

of [ATP] (kshort = 1/E[pshort]). The middle and right plots show kernel density

estimation modes of step sizes that follow long plateaus and short plateaus,

respectively, as a function of [ATP]. Blue lines indicate ICV step detection results.

Red lines indicate results given the true hidden state path. Green lines indicate the

expected values given the generative model parameters. ... 31

Figure 2.8: Alternate kinesin stepping model in which ATP hydrolysis is required before

neck-linker docking. ... 31

Figure 2.9: Inverse mean of short plateau sizes (kshort = 1/E[pshort]) as a function of [ATP]

(solid black) and [ATP𝛾S] (dotted grey). Left plot indicates ICV results from sets of

observation sequences produced by the original model in which ATP/ATP𝛾S binding

causes immediate neck-linker docking. Right plot indicates ICV results from

observation sequences in which neck-linker docking follows hydrolysis of bound-head

ATP/ATP𝛾S. ... 33

Figure 3.1: In vivo photobleaching of GFP-AtCESA3. (A) Photobleaching trace of a

single GFP-AtCESA3 particle in hypocotyl cells of Arabidopsis seedling. Video is

recorded at 5 fps and total time is 100 s to allow most GFP to be photobleached.

Representative Movie S1 is included in Supplementary Data of [1]. Inset: ensemble

vii

average of 77 photobleaching traces with exponential fit to the data. (B) Quantitative

model describing photobleaching. The fluorescence signal is assumed to fall over time

with constant step sizes, matching the quantal fluorescence of a single GFP. The GFP

fluorescence and the background signal are treated as Gaussian distributions, Normal

(μ, σ2) and Normal (0, δ2), respectively. The time before fluorophore bleaching, T, is

assumed to be exponentially distributed with mean τ = 1/λ where λ is the

photobleaching rate constant. The signal to noise ratio (SNR) is defined as the step

size divided by the standard deviation. (C) Simulated photobleaching trace from 12

fluorophores with μ = 500 a.u., σ = δ = 250 a.u. (D) Simulated stepping data such as a

kinesin walking along a microtubule in and optical trap experiment, with μ = 1, σ = 1

and 10% backward steps. (Figure from [1], created by Y.C. and N.C.D.) 36

Figure 3.2: Step detection algorithms. (A-C): Bdetector algorithm. (A) To fit the first

step, Bdetector scans all possible change points and calculates a corresponding BIC

value at each position (blue line). If the minimum BIC is lower than the BIC value for

not adding a step (green line), a step is added (red line) at the position where the

minimum BIC occurs. (B) Keeping the first step, Bdetector rescans all possible change

points and calculates new corresponding BIC values (blue line), and adds a second

step at the position of the minimum BIC (red line). This process is iteratively repeated.

(C) When the minimum BIC value for adding an additional step (blue line) is not

lower than the current BIC value (green line), the program terminates. (D-F):

Tdetector algorithm where, in contrast to the BIC, a higher significance for the t-test

indicates a better fit. (D) To add the first step, the significance at each possible change

point is calculated (blue line) and is compared to the threshold (green line). Provided it

is above the significance threshold, a step is added at the point of maximum

significance (red line). (E) The data are split into two segments at the detected change

point and the procedure is repeated for each segment (splitting the right segment into

two in this case). This process is repeated for each new segment until adding a step

does result in a significance value greater than the threshold. The algorithm then

moves on to another segment. (F) When adding a change point fails to raise the

significance above the threshold for every segment, the program terminates. (Figure

from [1], created by Y.C. with assistance from N.C.D.)... 39

viii

Figure 3.3: Detecting steps in simulated stepping data. (A) Histograms of step sizes

predicted by all step detection algorithms. The simulated data have uniform step sizes

of 1 with 10% backward steps and SNR of 1. Real step sizes are calculated by

comparing the means of plateau regions on either side of a step. The mode at +1

represents forward steps and the mode at -1 represents backward steps. The four

algorithms detect unitary forward and backward steps, but also have modes centered at

+2, corresponding to twice the single step size and representing missed steps. (B)

Sensitivity plots for the four algorithms. The missed steps corresponding to the lower

sensitivity of Bdetector2 can be seen in (A) by the population centered at +2 step size.

(C) Precision plots for the four algorithms. Bdetector1 had problems with overfitting,

resulting in lower precision and a number of steps between 0 and 1 in (A). (Figure

from [1], created by Y.C. with assistance from N.C.D.)... 41

Figure 3.4: Detecting steps in simulated photobleaching data. (A) Simulated

photobleaching data (black) with step detection by the Tdetector2 (red) and Bdetector2

(blue) algorithms. (B, C) Precision and sensitivity plots for the four algorithms. The

two algorithms not assuming equal variance (Bdetector2 and Tdetector2) gave better

precision but missed events, whereas Bdetector1 and Tdetector1 gave better sensitivity

but led to false positives. (Figure from [1], created by Y.C. with assistance from

N.C.D.) ... 42

Figure 3.5: Comparing methods of fitting photobleaching step size distributions to extract

unitary step size. Histograms represent step size distributions from Tdetector2 applied

to simulated photobleaching data with copy number 12 and SNR = 2. The distribution

is made up of 570 detected steps. (A) Fit of two Gaussian functions to the data using a

bin size of 50. Fit parameters are μ1 = 510 a.u., σ1 = 55, μ2 = 836 a.u., and σ2 = 335.

(B) Fit of two Gaussian functions to the data using a bin size of 150. Fit parameters

are μ1 = 568 a.u., σ1 = 67, μ2 = 873 a.u., and σ2 = 342. In both cases fits to more than

two Gaussians did not converge. (C) Identifying modes by KDE. A histogram with bin

size 50 is plotted for the purpose of visual comparison but is not used for fitting.

Smooth curve is the estimation of multiple Gaussians (kernels) by KDE. (Figure from

[1], created by Y.C.) ... 44

ix

Figure 3.6: Step size and copy number determination for simulated photobleaching data.

(A) BIC values using different numbers of Gaussians in the GMM density estimation

for the same distribution used in Figure 3.5. The best fit (smallest BIC value) was

achieved with 5 Gaussians. (B) Corresponding fit of 5 Gaussians to the step size data

(histogram is for display only and is not used by the GMM procedure). Red, green,

yellow, pink, and purple traces represent the five Gaussians in the GMM fit, with

corresponding means of 560, 921, 1376, 1811, 2343 a.u., and relative weights of

0.461, 0.341, 0.162, 0.028, and 0.008. The standard deviation, which is assumed to be

identical for all modes, is 135.9 a.u. Blue line is the overall density. The unitary step

size is calculated as Σ(i = 1 to k) ((Pi * μi)/i), where Pi and μi are the relative weight and

the mean, respectively, of the ith peak, resulting in a value of 528.3 a.u. (C) Predicted

unitary step size as a function of SNR and copy number, demonstrating good

performance for copy numbers of below 12 at SNR of 1 and above, and for copy

number of 20 at SNR of 2 and above. Actual step size in simulated data was 500 a.u.

(D) Predicted copy number from simulated photobleaching data with SNR of 2 and

copy number 12. Peak position from KDE (black line) corresponds to mean copy

number of 12.3. (E) Predicted copy number across different SNR ratios. Similar to the

step size estimate, a break point at SNR below 2 was seen for prediction on copy

number 20. (Figure from [1], created by Y.C. with assistance from N.C.D.) 46

Figure 3.7: Estimating copy number for kinesin-4xGFP. (A) Trace of kinesin-4xGFP

bleaching (black) with steps fitted by Tdetector2 (red). (B) The BIC search leads to a

best fit of k = 4 Gaussians for fitting the step size distribution. (C) Estimating the

unitary step size (60.8 a.u.) from the step size distribution (455 total detected steps).

The mean values of the four modes were 63.9, 109.9, 165.8, and 258.1 a.u., relative

weights were 0.622, 0.289, 0.062, and 0.027, and the SD was 19.6 a.u. (D) Copy

number distribution. There were two peaks, centered at 3.28 and 6.65. These peaks are

consistent with the binomial nature leading to a slight shift from four toward lower

copy number and with a double-aggregate population at roughly twice the copy

number of the first peak. Histograms (black boxes) are also plotted in C and D for

reference but not used in the GMM fitting. (Figure from [1], created by Y.C. with

assistance from N.C.D.) .. 48

x

Figure 3.8: Copy number estimation for GFP-AtCESA3 particles. (A) Trace of GFP-

AtCESA3 photobleaching (black) with steps fitted by Tdetector2 (blue). (B) BIC

values for step detection at increasing number of Gaussians, showing the minimum at

k = 6. (C) Estimation of unitary step size (445.4 a.u.) by GMM based on 730 total

detected steps. Step size distribution was fitted by six Gaussians, shown in red, green,

yellow, pink, and purple. Mean values were 453, 864, 1337, 1799, 2335, and 3082

a.u., relative weights were 0.4953, 0.3325, 0.1252, 0.0367, 0.0074, and 0.0027, and

the SD was 160 a.u. Overall fit from GMM is shown in blue. Histogram (black boxes)

is also plotted for reference but not used in the GMM fitting. (D) Copy number

distribution for GFP-AtCESA3 particles. Two peaks are evident from the histograms,

and fitting two Gaussians (red and green curves) gives means of 9.56 and 23.5 and

ratio of 0.844 and 0.156, with SD of 4.03. (Figure from [1], created by Y.C. with

assistance from N.C.D.) .. 51

Figure 3.9: Plots of theoretical X, Y, Z vectors where σ2 = 1, d = 5, L = 100, and i = 40

 ... 56

xi

LIST OF TABLES

Table 2.1: Summary of single-molecule motility assay hidden Markov model (HMM)

parameters assuming the conservative kinesin stepping model. Table describes the

univariate observation sequence case; observed values represent on-microtubule-axis

distance of an N-terminal-labeled motor domain during processive stepping. 19

Table 2.2: Viterbi algorithm pseudocode for construction of storing matrices T1 and T2.

Categorical emission variables assumed. A[:, n] denotes all rows in the nth column of

matrix A. See Appendix B for complete MATLAB implementation of the continuous

Viterbi algorithm... 20

Table 3.1: Pseudo/MATLAB code of iterative pairwise difference outlier removal 58

Table 3.2: Empirically calculated standard deviation multiplier lookup table for DOM

significance testing. Data vector lengths, L, are rounded values of 2(n/2) where n =

0,1,2, …, 26. Multipliers between given L values can be linearly interpolated with

good reliability. The last two L values in the table are untested extrapolations of the

trend. .. 59

1

Chapter 1

Introduction

This thesis focuses on two separate topics within distinct biological systems: the

mechanism of the kinesin motor protein stepping cycle, and the molecular makeup of the

cellulose synthesis complex. Both topics are similar in that critical information can be

revealed using step detection analysis of single-molecule microscopy data from these

systems. This thesis introduces novel, high-precision step detection algorithms designed

for these specific single-molecule data sets as well as generic time series signals. Chapter

2 investigates the capabilities of these algorithms in uncovering information within

simulated signals of kinesin motor protein stepping. Chapter 3 investigates the

capabilities of these algorithms applied to experimental and simulated cellulose synthesis

complex photobleaching data.

The kinesin work presented here is unpublished. All positional kinesin data presented in

this thesis are from simulations based on: current understanding of the kinesin stepping

cycle, as well as high temporal and high spatial resolution single-molecule kinesin-1

tracking data recently acquired by Keith J. Mickolajczyk [unpublished] using

interferometric scattering microscopy (iSCAT).

The cellulose synthesis work presented here was recently published [1]. N.C.D.

developed the t-test-based step detection algorithms and the photobleach rate estimation

and correction process. Y.C. developed the Bayesian Information Criterion (BIC)-based

algorithms, Gaussian Mixture Model fitting process, and created the figures. Y.C. and

C.T.A. performed raw data collection. All authors contributed to the design of

experiments, overall data analysis approach, and writing of the paper.

2

1.1 Kinesin Motor Proteins

The intracellular molecular motor, kinesin, uses the energy from adenosine triphosphate

(ATP) hydrolysis in order to perform directed transport by taking discrete “steps” along

cytoplasmic filaments called microtubules. The most comprehensively studied kinesin is

kinesin-1, commonly referred to as conventional kinesin. It is a dimer of two identical

polypeptide chains called kinesin heavy chains (KHCs) that bind to two separate

polypeptides called kinesin light chains (KLCs). From N-terminus to C-terminus, a single

KHC consists of: the globular, catalytic motor domain or “head” which binds to the

microtubule and also binds and hydrolyzes ATP; the relatively short “neck-linker” which

tethers the motor domain to the stalk of a dimerized kinesin; and the stalk which is a

relatively long alpha helical chain that facilitates dimerization by forming a coiled-coil

with another KHC stalk [2, 3, 4, 5, 6, 7, 8] (see Figure 1.1, from [9]). KLC tails bind to

the C-terminus of the KHC stalks while also binding to intracellular cargo. KLCs also

play a regulatory role by suppressing futile ATP hydrolysis [10].

Figure 1.1: Schematic from [9] of conventional kinesin (kinesin-1) cargo transport along a microtubule

with approximate scaling.

Processive kinesin stepping is accomplished by head domains alternating between being

in a tight microtubule binding state and a weak microtubule binding state so that one head

can step to the next binding site while one head maintains its connection to the

3

microtubule. This process is analogous to climbing up a ladder using only one’s hands –

each hand alternates between either gripping tightly to a rung of the ladder or letting go to

find the next rung. The ATP hydrolysis cycle and the mechanical strain of the neck-linker

domains provide the queues and communication in this coordinated hand-over-hand

process.

1.1.1 Physiological Relevance

There are many different types of kinesins, and they perform a vast array of critical

cellular tasks [11, 12]. For example, kinesin-1 facilitates anterograde axonal transport by

binding and carrying intracellular cargoes (such as mitochondria, lysosomes, and

endoplasmic reticulum) long distances towards synapses of neurons [13, 8], kinesin-2

participates in the bidirectional intraflagellar transport process [14, 15], and kinesin-5

plays a key role in mitotic spindle formation during the process of cell division [16].

More than one-hundred different kinesins have been identified since the first kinesin

(kinesin-1) was discovered by Vale et al in 1985 [13, 17]. How the many different types

of kinesins’ structures and ATP hydrolysis cycles have been evolutionarily tuned for their

diverse cellular tasks is not well understood.

Kinesin dysfunction has been linked to several neurological disorders including

amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and Charcot-Marie-

Tooth disease [18]. Due to kinesin facilitating mitotic spindle formation, it also has a

highly relevant role in proliferation of cancer cells, and anti-cancer drugs that work by

inhibiting function of mitotic spindle motor (kinesin-5) are being actively pursued [19,

20, 21, 22, 16]. A better understanding of kinesin’s mechanism will have broad impacts

on understanding these physiological problems.

1.1.2 Kinesin Stepping Cycle

Conventional kinesin advances unidirectionally towards the plus-end of a microtubule in

discrete steps. Tubulin dimers, the subunit of the microtubule polymer estimated to have

a spacing of 8.2 nm [23], serve as the binding sites for kinesin heads. Conventional

kinesin has been shown to walk in a “hand-over-hand” fashion [24, 25] which means

each step consists of the trailing head detaching from its microtubule binding site (one

tubulin dimer), moving past the leading bound head, and then binding to the site adjacent

4

to, and in front of, the leading head. Thus, the trailing head moves the length of two

tubulin dimers (16.4 nm) while the leading head remains bound to its site. A single step,

which results in an 8.2 nm mean displacement of the entire kinesin motor, requires the

energy of one hydrolyzed ATP molecule [26, 27]. On average, the motor takes more than

100 steps along the microtubule at a rate of approximately 100 steps per second before

dissociating [27, 28].

In order to step consistently before dissociating, both heads must be highly coordinated

with one another. Without coordination, both states will regularly be in a weak

microtubule binding state at the same time which will result in rapid dissociation of the

entire motor from the microtubule.

Whether a head is in a high or low microtubule affinity state is predominantly determined

by its nucleotide state, which is defined by the form of the nucleotide, if any, that is

bound to the motor domain at a given point in time. Interhead tension giving rise to

gating mechanisms is also believed to control microtubule affinity of the head domains

[29, 30]. Interhead tension is transmitted by the neck-linker domains that join the heads to

the stalk. Recent studies have shown that neck-linker length dictates the unloaded

processivity of many different kinesins – longer, compliant neck-linkers transmit strain

poorly, which diminishes the coordination of their head domains, resulting in shorter run

lengths, while shorter neck-linkers transmit strain efficiently, which improves the

coordination of their head domains, resulting in longer run lengths [31].

A conservative model of kinesin-1 hand-over-hand stepping that is consistent with

experimental kinetics and single-molecule data [32, 30, 28] provides a framework for

understanding the role of the ATP hydrolysis cycle and interhead tension in providing

coordination between heads (Figure 1.2).

5

Figure 1.2: Conservative model for conventional kinesin stepping cycle adapted from [33]. Red and blue

triangular objects represent kinesin motor domains (heads), bold black connecting lines represent the neck-
linker and beginning of coiled-coil stalk domains. “D” denotes the ADP state, “DP” denotes the ADP and

inorganic phosphate (Pi) state, “T” denotes the ATP state, and Φ denotes the no-nucleotide state. Kinetic

rates of the cycle are denoted by kx. Grey and white tracks represent microtubule binding sites (tubulin

dimers).

In this model, when a motor first binds to a microtubule, the binding head promptly

releases its ADP (state 0 to 2 of Figure 1.2), thus changing to the extremely high

microtubule affinity state – the no-nucleotide state. Next, ATP binds to that head (state 2

to 3), inducing a conformational change termed “neck-linker docking” that biases the

trailing, tethered head towards the adjacent plus-end microtubule binding site (state 3).

The bound head then hydrolyzes its ATP, thus entering the ADP.Pi state (state 3 to 4).

The tethered head that had translated towards the plus end via neck-linker docking

undergoes its diffusional search, binds to the microtubule, promptly releases its ADP, and

becomes the new leading head (state 4 to 1). During state 1, the rear-head gating

mechanism suggests that interhead tension accelerates phosphate release and subsequent

trailing head detachment (state 1 to 2). Upon entering state 2, the cycle is back where it

began while the mean position of the entire kinesin motor has advanced 8.2 nm in the

plus end direction.

Despite general agreement with most aspects of this conventional kinesin model among

researchers in the field, there remain many unresolved questions regarding certain of its

6

mechanisms and kinetic rates of state transitions. Furthermore, the stepping cycle varies

between different types of kinesin. Robust models for other kinesin families are not well-

established.

1.1.3 Unresolved Mechanisms

ATP binding is not rate-limiting at normal physiological ATP concentrations (> 1 mM).

This is evident from average velocity measurements of kinesin motility plateauing in the

presence of ATP concentrations in the millimolar range or above (referred to as

“saturating ATP”) [27]. However, one controversial and unresolved question is whether

different types of kinesin sit in a one- or two-head bound state as they wait for ATP to

bind to their front head [34, 35, 36, 37] (state 2 or 2’of Figure 1.3).

Figure 1.3: Progression of kinesin stepping cycle with respective on-microtubule-axis and off-axis

distances of the red, trailing motor domain (left-most in state 1). Progression of states is from left to right.

Note that states 1, 2, 3, and 4 are identical to the conservative model of Figure 1.2. “δ” represents the

unknown on-axis displacement that results from trailing head detachment (state 1 to 2). “ε” represents the

unknown off-axis displacement associated with a head being unbound from the microtubule. The “↦ M”

and “↦ S” denote the beginning of the mobile and stable sequences of the initial trailing (red) motor
domain. For homodimeric motors like kinesin-1 the M and S sequences will be identical processes.

Single-molecule kinesin-1 experiments performed by Yildiz et al. [25], in which a single

head domain was fluorescently labeled and its position tracked with nanometric

7

precision, provided support for a two-head bound waiting state – or at least a state in

which the trailing head did not move noticeably from its previous microtubule binding

site upon dissociation (δ displacement in Figure 1.3 approximately 0 nm). They were able

to fit discrete steps made by their labeled head domain, and they only observed step sizes

deviating around one mode. As commented upon in their analysis, a bimodal distribution

of step sizes (modes of δ nm and 16.4 - δ nm) would be expected if kinesin sat in a

displaced one-head bound state while waiting for ATP binding (see Figure 1.2).

One would not expect δ (displacement from state 1 to 2 of Figure 1.3) to be zero given

that there is expected to be tension within the neck-linker in state 1. Upon trailing head

dissociation the tension should relieve by displacing the trailing head towards the

microtubule plus-end now that it is free to do so. Furthermore, on this scale, since the

neck-linker is not expected to be in a rigid conformation in state 2, thermodynamic

fluctuations alone should displace the mean position of the free head towards the origin

of its tethering (δ of ~ 8 nm). The 2’’-state is not expected to be part of the regular

pathway of processive motors, as it is likely to lead to dissociation via ATP binding and

hydrolysis in the leading head causing both domains to be in weak microtubule binding

states [33]. The 2’-state as a regular two-head-bound ATP-waiting-state is not expected

given that the ADP state is a well-established weak-binding state of conventional kinesin

[38], however it is possible that this particular stage of the cycle is an exception to that

rule. To clarify, the displayed state 1 to 2 transition implies that inorganic phosphate

release leads to immediate detachment of the trailing head, whereas the state 1 to 2’

transition suggests that rapid dissociation of the trailing head does not occur until front-

head ATP binding takes place (state 2’ to 3). It should also be noted that despite states 3

and 4 in this model being in a docked neck-linker conformation, which has been

evolutionarily-tuned to allow the free head to find its next microtubule binding site, the

possibility of their on-axis distance being considerably different than the 16.4 nm

microtubule lattice spacing should not be strictly ruled out. Furthermore, it is not

perfectly clear that neck-linker docking occurs immediately with ATP binding, it may

instead require ATP hydrolysis first (not shown in Figure 1.3, see Section 2.2.2).

8

Another unresolved issue involves the determinants of unloaded and loaded processivity

across different N-terminal kinesins. Unloaded processivity has been shown to strongly

depend on neck-linker length [31] while loaded processivity depends exclusively on the

properties of the catalytic motor domains [39]. However, precise mechanisms to explain

these observations have not been established. Neck-linker length may dictate processivity

by way of accelerating trailing head detachment from state 1 to 2 (i.e. increasing kdetach)

and/or by increasing the rate of tethered head binding, kattach in Figure 1.2, which

transitions the motor out of a potential unbinding opportunity in state 4, to a stable state

1. Loaded processivities are most-likely dictated by kinetic rates of the cycle that

determine the portion of time a motor spends in vulnerable one-head bound states.

The precise coupling of the ATP hydrolysis cycle and stepping cycle is still not well-

established. Single-molecule motility assays – imaged with high-resolution microscopy

techniques that reveal on- and off-axis displacements of labeled kinesin motors

undergoing processive stepping – provide a means for uncovering the characteristics of a

kinesin’s stepping cycle and its mechanism.

1.1.4 Single-Molecule Motility Assays

Single-molecule kinesin motility assays emulate the fundamental processive stepping

behavior of the motor along a microtubule (see Figure 1.4). In these assays, stable

microtubules are fixed to the surface of a microscope coverslip while added motors step

along individual microtubule tracks in an adequate ATP-concentrated and buffered

solution. Total internal reflection fluorescence (TIRF) microscopy is often used to image

these assays since this microscopy technique allows for exclusive collection of emitted

fluorescence near the coverslip surface, therefore reducing unwanted background noise

from the bulk of the sample [40]. In order to image kinesin with TIRF or any other

fluorescence microscopy technique, the protein must be labeled with a fluorophore. The

fluorophore can be located on the N-terminus (motor domain) or the C-terminus (stalk or

tail domain). Emitted light from the fluorophore is collected by the objective lens and

then recorded by the detector (camera). In general, the resulting data from these assays is

in the form of a stack of 2D arrays of pixel intensities representing the viewpoint normal

9

to the coverslip surface at each point in time (i.e. a 3D array where third dimension is

time).

Figure 1.4: Schematic (top) and a selected region of typical 2D image data (bottom) of a kinesin single-

molecule motility assay. Viewpoint is normal to the cover slip surface. Motors and microtubules in

schematic diagram are not to scale. Gold spots on tethered heads represent labeling of motor domains (N-

terminal labeling).

Established image processing techniques allow for 2D arrays of data to be transformed

into time series traces of X- and Y-position for each individual fluorophore in the field of

view [41]. If the motors have been engineered to have an N-terminus label, then a

properly-rotated set of these X- and Y-position vs. time traces represent the on- and off-

axis displacements shown in Figure 1.3.

As with any measurement, the resulting time series signals of position will be corrupted

by some degree of noise. This noise may be due to contributions from background signal,

vibrations of the microscope stage, read noise of the detector, or other sources. For

10

stationary and photostable probes, X- and Y-positional noise after image processing is

well-characterized by a normal distribution of zero mean and some constant variance, σ2.

Xnoise ~ N(0,σ
2)

Ynoise ~ N(0, σ
2)

As a result of noise, the on- and off-axis distances associated with each state of the

stepping cycle will be partially hidden (see simulated signals in Figure 1.5).

Figure 1.5: Simulation of positional time series signals (of red motor domain) from single-molecule kinesin
motility assays. Note that consecutive states 3M, 4M, 1S, 2S, 3S, 4S, and 1M share the same on-axis position

in this case (where subscript denotes either being part of the mobile or stable sequence).

Thus, positional time series signals from single-molecule kinesin motility assays are

analogous to observation values of a hidden Markov model (HMM). An HMM describes

11

a stochastic process in which an object transitions discretely among a set of states, each

with its own probability distribution that defines the likelihood of “emitting” particular

values when the object is in that state [42]. Only the sequence of these emitted values

(which depend only on the current state at that point in the sequence) are observable, the

sequence of states itself is not, hence the states are said to be “hidden.”

Significant advancements in single-molecule imaging technologies, including

interferometric scattering microscopy (iSCAT) [43] and total internal reflection dark-

field microscopy (TIRDFM) [44], are now making it feasible to detect these hidden state

transitions at physiological ATP concentrations. Rather than relatively weak fluorescence

signals, these methods rely on photon scattering, which allows for drastically improved

temporal and spatial resolution of on- and off-axis position during stepping.

If the hidden state sequence can be recovered from these traces, it will reveal a rich

source of information regarding the coupling of the stepping and hydrolysis cycles. Even

with advanced microscopy techniques, noise is relatively substantial compared to kinesin

step displacements. Therefore it is critical to have non-biased, highly-precise algorithms

for uncovering the underlying piecewise-constant signal within noise-corrupted time

series data sets.

12

1.2 Cellulose Synthesis Complex

Cellulose is a major structural component in the plant cell wall that regulates plant cell

growth and morphology and also has extensive commercial value for applications such as

papermaking, textile manufacturing, and biofuel production [45]. However, the molecular

processes involved in the biosynthesis of cellulose, which is composed of large numbers

of β(1,4)-linked glucan chains that associate via hydrogen bonds to form cellulose

microfibrils, remain incompletely understood despite intensive research over the past 15

years [46]. It is generally believed that cellulose is synthesized at the plasma membrane

and extruded into the extracellular space by a cellulose synthesis complex (CSC). Each

CSC contains many GT2-family glucosyltransferases called cellulose synthases (CESAs)

and is assembled into a large integral membrane complex with a membrane-spanning

rosette configuration of approximately 25 nm in diameter [47]. The complex is formed in

the Golgi and transported to the plasma membrane, where it becomes active to synthesize

the glucan chains that constitute the cellulose microfibril [46]. Genetic and biochemical

data indicate that a minimum of three different CESA isoforms are present in each CSC;

in the model plant Arabidopsis thaliana, AtCESA1, AtCESA3, and AtCESA6-type

proteins are present in CSCs that synthesize cellulose in the primary walls of growing

cells, whereas AtCESA4, AtCESA7, and AtCESA8 proteins are present in CSCs during

secondary wall synthesis in cells that have ceased growth [48, 49, 50]. Estimations based

on structural studies of cellulose microfibrils [51, 52] and molecular modeling of CESAs

[53] predict that each CSC is composed of anywhere between 12 and 36 subunits [54,

46]; however, the precise stoichiometry of CESA isoforms within each CSC remains

undefined. Empirically determining protein copy numbers for intact membrane-bound

CSCs through nondestructive means is challenging, especially since reconstituting active,

purified plant CSCs has proven to be extremely difficult [55, 56, 57].

One alternative method of estimating protein copy numbers in integral membrane

complexes is to count bleaching steps for subunits tagged with intrinsically fluorescent

proteins, such as green fluorescent protein (GFP), under total internal reflection

fluorescent (TIRF) microscopy [58]. However, the number of proteins that can be

estimated using current methods is limited: higher copy numbers lead to increases in both

fluctuations in the fluorescence signal and the initial rate of photobleaching, complicating

13

the identification of discrete photobleaching steps. This issue can be addressed by using a

median filter to reduce noise in the data, and constructing pairwise distance distributions

to determine the unitary step size of photobleaching [23, 59]. However, implementing

this approach to estimate subunit number typically requires empirical selection of the

optimal median filter, and still does not readily resolve the precise timing and magnitude

of individual bleaching steps.

Step detection algorithms, which are frequently used to analyze the spatial steps

undertaken by motor proteins, are capable of automatically detecting change points in

data traces [60]. Numerous methods have been developed to detect steps, but most of

them depend heavily upon pre-selected parameters. Notably, the χ2 method developed by

Kerssemakers et al. requires an input of the number of steps to be detected [61], which is

difficult to calculate if prior information about the data is unavailable. Methods based on

information criteria are objective and do not require user-defined input parameters [62].

However, they have only been implemented in step detection algorithms by assuming

that the variance associated with each step is constant [62], which is adequate for single

motor protein stepping but not for photobleaching. Because intensity fluctuations of

individual fluorophores around their means are uncorrelated, the presence of multiple

active fluorophores in a complex will result in a higher variance in the fluorescence

intensity signal than the variance associated with a single fluorophore. Hence, algorithms

designed to detect steps in photobleaching data need to consider these variance changes

to avoid overfitting during periods of high fluorescence intensity. Another complexity in

photobleaching data is that with increasing copy number, there is an increasing

probability that two or more fluorophores will bleach within a short timeframe (e.g.,

within a single acquisition period), which can also skew the step size distribution and

complicate the estimation of a unitary photobleaching step size. Thus, there also exists a

need for the development of objective analytical tools to extract unitary step sizes from

step-size distribution densities that improve upon current methods of data binning and

fitting a user-defined number of Gaussian functions.

In this work we developed a novel procedure that combines step detection and density

estimation to determine unitary step size and copy number from experimental

14

photobleaching data. A mathematical model was constructed to generate simulated

bleaching data, and the simulated data were used to optimize the performance of the step

detection and density estimation algorithms and demonstrate their ability to accurately

retrieve copy numbers from simulated data with varying degrees of experimental noise. A

key goal in developing these tools was to make them as objective as possible by

minimizing the number of user-defined parameters, and it is hoped that these procedures

will establish best practices for analyzing photobleaching data derived from complexes

with high copy numbers. We applied these analytical tools to photobleaching data

collected for GFP-tagged AtCESA3 in intact cells of Arabidopsis thaliana seedlings and

estimated the lower limit of copy number per particle to be ten.

15

1.3 Step Detection Algorithms

Step detection is a common problem encountered in signal processing in which the goal

is to identify discrete changes in the mean of a signal. This problem is trivial if the signal

contains little or no noise, but statistical approaches must be applied when the signal is

hidden in relatively high noise (see Figures 1.6, 1.7). Step detection can be considered a

subset of the more general class of problems referred to as change detection, or change

point detection, in which the aim is to identify discrete changes in many different features

of a signal including: variance, spectral density, correlation, etc. These signal processing

problems are encountered in many engineering disciplines as well as in biophysics,

biology, and bioinformatics [63, 60, 64, 65].

In general, a step detection algorithm is a function that accepts a noise-corrupted time

series signal as input, and then returns a list of points at which there is a discrete change

in the mean value as the output. Specific step detection algorithms differ in the

assumptions made about the features of the input signal. Issues that are considered

include, but are not limited to: the nature of the corrupting noise (e.g. normally

distributed, exponentially distributed, etc.); whether or not the variance of the corrupting

noise changes across the signal; whether or not the signal is autocorrelated; whether or

not an accurate model for the generation of the signal is available.

Figure 1.6: Piecewise-constant signal without noise

0 10 20 30 40 50 60 70 80
-1

0

1

2

3

4

5

index

v
a
lu

e

16

Figure 1.7: Piecewise-constant signal hidden in white noise (σ = 0.25)

The step detection algorithms described in this thesis are designed to accept piecewise-

constant signals hidden in Gaussian white noise (zero or negligible autocorrelation; see

Figure 1.7). The goal of the algorithms is to identify the indices (i.e. time points) at which

there is a significant and discrete change in the mean value of the underlying piecewise

constant signal with respect to noise. The mean value of the sections between these

indices can then be calculated to recover the best estimate of the underlying piecewise-

constant signal. Step detection algorithms that depend on an input hidden Markov model

are presented in Chapter 2 (Section 2.1) and are applied to kinesin motor protein stepping

data. Model-independent algorithms are presented in Chapter 3 (Sections 3.8.3 – 3.8.8)

and are applied to cellulose synthesis complex photobleaching data.

0 10 20 30 40 50 60 70 80
-1

0

1

2

3

4

5

index

v
a
lu

e

17

Chapter 2

Results: Kinesin Motor Proteins

The kinesin work presented here is unpublished. All positional kinesin data presented in

this thesis are from simulations based on: current understanding of the kinesin stepping

cycle, as well as high temporal and high spatial resolution single-molecule kinesin-1

tracking data recently acquired by Keith J. Mickolajczyk [unpublished] using

interferometric scattering microscopy (iSCAT) [43].

2.1 Model-Dependent Step Detection

2.1.1 Generative Hidden Markov Model for Kinesin Single-Molecule Assays

One approach to the step detection problem is to make prior estimations of the model that

generates the observed sequence, namely in the form of a hidden Markov model (HMM).

The Viterbi algorithm [66] can be used to determine the most probable hidden state

sequence, called the Viterbi path, given an observation sequence and a set of model

parameters. Iterating this algorithm through different potential HMM parameters

followed by error calculations of the returned sequences provides an alternate strategy for

uncovering model parameters that is more direct than model-independent step detection

approaches.

Simple HMMs are defined by the following parameters. N: total number of hidden states

in the model. T: total number of observations. x: sequence (T-by-1) of hidden states in

which element xt is the true hidden state at t (any integer 1 to N). y: sequence (T-by-1) of

observation values in which element yt is the observed value at t. A: transition matrix (N-

by-N) in which element aij denotes the probability of the hidden state transitioning from

state i to state j given that it is currently in state i, aij = P(xt+1 = j | xt = i). B: emission

matrix (N-by-“1”) in which element bn is a set of parameters that describe P(yt = z | xt =

n), i.e. the probability that yt takes on any value, z, in the observation variable space

18

given that the current hidden state, xt = n. U: a prior probability matrix (N-by-1) in which

element Un denotes the probability that the initial hidden state, x1, is state n.

As described previously (Section 1.1), observations of single-molecule motor protein

motility assays can be described by an HMM. Let us return to the model of the kinesin

stepping cycle and define it in the context of an HMM (see following Table 2.1 and

Figure 2.1 for summary). For now we will consider only the on-microtubule-axis position

data (see Figure 1.5) as the observation sequence (HMM parameter y). A given value in

the sequence of observed on-axis position of a kinesin motor, yt, should depend only on

the current hidden state of the motor, xt. Thus the set of hidden states is defined by the

states of the kinesin stepping cycle model (N = 4; states 1, 2, 3, and 4 in Figures 1.2, 1.3,

1.5). Kinesin transitions between different states according to different kinetic rate

constants. Therefore the relative magnitudes of these individual rates and the detector

(camera) sampling rate will define the elements of the transition matrix, A. The expected

values of observed on-axis displacement for an N-terminal labeled motor given the state

are determined by the microtubule lattice spacing (16.4 nm) and the displacement

associated with trailing-head detachment (δ in Figure 1.3), though there will be some

degree of randomness due to noise in the measurement. As stated in Chapter 1, the noise

of a given positon signal of a photostable probe in single-molecule microscopy is well-

characterized by the normal distribution with zero mean and some constant variance, σ2.

The emission matrix, B, will contain these necessary parameters (bn1 = mean, µ, and bn2 =

variance, σ2) for the univariate normal distribution associated with hidden state n. Note

that for motors taking multiple steps, bn1 values will require some form of updating. The

probabilities, U, for the initial hidden state would depend on whether the observation

sequence began with the initial binding of the motor to a microtubule, or with the

arbitrary start of detector recording. In the former case, this would suggest that the initial

hidden state is guaranteed to be state 2; U2 = 1 (see model in Figure 1.2). In the latter

case, initial state probability should be a function only of average time spent in each state.

Finally, the value for T is the length of the position observation time series.

19

Table 2.1: Summary of single-molecule motility assay hidden Markov model (HMM) parameters assuming

the conservative kinesin stepping model. Table describes the univariate observation sequence case;

observed values represent on-microtubule-axis distance of an N-terminal-labeled motor domain during

processive stepping.

Symbol HMM parameter Analogous kinesin single-molecule assay parameter

N Number of hidden

states

Number of discrete states in the kinesin stepping cycle

(N = 4)

T Total observations Total number of frames recorded by detector

A Transition matrix Probabilities of transitioning among states as defined

by relative kinetic rates of the kinesin and detector

sampling rate

B Emission matrix Parameters of normal distributions, N(µ,σ2),

describing probability of observing a given on-axis

distance value for each hidden state (note: requires

updating)

U Initial probabilities Probabilities of starting in a given state of the stepping

cycle

Figure 2.1: Schematic of generative hidden Markov model and simulated series for observed on-axis

distance. Numbered nodes represent the set of hidden states (numbered according to model in Figure 1.2),

connecting arrows represent elements of the transition matrix, A. Normal distribution parameter elements

of the emission matrix, B, including their appropriate corrections (multiples of the microtubule lattice

spacing, 16.4 nm) are shown to the right of the graph.

These parameters (summarized in Table 2.1 and Figure 2.1) form a generative model for

an observed on-axis-position time series. Given an observation time series, y, and HMM

parameters A, B, and U, the Viterbi algorithm returns the most likely hidden state

sequence (parameters N and T can be inferred from others). A brief description of the

Viterbi algorithm follows, along with a solution to the emission matrix updating

complication.

20

2.1.2 Continuous Viterbi Algorithm

The Viterbi algorithm [66] is essentially a recursion of Bayes’ Theorem that stores the

most likely previous hidden state, x’t-1, for each possible hidden state at t (stored in N-by-

T matrix, T2). Also stored (in N-by-T matrix, T1) are the probabilities that each most

likely previous hidden state, x’t-1, transitioned to each following hidden state and then

emitted the observed value at t, yt. These storing matrices, T1 and T2, are constructed

sequentially as described by the following pseudocode (Table 2.2). The first column of

storing matrix, T1, is determined from y1 and initial probabilities, U.

Table 2.2: Viterbi algorithm pseudocode for construction of storing matrices T1 and T2. Categorical

emission variables assumed. A[:, n] denotes all rows in the nth column of matrix A. See Appendix B for

complete MATLAB implementation of the continuous Viterbi algorithm.

for t ← 2,3… , T ∶

for n ← 1,2… , N ∶
𝐓𝟏[n, t] ← max (𝐓𝟏[: , t − 1] .∗ 𝐀[: , n] ∗ 𝐁[n, yt])

𝐓𝟐[n, t] ← argmax (𝐓𝟏[: , t − 1] .∗ 𝐀[: , n] ∗ 𝐁[n, yt])

end

end

The emission probability terms, B[n, yt], in Table 2.2 are for categorical or discrete

emission variables. These terms reference the probability mass function described by the

nth row of matrix B. For normally-distributed continuous emission variables, the B[n, yt]

terms can simply be replaced by the density function describing the probability of

observing a certain yt value given the hidden state, n:

P(Y = yt|xt = n,𝐁) =
1

√2π bn2
e
{−

(yt−bn1)
2

(2 bn2)
}
 (2.1)

Once the storing matrices have been calculated, the most likely final hidden state, x’T, is

determined from T1:

x′T = argmax
n

(𝐓𝟏[: , T])

The most likely hidden state path is then determined by tracing back through most likely

previous hidden states stored in T2. This algorithm is guaranteed to return the global

maximum likelihood hidden state sequence.

21

2.1.3 Modified Hidden Markov Model Construction for Viterbi Algorithm

To solve the issue of needing to shift the mean values in the emission matrix to account

for motors taking multiple steps, we can instead construct modified HMM parameters

with an expanded set of hidden states according to the range of the given observation

series, y. Again, we will consider only on-axis position for now.

In this modified hidden state set, we compress consecutive states 3M, 4M, 1S, 2S, 3S, 4S,

and 1M since they will share mean emission values (recall Figure 1.5). Therefore, state

numbers in this modified model no longer correspond to those of the kinesin stepping

cycle presented in Chapter 1. The new number of states will be determined by the

microtubule lattice spacing (16.4 nm) and the rounded maximum and minimum values of

y:

N = 2 (⌈
max(𝐲)

16.4
⌉ − ⌊

min(𝐲)

16.4
⌋ + 1)

Each hidden state number now defines its mean value parameter (bn1). The value for δ is

unknown (see Figure 1.3), while the variance, σ2, can be estimated accurately using the

process described later in Section 3.8.5.

bn1 =

{

 16.4(⌊

min(𝐲)

16.4
⌋ +

n − 1

2
) n is odd

16.4(⌊
min(𝐲)

16.4
⌋ +

n − 2

2
) + δ n is even

bn2 = σ
2

A rough estimation of the transition matrix can be made from the observation sequence as

follows (recall T = length(y), let η = expected ratio of forward steps to backward steps):

λ =
N

T

∀ i ≠ 1: ai,(i−1) = (1 − η)λ

∀ i ∶ ai,i = 1 − λ

∀ i ≠ N: ai,(i+1) = ηλ

22

The transition matrix in the case where N = 5 is shown as an example:

𝐀 =

[

1 − λ λ 0 0 0

(1 − η)λ 1 − λ (η)λ 0 0

0 (1 − η)λ 1 − λ (η)λ 0

0 0 (1 − η)λ 1 − λ (η)λ
0 0 0 λ 1 − λ]

Finally, a uniform initial probability matrix can be assumed:

Un = 1/N

Thus, given an observation sequence produced by the generative HMM model for on-axis

position, the true δ value, and an approximate η value (~ 1), a complete modified HMM

can be constructed. The continuous Viterbi algorithm can then accept these modified

HMM parameters and the observation sequence, and then return the most likely hidden

state path (modified hidden state path). The following Figure 2.2 shows an example

observation sequence produced by the generative HMM model for kinesin stepping, and

the results of the continuous Viterbi algorithm given the modified HMM parameters. We

can see from Figure 2.2 that the continuous Viterbi algorithm with modified HMM

parameters works as a highly precise model-dependent step detection algorithm.

23

Figure 2.2: Observation sequence produced by generative hidden Markov model for kinesin stepping (cyan

line) where δ = 4 nm. Updated mean values of the generated true hidden state path (dotted black line).

Mean values of the most likely modified hidden state path as returned by the continuous Viterbi algorithm

(red line).

So far, two key assumptions about a given observation sequence have been made that

must be addressed: (1) an “offset” of zero is assumed, i.e. the microtubule lattice spacing

is aligned perfectly with increments of 16.4 nm, and (2) the true value for δ is assumed.

Let us first address the offset problem.

2.1.4 Observation Sequence Offset Detection

Microtubule binding sites cannot be visualized in single-molecule microscopy explicitly.

Only the on-axis distance time series obtained from the fluorophore attached to the motor

can be used to estimate the location of microtubule binding sites. The origin of an on-axis

distance time series is arbitrary; often it is defined by the position at the first time point.

Even if this first time point represents the initial binding of the labeled motor to the

microtubule, the error due to measurement noise makes this an inaccurate estimation of a

microtubule binding site center. Thus, an observation sequence is said to have some

offset, ω, relative to the true microtubule binding site spacing (16.4 nm lattice spacing)

0 50 100 150 200 250 300 350 400 450 500

-16.4

0

16.4

32.8

49.2

65.6

82

98.4

114.8

131.2

147.6

164

180.4

196.8

213.2

229.6

246

262.4

time point

o
n
-a

x
is

 d
is

ta
n
c
e
 (

n
m

)

24

that is not expected to be zero. Said another way, plateaus of the underlying piecewise

constant signal will coincide with on-axis distances of ω, ω + 16.4, ω + 32.8 nm and so

on, rather than precisely 0, 16.4, and 32.8 nm. This will render the Viterbi algorithm

unable to produce an accurate or meaningful result. Therefore, it is necessary to first

estimate the value of ω so that the observation sequence can be properly adjusted for

input into the Viterbi algorithm. This can be accomplished using the results from a

model-independent step detection algorithm, such as the Tdetector1 described previously.

Note that the output of model-independent step detection algorithms like the Tdetector,

do not depend on the offset of the input time series data.

The declared step indexes (indexes at which there is a significant change in the mean

value) returned from the Tdetector1 algorithm can be used to create a set of plateaus, p,

where a single plateau, pi, contains the set of points from one declared step index to the

next index. Given the set of plateaus, p, and an assumed repeated spacing (16.4 nm for

microtubule lattice), then the following steps can be taken in order to reliably estimate the

offset, ω:

(1) For a given plateau, pi, find all plateaus, pj, in which the difference of their

mean values is within a certain acceptable range, ξ, of an integer multiple of 16.4.

That is, with pi fixed, find all indices, j, in which the following inequality is true:

E[𝐩𝐢] − E[𝐩𝐣]

16.4
− ‖

E[𝐩𝐢] − E[𝐩𝐣]

16.4
‖ ≤ ξ

(2) Repeat this process for all plateaus in p. Let qi denote the subset of plateaus

that were within range, ξ, of a 16.4-integer-multiple of plateau pi, including pi.

(3) Let qk denote the subset of plateaus that has the most points within all of its

contained plateaus, and that contains at least one additional plateau that is not pk.

(4) For each plateau, pj, in the optimal subset qk, shift all values in pj by the 16.4-

integer-multiple that is nearest the mean of pj

∀ j: 𝐩𝐣 ← (𝐩𝐣 − 16.4 ‖
E[𝐩𝐣]

16.4
‖)

25

(5) Concatenate all shifted plateaus within the optimal plateau subset, qk, into a

single vector of points, Q. Now, an accurate estimate of the offset can be made

from the mean of Q.

ω′ = E[𝐐]

The following Figure 2.3 demonstrates the results of offset detection and correction on a

simulated observation sequence from the generative HMM kinesin stepping model. We

can see that the offset-corrected underlying piecewise-constant signal (solid black line)

lies almost perfectly on integer multiples of 16.4 nm.

Figure 2.3: Example result of offset detection and correction. Simulated on-axis distance time series from
generative hidden Markov model for kinesin stepping plus an arbitrary offset, ω, (dotted cyan line), and

offset underlying piecewise-constant signal (dotted black line). Identical time series (red line) and

underlying piecewise-constant signal (solid black line) corrected by estimated offset, ω’.

2.1.5 Iterative Continuous Viterbi Algorithm (ICV)

Thus far, the value of δ used in generating observation sequences has also been assumed

when constructing a modified HMM emission matrix for input to the Viterbi algorithm.

For experimental single-molecule motility data, the true δ value is unknown. In order for

the Viterbi algorithm to function as a reliable step detection algorithm, it is necessary for

0 50 100 150 200 250 300 350 400 450 500

-16.4

0

16.4

32.8

49.2

65.6

82

98.4

114.8

131.2

147.6

164

180.4

196.8

213.2

229.6

246

time point

o
n
-a

x
is

 d
is

ta
n
c
e
 (

n
m

)

26

the modified HMM emission matrix to be constructed using an accurate δ value. To solve

this problem, we can iterate the continuous Viterbi algorithm over many different

possible δ values. The Viterbi path iteration that yields the lowest mean squared error fit

with respect to the input observation sequence, y, should be produced by the best

approximation of the true δ value. Therefore, the Viterbi results that yield the least mean

squared error fit are interpreted as the model-dependent step detection results (see

example results, Figure 2.4).

Figure 2.4: Example of iterative continuous Viterbi (ICV) algorithm step detection results (green line) on

simulated on-axis distance time series (red line) produced by the generative hidden Markov model for

kinesin stepping with δ = 4 nm. Underlying piecewise-constant signal from simulation shown with black

line. Figure inset: mean squared errors of Viterbi results for each of the twenty δ values tested. Green spot

indicates the optimal value, δ’ (4.3 nm), i.e. δ with minimum mean squared error. The hidden state path
given this δ’ = 4.3 nm is the sequence returned by the iterative continuous Viterbi algorithm.

27

2.2 Theoretical Kinesin Motor Model

Let the following hidden Markov model be the generative model for observed on-axis

positon of a theoretical kinesin motor based on the conservative model (Figure 1.2)

imaged at f = 1000 frames/second for T = 500 frames:

N = 4; Un =
1

N
;

λ = 0.15; η = 0.99;

k1 = λ; k2 = 15 mMATP
−1 λ; k3 = 10 λ; k4 = λ;

𝐀 =

[

1 − k1 (η)k1 0 (1 − η)k1

(1 − η)k2 1 − k2 (η)k2 0

0 (1 − η)k3 1 − k3 (η)k3
(η)k4 0 (1 − η)k4 1 − k4]

δ = 5 nm; σ = 4 nm;

𝐁𝐌 = [

0 σ2

δ σ2

16.4 σ2

16.4 σ2

]

Where k1 ≈ kdetach, k2 ≈ kon
ATP, k3 ≈ khydrolysis, k4 ≈ kdetach (see Figure 1.2), and BM denotes

the emission matrix during the mobile sequence of stepping (see Figures 1.3, 1.5).

2.2.1 Detecting the ATP-Waiting State

Given observation sequences generated by this model with arbitrary offset, ω, we can

show that by performing offset correction followed by iterating the continuous Viterbi

algorithm over modified hidden Markov models with varying δ values as described in

Section 2.1.5 (ICV algorithm), it is possible to uncover certain parameters of the stepping

cycle of this theoretical kinesin motor.

28

Figure 2.5: On-axis position observation sequences (grey lines) produced by the theoretical kinesin

generative model at [ATP] = 50 uM. Iterative continuous Viterbi (ICV) step detection results have been

separated into even and odd plateau groups. The plateau group with the greater mean plateau size within a

given trace is designated as the long plateaus group (long = cyan lines; short = blue lines). Underlying

piecewise-constant signal shown with black lines. Traces have been shifted after step detection to avoid

overlay.

In general, with a large enough set of observation sequences at a given ATP

concentration (see Figure 2.5), the combined ICV step detection results will converge to

functions of the generative model parameters. The combined ICV results for step size and

plateau size from ten independent observation sequences at [ATP] = 50 uM are shown in

Figure 2.6.

0 50 100 150 200 250 300 350 400 450 500
-16.4

0

16.4

32.8

49.2

65.6

82

98.4

114.8

131.2

147.6

164

180.4

196.8

213.2

229.6

246

262.4

278.8

295.2

311.6

328

344.4

360.8

377.2

393.6

time point

o
n
-a

x
is

 d
is

ta
n
c
e
 (

n
m

)

29

Figure 2.6: Step size and plateau size results from iterative continuous Viterbi (ICV) fitting of ten

observation sequences (as in Figure 2.5) produced by the generative model at [ATP] = 50 uM. Plateau sizes

have been grouped into long and short plateau sizes (i.e. dwell times of the compressed and ATP-waiting

states, respectively). Step sizes have been grouped according to the identity of the plateau that preceded

them. Mean plateau sizes are 37.8 time points (long) and 8.9 time points (short). Step size modes from

kernel density estimation are 5.4 nm (following long plateaus) and 10.5 nm (following short plateaus).

We can see that the modes of step sizes match well to the two expected step sizes; δ = 5

nm and 16.4 – δ = 11.4 nm. Additionally, we can show that the means of the long and

short plateau size distributions match well to the expectations for dwell times. The

expected duration spent in hidden state, n, of the generative model before transitioning

out will be the time constant, τn (units = time points). The value for τn is given by the

inverse of the sum of all transition probabilities that result in leaving state n:

τn =
1

∑ an,ii≠n
=

1

1 − an,n

As defined by the generative model for the theoretical kinesin motor:

τn =
1

kn

Recall that in the modified model used in ICV step detection, consecutive hidden states

of the generative model are compressed, while the ATP-waiting state (state 2M) is left

independent. Therefore, the time constant of the compressed state will be relatively long,

0 5 10 15
0

10

20

30

step size (nm)
c
o
u
n
ts

0 10 20
0

10

20

30

step size (nm)

c
o
u
n
ts

0 50 100 150
0

10

20

30

long plateau size (timepoints)

c
o
u
n
ts

0 10 20 30
0

20

40

short plateau size (timepoints)

c
o
u
n
ts

30

τlong, due to being the sum of several first-order-process time constants, while the time

constant of the ATP-waiting state will be relatively short, τshort. Hidden state sequences

returned by the ICV algorithm are forced to alternate between the compressed state and

the ATP-waiting state. Therefore, even and odd plateau sizes can be meaningfully

grouped (see plateau size distributions, Figure 2.6), and the means of these distributions

should match to τlong and τshort. For the results in Figure 2.6, we see that they do:

τshort = τ2 =
1

k2
=

1

15 mMATP
−1 (0.050 mMATP) λ

= 8.88̅ time points

≈ E[𝐩short] = 8.9

τlong = τ3M + τ4M + τ1S + τ2S + τ3S + τ4S + τ1M = 36.88̅ time points

≈ E[𝐩long] = 37.8 time points

We can also see that the short plateau size distribution appears to be exponentially

distributed while the long plateau size distribution resembles a higher order gamma

distribution (Figure 2.6). This is what should be expected given the processes that define

the underlying piecewise-constant signal.

Further support that the short plateaus represent the ATP-waiting state can be provided

by repeating this process of observation sequence generation and ICV analysis across a

range of ATP concentrations. As [ATP] is increased, the rate of ATP binding, k2,

increases proportionally, so short plateau durations should become even shorter. Figure

2.7 shows the results of this analysis. We can see that in the low [ATP] range, the inverse

of mean short plateau sizes, kshort (i.e. k2), increases proportionally and falls on the

expected line defined by the generative model parameters. As [ATP] reaches about 100

uM, the values for kshort flatten out due to the ICV algorithm failing to fit exceedingly

short plateaus consistently. Nevertheless, a clear relationship between mean of short

plateau sizes and [ATP] is evident, which indicates that short plateaus contain the ATP-

waiting state as a hidden state.

31

Figure 2.7: Iterated continuous Viterbi (ICV) results across a range of ATP concentrations. The left plot

shows the inverse of mean short plateau size as a function of [ATP] (kshort = 1/E[pshort]). The middle and

right plots show kernel density estimation modes of step sizes that follow long plateaus and short plateaus,

respectively, as a function of [ATP]. Blue lines indicate ICV step detection results. Red lines indicate

results given the true hidden state path. Green lines indicate the expected values given the generative model

parameters.

2.2.2 ATPγS Experiments to Probe Neck-Linker Docking

It is possible that a kinesin motor may have a different generative model than the one

described at the beginning of this Section 2.2. For example, a theoretical kinesin motor

may require ATP hydrolysis before neck-linker docking occurs (compare Figures 2.8,

1.2):

Figure 2.8: Alternate kinesin stepping model in which ATP hydrolysis is required before neck-linker

docking.

This model would be defined by the following, slightly altered emission matrix where b31

is now set to δ. Additionally, this will result in state 3M of the generative model

transferring from the large compressed state to the formerly stand-alone ATP-waiting

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

[ATP] (uM)

k
s
h
o
rt
 (

ti
m

e
 p

o
in

t-1
)

0 50 100 150 200
0

5

10

15

20

[ATP] (uM)

s
te

p
 s

iz
e

lo
n
g
 (

n
m

)

0 50 100 150 200
0

5

10

15

20

[ATP] (uM)

s
te

p
 s

iz
e

s
h
o
rt
 (

n
m

)

32

state. That is, the short plateaus will now consist of the ATP-waiting state (2M) as well as

the hydrolysis-waiting state (3M).

𝐁𝐌 = [

0 σ2

δ σ2

δ σ2

16.4 σ2

]

The slow-hydrolysable ATP analog, ATP𝛾S, can be used to test if this alternate model

applies for a given theoretical kinesin. In the subsequent analysis we will assume

hydrolysis of ATP𝛾S is 5-fold slower than ATP; k3,ATP = 5*k3,ATP𝛾S, and that ATP𝛾S and

ATP have equal binding rates; k2,ATP = k2,ATP𝛾S. As nucleotide concentration (ATP or

ATP𝛾S) is increased, the duration of the ATP-waiting state (2M) decreases since

nucleotide binding will occur more rapidly. Therefore, in the alternate model, where short

plateaus consist of both 2M and 3M, this increase of nucleotide concentration will lead to

minimized 2M state contributions towards plateau size. At high enough nucleotide

concentrations, the 3M state (hydrolysis-waiting state) will then dominate the plateau size.

Consequently, if a given kinesin motor steps according to the alternate model, then high

ATP𝛾S concentrations will yield much longer plateau sizes than high ATP concentrations

(i.e. kshort in ATP𝛾S < kshort ATP). If the given motor instead steps according to the

original model, then no difference in trends of short plateau sizes should be evident

between ATP and ATP𝛾S (see Figure 2.9).

33

Figure 2.9: Inverse mean of short plateau sizes (kshort = 1/E[pshort]) as a function of [ATP] (solid black) and

[ATP𝛾S] (dotted grey). Left plot indicates ICV results from sets of observation sequences produced by the

original model in which ATP/ATP𝛾S binding causes immediate neck-linker docking. Right plot indicates

ICV results from observation sequences in which neck-linker docking follows hydrolysis of bound-head

ATP/ATP𝛾S.

2.3 Discussion

Given sets of experimental single-molecule on-axis position traces at different ATP

concentrations, this ICV analysis should theoretically be able to identify the nature of the

ATP-waiting state. That is, it should identify an associated displacement distance, δ, with

considerable accuracy. It should also be able to elucidate whether or not subsequent neck-

linker docking occurs immediately with binding of ATP, or if ATP hydrolysis is required

first. Together, this knowledge would be critical for determining the complete mechanism

of different kinesin motors.

The key advantage of the ICV algorithm applied to single-molecule kinesin stepping

data, is that this step detection algorithm is able to keep track of the “phase” of plateaus.

That is, by assuming the microtubule lattice spacing, odd and even plateau sizes are in

theory guaranteed to represent two separate plateau size populations (ATP-waiting state

plateaus and compressed state plateaus in the case of the original model, Figure 1.2). Step

sizes are also separable in this way. This property allows for these distributions to be

analyzed individually, which renders the process of inferring characteristics of the

stepping mechanism drastically simpler and more accurate. It is not possible for a model-

independent step detection algorithm to achieve this property because even a single false

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

[ATP] or [ATPS] uM

k
s
h
o
rt
 (

ti
m

e
 p

o
in

ts
-1

)

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

[ATP] or [ATPS] uM

k
s
h
o
rt
 (

ti
m

e
 p

o
in

ts
-1

)

34

positive or missed step will lose track of the plateau phase. Since analyzing odd and even

plateaus (or step sizes) will be meaningless in this case, we would be forced to deal with

mixed distributions that will generally have considerable overlap.

The key shortfall of the current ICV algorithm implementation is that the microtubule

lattice must be assumed beforehand, and that the spacing does not allow fluctuations. The

processes of offset detection and emission matrix construction currently require an

assumed integer-multiple-repeat for lattice spacing which, in this thesis, has been

assumed to be exactly 16.4 nm up until this point. Because this value is not perfectly

accurate, the mean values of the modified hidden Markov model emission matrix used in

the ICV algorithm are guaranteed to diverge from the true microtubule lattice centers

given a long enough observation sequence. This will result in the loss of plateau phase

fidelity. Although phase is kept successfully with shorter traces, relaxing the constraint of

an integer-multiple-repeat for the emission matrix mean values is a feasible next step for

improving the ICV algorithm.

Until this point, only the on-microtubule-axis position of the labeled motor domain has

been considered as the observation sequence. One of the attractive features of the

continuous Viterbi algorithm is its ability to be adapted relatively easily to accept a two-

dimensional observation sequence (on-axis and off-axis position) and use this

information simultaneously to determine the most-probable hidden state path. This can be

done by changing the univariate normal probability density function shown in Equation

2.1 (Section 2.1.2) to the bivariate normal density function. The emission matrix would

then require an additional column to provide the expected values for off-axis position

given the current hidden state (0 or ε nm, see Figures 1.3, 1.5), while the same variance

parameter may be assumed for both dimensions. By considering off-axis position, it

would then be theoretically possible to detect additional hidden states (i.e. a 3-unique-

state modified hidden Markov model for ICV detection rather than the 2-unique-state

model). The 3M and 4M states would form a new state discernable from the compressed

state (4M to 1S transition detectable by off-axis transition from ε to 0 nm), and critical

information related to kattach could be inferred with ATP𝛾S experiments in a similar

fashion to the neck-linker docking analysis described above.

35

Chapter 3

Results: Cellulose Synthesis Complex

The cellulose synthesis work presented here was recently published [1]. N.C.D.

developed the t-test-based step detection algorithms and the photobleach rate estimation

and correction process. Y.C. developed the Bayesian Information Criterion (BIC)-based

algorithms, Gaussian Mixture Model fitting process, and created the figures. Y.C. and

C.T.A. performed raw data collection. All authors contributed to the design of

experiments, overall data analysis approach, and writing of the paper.

3.1 Imaging CESA Complexes in Arabidopsis Seedlings

To estimate the copy number of GFP-AtCESA3 in membrane-localized particles in living

cells of Arabidopsis thaliana, 5-to-6-day-old light-grown seedlings expressing GFP-

AtCESA3 [49] were mounted in an imaging chamber and recordings of GFP bleaching

were carried out in hypocotyl cells containing low densities of GFP-AtCESA3 particles

(see Movie S1 of [1] Supplemental Information). Imaging was performed using variable-

angle epifluorescence microscopy [67], which like total internal reflection fluorescence

(TIRF) microscopy reduces background fluorescence but allows for the imaging of

proteins farther from the coverslip, such as those in the plasma membrane of plant cells

that are separated from the coverslip by the cell wall [68, 67] (Konopka et al., 2008;

Konopka and Bednarek, 2008). To quantify photobleaching rates, time lapse recordings

were collected (Movie S1), and fluorescence intensity traces for individual GFP-

containing particles were measured using ImageJ (see Section 3.8.2). Instead of

exhibiting discrete steps, the intensity changes during photobleaching for many traces

appeared to be relatively smooth (Figure 3.1A, Movie S1), suggesting that the number of

fluorophores per particle is relatively high.

36

Figure 3.1: In vivo photobleaching of GFP-AtCESA3. (A) Photobleaching trace of a single GFP-AtCESA3

particle in hypocotyl cells of Arabidopsis seedling. Video is recorded at 5 fps and total time is 100 s to

allow most GFP to be photobleached. Representative Movie S1 is included in Supplementary Data of [1].
Inset: ensemble average of 77 photobleaching traces with exponential fit to the data. (B) Quantitative

model describing photobleaching. The fluorescence signal is assumed to fall over time with constant step

sizes, matching the quantal fluorescence of a single GFP. The GFP fluorescence and the background signal

are treated as Gaussian distributions, Normal (μ, σ2) and Normal (0, δ2), respectively. The time before

fluorophore bleaching, T, is assumed to be exponentially distributed with mean τ = 1/λ where λ is the

photobleaching rate constant. The signal to noise ratio (SNR) is defined as the step size divided by the

standard deviation. (C) Simulated photobleaching trace from 12 fluorophores with μ = 500 a.u., σ = δ = 250

a.u. (D) Simulated stepping data such as a kinesin walking along a microtubule in and optical trap

experiment, with μ = 1, σ = 1 and 10% backward steps. (Figure from [1], created by Y.C. and N.C.D.)

The photobleaching rate constant for GFP-AtCESA3 was estimated by ensemble

averaging all of the photobleaching collected traces and fitting a single exponential

function using MATLAB’s nonlinear least squares method (Figure 3.1A inset). The fitted

rate of 0.0278 ± 0.0003 s-1 (mean ± SEM of fit, N = 77 traces) is the expected rate of

photobleaching events regardless of the true number of independent photobleaching units

present.

37

The experimental background noise was estimated by analyzing the distribution of the

final plateau variance (as defined by the Tdetector2 step detection algorithm; see below)

for the 77 measured traces. As expected, the distribution had more than one mode (Figure

S1 of [1]), due to the fact that complete photobleaching had not occurred in some of the

traces. Therefore the lowest variance mode was defined as the background variance,

while the next mode indicates the sum of the background variance plus the variance

associated with one fluorophore. To allow for more precise quantitative analysis of

bleaching for multiple fluorophores, we developed a statistical method of photobleaching

analysis, as described below.

3.2 Generating Simulated Fluorescence Photobleaching Data

Fluorescence intensity from a single fluorophore is typically described as a Gaussian

distribution [69] with mean intensity µ and variance σ2 (Figure 3.1B, inset panel). While

intensity fluctuations at low photon counts are better modeled as a Poisson distribution,

added signal variance due to rapid fluorophore blinking events, fluctuations in the

background signal, and camera read noise justify the assumption that the signal is

Gaussian. We postulate that the fluorophores are independent of one another and thus the

intensity fluctuations for each fluorophore are uncorrelated with those of neighboring

fluorophores. Thus, when n fluorophores are localized in a diffraction-limited spot, the

overall intensity will be the sum of the mean intensities (Itot = n*µ), and the overall

variance will be the sum of the variances plus the variance of the background, δ2 (σtot
2 =

n*σ2 + δ2). Notably, in photobleaching traces the variance scales with signal intensity,

and if background fluctuations are low and/or signal variance is high, then variance is

proportional to intensity. This situation contrasts with typical positional step detection

problems (for instance, identifying step displacements for motor proteins), where the

variance is independent of position and is thus constant for each step [23]. As a result of

this scaled variance, with each intensity drop during a photobleaching experiment, there

will be an associated decrease in the signal variance.

38

Another aspect of multi-fluorophore photobleaching data that complicates the

identification of bleaching steps is the fact that the frequency of photobleaching events

for an ensemble of fluorophores changes over time. Photobleaching is typically modeled

as a first order process with rate λ and characteristic bleach time T, where λ = 1/T. Thus,

the time it takes for a single fluorophore in a set to bleach will follow an exponential

distribution with mean of T. If there are n fluorophores in a diffraction-limited spot, then

the mean time before the first bleaching event will be much faster because any of the

fluorophores can bleach. Assuming that photobleaching events are independent of one

another, the time before the first bleaching event will also follow an exponential

distribution, with a rate equal to n*λ, and the mean time before the first photobleaching

event will be T/n. Thus, at the beginning of an experiment, bleaching events will be more

frequent and will be associated with larger signal variance, making it difficult to identify

individual events.

To assess the ability of step detection algorithms to detect photobleaching events, we

simulated a photobleaching signal for a complex containing 12 GFP fluorophores (Figure

3.1C), each having a mean intensity μ and variance σ2 that approximated the GFP-

AtCESA3 intensity trace shown in Figure 3.1A. In parallel, we simulated a signal having

a uniform stepping rate and a constant variance, similar to motor protein displacement

signals (Figure 3.1D). Datasets with various SNR values were generated to represent a

range of possible experimental scenarios. For motor stepping data (Figure 3.1D), the

SNR is defined as ratio of step size over the standard deviation (μ/σ). Defining SNR for

bleaching traces, however, is complicated by the fact that the variance changes with the

number of active fluorophores. Thus, the SNR for the photobleaching data was defined as

the mean intensity μ of a single fluorophore divided by its standard deviation σ, (μ/σ).

The variance of the background signal, δ2, was chosen to equal the variance of a single

fluorophore, σ2. Different SNR values were achieved by setting μ = 500 a.u. and varying

the standard deviation. To objectively identify each bleaching event, we developed

multiple step detection algorithms that use statistical analysis to detect photobleaching

events and compared their performance using the simulated data.

39

3.3 Using Step Detection Algorithms to Identify Bleaching Events

To analyze our photobleaching data, we developed two step detection algorithms that use

statistical tests to identify steps (see Sections 3.8.3 – 3.8.8). For each method, approaches

were developed that assumed the different plateau regions in the signal had either equal

or unequal variances. The first method is based on the Bayesian Information Criterion

(BIC; [70]) and predicts steps purely based on statistical information in the data. Kalafut

and Visscher used this approach for step detection previously, but assumed that the

variance within each step was constant [62]. We modified this implementation to allow

for changes in variance. A second algorithm was developed based on the two-sample t-

test with or without assumed equal variance. These four algorithms are named Bdetector1

and Bdetector2 for the BIC-based methods assuming equal or unequal variance

respectively, and Tdetector1 and Tdetector2 for the t-test based methods assuming equal

or unequal variance.

Figure 3.2: Step detection algorithms. (A-C): Bdetector algorithm. (A) To fit the first step, Bdetector scans
all possible change points and calculates a corresponding BIC value at each position (blue line). If the

minimum BIC is lower than the BIC value for not adding a step (green line), a step is added (red line) at the

position where the minimum BIC occurs. (B) Keeping the first step, Bdetector rescans all possible change

40

points and calculates new corresponding BIC values (blue line), and adds a second step at the position of

the minimum BIC (red line). This process is iteratively repeated. (C) When the minimum BIC value for

adding an additional step (blue line) is not lower than the current BIC value (green line), the program

terminates. (D-F): Tdetector algorithm where, in contrast to the BIC, a higher significance for the t-test

indicates a better fit. (D) To add the first step, the significance at each possible change point is calculated

(blue line) and is compared to the threshold (green line). Provided it is above the significance threshold, a
step is added at the point of maximum significance (red line). (E) The data are split into two segments at

the detected change point and the procedure is repeated for each segment (splitting the right segment into

two in this case). This process is repeated for each new segment until adding a step does result in a

significance value greater than the threshold. The algorithm then moves on to another segment. (F) When

adding a change point fails to raise the significance above the threshold for every segment, the program

terminates. (Figure from [1], created by Y.C. with assistance from N.C.D.)

Both pairs of algorithms use a conceptually similar step detection approach of iteratively

searching for change points until no statistically significant step can be added (Figure 3.2

and Supplemental Movie S2 of [1]). The algorithms are summarized as follows:

(1) The data are scanned, and for each potential time at which a step may occur,

the mean and variance is calculated for the time preceding the step and the time

following the step.

(2) Using these means and associated variances, a BIC value (Bdetector) or the

significance from a two-sample t-test (Tdetector) is calculated and used to

identify the optimal step. The optimal step is the one that leads to the lowest BIC

value (Bdetector) or the largest significance (Tdetector). If no step leads to a BIC

value smaller than the current one or a significance value above a defined

threshold then no step is chosen.

(3) The process is repeated until no additional statistically significant steps can be

detected, at which point it terminates.

To validate their performance, the step detection algorithms were first tested on simulated

stepping data having SNR values from 0.4 to 5 (Figure 3.3). The step times were sampled

from an exponential distribution with an expected value of 100 time points per plateau,

with 90% of steps being a unit step increase and 10% being a unit step decrease. At high

SNR values, the mean predicted step size was close to the actual value, but with

diminishing SNR, an additional peak corresponding to twice the unitary step size

emerged (Figure 3.3A, and Figure S2 of [1]). We defined two metrics, sensitivity and

precision to assess the performance of the algorithms. Sensitivity is defined as the

41

proportion of the true steps that are identified by the step detection algorithm. Precision is

defined as the proportion of identified steps that are true steps (see Section 3.8.10).

Overfitting will lead to high sensitivity and low precision (false positives), while

underfitting results in high precision but low sensitivity (missed events). With SNR

values above 2, all four algorithms performed well and had both high sensitivity and

precision values (Figure 3.3, B and C). Reasonable predictions were obtained at SNR

values between 1 and 2, but sensitivity and precision both fell sharply for SNR values

below 1. The BIC-based algorithms displayed a tradeoff between sensitivity and

precision, with Bdetector1 (constant variance) having higher sensitivity and Bdetector2

(unequal variance) having higher precision (Figure 3.3, B and C: blue and green plots). In

contrast, for the two-sample t-test methods both Tdetector1 (assumed constant variance)

and Tedector2 (assumed unequal variance) performed similarly (Figure 3.3, B and C: red

and black plots).

Figure 3.3: Detecting steps in simulated stepping data. (A) Histograms of step sizes predicted by all step

detection algorithms. The simulated data have uniform step sizes of 1 with 10% backward steps and SNR

42

of 1. Real step sizes are calculated by comparing the means of plateau regions on either side of a step. The

mode at +1 represents forward steps and the mode at -1 represents backward steps. The four algorithms

detect unitary forward and backward steps, but also have modes centered at +2, corresponding to twice the

single step size and representing missed steps. (B) Sensitivity plots for the four algorithms. The missed

steps corresponding to the lower sensitivity of Bdetector2 can be seen in (A) by the population centered at

+2 step size. (C) Precision plots for the four algorithms. Bdetector1 had problems with overfitting, resulting
in lower precision and a number of steps between 0 and 1 in (A). (Figure from [1], created by Y.C. with

assistance from N.C.D.)

After benchmarking the step detection algorithms on the stepping data, the algorithms

were used to detect unitary steps in the simulated photobleaching data. For ease of

comparison, the step size was fixed at 500 a.u. for all simulated data and the variance was

altered to achieve different SNR values. As seen in Figure 3.4A, both algorithms

identified similar steps in the simulated photobleaching data with SNR = 2. Considering

the performance at different SNR values, the methods assuming unequal variance

(Bdetector2 and Tdetector2) resulted in higher precision but lower sensitivity compared

with the methods assuming equal variance (Bdetector1 and Tdetector1, Figure 3.4, B and

C).

Figure 3.4: Detecting steps in simulated photobleaching data. (A) Simulated photobleaching data (black)

with step detection by the Tdetector2 (red) and Bdetector2 (blue) algorithms. (B, C) Precision and

sensitivity plots for the four algorithms. The two algorithms not assuming equal variance (Bdetector2 and

Tdetector2) gave better precision but missed events, whereas Bdetector1 and Tdetector1 gave better

sensitivity but led to false positives. (Figure from [1], created by Y.C. with assistance from N.C.D.)

For estimating subunit numbers from photobleaching data, the most important factor is

properly estimating the amplitude of a quantal photobleaching event (the first mode).

Hence, a loss in sensitivity corresponding to missed steps (resulting in higher modes) is

acceptable. In contrast, the falsely identified steps corresponding to low precision can

lead to underestimating the quantal photobleaching amplitude. Based on these

considerations, the two methods assuming constant variance were inferior to the methods

43

assuming unequal variance. The Tdetector2 algorithm performed the best overall and was

chosen for the subsequent analyses described below.

3.4 Determining Unitary Step Size from Step Detection Results

After identifying steps, the next task in analyzing photobleaching data is to use the

identified step amplitudes to extract the amplitude of a unitary photobleaching event. The

total subunit number is subsequently estimated by dividing the initial (high) fluorescence

amplitudes by this quantal unit. We initially focused on results from the simulated dataset

shown in Figure 3.4A having a SNR = 2 and a GFP copy number of 12. A histogram of

step amplitudes predicted by the Tdetector2 algorithm suggests the presence of at least

two modes (Figure 3.5A). The simplest method of estimating the unitary step size is to fit

the binned histogram data with multiple Gaussian functions corresponding to the

different modes. However, estimation by this method is strongly dependent on bin size

(Figure 3.5A and B), and there are no existing objective methods for identifying the

optimal bin size.

44

Figure 3.5: Comparing methods of fitting photobleaching step size distributions to extract unitary step size.

Histograms represent step size distributions from Tdetector2 applied to simulated photobleaching data with

copy number 12 and SNR = 2. The distribution is made up of 570 detected steps. (A) Fit of two Gaussian

functions to the data using a bin size of 50. Fit parameters are μ1 = 510 a.u., σ1 = 55, μ2 = 836 a.u., and σ2 =

335. (B) Fit of two Gaussian functions to the data using a bin size of 150. Fit parameters are μ1 = 568 a.u.,

σ1 = 67, μ2 = 873 a.u., and σ2 = 342. In both cases fits to more than two Gaussians did not converge. (C)

Identifying modes by KDE. A histogram with bin size 50 is plotted for the purpose of visual comparison
but is not used for fitting. Smooth curve is the estimation of multiple Gaussians (kernels) by KDE. (Figure

from [1], created by Y.C.)

Kernel Density Estimation (KDE) is a non-parametric method of density estimation that

can be used to identify modes without requiring data binning. In short, each step

represents a probability of 1/N, where N is total number of steps, and a Gaussian centered

45

at each step is used to estimate the distribution of this 1/N probability, resulting to a total

of N Gaussians. The overall probability density is obtained by the sum of these N

Gaussians [71]. Although the main peak from the KDE is obvious, it is difficult to

retrieve information for subsequent modes because there are poorly separated (Figure

3.5C).

Density estimation by a Gaussian Mixture Model (GMM) can provide predictions of peak

position for each mode in a way that avoids the drawbacks of KDE. In this method the

distribution of steps is estimated by a mixture of Gaussians and the means and variances

of these Gaussians are obtained by maximizing the expected posterior probability,

computationally achieved by expectation–maximization (EM) algorithms [72]. However,

one uncertainty of this method is choosing the number of Gaussians (K) to be fit to the

data, which can alter the fitting results. To provide an objective method for choosing the

number of Gaussians, the step amplitude data were fit using the Gaussian Mixture Model

by an increasing number of Gaussians and the Bayesian Information Criterion (BIC)

value associated with each fit was determined. The optimal number of Gaussians was

defined as the number that gave the lowest BIC value, which for the simulated

photobleaching data was 5 (Figure 3.6A and B). The different peaks were assumed to be

multiples of the unitary photobleaching amplitude, and the mean unitary step size was

calculated as a weighted average of each peak, giving a value of 528.3 a.u. This estimate

is within 6% of the step size value of 500 a.u. that was chosen for this simulated

photobleaching data.

46

Figure 3.6: Step size and copy number determination for simulated photobleaching data. (A) BIC values

using different numbers of Gaussians in the GMM density estimation for the same distribution used in

Figure 3.5. The best fit (smallest BIC value) was achieved with 5 Gaussians. (B) Corresponding fit of 5

Gaussians to the step size data (histogram is for display only and is not used by the GMM procedure). Red,

green, yellow, pink, and purple traces represent the five Gaussians in the GMM fit, with corresponding

means of 560, 921, 1376, 1811, 2343 a.u., and relative weights of 0.461, 0.341, 0.162, 0.028, and 0.008.

The standard deviation, which is assumed to be identical for all modes, is 135.9 a.u. Blue line is the overall

density. The unitary step size is calculated as Σ(i = 1 to k) ((Pi * μi)/i), where Pi and μi are the relative weight

and the mean, respectively, of the ith peak, resulting in a value of 528.3 a.u. (C) Predicted unitary step size

as a function of SNR and copy number, demonstrating good performance for copy numbers of below 12 at
SNR of 1 and above, and for copy number of 20 at SNR of 2 and above. Actual step size in simulated data

was 500 a.u. (D) Predicted copy number from simulated photobleaching data with SNR of 2 and copy

number 12. Peak position from KDE (black line) corresponds to mean copy number of 12.3. (E) Predicted

copy number across different SNR ratios. Similar to the step size estimate, a break point at SNR below 2

was seen for prediction on copy number 20. (Figure from [1], created by Y.C. with assistance from N.C.D.)

To further assess the performance of this method in estimating copy number from diverse

photobleaching data, we performed identical analyses on simulated bleaching data with

copy numbers from 2 to 20 at a range of SNR values (Figure 3.6C). Strikingly, for

simulated data with copy numbers below 12, the analysis method predicts the value of the

unitary step within 10% even down to an SNR of 1 (Figure 3.6C). With a copy number of

20, predicted step sizes are within 7% of the true step size for SNR of 2 and above, but

rise toward twice the true step size at lower SNR values. Based on these results, the

ability of this method to estimate copy numbers from photobleaching data is limited for

47

data with both very high copy numbers (20 and above) and low SNR values (below 2). In

these cases, the design of the photobleaching experiment should be further optimized to

improve the SNR.

3.5 Using Unitary Step Size to Estimate Fluorophore Copy Number

The final task in estimating the number of fluorophores in a complex is to calculate the

amplitude of the overall fluorescence drop by taking the difference between the initial

fluorescence and the value of the final plateau and dividing by the unitary step size.

Accurately estimating the total amplitude of the photobleaching signal can be

challenging, however, due to uncertainties in measuring the initial fluorescence amplitude

and uncertainties in whether the final plateau represents full bleaching. The first few time

points of photobleaching traces have the most variability due to the fast rate of

photobleaching and high signal variance associated with a large number of fluorophores.

Simply averaging over the first few points reduces the noise but also leads to

underestimating the true maximum fluorescence. To avoid introducing any bias, we

chose to simply take the initial fluorescence value as the maximum for each trace.

The proportion of fluorophores that are expected to bleach during the finite acquisition

time can be estimated by fitting an exponential to the ensemble average of the

photobleaching traces (see Section 3.8.9). The simulated photobleaching data had a

duration of 100 s and, because it was modeled on the experimental data, was well fit by

an exponential with a rate constant of 0.0278 s-1. Thus, 93.9% of the fluorophores are

expected to bleach (see Equation 3.1), and the overall intensity drop of the simulated data

was corrected upward by dividing by 0.939. Dividing the total intensity drop of each

trace by the unitary step size results in a distribution of copy numbers with a mean of

12.3 estimated by KDE (Figure 3.6D), within 3% of the correct copy number of 12. Copy

number errors were within 10% for SNR = 1 and above for copy numbers of below 12,

and for SNR = 1.8 and above for a copy number of 20 (Figure 3.6E).

48

3.6 Estimating Copy Number for Kinesin-4XGFP

To validate the ability of the developed methods to estimate copy numbers from a protein

with a known number of GFP subunits, we engineered a kinesin construct containing four

GFPs (see Section 3.8.1). Proteins were attached to the coverslip surface through non-

specific interactions and imaged using TIRF microscopy [28]. Steps were fit to the 71

acquired photobleaching traces using the Tdetector2 algorithm (Figure 3.7A), resulting in

455 detected steps. The step size distribution was fit using the Gaussian Mixture Model

and based on the calculated BIC values, the optimal number of modes was determined to

be four (Figure 3.7B). When the step size distribution was fit using four modes, the

corresponding unitary step size was determined to be 60.8 a.u. (Figure 3.7C). Based on

this step size and the standard deviation of noise in the traces, the SNR was calculated to

be 1.1 for these measurements.

Figure 3.7: Estimating copy number for kinesin-4xGFP. (A) Trace of kinesin-4xGFP bleaching (black)

with steps fitted by Tdetector2 (red). (B) The BIC search leads to a best fit of k = 4 Gaussians for fitting the

step size distribution. (C) Estimating the unitary step size (60.8 a.u.) from the step size distribution (455

total detected steps). The mean values of the four modes were 63.9, 109.9, 165.8, and 258.1 a.u., relative

weights were 0.622, 0.289, 0.062, and 0.027, and the SD was 19.6 a.u. (D) Copy number distribution.

There were two peaks, centered at 3.28 and 6.65. These peaks are consistent with the binomial nature

49

leading to a slight shift from four toward lower copy number and with a double-aggregate population at

roughly twice the copy number of the first peak. Histograms (black boxes) are also plotted in C and D for

reference but not used in the GMM fitting. (Figure from [1], created by Y.C. with assistance from N.C.D.)

The resulting copy number distribution can be influenced by several factors. First, the

probability that a GFP will fluoresce is not expected to be unity, which leads to the

distribution having a binomial nature. Second, the probability of observing every single

bleaching event during an experiment is less than unity due to the finite acquisition time,

meaning that the number of acquired bleaching events from each sub-population of

fluorescing GFPs will itself be binomially distributed. Third, due to normal intensity

fluctuations, the overall intensity drop for each trace will have an associated error value

simply from the fluorescence fluctuations. Fourth, it is difficult to rule out the presence of

a small percentage of aggregates in the sample or pairs of complexes residing in the same

diffraction-limited spot. Due to these factors, the expected copy number distribution will

be a binomial distribution broadened by Gaussian noise. As a conservative approach, we

chose to fit the copy number distribution using the Gaussian Mixture Model.

To estimate fluorophore copy number, the total intensity drop for each photobleaching

trace was calculated by taking the difference of the initial point and the mean value of the

final plateau. Each intensity drop was then divided by the estimated unitary step size of

60.8 a.u. to generate a copy number estimate. The fit to the copy number distribution

shows two peaks at 3.28 and 6.65 (Figure 3.7D). Given an expected copy number of four,

these peaks are consistent with the binomial nature leading to a slight shift towards lower

copy number for the first mode, and the second mode corresponding to pairs of

complexes either due to aggregates or to two surface-bound complexes being within the

same diffraction-limited spot. These results demonstrate that the method can give an

accurate prediction of minimum protein copy number even in a data set having a SNR of

1.1.

50

3.7 Estimating Copy Number for GFP-AtCESA3

After developing an objective method for estimating subunit copy number for protein

complexes tagged with large numbers of fluorophores and assessing its performance on

simulated photobleaching data, we applied the technique to a set of photobleaching data

for GFP-AtCESA3 particles (Figure 3.8A). Based on the trend of BIC values (Figure

3.8B), a model consisting of six Gaussians was used to estimate the distribution of

predicted step sizes, and the final estimate for a single step was calculated to be 445.4 a.u.

(Figure 3.8C). This step size indicates that the SNR is roughly 2 to 2.5, within the range

that our methods can reliably uncover copy number. However, in the final copy number

histogram, instead of seeing a single mode as for the simulated data, two modes, one

around 10 and the other around 20, are apparent (Figure 3.8D). This factor of two

suggests that a subpopulation of the analyzed particles might be composed of two

complexes within the focal limited spot, either because there are two populations of CSCs

in cells or because pairs of CSCs occasionally exist in close proximity, especially when

they are immobile as was the case for this dataset. A fit consisting of two Gaussians

identifies peaks at 9.56 and 23.5 copies. Considering that protein misfolding, incomplete

maturation of GFP, and bleaching events occurring before data acquisition can all

potentially lead to underestimating the true number of GFPs present , we conclude that

the 10 copies is a lower limit for the estimated number of GFP-AtCESA3 subunits in

each CSC particle.

51

Figure 3.8: Copy number estimation for GFP-AtCESA3 particles. (A) Trace of GFP-AtCESA3
photobleaching (black) with steps fitted by Tdetector2 (blue). (B) BIC values for step detection at

increasing number of Gaussians, showing the minimum at k = 6. (C) Estimation of unitary step size (445.4

a.u.) by GMM based on 730 total detected steps. Step size distribution was fitted by six Gaussians, shown

in red, green, yellow, pink, and purple. Mean values were 453, 864, 1337, 1799, 2335, and 3082 a.u.,

relative weights were 0.4953, 0.3325, 0.1252, 0.0367, 0.0074, and 0.0027, and the SD was 160 a.u. Overall

fit from GMM is shown in blue. Histogram (black boxes) is also plotted for reference but not used in the

GMM fitting. (D) Copy number distribution for GFP-AtCESA3 particles. Two peaks are evident from the

histograms, and fitting two Gaussians (red and green curves) gives means of 9.56 and 23.5 and ratio of

0.844 and 0.156, with SD of 4.03. (Figure from [1], created by Y.C. with assistance from N.C.D.)

52

3.8 Materials and Methods

3.8.1 Photobleaching Experiments

Arabidopsis thaliana seeds of the genotype AtCESA3je5 GFP-CESA3 [49] were surface-

sterilized for 20 min in 30% bleach + 0.1% SDS, washed 4X with sterile water, and

stored in sterile 0.15% agar at 4 °C for 3 days before being sown on square petri plates

containing MS medium (2.2 g/L Murashige and Skoog salts (Caisson Laboratories,

Logan, UT) + 0.6 g/L 2-(N-morpholino)-ethanesulfonic acid (MES, Research Organics,

Cleveland, OH) + 8 g/L agar-agar (Research Organics), + 10 g/L sucrose, pH 5.6). The

plates were incubated in a 22 °C growth chamber under 24h illumination for 5-6 days

before use in microscopy experiments. Seedlings were mounted on glass slides between

two pieces of permanent double-stick tape (3M, St. Paul, MN), 30 µL of sterile water was

added to the seedling, and a 24 x 40 mm #1.5 coverslip was adhered to the tape to

generate an imaging chamber. Seedlings were imaged on a Nikon TE2000 microscope in

variable-angle mode with a 60X 1.4 NA oil immersion objective and a 100 mW 488 nm

excitation laser. Hypocotyl cells containing sparse GFP-AtCESA3-positive particles were

imaged using a Photometrics Cascade 512b camera in streaming mode using maximum

gain with 200 msec exposure time for 500-600 frames, during which time many particles

bleached to background levels.

As a control, Drosophila kinesin heavy chain truncated at residue 559 was modified to

have GFP at both the N- and C-termini, generating a dimer containing four GFP

fluorophores. The protein was bacterially expressed and Ni column purified as

previously described [28]. Surface-immobilized fluorophores were imaged by TIRF

illumination [28] and acquired in an identical manner to the GFP-AtCESA3 data.

3.8.2 Image Analysis

Image stacks were processed in ImageJ (http://imagej.nih.gov/ij/) as follows. First, the

Background Subtract tool (10 pixel radius, sliding paraboloid) was used to subtract

background fluorescence from each frame in the stack. Next, an Average Projection of

the stack was generated and used to select 7-pixel-radius circular regions of interest

(ROI) surrounding immobile GFP-AtCESA3 particles. Finally, photobleaching traces

53

were generated from the background-subtracted image stack by measuring the total pixel

intensity of each ROI for every frame of the stack. A total of 77 particles were analyzed.

3.8.3 Tdetector1 Algorithm

The Tdetector1 algorithm carries out a modified, iterative two-sample t-test that assumes

the expected variance throughout the entire input signal to be constant. As stated

previously, it also assumes that the input is a piecewise-constant signal hidden in

normally distributed white noise. There are no user-defined parameters, and the only

input to the algorithm is the signal in the form of a vector or series of values, X.

To begin, the algorithm must calculate the variance of the corrupting white noise, σ2, of

the input signal. The conventional method of calculating variance (Var(X) =

E[(X − μ)2]) cannot be used because the data is expected to contain steps that would

result in a large overestimation of the corrupting variance. Instead a pairwise difference

calculation must be used (Equation 3.1). Pairwise differences that are significantly

greater in magnitude compared to the rest (possibly due to a large step there) are

discounted from the calculation (see Section 3.8.5 for further details).

σ2 ≈
∑ (xi+1−xi)

2(L−1)
i

2(L−1)
 (3.1)

Where X = input signal, σ2 = variance of corrupting noise in X, L = length of X, i = index

of X.

The first round of the step detection process iterates through every possible way of

splitting X into two sections and calculates the difference of means (DOM) of those two

sections. Each DOM is then rated for significance based on the expected distribution of

DOMs that would result from splitting a normal random vector of the same length, with

no steps, at that respective index (given in Equation 3.2). This process is similar to

comparing to the t-distribution as in a two-sample t-test.

DOMs ~ N (0, σ2 (
1

i
+

1

L−i
)) (3.2)

Where σ2 = variance of corrupting noise in X, L = length of current subset of X (for first

round of step detection: L = length of entire X series), i = index of splitting.

54

If there is a calculated DOM that is significant (see Section 3.8.6) compared to the

normal distribution shown in Equation 3.2, then the null hypothesis – that the observed

DOM is due to variations of a normal random vector without a step – is rejected, the two

sections are declared as two separate plateaus, and a possible step is declared at that

index. For each round of step detection, only the most significant DOM results in a

declared step. After the first round of step detection, the process is repeated on each new

plateau, and any new plateaus from a round of step detection will go through the same

process until no new plateaus are declared.

Finally, the algorithm undergoes a step-checking phase that performs DOM significance

testing for all adjacent plateaus declared. MATLAB code for the Tdetector algorithm is

included in Appendix A.

3.8.4 Tdetector2 Algorithm

The Tdetector2 algorithm is nearly identical to Tdetector1, except that it assumes that

different sections of the data have different expected variances (as found in

photobleaching traces where higher numbers of unbleached fluorophores lead to higher

variances). Again, it assumes the input is a piecewise constant signal hidden in normally

distributed white noise, and it requires only a single series of data, X, as input to the

algorithm.

The first task of the algorithm is to find sections of the data that have significantly

different variances from one another. To accomplish this, it first calculates the variance

of corrupting noise throughout all of X using the same process described for Tdetector1

(Equation 3.1). Next, it uses the same process that the Tdetector1 algorithm uses to test

each possible DOM for significance, but instead of comparing means it tests each

possible difference of variances (DOV) for significance. The expected distribution of

DOVs is approximated as normal, with a variance (Equation 3.3, derivation in Section

3.8.7) that depends on nearly the same variables defining the variance of DOMs in

Equation 3.2. The only difference is that σ2 is always the corrupting variance of the entire

X vector in Equation 3.2, while in Equation 3.3 it is the corrupting variance of only the

subset of X that is currently being split into two sections.

55

DOVs ~ N (0, σ4 [
i2+i−3

(i−1)2
+

(L−i)2+(L−i)−3

((L−i)−1)
2 − 2]) (3.3)

Where σ2 = variance of corrupting noise in current subset of X, L = length of current

subset of X, i = index of splitting.

As in the iterative step fitting process of Tdetector1, this variance-sectioning continues to

declare and test new plateaus until no new significant variance sections are declared.

Once the algorithm has completed the variance-sectioning process, it begins the same

step detection process as in the Tdetector1 algorithm, with two exceptions: (1) For DOM

significance testing, Tdetector2 uses σ2 = mean corrupting variance of the current subset

of X in Equation 3.2 rather than the corrupting variance of the entire X series; and (2)

Once the most significant index of splitting has been determined, the resulting DOM is

again tested for significance with respect to a slightly different distribution of DOMs

shown by Equation 3.4 (similar to Welch’s t-test [73]). This distribution takes into

account the possibility of unequal variances between the two sections. If both tests have

shown significance with respect to their distributions, then a step and two new plateaus

are declared at that index.

DOMs ~ N (0,
σ1

2

i
+

σ2
2

L−i
) (3.4)

Where σ1
2 = corrupting variance of the first section, σ2

2 = corrupting variance of the

second section, L = length of current subset of X, i = index of splitting.

3.8.5 Calculation of Variance of Corrupting Noise

Let X be a vector of L independent random variables with a mean of 0, and variance of

σ2. Let Y be a piecewise-constant vector of L values, containing a step of amplitude d

between indexes i and i+1. Now let the sum of these two vectors, Z = X + Y, represent a

data vector given to the Tdetector step detection algorithm (see Figure 3.9).

X = [x1, x2, … , xL−1, xL], Y = [0,0,… , d, d], Z = [x1, x2, … , xL−1 + d, xL + d]

56

Figure 3.9: Plots of theoretical X, Y, Z vectors where σ2 = 1, d = 5, L = 100, and i = 40

The goal is to estimate σ2 (the variance of the corrupting noise, X), but we are given only

the vector Z. Using the conventional calculation of variance on Z would yield an answer

composed of both σ2 and the value of d (step amplitude of Y).

Var(Z) = Var(X + Y)

= Var(X) + Var(Y)

= E[(X− E[X])2] + E[(Y − E[Y])2]

= σ2 +
i(L − i)

L2
d2

If Z contained more than one step, Var(Z) would be an even greater overestimation of σ2.

Therefore, a method aimed at calculating the variance of only the corrupting noise – a

pairwise difference calculation – should be used instead. Generally speaking, it calculates

variance based on the difference between neighboring data points rather than the

difference of each data point from the mean. The following demonstrates how one-half of

the expected value of squared pairwise differences of X equates to the variance of X, σ2.

∑ (xn+1 − xn)
2(L−1)

n=1

2(L − 1)
=
E[(xn+1 − xn)

2]

2
=
E[xn+1

2 − 2xn+1xn + xn
2]

2

Since X is an independent random vector with a mean of zero:

=
E[xn+1

 2] − 2E[xn+1]E[xn] + E[xn
2]

2
=
E[xn+1

 2] + E[xn
2]

2
=
σ2 + σ2

2
= σ2

This yields Equation 3.1 given in the Tdetector1 Algorithm Section 3.8.3:

0 50 100

0

5

10
X

index

v
a
lu

e

0 50 100

0

5

10
Y

index

v
a
lu

e

0 50 100

0

5

10
Z

index

v
a
lu

e

57

Var(X) =
∑ (xn+1 − xn)

2(L−1)
n=1

2(L − 1)

This equation holds only if all values in X have an expected value of zero. If it is instead

applied to Z, a piecewise constant step function hidden in noise, then the equation does

not give Var(Z), but rather a value composed of the variance of corrupting noise and a

relatively small contribution from d (step amplitude of Y).

∑ (zn+1 − zn)
2(L−1)

n=1

2(L − 1)
= σ2 +

1

2(L − 1)
d2

As is, this approach yields a much better estimate of the variance of corrupting noise than

simply using the variance of Z (when L ≥ 4). However, an even better estimation of σ2

can be obtained by performing an iterative outlier analysis on the pairwise difference

values of Z before taking their mean. If the magnitude of any pairwise difference is

significantly greater than the rest, then we can hypothesize that it is due to a step in the

data vector, consider it an outlier, and therefore exclude it from the average. More

specifically, if its magnitude is greater than three times the standard deviation of pairwise

differences of X (√2σ) then it should be excluded. Of course we do not know the value of

σ, so we use the current best estimate. This process is iterated until there are no outliers

remaining. Iterations are necessary because each time an outlier is removed, the value of

σ changes slightly. The following Table 3.1 describes the iterative process explicitly.

58

Table 3.1: Pseudo/MATLAB code of iterative pairwise difference outlier removal

L = length(Z);

% construct pairwise differences of Z vectors

for i = 1:L-1

 pdz(i) = Z(i+1) - Z(i);

 pdz2(i) = (Z(i+1) - Z(i))^2;

end

while true

 % current estimate of sigma of X

 sigmaC = (mean(pdz2)/2)^0.5;

 % remove outlier values from pdz vectors

 pdz2(abs(pdz) > 3*(2^.5)*sigmaC) = [];

 pdz(abs(pdz) > 3*(2^.5)*sigmaC) = [];

 % new estimate of sigma of X

 sigmaN = (mean(pdz2)/2)^0.5;

 if sigmaN == sigmaC

 break

 end

end

% final sigma estimate

sigma = sigmaN;

3.8.6 Difference of Means Significance Testing

A difference of means (DOM) is declared significant by the Tdetector algorithm if its

absolute value is greater than a certain value (the multiplier) times the standard deviation

of its respective DOM distribution (Equation 3.2). The multiplier determines the

frequency of incorrect rejections of the null hypothesis (i.e. false positives). For a given

data series of length, L, there are L-1 ways to split the data into two sections, hence that

many DOM values being tested for significance (i.e. opportunities for a false positive to

occur).

We want the probability that a given data vector will return a false positive to be 0.05, but

choosing the corresponding multiplier is analytically difficult due to the fact that DOM

values are not independent of one another. If they were independent, the relation would

be simple; given L-1 opportunities for a false positive, the probability, p, that a single

DOM should yield a false positive must be:

p = 1 − (0.95)
1
L−1

59

The normal distribution standard deviation multiplier (as a function of L) that would

yield this probability can be calculated using the inverse error function as follows.

multiplier(L) = − √2 erfinv(−(0.95)
1
L−1)

This relation was used as guidance for estimating multiplier values empirically.

Multiplier values in the range of this relation were tested on several generated random

vectors of different lengths L in order to achieve a 0.05 false positive probability. The

resulting empirical multiplier lookup table is as follows (Table 3.2).

Table 3.2: Empirically calculated standard deviation multiplier lookup table for DOM significance testing.

Data vector lengths, L, are rounded values of 2(n/2) where n = 0,1,2, …, 26. Multipliers between given L

values can be linearly interpolated with good reliability. The last two L values in the table are untested

extrapolations of the trend.

L multiplier L multiplier

1 0.0000 181 3.1207

2 1.9600 256 3.1500

3 2.1700 362 3.1975

4 2.3400 512 3.2400

6 2.4700 724 3.2801

8 2.6000 1024 3.3048

11 2.6563 1448 3.3183

16 2.7500 2048 3.3252

23 2.8156 2896 3.3295

32 2.9000 4096 3.3311

45 2.9406 5793 3.3328

64 3.0000 8192 3.3332

91 3.0422 10000 3.3333

128 3.1000 1e+10 3.3333

60

3.8.7 Differences of Variances

Let X be a vector of L independent normally distributed random variables with a mean of

0, and variance of σ2.

X = [x1, x2, x3, … , xL]

Next, if X is split into two sections, XA and XB, of length N and M respectively,

XA = [x1, x2, x3, … , xN] , XB = [xN+1, xN+2, xN+3, … , xN+M]

Then both XAand XBwill have their own sample variance. The difference of these two

variances is referred to here as the DOV.

DOV = Var(XA) − Var(XB)

If this process was repeated on many randomly generated X vectors of length L, split into

two sections of lengths N and M, and a DOV was calculated each time, then the resulting

collection of DOVs would have a variance itself.

Var(DOV) = Var(Var(XA) − Var(XB))

We wish to know Var(DOV) in order to test for the significance of a given DOV

calculated from a data vector. Even though XAand XB as we have stated in this derivation

are not expected to contain steps, we must represent their variance with the pairwise

difference method (Equation 3.1) because that is how variance values for DOV of a given

data vector will be calculated (see Appendix C for more detail).

Var(DOV) = Var (
∑ (xn+1 − xn)

2(N−1)
n=1

2(N − 1)
−
∑ (xn+1 − xn)

2(N+M−1)
n=N+1

2(M − 1)
)

These two terms, Var(XA) and Var(XB), are independent of one another, therefore:

Var(DOV) = Var (
∑ (xn+1 − xn)

2(N−1)
n=1

2(N − 1)
) + Var (

∑ (xn+1 − xn)
2(N+M−1)

n=N+1

2(M − 1)
)

We can simplify the variances above, Var(Var(XA)) and Var(Var(XB)), to functions of

the population variance of X, σ2, that depend on lengths N and M respectively, using the

61

conventional formula (Var(X) = E[(X − E(X))2] = E[X2] − (E[X])2). The simplification

of Var(Var(XA)) is as follows.

Var (
∑ (xn+1 − xn)

2(N−1)
n=1

2(N − 1)
)

= E [(
∑ (xn+1 − xn)

2(N−1)
n=1

2(N − 1)
)

2

] − (E [
∑ (xn+1 − xn)

2(N−1)
n=1

2(N − 1)
])

2

= E [(
∑ (xn+1 − xn)

2(N−1)
n=1

2(N − 1)
)

2

] − (σ2)2

= E [(
1

2(N − 1)
)
2

(∑ (xn+1 − xn)
2

(N−1)

n=1

)

2

] − σ4

= (
1

2(N − 1)
)
2

E [(∑ (xn+1 − xn)
2

(N−1)

n=1

)

2

] − σ4

= (
1

4(N − 1)2
) E [(∑ (xn+1 − xn)

2

(N−1)

n=1

)

2

] − σ4

Next, we can simplify the term highlighted in blue to a multiple (defined by length N) of

the squared population variance of X, σ4.

E [(∑ (xn+1 − xn)
2

(N−1)

n=1

)

2

] = E [(x1
2 − 2(∑ xnxn+1

(N−1)

n=1

) + 2(∑ xn+1
2

(N−2)

n=1

) + xN
2)

2

]

62

= E

[

x1
4 − 2x1

2 (∑ xnxn+1

(N−1)

n=1

)+ 2x1
2(∑ xn+1

2

(N−2)

n=1

)+ x1
2xN

2 …

−2x1
2 (∑ xnxn+1

(N−1)

n=1

)+ 4(∑ xnxn+1

(N−1)

n=1

)

2

− 4(∑ xnxn+1

(N−1)

n=1

)(∑ xn+1
2

(N−2)

n=1

)− 2xN
2 (∑ xnxn+1

(N−1)

n=1

)…

+2x1
2 (∑ xn+1

2

(N−2)

n=1

)− 4(∑ xnxn+1

(N−1)

n=1

)(∑ xn+1
2

(N−2)

n=1

)+ 4(∑ xn+1
2

(N−2)

n=1

)

2

+ 2xN
2 (∑ xn+1

2

(N−2)

n=1

)…

+x1
2xN

2 − 2xN
2 (∑ xnxn+1

(N−1)

n=1

)+ 2xN
2 (∑ xn+1

2

(N−2)

n=1

)+ xN
4

]

When expanded, the expected value of each term within all red terms will be equal to

zero. This is because each term will contain at least one value raised to the first power

(xn
1), which has an expected value of zero, resulting in the expected value of that entire

term being equal to zero. Therefore all red terms above can be dropped.

= E[x1
4] + 2E [x1

2 (∑ xn+1
2

(N−2)

n=1

)] + E[x1
2xN

2] + 4E [(∑ xnxn+1

(N−1)

n=1

)

2

]

+ 2E [x1
2 (∑ xn+1

2

(N−2)

n=1

)] + 4E[(∑ xn+1
2

(N−2)

n=1

)

2

] + 2E [xN
2 (∑ xn+1

2

(N−2)

n=1

)]

+ E[x1
2xN

2] + 2E [xN
2 (∑ xn+1

2

(N−2)

n=1

)] + E[xN
4]

Recall: σ2 = E[xn
2] − E[xn]

2 = E[xn
2], and E[xn

2xm
2] = E[xn

2]E[xm
2] = σ4 since xn ⊥

xmwhere n ≠ m

Note: the 4th central moment of a normal random variable, E[xn
4] = 3σ4

E [(∑ (xn+1 − xn)
2

(N−1)

n=1

)

2

]

= 3σ4 + 2(N − 2)σ4 + σ4 + 4(N − 1)σ4 + 2(N − 2)σ4

+ 4[(N − 2)2 − (N − 2) + 3(N − 2)]σ4 + 2(N − 2)σ4 + σ4 + 2(N − 2)σ4 + 3σ4

= (4N2 + 4N − 12)σ4

63

This term can now be plugged back in for the blue highlighted term:

Var (
∑ (xn+1 − xn)

2(N−1)
n=1

2(N − 1)
) = (

1

4(N− 1)2
) E [(∑ (xn+1 − xn)

2

(N−1)

n=1

)

2

] − σ4

= (
1

4(N − 1)2
) (4N2 + 4N − 12)σ4 − σ4

= (
N2 + N− 3

(N − 1)2
)σ4 − σ4

= (
N2 +N − 3

(N− 1)2
− 1)σ4

Now this term for Var(Var(XA)) and its counterpart representing Var(Var(XB)) in terms

of M can be plugged into the Var(DOV) equation.

Var(DOV) = Var (
∑ (xn+1 − xn)

2(N−1)
n=1

2(N − 1)
) + Var (

∑ (xn+1 − xn)
2(N+M−1)

n=N+1

2(M − 1)
)

= (
N2 + N− 3

(N − 1)2
− 1)σ4 + (

M2 +M− 3

(M − 1)2
− 1)σ4

= [
N2 + N − 3

(N− 1)2
+
M2 +M− 3

(M− 1)2
− 2] σ4

Instead of using N and M, we can represent the lengths of XA and XB with i and (L − i)

respectively. This yields the variance shown in Equation 3.3.

Var(DOV) = [
i2 + i − 3

(i − 1)2
+
(L − i)2 + (L − i) − 3

((L − i) − 1)2
− 2]σ4

64

3.8.8 Bdetector Algorithms

The Bdetector1 algorithm is identical to the method described in [62], with the algorithm

implemented in R (http://www.r-project.org). The Bdetector2 algorithm was developed

by modifying Bdetector1 to allow for changing variance, as follows:

For a data with points xi (i is from 1 to N), if k steps are fitted at position l1, l2, … , lk, and

for notational simplicity, let l0 = 0, and lk+1 = N, then the maximum likelihood estimator

for mean and variance are:

𝜇𝑗 =
1

𝑙𝑗 − 𝑙𝑗−1
 ∑ 𝑥𝑖

𝑙𝑗

𝑖=𝑙𝑗−1

Where j = 1, …, k + 1

𝜎𝑗
2 =

1

𝑙𝑗 − 𝑙𝑗−1
 ∑ (𝑥𝑖 − 𝜇𝑗)

2

𝑙𝑗

𝑖=𝑙𝑗−1

Recall that the BIC for a statistical model is calculated as:

𝐵𝐼𝐶 = −2 ∗ 𝑙𝑜𝑔𝐿 + 𝑝 ∗ 𝑙𝑛 (𝑁)

Where logL is the log-likelihood of a model, and p is the number of parameters to

estimate.

Thus, the BIC for fitting k steps will be:

𝐵𝐼𝐶 =∑(𝑙𝑗−𝑙𝑗−1) ∗ 𝑙𝑛 (𝜎𝑗
2)

𝑘+1

𝑗=1

+ 𝑁 ∗ 𝑙𝑛(2𝜋) + 𝑁 + 𝑝 ∗ 𝑙𝑜𝑔(𝑁)

Where p = 2*(k+1) = 2k + 2.

To add a step, Bdetector2 scans each potential step position and calculates a BIC value. If

the difference between the minimal BIC value and BIC from not adding a step is greater

than 5 [74] a new step is added at the position that leads to smallest BIC value. While

holding all previous steps, this process is then repeated to detect subsequent steps.

Bdetector2 terminates when no more steps that result in a lower BIC value can be added.

65

3.8.9 Photobleaching Rate Estimation

By ensemble averaging many photobleaching traces and fitting to an exponential, the

photobleaching rate constant can be estimated with high accuracy. Because each GFP

photobleaches independently of one another, the rate constant for the exponential decay

of the ensemble average will be the same as the first-order bleaching rate of a single GFP.

Comparing the photobleaching rate constant to the total acquisition time also allows for a

correction due to photobleaching events that are expected to be missed due to the finite

acquisition time of the experiment. Based on the known acquisition time and calculated

photobleaching rate, Equation 3.1 calculates the fraction of photobleaching events that

are expected to occur during acquisition. This number is critical because the final copy

number is estimated by dividing the total intensity drop for each photobleaching trace by

the experimentally-determined unitary step size. If the photobleaching trace has not fallen

all the way to background, then copy number will be underestimated. Hence, to correct

for missed photobleaching events, the total intensity drop for each trace is corrected by

dividing by the expected fraction of observed events given by:

Fraction observed = 1 − e−ak (3.1)

Where a = acquisition time in seconds, k = fitted photobleach rate in inverse seconds

According to our fitted photobleaching rate (0.0278 ± 0.0003 s-1) and acquisition time (a

= 100 s), we expect to observe ~ 93% of the photobleaching process.

3.8.10 Definition of Sensitivity and Precision for Step Detection Algorithms

The ability of each step detection algorithm to correctly identify steps was tested using

simulated data with added white noise containing steps at known indexes. Each algorithm

was given the same collection of simulated data, and then the indexes at which each

algorithm declared steps were compared to the true step indexes. If a declared step index

was within a certain range of a true step index, then it was regarded as a correct declared

step (i.e. if Equation 3.2 is satisfied). The range was defined by a constant percentage

multiplier (0.05) of the two true plateau lengths on either side of a true step index.

−‖0.05 p1‖ ≤ (ideclared − itrue) ≤ ‖0.05 p2‖ (3.2)

66

Where p1 = # of data points in plateau that precedes the true step, p2 = # of data points in

plateau that follows the true step, ideclared = index of the declared step, itrue = index of a

true step.

Once a declared step is defined as correct, the true step to which it was matched is no

longer allowed to be matched to again. This means that if there are multiple declared

steps within a certain range of the true step, only one of those declared steps is allowed to

be defined as correct.

The sensitivity of an algorithm was defined as the fraction of true steps that have a

declared step within their range (detected true steps). The precision of an algorithm was

defined as the fraction of declared steps that are correct:

sensitivity =
detected true steps

total true steps

precision =
correct declared steps

total declared steps

Underfitting the data will result in low sensitivity and generally higher precision, while

overfitting will result in low precision and generally higher sensitivity.

3.8.11 Density Estimation

Least-squares fitting on binned histogram data was carried out in R with nonlinear least-

squares fitting. Center of bins and bin height are used. For Kernel Density Estimation,

bandwidth is as specified by Scott [75]. The “normalmixEM” function in the R package

“mixtools” [76] was used to implement the Gaussian Mixture Model, and the variance of

each Gaussian was assumed to be the same while means were unconstrained. The BIC

value, is calculated based on the log-likelihood of each fitting, and was used to

objectively determine the number of Gaussians to use in the final model.

67

3.9 Discussion

Determining the stoichiometry of proteins in large multi-subunit membrane complexes by

biochemical methods is challenging, and despite producing a highly abundant and useful

biopolymer, the molecular makeup of the cellulose synthesis complex, one such protein

complex, has remained enigmatic. The goal of this work was to quantify the number of

CESA subunits in cellulose synthesis complexes by non-destructive in vivo

photobleaching. Plant seedlings expressing GFP-AtCESA3 were imaged using variable-

angle epifluorescence microscopy and the fluorescence intensities of individual GFP-

AtCESA3-containing particles were recorded as the signals bleached to near background

levels. However, despite efforts to maximize the SNR, individual photobleaching steps

were not easily identified by eye, preventing an objective estimate of CESA copy

number. This hurdle motivated us to develop a set of statistical tools to estimate unitary

step size and fluorophore copy number from photobleaching data involving many

fluorophores.

Using imaging to quantify subunit copy number for intact protein complexes in vivo

provides a method to probe the quaternary structure of these complexes that circumvents

the difficulty and potential disruption of the complex inherent in biochemical

purification. For copy numbers under five, it is often easy to simply estimate the number

of steps by eye [58, 77]. In other cases, it is possible to estimate unitary step intensity by

measuring the amplitude of the last step, but that approach ignores much of the rich

information present in the data. Because small errors in the estimation of the unitary step

intensity can propagate to larger errors in the copy number estimation, it is important to

use as much of the available information as possible to achieve the best possible estimate

for unitary photobleaching. In our photobleaching data analysis, we identified three major

challenges to accurately measuring high copy numbers: 1) detecting steps in traces

having non-uniform variances due to the summed fluctuations of multiple fluorophores,

2) precisely identifying the unitary step size from step size distribution densities, and 3)

accurately quantifying the total intensity drop corresponding to bleaching for all of the

subunits in the complex. We developed a solution for each of these challenges, and we

hope that this set of tools will be adopted as “best practices” for analyzing

photobleaching data in other systems with high protein copy number.

68

While signal variance in molecular motor stepping data is independent of the motor

position, photobleaching data present the unique challenge of signal variance that scales

with intensity. Previous step detection methods have used the approach of constructing

pairwise distance distributions to estimate unitary step size for each step [23, 59], but

assumed a constant variance. This variance is important because it is used in tests to

determine statistical significance. Applying step detection algorithms that assume

constant variance to photobleaching data results in overfitting of steps in early time

points when both the signal and variance are high. Thus the technique developed here to

estimate the time-dependent variance of the signal was a key advance that improved the

performance of both the BIC-based and t-test-based step detection algorithms over those

assuming constant variance.

The step detection algorithms output a step size distribution density that needs to be

analyzed to extract the unitary step size. We found Kernel Density Estimation to be a

vastly superior approach over the traditional technique of binning the data and fitting

multiple Gaussians because it eliminated the decision of what bin size to use. However,

one weakness of KDE was fitting to higher modes. The Gaussian Mixture Model proved

to be the optimal tool for identifying the modes of step intensity and assigning them

proper weights. The multiple modes of step sizes can be explained by at least two

reasons. First, it is possible that two or more fluorophores can bleach at the same time,

resulting in larger steps. This probability grows with increasing copy number. Second, a

step detection algorithm might group two steps into one when fitting the two steps

separately is not statistically significant. This can happen when noise is high, which also

often correlates with high copy numbers. The probability of observing single steps

consisting of multiple bleaching events is represented by the proportion of each mode in

the GMM density estimation.

The final technique that we developed was a best estimate of the total photobleaching

amplitude, taking into account the bleaching rate. From the ensemble average, a

photobleaching rate constant could be readily extracted. This parameter will vary with

excitation intensity, cellular conditions, and other factors, and so needs to be measured

for each experiment. If the duration of the experiment is longer than five times the

69

photobleaching time constant, then it is expected that 99% of the signal has bleached,

minimizing the need for any correction. However, long acquisition times are not always

possible due to stage or sample drift, camera memory, and underlying cellular dynamics.

Hence, correcting for the expected maximum amplitude is important to avoid

underestimating copy number.

While the statistical analysis indicated an average copy number of 10 GFP-CESA3 in the

observed complexes, we consider this to be a lower limit for the following reasons. First,

the GFP-AtCESA3 transgene is present in a background of the partial-loss-of-function

AtCESA3je5 allele of AtCESA3 [49], meaning that endogenous non-fluorescent

AtCESA3 can potentially still be expressed and comprise a portion of each CSC. Second,

the time required for microscope focus adjustments necessary to pinpoint the focal plane

of the membrane means that some GFP molecules might bleach before images are

recorded. Third, it is impossible to rule out the presence of GFP molecules that are

misfolded or have not matured (though the estimated 15 minute maturation time constant

for eGFP is expected to be sufficiently fast for the present measurements [78]). To

improve upon this initial result, we are engineering plants that contain GFP-AtCESA3

expressed in a CESA3 null background. We are also exploring the use of slow-bleaching

versions of fluorescent proteins in order to minimize pre-bleaching. Slow bleaching will

also improve the ability of step detection algorithms to detect early bleaching steps. An

additional uncertainty is whether the two peaks in the copy number distribution indicate

that some particles are aggregates of multiple complexes or that two different populations

of CSCs exist. To distinguish these two hypotheses, future experiments will focus on

photobleaching analysis of motile GFP-AtCESA particles, which presumably represent

single CSCs.

In conclusion, we have developed a reliable method for determining copy number in

multi-subunit complexes from in vivo photobleaching data. The statistical analysis

combines step detection and density estimation to accurately determine the unitary

photobleaching step and takes into consideration the bleaching rate constant when

determining the maximum fluorescence signal. This method is generic and can be used to

estimate the stoichiometry of other membrane-bound complexes and can be applied to

70

fluorophores other than GFP. Because the signal variance and unitary step size are

calculated directly from the raw data, it is not necessary to carry out new controls for

different fluorophores, but fluorophores that display more prominent and prolonged dark

states such as YFP are expected to have lower SNR, which may set an upper limit on

maximum copy numbers that can be reliably estimated. These algorithms can also be

adapted to analyze molecular motor stepping data. Applying this method to in vivo

photobleaching data gave a lower limit of 10 copies of GFP-AtCESA3 in cellulose

synthesis complexes.

71

Chapter 4

Conclusion

The model-independent algorithms presented in this thesis provide a less biased and

higher-precision approach to the step detection problem compared with other methods

used in single-molecule microscopy time series analysis [61, 62] (see Section 3.3). These

algorithms provide a solution to the significant problem of changing variance within a

stepped time series signal and can be used alongside other analysis methods presented

here in order to determine copy numbers of multi-subunit complexes from single-

molecule photobleaching data.

This thesis also shows that the iterative continuous Viterbi (ICV) algorithm, a model-

dependent step detection approach, is a powerful method for uncovering parameters of a

generative hidden Markov model of kinesin stepping. This is due to the fact that the ICV

algorithm has the critical capability of keeping “phase” of plateaus within a given

observation sequence. Therefore, different populations of plateau size and different

populations of step size can be analyzed individually, which drastically improves the

simplicity and accuracy of subsequent analyses. In tandem with developing advances in

high temporal and spatial resolution single-molecule microscopy imaging technologies,

this algorithm provides a promising method for elucidating unresolved mechanisms of

the kinesin stepping cycle.

72

Appendix A:

Tdetector Step Detection Algorithm

The following MATLAB code is a current working version of the Tdetector1 and

Tdetector2 algorithms [1]. The text can be saved as an m file and then it can be called

from the workspace just as with a native MATLAB function.

%% TDETECTOR Step Detection Algorithm (Tdetector1 and Tdetector2)

% [Y,out] = tdetector(X,var_option)

%

% REQUIRED INPUT:

% ---

% X: vector of a piecewise constant function hidden in white noise

%

% OPTIONAL INPUT:

% ---

% var_option (Tdetector1 or Tdetector2):

% [1] assume the corrupting variance of X is constant throughout (default)

% [2] assume the corrupting variance of X changes throughout

%

% OUTPUTS:

% ---

% Y: column vector showing step function fit of X (same length as X)

% out: structure containing information of fitting

% di: column vector of the declared step indexes (index of each new plateau)

% ssz: column vector of each step size

% psz: column vector of each plateau size

% vx: column vector of the variance at each index

%

% for additional info, visit:

% <a href="matlab:web('http://www.bioe.psu.edu/labs/Hancock-

Lab/tdetector.html','-browser')">http://www.bioe.psu.edu/labs/Hancock-

Lab/tdetector.html

% NOTES:

% ---

% - The "out" structure output and the "var_option" input do not have to be

% included when calling the function. Y = tdetector(X); is valid.

%

% - Cell titles for secondary functions in the code below include the

% var_options that utilize that respective function in parentheses.

% EXAMPLES:

% ---

% 1. Demonstrate Tdetector1:

%

% X = randn(1000,1);

% X(200:end) = X(200:end) + 5;

% X(400:end) = X(400:end) + 5;

% X(600:end) = X(600:end) + 5;

% plot(X,'b'); hold on

% [Y,out] = tdetector(X);

% disp('declared step indexes:');disp(out.di)

% plot(Y,'g');

%

% 2. Demonstrate Tdetector2:

73

%

% X = [1*randn(199,1);2*randn(200,1);3*randn(200,1);8*randn(401,1);];

% X(200:end) = X(200:end) + 5;

% X(400:end) = X(400:end) + 5;

% X(600:end) = X(600:end) + 5;

% plot(X,'b'); hold on

% [Y,out] = tdetector(X,2);

% disp('declared step indexes:');disp(out.di)

% plot(Y,'g');

% Nathan Deffenbaugh

% ncd50561234@gmail.com, ncd5056@psu.edu

% (2014 June 10)

%% tdetector

function [Y,out] = tdetector(X,var_option)

% check the var_option, store as VO

VO = 1; % (default to constant variance)

if exist('var_option','var')

 if var_option == 2

 VO = 2;

 end

end

% define full data length

Lo = length(X);

% calculate corrupting variance or variance sections (vx)

if VO == 1

 SIG = getSig(X,1);

 out.vx = SIG^2*ones(Lo,1);

else

 vx = varSect(X);

 out.vx = vx';

end

% define the empirical multiplier lookup table and linearly interpolate

multTab =

[1,0;2,2;3,2.17;4,2.34;6,2.47;8,2.60;11,2.656250;16,2.75;23,2.815625;32,2.90;45

,2.940625;64,3;91,3.0421875000;128,3.10;181,3.1207031250;256,3.15;362,3.1975471

6981100;512,3.24;724,3.280080;1024,3.304768;1448,3.318336;2048,3.325240;2896,3.

329480;4096,3.331096;5793,3.332793;8192,3.3331644000;1e4,3.333300;1e10,3.333300

];

multTab = interp1(multTab(:,1),multTab(:,2),1:Lo);

% step detecting loop

plats_array = [1,Lo];

found = [];

while ~isempty(plats_array)

 Bound = plats_array(end,:);

 % look for a step in this current section of the data

 if VO == 1

 [step_index,status] = detectStep1(X(Bound(1):Bound(2)),Bound(1),SIG,

multTab);

 else

 [step_index,status] =

detectStep2(X(Bound(1):Bound(2)),Bound(1),vx(Bound(1):Bound(2)), multTab);

 end

 % if a significant step is detected

 if status == 1

 found(end+1,1) = step_index;

74

 plats_array(end+1,:) = [plats_array(end,1),step_index-1];

 plats_array(end+1,:) = [step_index,plats_array(end-1,2)];

 plats_array(end-2,:) = [];

 elseif status == -1

 plats_array(end,:) = [];

 end

end

% sort the found steps

found = [found;1;Lo];

found = sortrows(found);

% check found steps and build Y vector

if VO == 1

 [checked] = checkSteps(found, X, SIG, multTab, VO);

else

 [checked] = checkSteps(found, X, vx, multTab, VO);

end

checked = [1;checked;Lo+1];

for ii = 1:(length(checked)-1)

 Y(checked(ii):checked(ii+1)-1) = mean(X(checked(ii):checked(ii+1)-1));

end

Y = Y';

% calculate step sizes

step_sizes = zeros(length(checked) - 2,1);

for ii = 2:length(checked)-1

 step_sizes(ii-1) = Y(checked(ii)) - Y(checked(ii) - 1);

end

out.ssz = step_sizes;

% calculate plateau sizes (how many indexes exist between each found step)

out.psz = checked(2:end) - checked(1:end-1);

% output declared step indexes

out.di = checked(2:end-1);

end

%% getSig (1,2)

function [SIG] = getSig(Xs,expnt)

% define pairwise difference vectors

diff1 = diff(Xs);

diff2 = diff(Xs).^2;

while true

 % current estimate of sigma of X

 sigmaC = (mean(diff2)/2)^0.5;

 % remove outlier values from diff vectors

 diff2(abs(diff1) > 3*(2^.5)*sigmaC) = [];

 diff1(abs(diff1) > 3*(2^.5)*sigmaC) = [];

 % new estimate of sigma of X

 sigmaN = (mean(diff2)/2)^0.5;

 if sigmaN == sigmaC

 break

 end

end

% empirical correction for underestimation

75

SIG = sigmaN*1.015;

SIG = SIG^expnt;

end

%% getSigLoop (2)

% getSig function altered slightly to improve speed during a loop

function [SIG] = getSigLoop(Xs,expnt,sd2,ld2)

% Sig Equation

diff1 = diff(Xs);

diff2 = diff(Xs).^2;

% initiate sum to subtract

sts = 0;

% initiate length to subtract

lts = 0;

STOP = 0;

while (STOP == 0)

 SIG = ((sd2-sts)/(ld2-lts)/2)^0.5;

 sd2 = sd2-sts;

 ld2 = ld2-lts;

 icurrpeaks = (abs(diff1) > (3*(2^.5))*SIG);

 currpeaks = diff2(icurrpeaks);

 % sum to subtract

 sts = sum(currpeaks);

 % length to subtract

 lts = length(currpeaks);

 % zero out peaks

 diff1(icurrpeaks) = 0;

 if (lts == 0)

 break

 end

end

SIG = SIG*1.015;

SIG = SIG^expnt;

end

%% varSect (2)

function [vx] = varSect(X)

% define full data length

Lo = length(X);

% variance sectioning loop

plats_array = [1,Lo];

found = [];

while ~isempty(plats_array)

 Bound = plats_array(end,:);

 [step_index,status] = detectVars(X(Bound(1):Bound(2)),Bound(1));

 if status == 1

 found(end+1,1) = step_index;

 plats_array(end+1,:) = [plats_array(end,1),step_index-1];

 plats_array(end+1,:) = [step_index,plats_array(end-1,2)];

76

 plats_array(end-2,:) = [];

 elseif status == -1

 plats_array(end,:) = [];

 end

end

% sort the found variance steps

found = [found;1;Lo];

found = sortrows(found);

% check found variance steps

[checked] = checkVars(found,X);

checked = [1;checked;Lo+1];

% build vx vector

for ii = 1:(length(checked)-1)

 vx(checked(ii):checked(ii+1)-1) = getSig(X(checked(ii):checked(ii+1)-1),2);

end

end

%% detectVars (2)

function [mxi,status] = detectVars(Xs,i_1)

% in order for any pairwise difference value to be > z*(2^.5)sig and hence

excluded,

% the length, n, of the diff vector must be n >= z^2 + 1; L >= 2(z^2 + 2). For

% z = 3, L >= 22. Requiring L >= 22 is necessary to ensure that large pairwise

% differences due to true steps in the data do not influence the calculated

% variance of that section.

% define L and default values

L = length(Xs);

status = -1;

mxi = 0;

if (L >= 22)

 d2 = diff(Xs).^2;

 % get sigma of noise

 SIG = getSig(Xs,1);

 % DOV significance rating

 Asd2 = sum(d2(1:9));

 Bsd2 = sum(d2(11:end));

 RVD = zeros(L-2,1);

 for ii = 11:L-10

 Asd2 = Asd2 + d2(ii-1);

 Bsd2 = Bsd2 - d2(ii);

 A = Xs(1:ii);

 B = Xs(ii+1:end);

 VA = getSigLoop(A,2,Asd2,ii-1);

 VB = getSigLoop(B,2,Bsd2,L-ii-1);

 DOV = VA - VB;

 LA = ii;

 LB = L - ii;

 sigma_squared = (((LA^2 + LA -3)/((LA-1)^2)) + ((LB^2 + LB -3)/((LB-

1)^2)) - 2)*SIG^4;

 RVD(ii) = DOV/(sigma_squared^.5)/3;

77

 end

 % find the index of the max RVD (rated difference of variance)

 mxi = find(abs(RVD) == max(abs(RVD)));

 mxi = max(mxi);

 % determine the status of the section based on the RVD

 if (abs(RVD(mxi)) > 1)

 status = 1;

 % globalize the step index

 mxi = mxi + i_1;

 end

end

end

%% detectStep1 (1)

function [mxi,status] = detectStep1(Xs,i_1,SIG,multTab)

% define L and default values

L = length(Xs);

status = -1;

mxi = 0;

if (L >= 2)

 % declare sigma multiplier

 mult = multTab(L);

 % DOM significance rating

 RMD = zeros(L,1);

 m1 = 0;

 m2 = sum(Xs);

 for ii = 1:L-1

 m1 = m1 + Xs(ii);

 m2 = m2 - Xs(ii);

 DOM = m2/(L-ii) - m1/(ii);

 sigma = SIG*(1/ii + 1/(L-ii))^.5;

 RMD(ii+1) = DOM/(sigma*mult);

 end

 % find the index of the max RMD (rated difference of mean)

 mxi = find(abs(RMD) == max(abs(RMD)));

 mxi = max(mxi);

 % determine the status of the section based on the RMD

 status = -1;

 if (abs(RMD(mxi)) > 1)

 status = 1;

 % globalize the step index

 mxi = mxi + i_1 - 1;

 end

end

end

%% detectStep2 (2)

78

function [mxi,status] = detectStep2(Xs,i_1,vx,multTab)

% define L and default values

L = length(Xs);

status = -1;

mxi = 0;

if (L >= 2)

 % get sigma of noise

 SIG = mean(vx)^.5;

 % declare sigma multiplier

 mult = multTab(L);

 % DOM significance rating

 RMD = zeros(L,1);

 m1 = 0;

 m2 = sum(Xs);

 for ii = 1:L-1

 m1 = m1 + Xs(ii);

 m2 = m2 - Xs(ii);

 DOM = m2/(L-ii) - m1/(ii);

 sigma = SIG*(1/ii + 1/(L-ii))^.5;

 RMD(ii+1) = DOM/(sigma*mult);

 end

 % find the index of the max RMD (rated difference of mean)

 mxi = find(abs(RMD) == max(abs(RMD)));

 mxi = max(mxi);

 % define the RMD_vx value

 sigma_vx = ((sum(vx(1:(mxi - 1)))/((mxi - 1)^2)) + (

sum(vx((mxi):end))/((L-mxi+1)^2)))^.5;

 DOM = mean(Xs(1:(mxi - 1))) - mean(Xs(mxi:end));

 RMD_vx = DOM/(mult*sigma_vx);

 % determine the status of the section based on the RMD and RMD_vx

 status = -1;

 if (abs(RMD(mxi)) > 1 && abs(RMD_vx) > 1)

 status = 1;

 % globalize the step index

 mxi = mxi + i_1 - 1;

 end

end

end

%% checkVars (2)

function [checked] = checkVars(found, rx)

% shift last index

found(end) = found(end) + 1;

% initialize

checked = [];

cc = 0;

endW = 0;

79

% if there are no found sections to check, do not enter checking loop

if (length(found) == 2)

 endW = 1;

end

% variance section checking loop

ii = 1;

while (endW == 0)

 ii = ii + 1;

 % check variance steps now based on adjacent variance plateaus

 [step_index,status] = detectVars(rx(found(ii-1):found(ii+1)-1),found(ii-

1));

 % if the step is still significant based on adjacent plateaus, store it to

the checked vector

 if (status == 1)

 cc = cc + 1;

 checked(cc,1) = step_index;

 % else, remove it from the found vector

 else

 found(ii) = [];

 ii = ii - 1;

 end

 % if there are no more steps to check, end this while loop

 if ((ii + 1) == length(found))

 endW = 1;

 end

end

end

%% checkSteps (1,2)

function [checked] = checkSteps(found, rx, noise_input, multTab, VO)

% store noise_input

if VO == 1

 SIG = noise_input;

else

 vx = noise_input;

end

% shift last index

found(end) = found(end) + 1;

% initialize

checked = [];

cc = 0;

endW = 0;

% if there are no found steps to check, do not enter checking loop

if (length(found) == 2)

 endW = 1;

end

% step checking loop

ii = 1;

while (endW == 0)

 ii = ii + 1;

 % check steps now based on adjacent plateaus (depending on variance option,

VO)

 if VO == 1

80

 [step_index,status] = detectStep1(rx(found(ii-1):found(ii+1)-

1),found(ii-1),SIG, multTab);

 else

 [step_index,status] = detectStep2(rx(found(ii-1):found(ii+1)-

1),found(ii-1),vx(found(ii-1):found(ii+1)-1), multTab);

 end

 % if the step is still significant based on adjacent plateaus, store it to

the checked vector

 if (status == 1)

 cc = cc + 1;

 checked(cc,1) = step_index;

 % else, remove it from the found vector

 else

 found(ii) = [];

 ii = ii - 1;

 end

 % if there are no more steps to check, end this while loop

 if ((ii + 1) == length(found))

 endW = 1;

 end

end

end

81

Appendix B:

Iterative Continuous Viterbi Algorithm

The following MATLAB code performs the iterative continuous Viterbi (ICV) Hidden

Markov Model step detection algorithm.

%% icv (iterative continuous-Viterbi algorithm)

% [ret,R,o] = icv(y,[Fss,delta_incr,skip_offset])

%

% Inputs

% ---

% y: piecewise constant vector corrupted by noise (emission values from a

% hidden markov model of a stepping motor)

%

% optional inputs ...

%

% Fss: full step size of motor (16.4 nm default)

% delta_incr: number of delta increments tested (20 default)

% det_offset: if set to 0 then offset detect is skipped (1 default)

%

% Outputs:

% ---

% ret: vector of step trace HMM fit that returned lowest mean squared error

% (same size as input y). Values are locked to means of this optimal

% HMM emission matrix.

%

% R: matrix of delta values tested (column 1) and their

% respective mean squared errors of fitting (column 2)

%

% o(1): structure containing other information of HMM fitting

% mvar: mean variance of input y (calculation from tdetector function)

% off: offset of input y based on expected full step size of Fss or 16.4

% by default (calculation from odetect function)

% A: HMM transition matrix

% U: HMM initial probabilities matrix

% lambda: HMM inverse of expected plateau length (data points)

% N: HMM length of transition matrix

% toc: analysis run time

% opti: optimal delta value (lowest mean squared error)

% di: declared indexes of stepping from optimal HMM fit (Y)

% Y: optimal HMM fit, similar to "ret" output, but with each plataeu as

% the mean of input data (y) in that section

% ssz: step sizes from Y fit

% psz: plateau sizes from Y fit

% even: structure of even plateau sizes and step sizes

% odd: structure of odd plateau sizes and step sizes

%

% o(n).x: vector of HMM fit for each tested delta value. The highest

% value of n = delta_incr, or 20 by default. Whichever tested delta

% yielded the lowest mean squared error will have its o(n).x = ret.

%% icv (requires Tdetector function)

function [ret,R,o] = icv(y,Fss,delta_incr,det_offset)

% perform preliminary step detection (Tdetector) for offset detector inputs

[tdet_x,tdet_o] = tdetector(y);

o(1).mvar = mean(tdet_o.vx);

82

% shift data to make tdet_x(1) = 0

y = y - tdet_x(1);

% set input defaults

if nargin < 2

 Fss = 16.4; % default full step size (microtubule binding site spacing)

end

if nargin < 3;

 delta_incr = 20; % default increment number (arbitrary)

end

if nargin < 4;

 det_offset = 1; % default to offset detection

end

% perform offset detection, and offset input y vector

if det_offset == 1

 od = odetect(y,tdet_o,Fss);

 y = y + od(1).off;

 o(1).off = od(1).off - tdet_x(1);

 o(1).od = od;

end

% begin ICV analysis ...

tic

T = length(y);

% build estimated transition matrix

N = 2*(ceil(max(y)/Fss) - floor(min(y)/Fss) + 1);

lambda = N/T;

A = HMMbuildTransition(lambda,N);

% initial probs

U = 1/N*ones(1,N);

% build emission matrix and perform continuous-Viterbi (iterative)

delta = linspace(0,Fss,delta_incr);

R(:,1) = delta;

for ii = 1:length(delta)

 B = HMMbuildEmission(delta(ii),0,tdet_o.vx(1)^0.5,N,Fss);

 [o(ii).s,R(ii,2)] = vitec(y,A,B,U);

 o(ii).x = B(o(ii).s,1);

 o(ii).delta = delta(ii);

end

% R(:,2) = 1./R(:,2);

o(1).A = A;

o(1).U = U;

o(1).lambda = lambda;

o(1).N = N;

o(1).toc = toc;

% return optimal delta value

[dum,ind] = min(R(:,2));

o(1).opti = o(ind).delta;

ret = o(ind).x;

% calculate declared step indexes

o(1).di = find(diff(ret) ~= 0) + 1;

step_indexes = [1;o(1).di;T+1];

% calc noise corrupted step sizes

for ii = 1:(length(step_indexes)-1)

83

 Y(step_indexes(ii):step_indexes(ii+1)-1) =

mean(y(step_indexes(ii):step_indexes(ii+1)-1));

end

o(1).Y = Y';

step_sizes = zeros(length(step_indexes) - 2,1);

for ii = 2:length(step_indexes)-1

 step_sizes(ii-1) = Y(step_indexes(ii)) - Y(step_indexes(ii) - 1);

end

o(1).ssz = step_sizes;

% calculate plateau sizes (how many indexes exist between each found step)

o(1).psz = step_indexes(2:end) - step_indexes(1:end-1);

% sort even and odd index step sizes and plateaus

inds = 1:length(o(1).ssz);

o(1).even.ssz = o(1).ssz(find(rem(inds,2)*-1+1));

o(1).odd.ssz = o(1).ssz(find(rem(inds,2)));

inds = 1:length(o(1).psz);

o(1).even.psz = o(1).psz(find(rem(inds,2)*-1+1));

o(1).odd.psz = o(1).psz(find(rem(inds,2)));

end

%% odetect (offset detector)

% [ret] = odetect(x,o,ss);

%

% Inputs:

% ----------------------------------

% x: piecewise constant signal corrupted by noise. This is also the

% emission values from a Hidden Markov Model

% o: output structure from the Tdetector algorithm.

% ss: step size for which the x data offset is to be calculated

%

% Outputs:

% ----------------------------------

% ret: structure containing the following:

%

function ret = odetect(x,o,ss)

% acceptable range parameter

arp = 0.05;

arv = arp.*ones(size(o.psz));

% normalize fit to start from zero and by unit step size

Q = [0;cumsum(o.ssz)]./ss;

for i = 1:length(Q)

 % shift Q so that the ith plateau is at zero

 q = Q - Q(i);

 % calc q absolute error

 qae = abs(q - round(q));

 % truth list if each plat is within acceptable range

 z = arv >= qae;

 ret(i).z = z;

 % declare plateau scores

 ret(i).zs = sum(o.psz(find(z))); % z score (plat point count)

 ret(i).zc = sum(z); % z count

end

ret(1).Q = Q;

% cumulative plateau size

cps = [0;cumsum(o.psz)];

84

% initialize optimal plateau score

opt_zs = 0;

for i = 1:length(o.psz)

 ret(i).plat = x(cps(i) + 1:cps(i+1));

 % check for optimal reference plateau

 if (ret(i).zc >= 2) && (ret(i).zs >= opt_zs)

 % update

 ret(1).opt = i;

 opt_zs = ret(i).zs;

 end

end

% if no synced plateaus found

if opt_zs == 0; ret(1).opt = 0; end

% define Qr

Qr = round(Q - Q(ret(1).opt));

ret(1).Qr = Qr;

% calculate offset

if size(x,1) == 1;

 x = x'; % make sure x is a column vector

end

plat_vect = [];

plat1s = find(ret(ret(1).opt).z);

for i = 1:length(plat1s)

 plat_vect = [plat_vect;ret(plat1s(i)).plat - Qr(plat1s(i))*ss];

end

ret(1).plat_vect = plat_vect;

ret(1).plat1s = plat1s;

ret(1).mpv = mean(plat_vect);

% calc offset (what to shift so that a plateau exactly on mpv would be an

% integer multiple of the ss)

ret(1).off = round(ret(1).mpv/ss)*ss - ret(1).mpv;

% organize plateaus within acceptable range for plotting

ARP = [];

for ii = 1:length(ret(ret(1).opt).z)

 if ret(ret(1).opt).z(ii) == 1

 pp = mean(ret(ii).plat).*ones(size(ret(ii).plat));

 else

 pp = Inf*ret(ii).plat;

 end

 ARP = [ARP;pp];

end

ret(1).arp = ARP;

end

%% HMMbuildTransition

% builds HMM transition matrix for kinesin stepping

% A = HMMbuildTransition(g,K)

function A = HMMbuildTransition(lambda,N)

eta = 0.999;

A = (1 - lambda)*eye(N);

A(1,2) = lambda;

for i = 2:N-1

 A(i,i+1) = eta*lambda;

 A(i,i-1) = (1-eta)*lambda;

end

A(N,N-1) = lambda;

if sum(sum(A,2)) ~= N

85

 disp 'TRANSITION MATRIX ERROR'

end

end

%% HMMbuildEmission

% builds HMM emission matrix for kinesin stepping

function B = HMMbuildEmission(delta,offset,Nstd,N,Fss)

B = Nstd*ones(N,2);

B(1,1) = 0;

for i = 2:N

 if rem(i,2) == 0

 B(i,1) = B(i-1,1) + delta;

 else

 B(i,1) = (i-1)/2*Fss;

 end

end

B(:,1) = B(:,1) + offset;

end

%% vitec (viterbi-continuous algorithm)

% [x,r] = vitec(y,A,B,U)

%

% INPUTS:

% -------------------------------------

% y: observation series (1xT or Tx1 vector)

% A: transition matrix (NxN array)

% where A(i,j) is the probability of transitioning from state i to

% state j. P(x(t) = j | x(t-1) = i)

% B: emission matrix (Nx2 array)

% where y(i) ~ N(B(x(i),1), B(x(i),2)), that is ~ normal distribution

% with mean = B(x(i),1), and std = B(x(i),2)

% U: initial probability vector (Nx1 or 1xN vector)

% where U(i) = P(x(1) = i)

%

% OUTPUTS:

% -------------------------------------

% x: most probable state sequence (1xT vector)

% r: rating, (sum of squared residuals)/T

function [x,r] = vitec(y,A,B,U)

T = length(y);

N = length(A);

T1 = zeros(N,T);

T2 = T1;

% calculate P(x_i|y_1)

for i = 1:N

 T1(i,1) = U(i)*pdens(B(i,:),y(1));

 T2(i,1) = 0;

end

% construct T1 and T2

for i = 2:T

 for j = 1:N

 % [max,argmax] = max();

 [T1(j,i),T2(j,i)] = max(T1(:,i-1).*A(:,j)*pdens(B(j,:),y(i)));

86

 % T1(j,i) is the relative probability that x(i) = j, given y(1:i)

 % T2(j,i) is the most likely x(i-1) given that x(i) = j

 end

 T1(:,i) = T1(:,i)/sum(T1(:,i));

end

% find most likely final state

[dum,z(T)] = max(T1(:,T));

x(T) = z(T);

% trace back through most likely path

for i = T:-1:2

 z(i-1) = T2(z(i),i);

 x(i-1) = z(i-1);

end

% calculate rating

if size(y,1) ~= 1;

 y = y';

end

bx = B(x,1);

r = sum((bx' - y).^2)/T;

end

%% pdens [called by: vitec]

function ret = pdens(b,y)

ret = 1/(b(2)*(2*pi)^.5).*exp(-((y-b(1)).^2) / (2*b(2)^2));

end

87

Appendix C:

Differences of Variance; Pairwise Differences vs. χ2

In the Tdetector algorithms, the variance of corrupting noise of the input signal or

sections of the input signal are calculated using the pairwise difference method described

in Section 3.8.5. Therefore, when the difference of variances (DOV) between two

sections are being tested for significance, it is necessary to test according to the

Var(DOV) given in Equation 3.3 (as derived in Section 3.8.7) rather than simply the

Var(DOV) from comparing two χ2 distributions given in Equation A.1:

Var(DOVχ) = σDOV χ2
2 = σ4 (

2

i
+

2

L−i
) (A.1)

The differences in the two ways of calculating Var(DOV) are evident in Figure A.1 as

produced by MATLAB code in Table A.1.

Figure A.1: Var(DOV) calculations on generated random vectors with respect to different indices of

splitting. Analytical Var(DOV) from Equation 3.3 (red line), analytical Var(DOV) from Equation A.1

(black line), Var(DOV) from pairwise difference calculation (blue dotted line), Var(DOV) from

conventional calculation (green dotted line).

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

18

20

index of splitting, i

v
a
r(

D
O

V
)

88

Table A.1: MATLAB code used to generate and calculate Var(DOV) for different indices of splitting.

% define length of X vector and index of splitting, i

L = 80;

i = 1:L-1;

sig2 = 3;

% analytical calculations of expected var(DOV)

VDOV_pds = sig2^2*((i.^2+i-3)./(i-1).^2 + ((L-i).^2+(L-i)-3)./((L-i)-1).^2 - 2);

VDOV_Chi = sig2^2*(2./(i) + 2./(L-i));

% generate random X vectors, split at i, then calculate variance of DOVs

h = waitbar(0,'Please wait...');

for i = 1:L-1

 % iteratations for each index of splitting

 ites = 10000;

 X = sig2^.5*randn(L,ites);

 % split X

 Xa = X(1:i,:);

 Xb = X(i+1:end,:);

 % calc DOV by conventional method and pairwise difference method

 dov_chi = var(Xa) - var(Xb);

 dov_pds = (mean(diff(Xa).^2)/2) - (mean(diff(Xb).^2)/2);

 % store the variance of DOVs

 vdov_chi(i) = var(dov_chi);

 vdov_pds(i) = var(dov_pds);

 waitbar(i / L)

end

close(h)

% plotting

figure

plot(VDOV_pds,'.-r')

hold on

plot(VDOV_Chi,'.-k')

plot(vdov_chi,'--g')

plot(vdov_pds,'--b')

xlabel('index of splitting, i')

ylabel('var(DOV)')

89

REFERENCES

[1] Y. Chen, N. C. Deffenbaugh, C. T. Anderson and W. O. Hancock, "Molecular

counting by photobleaching in protein complexes with many subunits: best

practices and application to the cellulose synthesis complex," Molecular Biology of

the Cell, vol. 25, no. 22, pp. 3630-42, 2014.

[2] N. Hirokawa, K. Pfister, H. Yorifuji, M. C. Wagner, S. T. Brady and G. S. Bloom,

"Submolecular domains of bovine brain kinesin identified by electron microscopy

and monoclonal antibody decoration," Cell, vol. 56, no. 5, p. 867–78 , 1989.

[3] J. Howard, Mechanics of Motor Proteins and the Cytoskeleton, Sunderland, MA:

Sinauer Associates, 2001.

[4] S. Hisanga, H. Murofushi, K. Okuhara, R. Sato, Y. Masuda, H. Sakai and N.

Hirokawa, "The molecular-structure of adrenal-medulla kinesin," Cell Motil.

Cytoskeleton, vol. 12, pp. 265-272, 1989.

[5] J. M. Scholey, J. Heuser, J. T. Yang and J. S. B. Goldstein, "Identification of

globular mechanochemical heads of kinesin," Nature, vol. 338, pp. 355-357, 1989.

[6] J. Kerssemakers, J. Howard, H. Hess and S. Diez, "The distance that kinesin-1

holds its cargo from the microtubule surface measured by fluorescence interference

contrast microscopy," Proc. Natl. Acad. Sci. U.S.A., vol. 103, pp. 15812-15817,

2006.

[7] Z. Wang, M. Feng, W. Zheng and D. Fan, "Kinesin is an evolutionarily fine-tuned

molecular ratchet-and-pawl device of decisively locked direction," Biophysical

Journal, vol. 93, pp. 3363-3372, 2007.

[8] R. D. Vale, "The molecular motor toolbox for intracellular transport," Cell, vol. 4,

no. 112, pp. 467-480, 2003.

90

[9] G. M. Jeppesen and J. K. H. Hoerber, "The mechanical properties of kinesin-1: a

holistic approach," Biochemical Society Transactions, vol. 40, pp. 438-443, 2012.

[10] Y. L. Wong and S. E. Rice, "Kinesin's light chains inhibit the head- and

microtubule-binding activity of its tail," Proc Natl Acad Sci U.S.A., vol. 26, no.

107, pp. 11781-11786, 2010.

[11] H. Miki, Y. Okada and N. Hirokawa, "Analysis of the kinesin superfamily; insights

into the structure and function," Trends Cell Biol, vol. 15, pp. 467-476, 2005.

[12] H. Miki, M. Setou, K. Kaneshiro and N. Hirokawa, "All kinesin superfamily

protein, KIF, genes in mouse and human," Proc Natl Acad Sci U.S.A., vol. 98, pp.

7004-7011, 2001.

[13] R. D. Vale, T. S. Reese and M. P. Sheetz, "Identification of a novel force-

generating protein, kinesin, involved in microtubule-based motility," Cell, vol. 42,

no. 1, pp. 39-50, 1985.

[14] D. G. Cole, D. R. Diener, A. L. Himelblau, P. L. Beech, J. C. Fuster and J. L.

Rosenbaum, "Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT):

IFT particles contain proteins required for ciliary assembly in Caenorhabditis

elegans sensory neurons," J Cell Biol, vol. 141, pp. 993-1008, 1998.

[15] J. M. Scholey, "Intraflagellar transport," Annual Rev Cell Dev Biol, vol. 19, pp.

423-443, 2003.

[16] G. Bergnes, K. Brejc and L. Belmont, "Mitotic kinesins: prospects for antimitotic

drug discovery," Curr Top Med Chem, vol. 5, no. 2, pp. 127-145, 2005.

[17] C. J. Lawrence, R. Dawe, K. R. Christie, D. W. Cleveland, S. C. Dawson, S. A.

Endow, L. S. B. Goldstein, H. V. Goodson, N. Hirokawa, J. Howard, R. L.

Malmberg, J. R. McIntosh, H. Miki, T. J. Mitchison, Y. Okada, A. Reddy, W. M.

Saxton, M. Schliwa, J. M. Scholey, R. D. Vale, C. E. Walczak and L. A.

Wordeman, "A standardized kinesin nomenclature," Journal of Cell Biology, vol.

167, no. 1, pp. 19-22, 2004.

91

[18] E. Chevalier-Larsen and E. L. Holzbaur, "Axonal transport and neurodegenerative

disease," Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.

1762, no. 11-12, p. 1094–1108, 2006.

[19] T. U. Mayer, T. M. Kapoor, S. J. Haggarty, R. W. King, S. L. Schreiber and T. J.

Mitchison, "Small Molecule Inhibitor of Mitotic Spindle Bipolarity Identified in a

Phenotype-Based Screen," Science, vol. 286, no. 5441, pp. 971-974, 1999.

[20] K. E. Sawin, K. LeGuellec, M. Philippe and T. J. Mitchison, "Mitotic spindle

organization by a plus-end-directed microtubule motor," Nature, vol. 359, pp. 540-

543, 1992.

[21] T. M. Kapoor, T. U. Mayer, M. L. Coughlin and a. T. J. Mitchison, "Probing

spindle assembly mechanisms with monastrol, a small molecule inhibitor of the

mitotic kinesin, Eg5," Journal of Cell Biology, vol. 150, no. 5, pp. 975-988, 2000.

[22] R. Sakowicz, J. Finer, C. Beraud, A. Crompton, E. Lewis, A. Fritsch, Y. Lee, J.

Mak, R. Moody, R. Turincio, J. Chabala, P. Gonzales, S. Roth, S. Weitman and K.

Wood, "Antitumor activity of a kinesin inhibitor," Cancer Research, vol. 64, no. 9,

pp. 3276-80, 2004.

[23] K. Svoboda, C. F. Schmidt, B. J. Schnapp and S. M. Block, "Direct observation of

kinesin stepping by optical trapping interferometry," Nature, vol. 365, pp. 721-727,

1993.

[24] C. L. Asbury, A. N. Fehr and S. M. Block, "Kinesin moves by an asymmetric hand-

over-hand mechanism," Science, vol. 302, pp. 2130-2134, 2003.

[25] A. Yildiz, M. Tomishige, R. D. Vale and P. R. Selvin, "Kinesin walks hand-over-

hand," Science, vol. 303, pp. 676-678, 2004.

[26] M. J. Schnitzer and S. M. Block, "Kinesin hydrolyses one ATP per 8-nm step,"

Nature, vol. 388, pp. 386-390, 1997.

92

[27] D. L. Coy, M. Wagenbach and J. Howard, "Kinesin Takes One 8-nm Step for Each

ATP That It Hydrolyzes," Journal of Biological Chemistry, vol. 274, pp. 3667-

3671, 1999.

[28] S. Shastry and W. O. Hancock, "Neck linker length determines the degree of

processivity in kinesin-1 and kinesin-2 motors," Current Biology, vol. 20, pp. 939-

943, 2010.

[29] W. O. Hancock and J. Howard, "Kinesin’s processivity results from mechanical and

chemical coordination between the ATP hydrolysis cycles of the two motor

domains," Proceedings of the National Academy of Sciences, vol. 96, no. 23, p.

13147–13152, 1999.

[30] S. S. Rosenfeld, P. M. Fordyce, G. M. Jefferson, P. H. King and S. M. Block,

"Stepping and stretching. How kinesin uses internal strain to walk processively,"

Journal of Biological Chemistry, vol. 278, pp. 18550-56, 2003.

[31] S. Shastry and W. O. Hancock, "Interhead tension determines processivity across

diverse N-terminal kinesins," Proceedings of the National Academy of the Sciences,

USA, vol. 108, no. 39, pp. 16253-16258, 2011.

[32] D. D. Hackney, "Evidence for alternating head catalysis by kinesin during

microtubule-stimulated ATP hydrolysis," Proc Natl Acad Sci U.S.A, vol. 15, no. 91,

pp. 6865-9, 1994.

[33] G. Muthukrishnan, Y. Zhang, S. Shastry and W. O. Hancock, "The processivity of

kinesin-2 motors suggests diminished front-head gating," Current Biology, vol. 19,

pp. 442-447, 2009.

[34] M. T. Valentine and S. P. Gilbert, "To step or not to step? How biochemistry and

mechanics influence processivity in Kinesin and Eg5," Curr Opinion Cell Biol, vol.

19, pp. 75-81, 2007.

[35] S. M. Block, "Kinesin motor mechanics: binding, stepping, tracking, gating, and

limping," Biophysical Journal, vol. 92, pp. 2986-2995, 2007.

93

[36] D. D. Hackney, "The tethered head domain of a kinesin-microtubule complex

catalyzes reversible synthesis of bound ATP," Proc Natl Acad Sci U.S.A., vol. 102,

pp. 18338-18343, 2005.

[37] N. R. Guydosh and S. M. Block, "Direct observation of the binding state of the

kinesin head to the microtubule," Nature, vol. 461, pp. 125-128, 2009.

[38] S. Uemura, K. Kawaguchi, J. Yajima, M. Edamatsu, Y. Y. Toyoshima and S.

Ishiwata, "Kinesin–microtubule binding depends on both nucleotide state and

loading direction," Proc Natl Acad Science U.S.A., vol. 99, no. 9, pp. 5977-5981,

2002.

[39] J. O. Andreasson, S. Shastry, W. O. Hancock and S. M. Block, "The

mechanochemical cycle of mammalian kinesin-2 KIF3A/B under load," Current

Biology, vol. (In Press), 2015.

[40] D. Axelrod, " Cell-substrate contacts illuminated by total internal reflection

fluorescence," Journal of Cell Biology, vol. 89, no. 1, pp. 141-145, 1981.

[41] F. Ruhnow, D. Zwicker and S. Diez, "Tracking single particles and elongated

filaments with nanometer precision," Biophysical Journal, vol. 100, pp. 2820-2828,

2011.

[42] L. E. Baum and T. Petrie, "Statistical inference for probabilistic functions of finite

state Markov chains," The Annals of Mathematical Statistics, vol. 37, no. 6, pp.

1554-1563, 1960.

[43] J. Ortega-Arroyo and P. Kukura, "Interferometric scattering microscopy (iSCAT):

new frontiers in ultrafast and ultrasensitive optical microscopy," Phys Chem Chem

Phys, vol. 14, pp. 15625-15636, 2012.

[44] H. Ueno, S. Nishikawa, R. Iino, K. Tabata, S. Sakakihara, T. Yanagida and H. Noji,

"Simple dark-field microscopy with nanometer spatial precision and microsecond

temporal resolution," Biophysical Journal, vol. 98, pp. 2014-2023, 2010.

94

[45] A. Carroll and C. Somerville, "Cellulosic biofuels," Annu Rev Plant Biol, vol. 60,

pp. 165-182, 2009.

[46] H. McFarlane, A. Doring and S. Persson, "The cell biology of cellulose synthesis,"

Annu Rev Plant Biol, vol. 65, p. 69–94, 2014.

[47] C. Haigler and R. Brown, "Transport of rosettes from the golgi apparatus to the

plasma membrane in isolated mesophyll cells of Zinnia elegans during

differentiation to tracheary elements in suspension culture," Protoplasma, vol. 134,

p. 111, 1986.

[48] N. Taylor, R. Howells, A. Huttly, K. Vickers and S. Turner, "Interactions among

three distinct CesA proteins essential for cellulose synthesis," Proc Natl Acad Sci

USA, vol. 100, p. 1450–1455, 2003.

[49] T. Desprez, M. Juraniec, E. Crowell, H. Jouy, Z. Pochylova, F. Parcy, H. Hofte, M.

Gonneau and S. Vernhettes, "Organization of cellulose synthase complexes

involved in primary cell wall synthesis in Arabidopsis thaliana," Proc Natl Acad Sci

USA, vol. 104, p. 15572–15577, 2007.

[50] S. Persson, A. Paredez, A. Carroll, H. Palsdottir, M. Doblin, P. Poindexter, N.

Khitrov, M. Auer and C. Somerville, "Genetic evidence for three unique

components in primary cell-wall cellulose synthase complexes in Arabidopsis,"

Proc Natl Acad Sci USA, vol. 104, p. 15566–15571, 2007.

[51] A. Fernandes, L. Thomas, C. Altaner, P. Callow, V. Forsyth, D. Apperley, C.

Kennedy and M. Jarvis, "Nanostructure of cellulose microfibrils in spruce wood,"

Proc Natl Acad Sci USA, vol. 108, p. E1195–E1203, 2011.

[52] L. Thomas, V. Forsyth, A. Sturcova, C. Kennedy, R. May, C. Altaner, D. Apperley,

T. Wess and M. Jarvis, "Structure of cellulose microfibrils in primary cell walls

from collenchyma," Plant Phys, vol. 161, p. 465–476, 2013.

95

[53] L. Sethaphong, C. Haigler, J. Kubicki, J. Zimmer, D. Bonetta, S. DeBolt and Y.

Yingling, "Tertiary model of a plant cellulose synthase," Proc Natl Acad Sci USA,

vol. 110, p. 7512–7517, 2013.

[54] G. Guerriero, J. Fugelstad and V. Bulone, "What do we really know about cellulose

biosynthesis in higher plants," J Integr Plant Biol, vol. 52, pp. 161-175, 2010.

[55] J. Lai-Kee-Him, H. Chanzy, M. Muller, J. Putaux, T. Imai and V. Bulone, "In vitro

versus in vivo cellulose microfibrils from plant primary wall synthases: structural

differences," J Biol Chem, vol. 277, p. 36931–36939, 2002.

[56] C. Cifuentes, V. Bulone and A. Emons, "Biosynthesis of callose and cellulose by

detergent extracts of tobacco cell membranes and quantification of the polymers

synthesized in vitro," J Integr Plant Biol, vol. 52, pp. 221-233, 2010.

[57] S. Fujii, T. Hayashi and K. Mizuno, "Sucrose synthase is an integral component of

the cellulose synthesis machinery," Plant Cell Physiol, vol. 51, pp. 294-301, 2010.

[58] M. Ulbrich and E. Isacoff, "Subunit counting in membrane-bound proteins," Nat

Methods, vol. 4, p. 319–321, 2007.

[59] M. Leake, J. Chandler, G. Wadhams, F. Bai, R. Berry and J. Armitage,

"Stoichiometry and turnover in single, functioning membrane protein complexes,"

Nature, vol. 443, p. 355–358, 2006.

[60] B. Carter, M. Vershinin and S. Gross, "A comparison of step-detection methods:

how well can you do," Biophysical Journal, vol. 94, pp. 306-319, 2008.

[61] J. Kerssemakers, E. Munteanu, L. Laan, T. Noetzel, M. J. ME and M. Dogterom,

"Assembly dynamics of microtubules at molecular resolution," Nature, vol. 442, p.

709–712, 2006.

[62] B. Kalafut and K. Visscher, "An objective, model-independent method for detection

of non-uniform steps in noisy signals," Comput Phys Commun, vol. 179, pp. 716-

723, 2008.

96

[63] Y. Sowa, A. Rowe, M. Leake, T. Yakushi, M. Homma, A. Ishijima and R. Berry,

"Direct observation of steps in rotation of the bacterial flagellar motor," Nature,

vol. 437, pp. 916-919, 2005.

[64] A. Snijders, N. Nowak, R. Segraves, S. Blackwood, N. Brown, J. Conroy, G.

Hamilton, A. Hindle, B. Huey, K. Kimura, S. Law, K. Myambo, J. Palmer, B.

Ylstra, J. Yue, J. Gray, A. Jain and D. P. D. Albertson, "Assembly of microarrays

for genome-wide measurement of DNA copy number," Nature Genetics, vol. 29,

pp. 263-264, 2001.

[65] E. Page, "A test for a change in a parameter occurring at an unknown point,"

Biometrika, vol. 42, p. 523–527, 1955.

[66] A. J. Viterbi, "Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm," Information Theory, IEEE Transactions, vol. 13, no. 2, pp.

260-269, 1967.

[67] C. Konopka and S. Bednarek, "Variable-angle epifluorescence microscopy: a new

way to look at protein dynamics in the plant cell cortex," Plant J, vol. 53, p. 186–

196, 2008.

[68] C. Konopka, S. Backues and S. Bednarek, "Dynamics of Arabidopsis dynamin-

related protein 1C and a clathrin light chain at the plasma membrane," Plant Cell,

vol. 20, p. 1363–1380, 2008.

[69] J. Lakowicz, Principles of Fluorescence Spectroscopy, New York: Springer, 2010.

[70] G. Schwarz, "Estimating the dimension of a model," Ann Stat, vol. 6, p. 461–464,

1978.

[71] B. Silverman, Density Estimation for Statistics and Data Analysis, London:

Chapman & Hall, 1986.

[72] A. Dempster, N. Laird and D. Rubin, "Maximum likelihood from incomplete data

via the EM algorithm," J R Stat Soc, vol. 39, pp. 1-21, 1977.

97

[73] B. L. Welch, "The generalization of "Student's" problem when several different

population variances are involved," Biometrika, vol. 34, pp. 28-35, 1947.

[74] R. Kass and A. Raftery, "Bayes factors," J Am Stat Assoc, vol. 90, p. 773–795,

1995.

[75] D. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization,

Hoboken, NJ: John Wiley & Sons, 1992.

[76] T. Benaglia, D. Chauveau, D. Hunter and D. Young, "Mixtools: an R package for

analyzing mixture models," J Stat Software, vol. 32, pp. 1-29, 2009.

[77] K. Nakajo, M. Ulbrich, Y. Kubo and E. Isacoff, "Stoichiometry of the KCNQ1-

KCNE1 ion channel complex," Proc Natl Acad Sci USA, vol. 107, p. 2010, 18862–

18867.

[78] R. Iizuka, M. Yamagishi-Shirasaki and T. Funatsu, "Kinetic study of de novo

chromophore maturation of fluorescent proteins," Analytical Biochem, vol. 414, pp.

173-178, 2011.

ACADEMIC VITA

Nathan C. Deffenbaugh

Email: ncd5056@psu.edu, ncd50561234@gmail.com
Telephone: 1 (814) 883-3545

EDUCATION

2013 – 2015 Pennsylvania State University, University Park, PA
 M.S. Bioengineering (May 2015)

2010 – 2015 Pennsylvania State University, Schreyer Honors College,
 University Park, PA
 B.S. Bioengineering (May 2015)

RESEARCH/INTERNSHIP EXPERIENCE

 Student Researcher, Department of Biomedical Engineering, Penn State University
(May 2012 – May 2015) PI: William O. Hancock, Ph.D.

Developed novel, high-performance signal processing algorithms for motor protein
positional data analysis, and for temporal intensity data analysis of protein
complexes. Implemented computational and analytical techniques for modeling
kinesin motor protein kinetics. Imaging single-molecule kinesin motility assays
using total internal reflection fluorescence microscopy (TIRF) to identify discrete
steps along microtubules.

 Energy and Engineering Internship, Office of the Physical Plant, Penn State
University
(Jun. 2011 – Dec. 2011)

Organized control programs for campus HVAC network using Automated Logic
Corporation software (WebCTRL). Programmed and updated graphical interfaces
for controls of variable air volume units (VAVs) and air handling units (AHUs) for
university buildings.

PUBLICATIONS

 Molecular Counting by Photobleaching in Protein Complexes with Many Subunits:
Best Practices and Application to the Cellulose Synthesis Complex, Y. Chen, N.C.
Deffenbaugh, C.T. Anderson, W.O. Hancock. Mol. Biol. Cell, September 17, 2014, doi:
10.1091/mbc.E14-06-1146

PRESENTATIONS

 Talk: Molecular Counting by Photobleaching in Protein Complexes with Many
Subunits: Best Practices and Application to the Cellulose Synthesis Complex, N.C.
Deffenbaugh, Y. Chen, C.T. Anderson, W.O. Hancock (2014) GE Student Research
Summit Professional Networking Dinner, Niskayuna, NY

 Poster: Molecular Counting by Photobleaching in Protein Complexes with Many
Subunits: Best Practices and Application to the Cellulose Synthesis Complex, N.C.

Deffenbaugh, Y. Chen, C.T. Anderson, W.O. Hancock (2014) GE Student Research
Summit, Niskayuna, NY

 Poster: Investigating the Front-head Gating in KIF3A, G. Chen, N.C. Deffenbaugh, D.
Arginteanu, W.O. Hancock, (2014) Biophysical Society Meeting, San Francisco, CA

 Poster: High Resolution Tracking of Single-Molecule Kinesin Motor Proteins by TIRF
Microscopy, N.C. Deffenbaugh, W.O. Hancock, (2014) Undergraduate Research at
the Capitol – Pennsylvania, Harrisburg, PA

 Poster: Biochemical Investigations into the Kinesin-2 Chemomechanical Cycle, W.O.
Hancock, N.C. Deffenbaugh, D. Arginteanu (2013) Biophysical Society Meeting,
Philadelphia, PA

 Poster: Novel Computational and Analytical Tools for Modeling Kinesin Protein
Biochemistry, N.C. Deffenbaugh, W.O. Hancock, (2012) BMES Annual Meeting,
Atlanta, GA

TEACHING EXPERIENCE

 BME 301 – Analysis of Physiological Systems, Teaching Assistant (Penn State
University, 2014): Instructor of lab periods on signal processing and simulation
(MATLAB, Simulink), graded lab assignments, held office hours, held midterm
review sessions

SKILLS

 Programming: Design of data analysis algorithms; signal/image processing; strong
with MATLAB; familiar with C++, Python, LabVIEW; strong with HTML, PHP,
JavaScript, SQL

 Statistics/Mathematics: Stochastic processes, Monte Carlo methods, Markov
models; statistical inference; linear time-invariant systems, Fourier analysis;
familiar with theory and implementation of Kalman filters, artificial neural
networks, and classification algorithms

 Microscopy: Total internal reflection fluorescence microscopy (TIRF); competent in
optics theory, practical hardware experience (emission/excitation filters, dichroic
mirrors)

 Experimental Procedures: Single-molecule kinesin protein motility assays;
stopped-flow spectrofluorometer protein kinetics measurements

HONORS/AWARDS

 Summer Translational Cardiovascular Sciences Institute at Penn State, Fellowship
(2013)

 Schreyer Honors Scholar, Penn State (2012 – 2015)

ACTIVITIES/MEMBERSHIPS

 Penn State Engineering Graduate Student Council, Webmaster (2014)
 American Society for Cell Biology, Member (2014 – 2015)
 Biophysical Society, Member (2013 – 2015)

