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Abstract

The human immune system uses complex mechanisms to generate enough antibody diversity to
effectively protect against a wide array of potential antigens. These mechanisms obfuscate the
germline predecessors of mature antibodies, making it difficult to produce a comprehensive model
of the immune system. Interestingly, this problem also arises in the production of next-generation
anti-viral software that use biomimicry to model malicious software as a recombination of attack
patterns. Current methods fail to solve this problem in bicomputation because they ignore somatic
hypermutation, one of the key methods of diversity generation. In this thesis, computational analy-
sis is performed to develop a better model of somatic hypermutation, which is then used to improve
antibody predecessor identification performance.
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Chapter 1

Introduction

1.1 Problem
The human immune system provides protection against a diverse set of antigens. For protection
to be effective, an antibody must be available to pair with every potential antigen. As there is an
unbounded number of potential antigens but finite storage space in the genome, it is not possible
for the body to encode a gene for every antibody that might be needed. Thus, antibody diver-
sity is generated through a two stage process: (1) V(D)J recombination followed by (2) somatic
hypermutation.

The mechanisms of these methods will be discussed in detail, but here it suffices to say that this
combination ensures that mature antibodies are significantly different from their predecessor genes,
obfuscating the ancestral history of observed antibodies.

A number of methods have been proposed to overcome this obstacle; however, each has signif-
icant shortcomings. Initially, methods were proposed to align observed and germline nucleotide
sequences, using this information to identify closest matching alleles. Unfortunately, these meth-
ods did not provide a meaningful way to evaluate different rearrangements. Recently, probabilistic
methods have been designed to learn dependencies of each gene type and use such learned charac-
teristics to identify gene segment boundaries. While such methods have enjoyed moderate success,
they have ignored the aspect of somatic hypermutation, allowing the mechanism to lower predictive
accuracy. The aim of this project is to reverse this disadvantage. By analyzing somatic hypermuta-
tion, unknown information about the mechanics of somatic hypermutation can be discovered and
applied to improve prediction of germline predecessors of mature antibodies.
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1.2 Motivation
The motivation for this project is 3-fold: (1) to increase accuracy of antigen and immune response
models, (2) to unearth characteristics of somatic hypermutation, the mechanisms of which are
mostly unknown, and (3) to advance toward a comprehensive and dynamic anti-viral software
based on biomimicry.

The connection to the final motivational aspect is apparent when we reconsider the typical notion
of a software virus. Rather than static software developed in isolation, malicious software can
be viewed as a combination of attack patterns with significant post-recombination modification.
With the use of advanced tools to identify the ancestral history of highly modified code, it may be
possible to more accurately identify malicious code, a key step in the design of next-generation
dynamic anti-viral software.

1.3 Goals
The specific aim of this thesis is to present a method for improved V(D)J recombination analysis
through a software package.
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Chapter 2

Background

2.1 Biochemical Context
In order to analyze somatic hypermutation, we must first understand its context within the adaptive
immune system.

2.1.1 Immunoglobulin Function
The human immune system protects against a wide array of potential antigens through the exten-
sive use of immunoglobulins. Produced by plasma cells in response to an antigen, immunoglob-
ulins are glycoprotein molecules that have two main functions as part of the adaptive immune
system: (1) antigen binding, followed by (2) effector functions.

Figure 2.1: Immunoglobulin Representation. Reproduced from [1].
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Antigen binding is highly specific, with immunoglobulins typically only binding to a few closely
related antigens. This specificity is determined by immunoglobulin structure, as discussed be-
low. However, once bound to the antigen, immunoglobulins trigger secondary effector functions
through conserved patterns. These patterns include stimulation of the complement system (which
lyses the antigen-presenting cell), and binding to phagocytic cells (which engulf and breakdown
both the immunoglobulin and antigen-presenting cell).

2.1.2 Immunoglobulin Structure
The basic structure of an immunoglobulin is illustrated in Figure 2.2. While structural differences
determine antigen specificity, all immunoglobulins have the same basic units:

• Four Chain Structure. Immunoglobulins are composed of two identical light chains and
two identical heavy chains, bound together to form a “Y” shape.

• Variable and Constant Regions. Each chain can divided into two regions based on vari-
ability in the amino acid sequences.

• Hinge Region. The immunoglobulin molecule forms a “Y” shape due to the flexibility in
the molecule at the hinge region.

• Disulfide Bonds. Inter-chain disulfide bonds hold the heavy and light chains together, while
intra-chain disulfide bonds constrain each polypeptide chain.

Figure 2.2: Basic Immunoglobulin Structure. Reproduced from [2].
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2.1.2.1 Immunoglobulin Class Type

Human immunoglobulins can be divided into five classes, as depicted in Figure 2.3. This division
is based on differences within the constant region of the heavy chain. Class type determines im-
munglobulin polymerization; IgM immunoglobulins form pentamers while IgA immunoglobulins
form dimers.

Figure 2.3: Immunoglobulin classes. Reproduced from [2].

2.1.2.2 Complementarity Determining Regions

Within the variable regions, three complementarity determining regions (CDRs) have been iden-
tified. The amino acid sequences in these regions produce the structure which interfaces with
the antigen, determining the specificity of the immunoglobulin. For this reason, immunoglobu-
lins with identical specificities have identical CDRs, while those with different specifities have
different CDRs. Within the variable region, CDR1 and CDR2 are located in the V segment of a
polypeptide chain, while CDR3 spans V, D, and J segments. CDR3 is the most variable, as it is
encoded through a recombination event, as described below.
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2.1.3 Diversity Generation
In order to ensure a matching immunoglobulin for every potential antigen, a human must encode
more immunoglobulins than there are genes in the human genome. In fact, it has been estimated
that the human preimmune antibody repertoire is capable of making more than 1012 different im-
munoglobulin molecules, while the entire human genome contains fewer than 40, 000 functional
loci [3][4].

To achieve such diversity, antibodies use a two stage process: (1) V(D)J recombination followed
by (2) somatic hypermutation. The combination of these processes obfuscates predecessor iden-
tification, making it very difficult to determine which germline sequences recombined to form an
observed antibody.

2.1.3.1 V(D)J Recombination

As illustrated in Figure 2.4 (a), each heavy chain variable region is formed from the concatenation
of a variable (V), a diversity (D), and a joining (J) segment. These segments are recombined from
germline alleles, as illustrated in 2.4 (b). In humans, there are 281 V gene segments, 84 D gene
segments, and 12 J gene segments, allowing for a potential 283,248 recombinations of one segment
of each type[5].

Figure 2.4: The Process of VDJ Recombination. Reproduced from [6].

Moreover, the joining between segments is imprecise, further increasing the variability of recom-
binations. RAG proteins introduce double-stranded breaks at flanking DNA sequences, resulting
in random insertion or deletion of nucleotides at segment boundaries [3]. This process, is known
as junctional diversification, greatly increases antibody diversity.

2.1.3.2 Somatic Hypermutation

While recombination of germline genes can generate a low-affinity antibody for every antigen,
antibodies with higher affinity for the antigen will produce a more effective immune response.
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To this end, point mutations in variable segment coding sequences accumulate through a process
known as affinity maturation. This process occurs after recombination, helping to generate high-
affinity memory cells. The mutations occur at a rate of about one mutation per variable region per
cell generation [3]. As this is nearly a million times faster than spontaneous mutation rates in other
genes, the process is called somatic hypermutation.

The mechanism of somatic hypermutation uses an error-prone DNA repair process. It is thought
that activation-induced cytidine deaminase (AID), a 24 kDa enzyme, creates mutations through
deamination of cytosine bases. By changing cytosine to uracil, AID produces a mismatched base
pair that is repaired by an error-prone mechanism [7]. Thus, the mutations produced by somatic
hypermutation are mainly single base substitutions, with occasional insertions and deletions.

2.2 Existing Methods of Predecessor Identification
The combination of these processes to generate antibody diversity makes it difficult to identify
which germline genes produced an observed antibody. However, as this problem is important for
modeling the immune system, several methods have been developed.

2.2.1 Initial Methods
Initial methods for germline predecessor identification relied on alignment of mature sequences
to germline segments. IMGT/V-QUEST maps the DNA sequences of mature antibodies to an
immunoglobulin and T-cell database, then uses this alignment to identify structurally important
features of the mature antibody [8]. In contrast, the JOINSOLVER program determined conserved
motifs that distinguished V, D, and J segments, and uses these motifs to identify the germline
predecessor [9]. SoDA(2) uses a dynamic programming based implementation to perform a 3D
alignment to identify germline sequences [10].

While these methods have had some success, they do not give any measure to meaningfully eval-
uate rearrangement confidence. Also, the large number of possible alignments makes alignment-
based methods computationally expensive and prohibitively slow.

2.2.2 Probabilistic Methods
To solve these shortcomings, probabilistic methods have more recently been developed. Such
methods have either been based on Hidden Markov Models (HMMs) or Conditional Random
Fields (CRFs).

2.2.2.1 HMM-based

Initial probabilistic methods were based on HMMs as they make simplifying assumptions to reduce
computational complexity in training. These models are based on the assumption that nucleotide
occurence rates follow a Markov Process, explained below.
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2.2.2.1.1 Markov Process

Named after the Russian mathematician Andrey Markov, a Markov process is a finite-state,
memory-less, nonlinear model of a sequence of states. That is, at any point in Markov process,
the probability of the succeeding state depends only on the current state. Thus, in a Markov pro-
cess with a known transition function, knowledge of the entire history of the process provides no
predictive advantage over knowledge of just the present state.

More formally, given a finite set of states S = {s1, ..., sn} and transition function f : S × S →
[0, 1], a Markov process is an ordered set of observations {x1, ..., xm ∈ S} that satisfies the Markov
property

P (Xm = xm|Xm−1 = xm−1, ..., X0 = x0) = P (Xm = xm|Xm−1 = xm−1) = f(xm−1, xm)
(2.1)

While such a process may appear to be limited, Markov processes allow powerful modeling of
sequences with a few assumptions. As a simple example, consider the case of the degenerate
gambler who wagers $1 on each flip on an unending, fair coin flip. Let Xi be be the amount of
money the gambler has after the ith flip, with X0 = $10. If the gambler continues to gamble
indefinitely (or until losing all his or her money), then the sequence {xn : n ∈ [0,∞]} is a Markov
process.

2.2.2.1.2 Hidden Markov Models

A Hidden Markov Model (HMM) is a model that approximates the probabilities governing an
unknown Markov Process. Given on an sequence of observed emissions each generated by an
unobserved states, an HMM models the probabilities governing the Markov process.

This model makes two key assumptions. First, the Markov assumption states that the underlying
process obeys the Markov property shown above (that is, the next state is dependent only on the
current state). Second, the independence assumption states that the current observation is based
only on the current state, and is independent of previous observations and states.

Formally, an HMM is defined as follows. Given a finite state alphabet S = {s1, ..., sn}, a finite
observation alphabet V = {v1, ..., vn}, an observed sequence O = {o1, ..., ok : oi ∈ V } and an
unobserved state sequence Q = {q1, ..., qk : qi ∈ S}, an HMM λ is a 3-tuple

λ = (A,B, π) (2.2)

where A is the transition function of the Markov process, B is the emission function, and π is the
initial probability function [11].

A : S × S → [0, 1], A(si, sj) = P (qt = si|qt−1 = sj) (2.3)

B : V × S → [0, 1], B(vi, sj) = P (ot = vi|qt = sj) (2.4)

π : S → [0, 1], π(si) = P (q1 = si) (2.5)

Note that A and B do not vary with position in the sequence and demonstrate the Markov assump-
tion that only knowledge of the previous state is required to make accurate predictions.
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2.2.2.1.3 iHMMune-align

iHMMune-align is one such HMM-based probabilistic model [12]. The software first identifies
the closest matching V segment, then builds an HMM which encodes transitions to all possible D
and J segments based on the emitted nucleotide sequence. Another similar software package is the
Soda2 statistical model [13]. While these methods are efficient, the simplifying assumptions of the
HMM lower its accuracy.

2.2.2.2 CRF-based

While HMM-based probabilistic methods have enjoyed some success, the model makes stringent
assumptions about the independence of the distributions of bases. To relax such assumptions, new
methods based on conditional random fields have been developed.

2.2.2.2.1 Conditional Random Fields

A conditional random field (CRF) is a probabilistic model that relaxes some of the assumptions
made in HMMs. Originally used for segmentation and sequential labeling in natural language
processing, CRFs model the conditional probability of label sequences based on all labels within
the sequence. Formally, for an input sequence x = x1x2...xn, the linear-chain CRF calculates the
conditional probability of a label sequence y = y1y2...yn as proportional to∑

i

exp(
∑
j

λjhj(y, x, i)) (2.6)

where hj(y, x, i) is a feature function defined on some subset of the input variables and output
labels. Two common feature functions are the transition feature function hj(yi, yi−1;x, i) and the
state feature function hj(yi;x, i). The feature functions can be designed to capture dependencies
throughout the entire sequence x, making CRFs more powerful than HMMs. Each feature function
is given a weight λj . Thus the normalizing constant Z(x) is defined as

Z(x) =
∑
y

∑
i

exp(
∑
j

λjhj(y, x, i)) (2.7)

and the probability of a label sequence y for an input sequence x is given by

P (y|x) =
1

Z(x)

∑
i

exp(
∑
j

λjhj(y, x, i)) (2.8)

Thus, parameters Λ = {λj} are trained to maximize the log-likelihood over all training samples

L(Λ) =
∑
x,y

logP (y|x) (2.9)

and predicted sequence labels y∗ for a test sequence x∗ are those given by

y∗ = argmaxyP (y|x∗) (2.10)
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2.2.2.2.2 Raunaq’s Method

The use of a linear-chain CRF has been used successfully to identify immunoglobulin sequence
boundaries [5]. In the absence of knowledge about the grammar rules of VDJ recombination,
feature functions were chosen to capture dependencies around a 5-base neighborhood. After iden-
tification of VDJ boundaries, and subsequent mode filtering, germline alleles were determined by
mapping segments to the germline. This method set a new state of the art for germline identifica-
tion, error rates are shown in Table 2.1.

iHMMune Align CRF-based
Segment Type # Errors Error % # Errors Error %

V genes 707 5.3 136 1.0
D genes 1008 7.6 68 0.5
J genes 10 0.08% 18 0.13%

Table 2.1: Error Rates for Probabilistic VDJ identification. Reproduced from [5].
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Chapter 3

Materials and Methods

3.1 Method Overview
The methods can broadly be broken into two investigations: somatic hypermutation analysis, and
germline predecessor identification improvements. Hypermutation analysis required quantification
of hypermutation rates, identification of hypervariable regions, and conserved motif discovery.
Germline predecessor identification improvements came from immunoglobulin class clustering
and combining multiple sources of segment identification data.

3.2 Datasets
Two datasets were used: a synthetic dataset for training the CRFs, and the Stanford S22 dataset for
somatic hypermutation analysis and generalizability estimation.

3.2.1 Synthetic Dataset
The CRFs were trained on a synthetic dataset of 283,248 rearrangements of germline alleles. These
segments were generated by synthetically recombining the Kabat database of germline V, D, and
J alleles available on the JOINSOLVER website [9]. Statistics of the lengths of these alleles are
shown in Table 3.1. The distribution of the lengths of the recombinants is shown in Figure 3.1,
with statistics shown in Table 3.2.
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Segment Type Number Mean Length Max Length Min Length
V 281 287 305 103

D 84 25 37 11

J 12 53 63 48

Table 3.1: Synthetic Dataset Alleles Length Distribution

Figure 3.1: Distribution of Lengths of Recombinations from Synthetic Dataset

Number of Sequences Mean Length Max Length Min Length
282402 365 405 162

Table 3.2: Distribution of Lengths of Recombinations within Synthetic Dataset

3.2.2 Stanford Dataset
Unfortunately, as the affinities of somatic hypermutation are not clear, the synthetic dataset cannot
be designed to encode hypermutation processes. To this end, the Stanford S22 dataset was used.
The Stanford S22 dataset consists of 13,153 reads from the recombined VDJ genes of an individ-
ual. The reads were produced via 454 pyrosequencing of genomic DNA from peripheral blood
mononuclear cells, with chimeric sequences excluded [14]. The distribution of the lengths of the
recombinants is shown in Figure 3.2, with statistics shown in Table 3.3.
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Figure 3.2: Distribution of Read Lengths within Stanford Dataset

Number of Sequences Mean Length Max Length Min Length
13153 242 349 200

Table 3.3: Distribution of Read Lengths within Stanford Dataset

3.3 Clustering Immunoglobulin Classes
As the constant regions of immunoglobulins have significant differences by class (Section 2.1.2.1),
it was hypothesized that the variable regions may also exhibit class-specific dependencies. Such
dependencies had not been identified by inspection, so cluster analysis was performed to label
classes and identify patterns.

3.3.1 k-Means Clustering
In order to cluster the sequences, the algorithm of k-means clustering was used. Introduced in
1967[15], the k-Means clustering algorithm is a method to produce an optimal partitioning of
M points in N dimensions into K clusters. After randomly initializing K cluster centers, the
algorithm follows an expectation-maximization paradigm:

1. Every data point is labeled as belonging to the cluster with the closest center.

2. Every cluster center is updated to be the mean location of its labeled data points.
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The algorithm converges when there are no changes in the assignments of data points. While
the k-means algorithm is simple and efficient, it has two major drawbacks. First, the number of
clusters,K, must be known a priori. Second, as the algorithm relies on calculatingK ∗M pairwise
distances as well as a new mean cluster location at every iteration, efficient distance calculations
are prerequisite for scalability. While this is simple for Euclidean metrics of data in Rn, it is not so
clear for strings, especially of variable length.

To perform k-means clustering on a set of data points X = {x1, ..., xm}, a distance metric D :
X × X → R must be defined. Furthermore, to ensure convergence to a local minimum, this
distance metric must obey the triangle inequality D(x+ y) ≤ D(x) +D(y).

3.3.1.1 Levenshtein Distance

One such metric that is frequently suggested is the Levenshtein edit distance metric [16]. This met-
ric defines the distance between two strings to be the minimum number of single-character edits
(insertions, deletions, or substitutions) that are needed to transform one string into the other. How-
ever, this distance metric does not behave well for strings of variable length (spaces are penalized
as much as substitutions), so it is inappropriate for the Stanford S22 dataset.

3.3.1.2 Global alignment Scores with Needleman-Wunsch

To remedy this problem of variable length sequences, the global alignment scoring included in
the BioPython module pairwise2 was used. This package uses the Needleman-Wunsch dynamic
programming algorithm to efficiently align two sequences. As junctional diversification creates
many insertions and deletions, no gap penalties were assessed.

3.4 Analysis of Hypervariable Regions
In order to identify patterns of and understand the mechanisms of somatic hypermutation, hyper-
variable regions were identified and analyzed.

3.4.1 Hypermutation Rate Quantification
To the author’s knowledge, there were no publicly available datasets of hypermutation rates. Thus,
hypermutation rates had to be quantified and compiled. By mapping each read of the Stanford S22
dataset to find the closest sequence in the germline (using a trained CRF to identify segment bound-
aries), individual base pairs could be examined to determine whether they had been mutated.
Transition mutations, transversion mutations, and insertion/deletion mutations were all recorded
seperately. This quantification allowed extensive analysis (see Section 3.4.2).

3.4.2 Hypervariable Region Identification
Using the quantified hypermutation rates, both hypervariable and hypovariable regions were iden-
tified. Hypervariable regions were classified as regions in which the 10 nucleotide running average
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of the hypermutation rate was elevated for at least 50 nucleotides. Conversely, hypovariable re-
gions were defined as regions in which the 10 nucleotide running average of the hypermutation
rate was decreased for at least 50 nucleotides.

3.4.3 Motif Identification
After identifying hypervariable regions and hypovariable regions, analysis could be performed (see
3.4.2). To the author’s knowledge, little research had been performed on hypovariable regions,
suggesting analysis of such regions may be fertile. To this end, nucleotide motifs were discovered
using the DREME tool available online [17].

3.5 Germline Identification
As discussed in Section 2.2.2.2.2, the state-of-the-art method uses a linear-chain CRF to iden-
tify immunoglobulin sequence boundaries. After a rudimentary mode filtering algorithm fixes the
boundaries, alignment methods find the corresponding germline V, D, and J genes.

To improve the mode filtering algorithm, a new method that combines mode filtering with the
alignment step was developed. This algorithm seeks to maximize a score function calculated by
multiplying the Needleman-Wunsch score by the product of the probabilities that each base is of
the putative segment type. By finding the set of sequences that maximize such a function, the most
likely sequences can be identified, combining both the mode filtering and alignment steps in one..

3.6 Implementation Details
Analysis code was written in Python and C++ and run using Amazon Web Services. Conditional
Random Fields were implemented using CRF++[18].

Source code is available at http://blengerich.github.io/thesis.

http://blengerich.github.io/thesis
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Chapter 4

Results and Analysis

4.1 Immunoglobulin Class Clustering
Because of the biological significance of immunoglobulin classes, it was thought that clustering
by class may provide a benefit to identification of germline sequences. As discussed in Section
3.3.1, the k-Means clustering algorithm was run with a distance metric from Needleman-Wunsch.
Consensus centroid sequences are shown in Table 4.1.

4.1.1 Class-based Segment Prediction
After identifying clusters, a CRF was trained on 60% and tested on 40% of each cluster indepen-
dently. Precision and recall rates are shown in Table 4.2. In Table 4.3, the precision and recall rates
are shown for the combination of all class CRFs. When combined into a single method (using class
labeling followed by the corresponding CRF for prediction), performance is much better than that
of a single CRF.
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Consensus Sequence % Sequences
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGG-GGGTCCCTGAGA
CTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAACTACTGCATGCACTGGGTCCGCCAG
GCTCCAGGGAAGGGGCTGGAGTGGGTGGGATTTATTAAAAG——TGATGGTGGTAAA
ACATACTACGCAGACTCTGTGA———AGGGCA—-GATT-CACCATCTCCA———GAG
A——–CAATTCCAAGAACACACT———GTATCTGCAAATGAACAGCC–TGAGAGCCG
AGG—-ACACGGCCGTGTATTACTGTGCGAGA————————–AGTAATAGCAGTAA
CTAC————–ATTACTAC——-TACTACTACGGTATGGACGTCTGGGGCCAAGGGACC
ACGGTCACCGTCTCCTCAG

29.25

—-GAGGTGCAG-CTGGTGGAG—–TCTGGGGGAGGCTTGGTACAGC———-CTGG—-
——–G-GGGTCCCTGAGACTCTCCTGTGCAG-CCTCTGGATTC—-ACCTT-CAGTAGC
———TATGGTATGCACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTG
GCAGGTATTAATAC——TAATGGTGG-TAACACAT—–ACTACGCAGACTCCGTGAAG
GGC-CGATTCACCATCTC———-C–AGAGACAATTC————–CAAGAACACGCTG
—–TATCTGCAA—–AT——-GAACAGCCTGAGAGCTGAGGACA-CGGCCG-T-GT—–
—-AT——–TACTGTGCGAG-A——————————–GA————————–
————————————-GGTACCATTACTACAACTACTA—————–CTTT
GACTTCTGGGGCCAAGGGACCCTGGTCACCGTCTCCTCAGTCTCCTCAG

11.95

CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTC
CCTCACCTGCACTGTCTCTGGTGGCTCCATCAGCAGT-GTGGTTACTACTGGAGCTGG
ATCCGGCAGCCCCCAGGGAAGGGCCTGGAGTGGATTGGGTACATCTATTACAGTGGG
AGCACCAACTACAACCCGTCCCTCAAGAGTCGAGTCACCATATCAGTAGACACGTCCA
AGAACCAGTTCTCCCTGAAGCTGAGCTCTGT-G——ACCGCCGCGGACACGGCCGT
G—-TATTACTG–TGCGAGAG———————————–AACTACTACTAT———AC——
———————–TTTGACTACTGGGGCCAAGGAACCCTGGTCACCGTCTCCTCAG

1.16

CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGTGAAGG
TCTCCT-GCAAGGCTTCTGGATAC—-ACCTTCACCAGCTACTGTATCCGCTGGGTGCGACAG
GCCCCTGGAAAAGGGCTTGAGTGGATGGGAAGGATCAATCCTAGTGATGGTGATACAAAC
TACGCACAGAAGTTCCAGGGCAGGGTCACCATCACCGCGGACAAGTCCATCAGCACAGC
CTACATGGAGCTGAGCAGCCTGAGATCTGAGGACACGGCCATGTATTACTGTGCGAGAG-
———————G–A-AACCACTA-TACCAT–TACT———ACTACTACTAC————
TATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG

23.32

CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTCCCT
CACCTGCACTGTCTCTG——GTGGCTCCATCAGCAGTAGTGGTTACTACTGGAGCTGGATCC
GCCAGCCCCCAGGGAAGGGCCTGGAGTGGATTGGGTACATCTATTA-T——-AGTGGGAG
CACCTACTACAACCCGTCCCTCAAGAGTCGAGTCACCATATCAGTAGACACGTCCAAGAAC
CAGTTCTCCCTGAAGCTGAGCTCTGTGACCGCCGCGGACAC–GGCCGTGTATTA———
-CTGTGCG-AGAGAGTTATAACAA———————————————–TTACTACTACTACT-
A–CGGTATGG——————-ACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAG

34.32

Table 4.1: Consensus Immunoglobulin Class Sequences by Needleman-Wunsch Dis-
tance
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Cluster Segment Type Precision Recall
0 V 0.96762 0.97708
0 D 0.69680 0.51999
0 J 0.88699 0.90729

1 V 0.97677 0.97575
1 D 0.72790 0.61774
1 J 0.87847 0.92549

2 V 0.93128 0.95329
2 D 0.24731 0.07055
2 J 0.58266 0.63317

3 V 0.95308 0.98020
3 D 0.63596 0.47317
3 J 0.88904 0.83989

4 V 0.97817 0.97134
4 D 0.68325 0.51538
4 J 0.67 0.93408

Table 4.2: Precision and Recall of Class CRFs on Synthetic Dataset

Precision Recall
Segment Type Single CRF Class CRF Single CRF Class CRF

V 0.82310 0.96852 0.95107 0.97535
D 0.55693 0.67646 0.60015 0.51396
J 0.84110 0.86647 0.50468 0.89976

Table 4.3: Weighted Average of Precision and Recall of Class CRFs on Synthetic
Dataset

4.2 Hypermutation Rate Investigation
As knowledge of the distributions of hypermutation rates is not fully developed, hypermutation
rates and their distributions were investigated. First, the hypermutation rate was quanitified by
base position. This allowed analysis of hypermutation rates across segments, and visualization
of hypermutation rate patterns specific to segments. Finally, hypervariable and non-hypervariable
regions were identified and novel motifs were discovered for non-hypervariable regions.
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4.2.1 Quanitification by Base Position
First, as no dataset of hypermutation rates by base position has been made publicly available, this
dataset had to be constructed.

Preliminary attempts at quantifying these rates suggested that the distributions may be meaning-
ful. Figure 4.1 shows the average hypervariability (Needleman-Wunsch distance two closest se-
quences) of 100 random sequences by base position. Three parametric curves can be identified,
suggesting a potential pattern of hypermutation - elevated within a V,D, or J segment rather than
spanning the boundary.

Figure 4.1: Hypervariability of Sequence by Base Position

Through significant analysis (Figure A1-Figure A9), patterns of hypermutation rates were clari-
fied. By separating segment types and normalizing base position by the length of the segment, it
was shown (see Figure 4.2) that hypermutation rates remain mostly constant within the D and J
segments, while fluctuating repeatedly within V segments.

Furthermore, the distribution of hypermutation rates with V segments appear to have three or four
peaks, potentially corresponding to the complementarity determining regions. There are three
known complementarity determining regions: CDR1 is located in the beginning of the V segment,
CDR2 is contained within the middle of the V segment, and CDR3 spans the end of the V segment
as well as D and J segments. Thus, it is logical that the calculated hypermutation rates could
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correspond to complementarity determining regions.
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Figure 4.2: Mean Hypermutation Rate by Base Position for V, D, J segment types

As CDR3 spans the entire D and J segments, it would be expected that properly quanitified hyper-
mutation rates would be elevated throughout the D and J segments. To this end, basic statistical
analysis was performed on the running averages of hypermutation rates in each of the segment
types. Selected results are presented in Table 4.4, full results are given in A1.

Segment Type Mean Std. Dev.
V 0.750959 0.149849
D 0.785855 0.075827
J 0.761050 0.132611

Table 4.4: Statistical Analysis of Running Averages of Length 9

4.2.2 Mutation Type
To further probe the distribution of hypermutation rates, mutations were separated by type (tran-
sition, transversion, insertion or deletion). This distribution is presented in Figure 4.3 for V seg-
ments, Figure A10 for D segments, and Figure A11 for J segments. While much of the distri-
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butions seem stochastic, an interesting phenomenon occurs within V segments. Nearly all inser-
tion/deletion mutations occur either at the midpoint or near the end of the segment. Junctional
diversification increases mutation rates near segment boundaries, so it makes sense that the mu-
tation rate would be increased near the end of the V segments. However, it is not clear why the
midpoint of the V segment would also experience a similar increase in insertion/deletion muta-
tions. This finding suggests further analysis, both computationally and experimentally, may be
needed.

Figure 4.3: Hypermutation Rate by Base Position For each Type of Mutation (V Segments)

4.2.3 Motif Discovery
As discussed in Section 3.4.2, both hypervariable and hypovariable regions were identified. As
hypovariable regions have been largely ignored for motif discovery, the author determined that
motif discovery may be fruitful within hypovariable regions. Indeed, 19 motifs were found to be
enriched in these regions, suggesting potential for experimental procedures. Such experimental
procedures might investigate the possibility of factors binding to prevent hypermutation in hypo-
variable regions. Such findings would be a significant change to the current understanding that
factors (such as AID) bind to promote hypermutation without competing protective factors.

Here the 5 motifs found to be most enriched in hypovariable regions are shown. The full table of
19 motifs is in Table A2.
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Motif e-Value
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Table 4.5: Nucleotide Motifs Found to be Enriched in Non-Hypovariable Regions.
An e-Value less than 1.0e-3 is generally considered significant.

4.3 Predecessor Identification
To improve identification of germline predecessors of mature antibodies, the above data was com-
bined with a state-of-the-art CRF for segment prediction. Given a mature antibody, cluster algo-
rithms assigned the read to a given cluster, which then used a trained CRF specific to that cluster.
After the CRF identified base-wise probabilities for V, D, and J segment ownership, the alignment
followed the novel algorithm discussed in section 3.5.

This method successfully improved identification of germline genes, scoring a 0% missassignment
on a benchmark tool [14] for the Stanford S22 dataset. However, the author believes this value is
most likely due to a bug in the calculation of errors. Thus, this new technique, while promising,
requires further evaluation.
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Chapter 5

Discussion

5.1 Conclusions
In this thesis, the characteristics of immunoglobulin recombination were investigated. Immunoglob-
ulins were clustered (presumably by immunoglobulin class), and it was shown that training a sep-
arate CRF for each class increases segment type identification as compared to the use of a single
CRF. The rate of hypermutation was quantified by base position and a dataset of hypermutation
rates has been made available. Preliminary analysis showed that hypermutation rates follow a pat-
tern that can be explained by the biological structure of complementarity determining regions,
suggesting further analysis could confirm this relationship. Furthermore, the pattern of inser-
tion/deletion mutations within V segments is interesting, suggesting some biological phenomenon
may cause an increase in diversification through mid-segment insertion/deletions. Finally, 19 mo-
tifs were found to be significantly enriched in hypovariable regions, suggesting potential for ex-
perimental investigation.

5.2 Future Work
This work suggests potential for future experiments, both experimental and computational. Ex-
perimentally, the nucleotide motifs strongly conserved in hypovariable regions should be investi-
gated to identify protective factors. Also, the distribution of hypermutation rates, especially inser-
tion/deletion mutations, should be investigated experimentally. Computationally, the new method
of predecessor identification described should be investigated and the results studied rigorously to
confirm performance advances.
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Appendix

Figure A1
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Figure A2

Figure A3
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Figure A4

Figure A5
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Figure A6

Figure A7: Hypermutation Rate by Base Position in V Segments
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Figure A8: Hypermutation Rate by Base Position in D Segments

Figure A9: Hypermutation Rate by Base Position in J Segments
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Figure A10: Hypermutation Rate by Base Position For each Type of Mutation (D Segments)
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Figure A11: Hypermutation Rate by Base Position For each Type of Mutation (J Segments)
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Length of Window Segment Type Mean Std. Dev.
1 V 0.750837 0.430564
1 D 0.785665 0.357143
1 J 0.761116 0.418797

2 V 0.750174 0.311623
2 D 0.786614 0.248460
2 J 0.760662 0.298921

3 V 0.751143 0.254508
3 D 0.785772 0.192271
3 J 0.760675 0.241752

4 V 0.750762 0.221632
4 D 0.786414 0.160262
4 J 0.761069 0.207417

5 V 0.750814 0.198776
5 D 0.785617 0.135091
5 J 0.760882 0.184788

6 V 0.750466 0.182481
6 D 0.786130 0.116777
6 J 0.761359 0.166865

7 V 0.750957 0.169593
7 D 0.785709 0.100677
7 J 0.761178 0.153341

8 V 0.750631 0.159019
8 D 0.786300 0.088396
8 J 0.761246 0.141946

9 V 0.750959 0.149849
9 D 0.785855 0.075827
9 J 0.761050 0.132611

Table A1: Statistical Analysis of Running Averages
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Table A2: Nucleotide Motifs Found to be Enriched in Non-Hypervariable Regions



ACADEMIC VITA

BENJAMIN J. LENGERICH

EDUCATION PENNSYLVANIA STATE UNIVERSITY, Schreyer Honors College
B.S., Computer Science and B.S., Mathematics 2015
Thesis: On the Origin of Sequences: Computational Analysis of Somatic
Hypermutation for Probabilistic Immunoglobulin Predecessor Identification

SELECTED
HONORS

SCHREYER ACADEMIC EXCELLENCE SCHOLARSHIP 2011-2015
EBERLY COLLEGE OF SCIENCE BRADDOCK SCHOLAR 2011-2014
UNDERGRADUATE SUMMER DISCOVERY GRANT 2012
PRESIDENT’S FRESHMAN AWARD 2012
BAUSCH AND LOMB HONORARY SCIENCE AWARD 2011

PUBLICATIONS Experimental and Computational Mutagenesis To Investigate the Positioning of a
General Base within an Enzyme Active Site. Jason P. Schwans, Philip Hanoian, Ben-
jamin J. Lengerich, Fanny Sunden, Ana Gonzalez, Yingssu Tsai, Sharon Hammes-
Schiffer, and Daniel Herschlag. Biochemistry 2014 53 (15), 2541.

PRESENTATIONS PENN STATE UNDERGRADUATE EXHIBITION 2015
PENN STATE UNDERGRADUATE EXHIBITION 2012
EBERLY COLLEGE OF SCIENCE RESEARCH SYMPOSIUM 2012

RESEARCH
EXPERIENCE

RESEARCH ASSISTANT
Advanced Laboratory for Information System and Analysis 2014-present

• Applying machine learning to characterize somatic hypermutation and predict
predecessor genes of mature antibodies.

RESEARCH ASSISTANT
Hammes-Schiffer Theoretical Chemistry Lab 2012-2014

• Implemented computational analysis of classical molecular dynamics simula-
tions to investigate the effects of flexibility on an enzyme’s catalytic rate.

INDUSTRY
EXPERIENCE

SOFTWARE ENGINEERING INTERN
Google Summer 2014

• Designed and implemented a new targeting method, using machine learning to
quantify the localization tendencies of websites.

SOFTWARE ENGINEERING INTERN
Synthetic Environment Applications Lab Summer 2013

• Parallelized graph connectivity algorithms for social network analysis, increas-
ing the prohibitive network size for centrality calculations by a factor of 103.

SERVICE AND
LEADERSHIP

PENN STATE DANCE MARATHON MORALE COMMITTEE 2012-2015
PNC LEADERSHIP ASSESSMENT CENTER 2014
PENN STATE SCHREYER HONORS COLLEGE STUDENT COUNCIL 2011-2013
PEDIATRIC CARDIOLOGY TRANSLATOR 2011


	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Problem
	Motivation
	Goals

	Background
	Biochemical Context
	Immunoglobulin Function
	Immunoglobulin Structure
	Diversity Generation

	Existing Methods of Predecessor Identification
	Initial Methods
	Probabilistic Methods


	Materials and Methods
	Method Overview
	Datasets
	Synthetic Dataset
	Stanford Dataset

	Clustering Immunoglobulin Classes
	k-Means Clustering

	Analysis of Hypervariable Regions
	Hypermutation Rate Quantification
	Hypervariable Region Identification
	Motif Identification

	Germline Identification
	Implementation Details

	Results and Analysis
	Immunoglobulin Class Clustering
	Class-based Segment Prediction

	Hypermutation Rate Investigation
	Quanitification by Base Position
	Mutation Type
	Motif Discovery

	Predecessor Identification

	Discussion
	Conclusions
	Future Work

	Bibliography
	Appendix

