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Abstract 

Transport of intracellular cargos is achieved through the combined efforts of kinesin and dynein motor 

proteins.  This transport is characterized by periods of processive movement, as well as frequent pauses 

and switches in direction.  Currently, the interactions between kinesins and dyneins bound to the same 

cargo are described as a direct mechanical competition between the two motor protein superfamilies.  

However, this “tug-of-war model” fails to explain experimental observations that show that inhibiting 

either kinesin or dynein results in reduced motility for both motor species.  Three additional models have 

been proposed in an attempt to overcome the shortcomings of the tug-of-war model.  The “microtubule 

tethering model” proposes a diffusive state in which motors are loosely associated with the microtubule, 

thus anchoring the cargo while providing minimal resistance to stepping by oppositely-directed motors.  

The “mechanical activation model” states that motor proteins tend to remain in an inhibited state unless a 

hindering force, such as the force exerted by an oppositely-directed motor, is applied.  Lastly, the “steric 

disinhibition model” states that motor proteins tend to remain in an autoinhibited state unless they are 

bound at some site by oppositely-directed motors or regulatory proteins.  This goal of this project was to 

produce computational simulations of the competing models describing bidirectional transport by kinesin 

and dynein.  Analysis of these simulations has already revealed that the mechanical activation model 

displays a number of characteristics seen in experimental data, including pauses and, most importantly, 

the paradox of codependence, which is the phenomenon that inhibition of one motor species results in 

reduced motility in both directions.  In the future, the simulations will be used to determine the direction 

of experiments that will hopefully validate one of the proposed models and lead to a greater 

understanding of bidirectional transport. 
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Chapter 1: Introduction 
 

A motor protein is a protein that is capable of converting the chemical energy stored in ATP to 

mechanical work via a conformational change known as a “powerstroke.”  A well-known example is the 

motor protein myosin, which binds to actin and is responsible for the contraction of muscles.  The motor 

proteins discussed in this paper are microtubule-associated motor proteins.  Microtubules are long, fibrous 

proteins formed by the polymerization of tubulin dimers, which consist of α and β tubulin.  The dimeric 

structure of microtubules results in a distinct polarity that influences the direction of transport by motor 

proteins.  The opposite ends of a microtubule are referred to as the “plus end” and “minus end.” 

 

In animals, microtubule-associated motor proteins are divided into two superfamilies: kinesin and dynein.  

While there are many proteins in the kinesin superfamily with differing structures, this project will be 

based on the structure of kinesin-1, which is the most studied and well-characterized member of the 

kinesin family.  This protein contains two head or motor domains, which are capable of binding to 

microtubules and contain the protein’s ATP hydrolysis sites.  The head domains are connected via two 

neck linkers to a long, coiled coil stalk domain.  At the other end of the stalk is the tail domain, which is 

capable of binding to a variety of intracellular cargos, including vesicles and mitochondria.1  Figure 1 

shows a simplified structure for a kinesin protein. 
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Figure 1. Simplified kinesin structure. Figure adapted from Asbury, et al.1 

 

Members of the dynein superfamily of motor proteins fall into two main subcategories: axonemal dynein 

and cytoplasmic dynein.  Axonemal dynein motor proteins work together in a coordinated fashion and are 

responsible for the back-and-forth movement of cilia and flagella.  This project is focused on cytoplasmic 

dynein, which, along with kinesin, is responsible for the transport of intracellular cargos.  Throughout the 

rest of this thesis, the term “dynein” will be used to refer specifically to cytoplasmic dynein.  Compared to 

kinesin, dynein is a larger, more globular molecule.  Like kinesin, dynein has two globular head domains, 

which contain the protein’s ATP hydrolysis sites.  However, unlike kinesin’s head domains, dynein’s 

head domains do not directly bind to microtubules.  Instead, each head binds to the microtubule via a 

coiled coil stalk domain.  The head domains can bind intracellular cargos via two projections known as 

the tail domains.2  Figure 2 shows a computer-generated representation of dynein’s structure. 
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Figure 2. Computer-generated representation of dynein’s structure. Figure adapted from Vale.3 

 

Intracellular transport of vesicles, organelles, and other cargo is accomplished via the movement of motor 

proteins along microtubules.  Motor proteins are capable of binding to various cargos and “walking” 

toward either end of a microtubule.  This walking is achieved by a hand-over-hand mechanism, in which 

the rear head of the protein detaches from the microtubule, swings forward via a powerstroke, and rebinds 

to the microtubule.1 

 

With few exceptions, all kinesins are plus-end-directed, i.e. they move exclusively from the minus end of 

a microtubule toward the plus end.  Conversely, all members of the dynein superfamily are minus-end-

directed.  In neurons, the result of this is that kinesin motors transport cargo toward the periphery of the 

neuron, while dynein motors transport cargo in the opposite direction, toward the cell body. 

 

Until now, the majority of experiments dealing with microtubule-associated motor proteins have been 

relatively simple in vitro studies.  While these experiments have certainly provided useful information, 

they are not sufficient for understanding the mechanisms underlying bidirectional transport by opposing 
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motor proteins.  An understanding of these mechanisms is important because bidirectional transport in 

neurons is a crucial mechanism for the growth and maintenance of neurons.  In addition, defects in 

intracellular transport in neurons are associated with a number of neurodegenerative diseases in humans.  

One example is Alzheimer’s disease, which is characterized by tangles of the microtubule binding protein 

tau, which inhibit axonal transport.  Other diseases that are believed to involve defects in axonal transport 

include Amyotrophic Lateral Sclerosis, Huntington’s disease, and Parkinson’s disease.  Gaining a better 

understanding of the underlying mechanisms could eventually lead to the development of treatments for 

these diseases.4 

 

Intracellular cargos are generally not transported by a single motor protein or even by members of a 

single motor protein superfamily.  Instead, cargos are often bound to multiple kinesin and dynein motors.  

The movement of cargo transported by these motors is characterized by periods of smooth movement, 

rapid switches in direction, and frequent pauses.  Currently, the leading model to explain these 

observations is a direct mechanical competition between kinesin and dynein, known as the “tug-of-war 

model.”4 

 

The use of the term “tug-of-war” to describe the mechanical competition between oppositely-directed 

motor proteins was first coined in 1998 by Welte, et al.5  A direct implication of this mechanical 

competition is that the inhibition of one motor should theoretically result in enhanced motility in the 

opposite direction.  However, a number of studies have shown that inhibiting either motor species results 

in a reduction in both anterograde and retrograde transport.  For example, a study by Martin, et al. showed 

that knocking out kinesin and mutating dynein each resulted in randomly distributed axonal swellings 

caused by the accumulation of intracellular cargos.6  If the tug-of-war model were accurate, one would 

expect these cargos to accumulate at either the cell body or the periphery of the axon, rather than at 

randomly distributed sites throughout the axon.  Figure 3, adapted from Hancock4, shows additional 
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results for inhibiting either kinesin or dynein.  Once again, these results show that inhibiting either motor 

species results in impaired motility in both directions. 

 

Figure 3. Experimental data displaying the paradox of codependence.  A: Inhibiting kinesin motors 

either by knocking out kinesin light chain 1 (KLC1-/-) or by knocking down light chain 2 (KLC2 

shRNA) results in shorter run lengths and more frequent pauses during retrograde transport.  B: 

Inhibiting dynein in mouse neurons results in more time spent in the paused state and less time 

spent in both retrograde and anterograde transport. 

 

A computational model has been developed by Müller, Lipowsky, and colleagues that provides strong 

support for the tug-of-war model.  This model utilizes parameters obtained from single-molecule 

experiments to estimate the velocity, run length, stall force, and detachment rates for kinesin and dynein 

motor proteins.7-9  Support for this model has been shown in a study carried out by Hendricks, et al., in 

which cargo trajectories predicted by the Müller model were shown to match closely with experimentally 

observed bidirectional transport.10  The authors of this study were able to estimate the number of kinesin 

and dynein motors bound to vesicles moving along microtubules in vitro.  When the same numbers of 

kinesin and dynein motors were input into the Müller model, similar bidirectional transport was observed.  
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This model was also capable of simulating dynein inhibition studies by reducing the number of dynein 

motors bound to a given cargo.  However, the model did not show the reduced anterograde transport 

observed in previous in vitro experiments.10 

 

The Müller model fails to address several properties of real motor proteins, such as the stochastic nature 

of their stepping and the elastic tether connecting motors to their cargo.  While the Müller model assumes 

that an equal load is applied to all motors of the same type, the stochastic nature of real motor proteins 

result in an unequal sharing of load between motors as some motors of the same type will move farther 

from the cargo than others.  In an attempt to address the shortcomings of the Müller model, Kunwar, et al. 

developed a stochastic stepping model that accounted for the elastic tethers binding motors to their cargo.  

However, the authors concluded that this model was still unable to explain experimental results through a 

simple tug-of-war model.11 

 

While these results show that the tug-of-war model cannot adequately explain the codependence between 

oppositely-directed motors, the question still remains as to whether this codependence relies on the 

presence of specific motor species or if it is simply the result of the forces exerted by these motors.  A 

study conducted by Ally, et al. found that, in Drosophila S2 cells in which cargo transport had been 

arrested by kinesin-1 knockdown, motility could be restored by active kinesin-3 motors but not by 

inactive kinesin-1 motors.  Likewise, when dynein was knocked down, motility could be restored using a 

minus-end-directed kinesin known as ncd.12  These results show that, in this system, the codependence of 

oppositely-directed motors is due to the forces exerted by these motors and not due to the binding of 

specific motor species. 

 

Clearly, the direct mechanical competition between oppositely-directed motor proteins proposed by the 

tug-of-war model is not sufficient to explain the codependence between antagonistic motors that is 

evident from these results.  In order to overcome this shortcoming of the tug-of-war model, three 
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additional models have been proposed by Hancock to explain the observed behavior of bidirectional 

transport.  It is important to note that these models are purely hypothetical and have been proposed as a 

means to direct the development of future experiments and computational models. 

 

 

Figure 4. Three models proposed to explain the codependence between oppositely-directed motor 

proteins. Figure adapted from Hancock.4 

 

The first mechanism proposed by Hancock is the “microtubule tethering model.”  This model proposes 

that, in addition to an attached, processive state and a detached state, motors may exist in a diffusive state 

in which they are weakly associated with the microtubule.  In this state, the motors would provide 

minimal resistance to processive motion in the opposite direction but would allow the cargo to remain 

associated with the microtubule in the case of the other motors detaching, resulting in longer run lengths.3  

Okada, et al. were the first to show that kinesin could enter a weakly-bound, diffusive state using kinesin-

3.  It was found that this weak binding was facilitated by the positively-charged “K-loop” of kinesin and 

the negatively-charged C-terminal tail of tubulin, the monomer that polymerizes to form microtubules.13  
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Since then, it has been shown that kinesin-5 and kinesin-1 are capable of entering a similar diffusive 

state.14,15  In addition, Culver-Hanlon, et al. have shown that cytoplasmic dynein is also capable of 

diffusing along microtubules.16 

 

The second proposed model is known as the “mechanical activation model.”  This model states that 

motors tend to exist in an inhibited state unless activated by a hindering load, such as a force exerted by 

an oppositely-directed motor protein.  This inhibition could be due to a number of mechanisms, including 

tight binding to the microtubules or an inability to properly interact with the microtubule in the absence of 

a hindering load.4  At this time, evidence in favor of this model is somewhat lacking.  Studies have shown 

that dynein tends to remain bound for a longer period of with for larger superstall forces11 and that kinesin 

detaches more readily under assisting loads than hindering loads.17  These results show that hindering 

loads can enhance attachment, but they do not necessarily imply any sort of mechanical activation.  The 

aforementioned results from Ally, et al. that show that the binding of any functional, oppositely-directed 

motor can restore motility to a cargo that only has one type of motor bound are consistent with a 

mechanical activation mechanism.12  However, these results could also be consistent with the microtubule 

tethering model.  

 

The third and final hypothetical mechanism set forth by Hancock is the “steric disinhibition model.”  This 

model proposes that kinesin and dynein tend to exist in an autoinhibited state until this inhibition is 

relieved by the binding of an oppositely-directed motor or a regulatory protein.3  Studies have shown that 

kinesin motors can enter an autoinhibited state.  This autoinhibition occurs due to the tail domain of 

kinesin folding back and interfering with the motor domains. 18,19  It has been hypothesized that this 

autoinhibition is relieved upon binding to a cargo or binding by regulatory proteins, but the steric 

disinhibition model holds that activation will not occur unless dynein is present.  There is no defined 

mechanism by which dynein undergoes autoinhibition, but regulatory proteins have been shown to exist 

which are associated with the activation of dynein.20  The steric disinhibition model is supported by 
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experiments that have shown that kinesin-1 is capable of directly binding to dynein21 and that dynactin, a 

protein that links dynein to cargos, also links kinesin-2 to cargos.22  In addition, an adaptor protein has 

been discovered that directly binds kinesin-1 and dynein and serves as a link to mitochondria.23 

 

The goal of this project was to develop MATLAB scripts simulating the tug-of-war model, as well as the 

three proposed models.  These simulations were created using parameters pulled from literature along 

with the Gillespie algorithm to determine rates for a number of events associated with the bidirectional 

stepping of motor proteins.  While there are many results that have yet to be obtained from these 

simulations, the mechanical activation model has already been shown to be a viable candidate for 

explaining the paradox of codependence. 
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Chapter 2: Methods 
 

The objective of this project was to build a computational simulation capable of simulating the transport 

of a cargo bound to various numbers of kinesin-1 and cytoplasmic dynein motors.  I began by developing 

a simulation according to the mechanism described by the tug-of-war model before extending the 

simulation to replicate the other three hypothetical models.  Programming for these simulations was 

carried out in MATLAB. 

 

These simulations make use of the first-reaction formulation of the Gillespie algorithm.  This algorithm is 

a widely used method of simulating the progression of stochastic, highly-coupled chemical reactions with 

time.  The Gillespie algorithm states that the time for a given event to occur is determined as 

 

𝜏𝑖 = (1 𝑘𝑖)ln(1 𝑟𝑖)⁄⁄  

 

where τi is the dwell time required before a given event i will occur, ki is the rate constant for event i, and 

ri is a pseudo-random number between 0 and 1.24  In the basic tug-of-war model, the possible events 

include forward stepping of an attached motor, backward stepping of an attached motor, detachment of an 

attached motor, and attachment of a detached motor.  After dwell times are calculated for all possible 

events, the event with the lowest dwell time is chosen as the next event that will occur.  This process is 

then repeated until a set time limit is reached or all motors have detached from the microtubule.  One 

might be tempted to select the second lowest time interval as the “second next” event to occur, but this 

would be invalid as it disregards the changes in rate constants cause by the previous event and precludes 

the possibility of the same event occurring twice sequentially.24  A lower limit of 100 μs was set on the 

dwell time in order to avoid unrealistically high instantaneous velocities. 
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2.1: Kinesin Parameters 

The rate constants for various events were approximated based on values obtained from literature, 

typically as a function of force.  For detached motors, the forward stepping rate, backward stepping rate, 

and detachment rate are set to 0 as none of these events can occur while the motor is detached.  The 

attachment rate is approximated as 5 s-1, which is the same value used in the Müller model.8  If the motor 

is attached, the attachment rate is set to zero.  The forward stepping rate for kinesin is determined as a 

function of force.  The forward stepping rate for kinesin was determined from a force-velocity curve 

published by Carter and Cross.  The forward stepping rate for the unloaded case and for assisting loads is 

held constant at 100 s-1.  For loads between 2.5 pN and 7.76 pN, the forward stepping rate is calculated as 

 

𝑘𝑓 = 277.78(𝑒−0.57𝐹) 

 

where kf is the forward stepping rate in s-1 and F is the load force in pN.  Note: for this and all subsequent 

equations, a hindering load is defined as a positive force.  This equation was obtained by taking the 

inverse of Carter and Cross’s equation for the forward dwell time of kinesin, which was determined by 

fitting experimental data.25  For hindering loads below 2.5 pN, the forward stepping rate is calculated as 

 

𝑘𝑓 = 100(𝑒−0.162𝐹) 

 

This equation was obtained by fitting an exponential between the value of the forward rate in the 

unloaded case and the value at 2.5 pN.  For hindering loads above 7.76 pN, the forward stepping rate was 

approximated as 3.33 s-1.  Based on the ratio of forward to backward steps described by Carter and Cross, 

the backward stepping rate for kinesin under assisting loads and hindering loads below 7.76 pN is 

calculated as 

 

𝑘𝑏 = 𝑘𝑓 [802(𝑒−0.95𝐹⁄ )] 
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where kb is the backward stepping rate in s-1.  From Andreasson17, kinesin’s detachment rate under 

assisting loads is calculated as 

 

𝑘𝑑 = 0.79 − 1.56𝐹 

 

where kd is the detachment rate in s-1.  For hindering loads, the detachment rate is calculated as 

 

𝑘𝑑 = 0.79(𝑒𝐹 6.1⁄ ) 

 

Later models included the introduction of kinesin-2 parameters.  These parameters were estimate by 

scaling kinesin-1’s forward and backward stepping rates to a maximum velocity half that of kinesin-1.  

Kinesin-2 also has a much more force-dependent detachment rate then kinesin-1.  From Arpag, et al.26, 

the force-dependent detachment rate for kinesin-2 under a hindering load was determined to be 

 

𝑘𝑜𝑓𝑓 = 8.37𝑒−0.07𝐹 − 𝑒0.43𝐹 

 

and the detachment rate under an assisting load was determined to be 

 

𝑘𝑜𝑓𝑓 = 15𝑒𝐹/2.0 

 

2.2: Dynein Parameters 

It was somewhat difficult to define the rate constants for dynein as it is not as well characterized as 

kinesin, and the available literature contains a wide range of values.  Due to the limited data available, it 

was often necessary to use results from experiments using yeast dynein.  Compared to mammalian 
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dynein, yeast dynein exhibits a significantly lower velocity but a significantly higher stall force.  As such, 

it was necessary to scale these results to values obtained from other studies for the velocity and stall force 

of mammalian dynein. 

 

For detached dynein motors, the attachment rate is defined as 5 s-1, the same as the attachment rate for 

kinesin.  The only available source for cytoplasmic dynein’s force-velocity relationship is Toba, et al.27  

This force-velocity curve is shown in Figure 5. 

 

Figure 5. Force-velocity relationship for mamallian cytoplasmic dynein in 10 μM and 1 mM ATP.  

For the purposes of this project, the curve at 1 mM ATP was used. Figure adapted from Toba, et 

al.27 
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However, this study reports an unusually high unloaded velocity and stall force.  In order to correct for 

this, the force-velocity relationship was scaled to an unloaded velocity of approximately 213 nm/s and a 

stall force of approximately 1 pN, consistent with experimental values reported by Mallik, et al.28  The 

shape of the force-velocity curve shown by Toba, et al. appears to suggest a sigmoidal relationship.  

However, the data was instead fit by a constant value under assisting loads and low hindering loads and a 

decaying exponential under high hindering loads as this was expected to more accurately represent the 

underlying mechanisms.  Also, for the sake of simplicity, dynein was assumed to exclusively take 8 nm 

steps, as opposed to the variable step size observed in experiments.28  Thus, for assisting loads and 

hindering loads below 0.3 pN, dynein’s forward stepping rate is held constant at approximately 34.1 s-1.  

For hindering loads exceeding 0.3 pN, the forward stepping rate is calculated as 

 

𝑘𝑓 = 61.79(𝑒−1.98𝐹) 

 

Reck-Peterson, et al. report that, for the unloaded case, approximately 20% of yeast dynein’s steps are 

backward steps.29  No data were available on the change in dynein’s backward stepping rate or for 

mammalian dynein’s backward stepping rate in general, so dynein’s backward stepping rate was simply 

held constant at its unloaded rate of 8.52 s-1.  Dynein’s detachment rate was obtained from Kunwar, et 

al.11  For hindering loads below 1.7 pN, the detachment rate is calculated as 

 

𝑘𝑑 = 𝑒0.8155𝐹 

 

For hindering loads exceeding 1.7 pN, the detachment rate is calculated as 

 

𝑘𝑑 = 1 [0.254(1 − 𝑒−𝐹 1.97⁄ )]⁄  

 



15 

 

Figure 6 shows a graph published by Kunwar, et al. showing the dwell time for dynein’s detachment as a 

function of force.  Note that dwell time is the inverse of the rate. 

 

Figure 6. Dwell time for the detachment of dynein vs. force.  Figure adapted from Kunwar, et al.11 

 

There was no published data for the dynein detachment rate for assisting loads, so a simple exponential 

relationship was chosen, that has a somewhat stronger force dependence than the hindering direction 

 

𝑘𝑑 = 𝑒−𝐹 3⁄  

 

A second model for dynein was developed in which dynein had a variable backward stepping rate.  Recall 

that this rate was initially set to a constant value due to limited available data.  At this point in the project, 

a source had been located containing the necessary data.  Based on Gennerich, et al.’s study on the 
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bidirectional stepping of dynein30, the force-dependent ratio between the forward stepping rate and the 

backward stepping rate for yeast dynein was determined to be 

 

𝑆𝑅 = −0.1707𝐹 + 2.186 

 

where SR is the ratio between dynein’s forward stepping rate and its backward stepping rate and F is the 

force applied to the dynein motor in the plus direction.  After scaling this equation to mammalian 

dynein’s stall force of approximately 1 pN, the result was 

 

𝑆𝑅 = −1.2422𝐹 + 2.186 

 

for 0.13745 pN < F < 1.3745 pN.  Outside the boundaries of this equation, the ratio is held constant.  In 

order to simplify the calculations for the actual stepping rate, dynein’s force-velocity curve was simplified 

to the following linear equation: 

 

𝑁𝑆𝑅 = 31.606 − 33.095𝐹 

 

for 0.3 pN < F < 1pN, where NSR is the net stepping rate for dynein and F is the force applied to the 

dynein motor in the plus direction.  Like the stepping ratio, the net stepping rate is held constant outside 

the boundaries of this equation.  From these two equations, dynein’s forward stepping rate is defined as 

 

𝑘𝑓 = 𝑁𝑆𝑅/(1 −
1

𝑆𝑅
) 

 

From this point on, this model will be referred to as “dynein model 2,” while the model with a fixed 

backward stepping rate will be referred to as “dynein model 1.”  
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and the backward stepping rate is defined as  

 

𝑘𝑏 =𝑘𝑓/𝑆𝑅 

 

2.3: Tug-of-War Simulation 

I began building the simulation by creating a simple simulation of a single kinesin bound to a cargo to 

which a variable load force could be applied.  The tether binding the kinesin to the cargo was modeled as 

an ideal Hookean spring with a spring constant of 0.3 pN/nm.31  I then added complexity to the model by 

simulating two kinesin motors bound to a single cargo, followed by a simulation in which the cargo is 

bound by two normal kinesins and two kinesins that have had their polarity reversed to favor retrograde 

motion.  This was initially used as a stepping stone for creating a simulation with dynein, but it ultimately 

proved useful for testing the sensitivity of certain parameters, such as the elasticity of the cargo-motor 

tether. 

 

The next step was to input the parameters for dynein to create a simulation of two kinesin motors pulling 

against two dynein motors.  The spring constant for dynein’s tether was set as 0.065.2  From there, the 

model was extended to be capable of handling any number of kinesin and dynein motors. 

 

For the sake of simplicity, the tethers binding motors to the cargo were modeled as ideal Hookean 

springs.  However, a Hookean spring model provides a poor approximation of the force-extension 

relationship observed in flexible polymers.  A more accurate model is the worm-like-chain model.  This 

model states that a flexible polymer under no load will exist in a randomly-coiled configuration due to 

thermal fluctuations.  As a load is applied and the polymer extends, the number of available 

configurations is reduced, resulting in an entropic force that resists extension.32 
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The result of this is that the polymer provides very little resistance to extension until the polymer is 

stretched to a length approaching its contour length, which is defined as the maximum length to which the 

polymer can be stretched.  At this point, the resistive force rises drastically, approaching an asymptote at 

the contour length.  The relationship between force and extension is described mathematically as 

 

𝐹 =
𝑘𝐵𝑇

𝐿𝑝
[
1

4
(1 −

𝑥

𝐿𝑐
)
−2

−
1

4
+

𝑥

𝐿𝑐
]  

 

where F is the force resisting extension, kB is Boltzmann’s constant, T is the absolute temperature in K, Lp 

is the persistence length, Lc is the contour length, and x is the end-to-end distance of the polymer.  The 

persistence length is defined as the minimum distance that must exist between two segments of the 

polymer for the orientation of the two segments to be completely uncorrelated.32  For kinesin, a contour 

length of 84 nm was used, and for dynein, a contour length of 48 nm was used.  Both motors used a 

persistence length of 0.7 nm. 

 

While the worm-like chain model is believe to be more accurate, due to debugging difficulties and the 

inherent complexity of working with the worm-like chain model, the final comparison between the tug-

of-war and mechanical activation models was carried out with the motor tethers approximated as 

Hookean springs.  This comparison will be discussed in greater detail in subsequent sections. 

 

2.4: Microtubule Tethering Simulation 

After completing the basic tug-of-war model, the next step on the simulation was the addition of a 

diffusive state in order to simulate the mechanism proposed by the microtubule tethering model.  In the 

diffusive state, the motor remains associated with the microtubule but will not take any steps forward or 

backward.  In the initial version of this simulation, motors were only able to detach from the microtubule 

by going through the diffusive state.  That is, the detachment rate for attached motors was set to 0. 
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The rate for motors to enter the diffusive state from the attached state was initially calculated using the 

same equations used for the detachment rate in the tug-of-war model.  From the diffusive state, the motor 

can either detach completely or reattach to the microtubule.  Figure 7 shows a visual representation of this 

model.  In an effort to create a distinct paused state, it was decided that motors should be significantly 

more likely to reattach that detach from the diffusive state.  Therefore, the attachment rate from the 

diffusive state was initially set to 10 s-1, and the detachment rate was initially set to 2 s-1. 

 

 

 

 

 

 

 

 

These values were initial parameter choices and are intended to be varied in future simulations to match 

model behavior to experimental behavior.  From the detached state, motors were only able to reattach 

directly to the microtubule without passing through the diffusive state.  The attachment rate was initially 

set to 5 s-1. 

 

2.5: Mechanical Activation  Simulation 

The next model to be introduced was the mechanical activation model.  This model is based on the 

hypothesis that motor proteins tend to exist in an inactive state unless activated by a hindering load.  This 

was simulated by making the attachment rate for a particular motor protein dependent on the cargo 

velocity in the opposite direction. 

Attached (stepping) state Detached state 

Diffusive state 

Figure 7. Visual Representation of Microtubule Tethering Model 
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Because the simulation only recalculates the cargo position after an event has occurred and assumes that 

the cargo reaches equilibrium instantaneously, it is impossible to determine an instantaneous cargo 

velocity.  The closest approximation of an instantaneous velocity would be determined by dividing the 

change in position between two subsequent time points by the change in time.  However, the stochastic 

nature of the model can result in very short time steps, leading to very high velocities that cause 

immediate reattachment of any detached motor proteins that are directed opposite to the direction of cargo 

movement.  As such, the attachment rate is determined using a velocity averaged over the last 100 time 

steps. 

 

The attachment rate for kinesin has a minimum value when the cargo velocity is either 0 or positive, i.e. 

directed toward the plus end of the microtubule.  The attachment rate reaches its maximum value when 

the cargo velocity is equal to or less than the approximate unloaded velocity for dynein.  Note that “less 

than” is used because dynein’s velocity is negative.  Dynein’s unloaded velocity is approximately -212 

nm/s.  Between these values, the attachment rate for kinesin increases linearly, resulting in the following 

equation: 

 

𝑘_𝑘𝑜𝑛 = −((𝑘_𝑘𝑜𝑛_𝑚𝑎𝑥 − 𝑘_𝑘𝑜𝑛_𝑚𝑖𝑛)/212) ∗ 𝑣𝑒𝑙 + 𝑘_𝑘𝑜𝑛_𝑚𝑖𝑛 

 

where k_kon is the attachment rate for kinesin, k_kon_max is the maximum attachment rate for kinesin, 

k_kon_min is the minimum attachment rate for kinesin, and vel is the cargo velocity averaged over the 

most recent 100 time steps.  The negative sign is used to account for the fact that dynein has a negative 

velocity.  A similar equation is used to calculate the attachment rate for dynein with minor changes to 

account for the fact that kinesin’s unloaded velocity is approximately 800 nm/s.  For both kinesin and 

dynein motors, the minimum attachment rate was set to 0.1 s-1, and the maximum attachment rate was set 

to 10 s-1.  Figure 8 shows how the attachment rate for each motor species varies with the cargo velocity. 
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Figure 8. Attachment Rate vs. Cargo Velocity for Mechanical Activation Simulation.  Both motor 

species reach their minimum attachment rate at 0 velocity and reach their maximum at the average 

unloaded velocity of the opposing motor. 

 

2.6: Steric Disinhibition Simulation 

The final model that was introduced was the steric disinhibition model.  This model states that motor 

proteins tend to exist in an autoinhibited state unless they are bound by either an oppositely-directed 

motor protein or some other associated protein.  For the sake of simplicity, the simulation assumes that 

this binding is achieved directly by an oppositely-directed motor protein.  If this project is continued 

beyond the culmination of my thesis, microtubule-associated proteins could possibly be introduced. 
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The steric disinhibition simulation functions by basing the attachment rate for kinesin and dynein on the 

number of oppositely-directly motors bound to the cargo.  Note that while the motors frequently detach 

from the microtubule, this simulation assumes that the motors are not capable of detaching from the 

cargo.  Therefore, for any given run of the simulation, the attachment rates will remain constant 

throughout the run.  For kinesin motors, the attachment rate increases linearly from a minimum value 

when there are no dynein motors bound to the cargo to a maximum value when there are five dynein 

motors bound to the cargo, resulting in the following equation 

 

𝑘_𝑘𝑜𝑛 = ((𝑘_𝑘𝑜𝑛_𝑚𝑎𝑥 − 𝑘_𝑘𝑜𝑛_𝑚𝑖𝑛)/5) ∗ 𝑑𝑦𝑛𝑠 + 𝑘_𝑘𝑜𝑛_𝑚𝑖𝑛 

 

where k_kon is the attachment rate for kinesin, k_kon_max is the maximum attachment rate for kinesin, 

k_kon_min is the minimum attachment rate for kinesin, and dyns is the number of dynein motors bound 

to the cargo.  Figure 9 shows how kinesin’s attachment rate is affected by an increasing number of dynein 

motors bound to the same cargo. 
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Figure 9. Kinesin Attachment Rate vs. Number of Dynein Bound to Cargo for Steric Disinhibition 

Model. Kinesin's attachment rate increases linearly with the number of dynein bound to the cargo 

before reaching a maximum when 5 dynein motors are bound. 

 

Because a cargo will typically have a high ratio of bound dynein motors to bound kinesin motors10, 

dynein’s attachment rate simply depends on whether there are any kinesin motors bound to the cargo.  

That is, dynein’s attachment rate is either set to its minimum value when there are no kinesin motors 

bound to the cargo or its maximum value when there is any number of kinesin motors bound to the cargo.  

As a result, this model has no effect on the behavior of dynein during bidirectional transport.  Like the 

mechanical activation model, the minimum attachment rate for both kinesin and dynein was set to 0.1 s-1, 

and the maximum attachment rate was set to 10 s-1. 
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Chapter 3: Results/Discussion  
 

3.1: Initial testing 

In order to confirm the validity of the underlying techniques used in the simulation, the single-kinesin 

simulation utilizing the worm-like-chain model was run using load forces ranging from -10 to 10 pN.  

Based on experimental results, such as those obtained by Carter Cross, we expect to see an average 

velocity in the vicinity of 800 nm/s under assisting loads and an exponentially decreasing velocity with 

increased hindering load.25  These experimental results are shown in Figure 10.   

 

Figure 10. Kinesin-1 velocity vs. force for 10 μM ATP (in red) and 1 mM (in blue).  The data for 

1mM ATP matches closely with simulation results.  Figure adapted from Carter and Cross.25 
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Figure 11 shows the velocity as a function of load force averaged over 3000 runs of the simulation.  Each 

run was allowed to continue for 10 seconds of simulation time or until the motor detached from the 

microtubule. 

 

Figure 11. Simulated force-velocity relationship for a single kinesin motor.  The velocity at forces 

ranging from -10 to 10 pN was determined from the average of 3000 simulations.  The graph 

reveals a velocity of approximately 800 nm/s for the unloaded case and for assisting loads. 

 

The simulated force-velocity curve shows a relatively constant velocity of approximately 800 nm/s for the 

unloaded case and for assisting loads.  For hindering loads, the velocity appears to decrease roughly 

exponentially as load increases.  This is precisely what we expect to see, so this result confirms the 

validity of the most basic aspects of the simulation.  

 

After adding dynein parameters to the simulation, the same test was performed for dynein.  Again, the 

simulation was run using load forces ranging from -10 to 10 pN, and the velocity for each force was 

averaged over 3000 runs, which were allowed to continue for 10 seconds of simulation or until the motor 
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detached from the microtubule.  The results of this test performed on the dynein 1 model can be seen in 

Figure 12.  Unfortunately, these results cannot be directly compared to an experimental force-velocity 

curve as experimental data could be found showing a clear force-velocity curve for mammalian dynein. 

 

 

Figure 12. Simulated force-velocity relationship for a single dynein motor using the dynein 1 model.  

The velocity at forces ranging from -10 to 10 pN was determined from the average of 3000 

simulations.  The graph reveals a velocity of approximately -200 nm/s for the unloaded case and for 

assisting loads. 

 

Recall that the sign conventions used in this simulation result in dynein having a negative forward 

velocity.  Additionally, while a positive load force is a hindering load when applied to a kinesin motor, it 

is an assisting load when applied to a dynein motor.  Keeping this in mind, Figure 12 shows that dynein 
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has a fairly constant maximum forward velocity slightly over 200 nm/s for an assisting load, which is 

what we expect to see based on the dynein parameters that were entered into the model.  This velocity 

then decreases exponentially to a backward velocity of approximately 50 nm/s for large hindering loads.  

The maximum backward velocity for dynein is much greater than that of kinesin due to dynein’s more 

frequent backward stepping. 

 

Figure 13 shows the results of the same simulation performed for the dynein 2 model, which includes 

variable backward stepping.  Due to time constraints, the velocities in Figure 1 were averaged over 1000 

runs. 

 

Figure 13. Simulated force-velocity relationship for a single dynein motor using the dynein 1 model. 

This graph reveals a larger sensitivity to load force than was seen in the dynein 1 model. 
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As Figure 13 shows, the dynein 2 model is much more sensitive to the load force.  The average velocity 

decreases to a lower value than dynein 1 under hindering loads, and large assisting loads result in a large 

increase in the average velocity. 

3.2: Comparison of Proposed Models 

After writing scripts for each of the proposed models, the first step in testing them was to carry out a 

simple qualitative comparison between the distance vs. time plots produced by each simulation.  Note that 

these plots were produced using dynein model 1 and are included as an early proof of concept. 

 

3.2.1: Tug-of-War Model 
Simulations of a single kinesin pulling against multiple dyneins reveal that approximately six dynein 

motors are required to balance out a single kinesin motor.  This is consistent with values reported by 

Hendricks, et al.10  As an example, Figure 14 shows the position as a function of time for five runs with a 

single kinesin motor pulling against six dynein motors using the basic tug-of-war simulation.  The 

simulation was allowed to continue for 10 seconds or until all motors came detached from the 

microtubule. 
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Figure 14. Simulated position vs. time for tug-of-war model with a single kinesin motor pulling 

against six dynein motors.  Each line represents a single run that was allowed to continue for 10 

seconds or until all motors became detached from the microtubule. 

 

Figure 14 shows the processive, unidirectional runs and frequent switches in direction that are associated 

with bidirectional transport.  It does not, however, show the pauses that are associated with bidirectional 

transport.  Figure 14 shows that a single kinesin pulling against 6 dynein motors results in a mean velocity 

near 0. 

 

Simulations of varying numbers of motors reveal that, while run lengths and attachment time do depend 

on the number of motors bound to the cargo, it is not necessary to have antagonistic motors.  That is, the 
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addition of a motor protein does not enhance motility in the opposite direction.  This is inconsistent with 

experimental results and demonstrates the limitations of the tug-of-war model. 

 

3.2.2: Microtubule Tethering Model 
Figure 15 shows the results of the same test (five runs with one kinesin motor and six dynein motors) 

performed for the microtubule tethering model. 

 

Figure 15. Simulated position vs. time for microtubule tethering model with a single kinesin motor 

pulling against six dynein motors.  In the microtubule tethering model, motors pass through a non-

stepping diffusive state when detaching from the microtubule. 
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As Figure 15 shows, the results of the microtubule tethering model are similar to those of the tug-of-war 

model.  The most immediately apparent difference is that the addition of a diffusive state makes it very 

unlikely for all of the motors to come detached from the microtubule.  In addition, multiple motors of the 

same type are less capable of working together cooperatively, allowing a single kinesin motor to 

overpower six dynein motors.  Even when the number of dyneins is increased beyond six, a single kinesin 

is still frequently able to overpower them, which is not the case for the tug-of-war model.  The exact 

reason for this behavior is not known at this time. 

 

3.2.3: Mechanical Activation Model 

Next, the qualitative features of the mechanical activation model were examined.  Figure 16 shows five 

runs with a single kinesin and six dyneins for the mechanical activation model.  Unlike the previous tests, 

the simulation was allowed to run until all motors had detached from the microtubule, regardless of how 

much time had passed. 
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Figure 16. Simulated position vs. time for mechanical activation model with a single kinesin motor 

pulling against six dynein motors.  In the mechanical activation model, motor attachment rates 

depend on the cargo velocity in the opposite direction. 

 

As this graph shows, it is far more likely for all of the motors in the mechanical activation model to 

detach from the microtubule than in the other simulations.  Based on these results, the mechanical 

activation model was changed to allow for motors to reattach to the microtubule even after all motors had 

come detached.  This was done in the hope that this would result in pauses similar to those seen in in vivo 

experiments.  The results of this alteration to the simulation are shown in Figure 17.  In order to allow 

enough time for multiple pauses to occur, each simulation was allowed to continue for 100 seconds. 
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Figure 17. Simulated position vs. time for mechanical activation model including pauses with a 

single kinesin motor pulling against six dynein motors.  Motors were allowed to reattach even if all 

motors became detached.  This resulted in the appearance of clear pauses. 

 

All of these runs show multiple pauses.  Most of the pauses are brief, but some continue for several 

seconds.  These results show a qualitative resemblance to experimental results, so we can conclude that 

the mechanical activation model is promising and warrants more in-depth investigation.  In the future, 

attachment and detachment rates can be changed in order to match the frequency and duration of pauses 

to experimental results. 
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3.2.4: Steric Disinhibition Model 

Finally, the same five runs were carried out for the steric disinhibition model.  As was the case for the 

mechanical activation model, motors were allowed to rebind to the microtubule even if all motors were 

detached.  However, testing showed that this was unlikely to ever occur.  The results of the five runs are 

shown in Figure 18. 

 

Figure 18. Simulated position vs. time for steric disinhibition model with a single kinesin motor 

pulling against six dynein motors.  In the steric disinhibition model, motor attachment rates depend 

on the number of oppositely-directed motors bound to the cargo. 

 

Unlike the other models, the changes made in the steric disinhibition model decrease kinesin’s ability to 
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war model.  This is also the case for kinesin, but it seems that this change favors the larger number of 

dynein motors.  While the steric disinhibition model does not show the pauses that we hope to see, tests 

with no kinesin motors (and with dissociation of the cargo permitted) show that the cargo is rarely able to 

remain associated with the microtubule for even a full second.  These results are consistent with the 

hypothesis that the paradox of codependence results from a mechanical activation mechanism. 

 

3.3: Analysis of Mechanical Activation Model 

After performing a simple qualitative comparison, a more in-depth quantitative comparison was carried 

out.  This comparison involved plotting the velocity for each model versus the number of dynein motors 

for a given number of kinesin motors.  This allowed us to see whether either model exhibited the paradox 

of codependence.  Due to time constraints, this comparison was limited to the tug-of-war and mechanical 

activation models.  In addition, for the sake of simplicity, the motor tethers were modeled as Hookean 

springs rather than worm-like-chains.   Note that these results were obtained using the updated dynein 

model 2.  This analysis was performed using parameters for kinesin-1, as well as parameters for kinesin-

2.   

 

3.3.1: Kinesin-1 

Figure 19 shows the effect of an increasing number of dyneins on the cargo velocity for one, two, or three 

kinesin motors.  Figure 20 shows the results of the same analysis carried out on the mechanical activation 

simulation. 
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Figure 19.  Effect of introducing dynein motors on cargo velocity in tug-of-war simulation.  The 

introduction of additional dyneins motors to the tug-of-war model results in a decreased average 

cargo velocity in the plus direction. 
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Figure 20. Effect of introducing dynein motors on cargo velocity in mechanical activation 

simulation.  The introduction of a small number of dynein motors to the mechanical activation 

model results in an increased cargo velocity in the plus direction. 

 

As these figures show, introduction of dynein motors to the tug-of-war simulation always results in 

reduced motility in the plus direction.  However, the introduction of one or even two dynein motors to the 

mechanical activation simulation actually enhances motility in the plus direction.  The relationship 

between anterograde velocity and the number of dynein motors bound to the cargo is illustrated in Figure 

21.  In addition, while introducing a second or third kinesin motor enhanced motility in the plus direction, 

the introduction of a dynein motor results in a greater enhancement in plus-directed motility. 
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Figure 21. Average velocity with one kinesin bound to cargo vs. number of dynein motors bound to 

cargo using the mechanical activation model. The introduction of a small number of dynein motors 

results in an increase in anterograde velocity, demonstrating the paradox of codependence. 

 

3.3.2: Kinesin-2 

The tug-of-war and mechanical activation simulations were also compared for dynein pulling against 

kinesin-2. Kinesin-2 has a detachment rate that is much more dependent on force than that of kinesin-1.  

Due to kinesin-2’s different parameters, we predicted that it might exhibit different behaviors in both the 

tug-of-war and mechanical activation models.   It was found that one dynein could overpower one 

kinesin-2.  As such, the velocity was plotted as a function of an increasing number of kinesin-2 motors 

pulling against a fixed number of dynein motors.  The results of this analysis for the tug-of-war model are 

shown in Figure 22. 
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Figure 22. Effect of introducing kinesin-2 motors on cargo velocity in tug-of-war simulation.  The 

introduction of additional kinesin-2 motors to the tug-of-war model results in a positive shift in 

velocity. 

 

Figure 22 shows that the introduction of an increasing number of kinesin-2 motors pulling against a fixed 

number of dynein motors results in reduced retrograde velocity and eventually increased anterograde 

velocity before ultimately reaching an asymptote. These results mirror the results seen for the tug-of-war 

model using kinesin-1.  Figure 23 shows the results of the same analysis performed using the mechanical 

activation model. 
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Figure 23. Effect of introducing kinesin-2 motors on cargo velocity in mechanical activation 

simulation.  The introduction of additional kinesin-2 motors to the mechanical activation model 

results in a positive shift in velocity, contrasting with the results seen for kinesin-1. 

 

In contrast to the results seen when using kinesin-1 parameters, these results show a more positive 

velocity, rather than a more negative velocity, upon introducing a small number of kinesin-2 motors.  

These results do not display the paradox of codependence.  This may be explained by the fact the kinesin-

2 and dynein are much more closely matched than are kinesin-1 and dynein.  Given that the motors are 

close in strength, any benefits gains from the effects of mechanical activation may be overcome by the 

force applied by the opposing motor. 
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Chapter 4: Conclusion/Future Work 
 

The goal of this thesis was to develop MATLAB simulations that demonstrate the shortcomings of the 

tug-of-war model and that demonstrate the potential for alternative models to address these shortcomings.  

The tug-of-war simulation showed none of the pauses expected based on experimental results.  In 

addition, the introduction of additional motors to the tug-of-war model always results in diminished 

motility in the opposite direction.  Thus, the tug-of-war simulation does not display the paradox of 

codependence.  However, the mechanical activation simulations displayed both pauses and the paradox of 

codependence.  As such, we can conclude that the mechanical activation model is viable and warrants 

further investigation. 

 

Following my graduation, this project will be continued by another undergraduate student working in Dr. 

Hancock’s laboratory.  There are a number of steps that could be taken in the future in order to make the 

simulations more realistic.  One such step would be to introduce diffusion.  This would serve to make the 

simulations more realistic and could allow the velocities of individual detached motors to be determined, 

rather than relying on the cargo velocity.  This would involve very short, fixed time steps, rather than the 

variable time steps currently used.  This would greatly increase the time required to carry out a 

simulation, so I would only recommend introducing diffusion if it is believed that it would make a 

significant difference.  Another change that could be made would be adding code to simulate the activity 

of dynactin or other microtubule-associated proteins.  It would also be ideal to allow for dynein to have a 

variable step size.  Recall that, while dynein’s step size was set to a constant value in these simulations for 

the sake of simplicity, this does not accurately portray the behavior of actual dynein motors.28 

 

In addition to these and any other changes that are made to the existing models, future work will also 

comprise a large portion of the data collection.  Similar analyses to those performed during this project 

will need to be carried out for the steric disinhibition and microtubule tethering simulations.  Thus far, 
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only the mechanical activation model has shown results that are characteristic of the paradox of 

codependence, specifically increased plus-directed velocities associated with the introduction of dynein 

motors.  However, other models may also be found to display this behavior once testing is complete.  In 

addition, more in-depth analyses will need to be carried on all of the models, including the mechanical 

activation model.  One such analysis could involve varying motor attachment and detachment rates in 

order to produce simulated results that more closely replicate the pattern of runs and pauses seen in 

experimental data.  Parameters such as pause frequency and pause duration would need to be recorded 

and compared to corresponding parameters for experimental data. 

 

Ultimately, there is still a great deal of work to be done on these simulations, so it is difficult to predict 

exactly what the results of this project will be.  It bears repeating that the models being tested through 

these simulations are all hypothetical at this time.  However, these simulations will serve to show which 

of these hypothetical models have the potential to be accurate representations of the mechanisms 

underlying bidirectional transport.  In fact, the results already obtained have shown that the mechanical 

activation model holds great promise.  The ultimate goal of this project is that we will be able to identify 

key mechanisms and rate constants that result in the paradox of codependence.   Once these have been 

identified, we will be able to make predictions using the simulations that can be verified against 

experimental results.  This will hopefully lead to the understanding and treatment of any number of 

neurodegenerative diseases. 
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Appendix A: MATLAB Code for Mechanical Activation Model 
 
function [Simu] = cargo_bsm_wlc_mech_back_uncom(F,kins,dyns) 
  
pfs = 8; 
  
motor_type_ss = [pfs, -pfs]; 
  
plk = 0.7; 
clk = 84; 
pld = 0.7; 
cld = 48; 
  
valid = 0; 
  
while valid == 0 
     
    valid = 1; 
  
    motX = pfs*round(3*randn(1,kins + dyns)); 
    motA = ones(1,kins + dyns); 
    motT = [1*ones(1,kins),2*ones(1,dyns)]; 
    motS = [motor_type_ss(1)*ones(1,kins),motor_type_ss(2)*ones(1,dyns)]; 
    cX = sum(motA.*motX)/sum(motA); 
    motF = zeros(1,length(motT)); 
     
    for mm = 1:length(motT) 
        switch motT(mm) 
            case 1 
                motF(mm) = motA(mm)*(4.11433/plk)*(0.25*(1-abs(motX(mm)-cX)/clk)^(-2)-0.25+abs(motX(mm)-

cX)/clk); 
                if (motX(mm)-cX) < 0 
                    motF(mm) = -motF(mm); 
                end 
            case 2 
                motF(mm) = motA(mm)*(4.11433/pld)*(0.25*(1-abs(motX(mm)-cX)/cld)^(-2)-0.25+abs(motX(mm)-

cX)/cld); 
                if (motX(mm)-cX) < 0 
                    motF(mm) = -motF(mm); 
                end 
        end 
    end 
  
    cF = sum(motF)-F; 
     
    motF_plus = zeros(1,length(motT)); 
    for mm = 1:length(motT) 
        switch motT(mm) 
            case 1 
                motF_plus(mm) = motA(mm)*(4.11433/plk).*(0.25*(1-abs(motX(mm)-(cX+0.1))/clk).^(-2)-

0.25+abs(motX(mm)-(cX+0.1))/clk); 
                if (motX(mm)-(cX+0.1)) < 0 
                    motF_plus(mm) = -motF_plus(mm); 
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                end 
            case 2 
                motF_plus(mm) = motA(mm)*(4.11433/pld).*(0.25*(1-abs(motX(mm)-(cX+0.1))/cld).^(-2)-

0.25+abs(motX(mm)-(cX+0.1))/cld); 
                if (motX(mm)-(cX+0.1)) < 0 
                    motF_plus(mm) = -motF_plus(mm); 
                end 
        end 
    end 
  
    cF_plus = sum(motF_plus)-F; 
     
    motF_minus = zeros(1,length(motT)); 
    for mm = 1:length(motT) 
        switch motT(mm) 
            case 1 
                motF_minus(mm) = motA(mm)*(4.11433/plk).*(0.25*(1-abs(motX(mm)-(cX-0.1))/clk).^(-2)-

0.25+abs(motX(mm)-(cX-0.1))/clk); 
                if (motX(mm)-(cX-0.1)) < 0 
                    motF_minus(mm) = -motF_minus(mm); 
                end 
            case 2 
                motF_minus(mm) = motA(mm)*(4.11433/pld).*(0.25*(1-abs(motX(mm)-(cX-0.1))/cld).^(-2)-

0.25+abs(motX(mm)-(cX-0.1))/cld); 
                if (motX(mm)-(cX-0.1)) < 0 
                    motF_minus(mm) = -motF_minus(mm); 
                end 
        end 
    end 
  
    cF_minus = sum(motF_minus)-F; 
  
    if abs(cF_plus) < abs(cF)                 
        while abs(cF) > 1             
            cX = cX + 0.1; 
            for mm = 1:length(motT) 
                switch motT(mm) 
                    case 1 
                        if abs(motX(mm)-cX) >= clk                     
                            valid = 0; 
                            disp('This should not happen often') 
                            break 
                        end 
                    case 2 
                        if abs(motX(mm)-cX) >= cld                    
                            valid = 0; 
                            disp('This should not happen often') 
                            break 
                        end 
                end 
            end 
  
            if valid == 0 
                break 
            end 
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            motF = zeros(1,length(motT)); 
            for mm = 1:length(motT) 
                switch motT(mm) 
                    case 1 
                        motF(mm) = motA(mm)*(4.11433/plk)*(0.25*(1-abs(motX(mm)-cX)/clk)^(-2)-

0.25+abs(motX(mm)-cX)/clk); 
                        if (motX(mm)-cX) < 0 
                            motF(mm) = -motF(mm); 
                        end 
                    case 2 
                        motF(mm) = motA(mm)*(4.11433/pld)*(0.25*(1-abs(motX(mm)-cX)/cld)^(-2)-

0.25+abs(motX(mm)-cX)/cld); 
                        if (motX(mm)-cX) < 0 
                            motF(mm) = -motF(mm); 
                        end 
                end 
            end 
  
            cF = sum(motF)-F;             
        end 
    elseif abs(cF_minus) < abs(cF)                 
        while abs(cF) > 1             
            cX = cX - 0.1; 
            for mm = 1:length(motT) 
                switch motT(mm) 
                    case 1 
                        if abs(motX(mm)-cX) >= clk                     
                            valid = 0; 
                            disp('This should not happen often') 
                            break 
                        end 
                    case 2 
                        if abs(motX(mm)-cX) >= cld                    
                            valid = 0; 
                            disp('This should not happen often') 
                            break 
                        end 
                end 
            end 
  
            if valid == 0 
                break 
            end 
  
            motF = zeros(1,length(motT)); 
            for mm = 1:length(motT) 
                switch motT(mm) 
                    case 1 
                        motF(mm) = motA(mm)*(4.11433/plk)*(0.25*(1-abs(motX(mm)-cX)/clk)^(-2)-

0.25+abs(motX(mm)-cX)/clk); 
                        if (motX(mm)-cX) < 0 
                            motF(mm) = -motF(mm); 
                        end 
                    case 2 
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                        motF(mm) = motA(mm)*(4.11433/pld)*(0.25*(1-abs(motX(mm)-cX)/cld)^(-2)-

0.25+abs(motX(mm)-cX)/cld); 
                        if (motX(mm)-cX) < 0 
                            motF(mm) = -motF(mm); 
                        end 
                end 
            end 
  
            cF = sum(motF)-F;             
        end 
    end 
end 
  
motF = zeros(1,length(motT)); 
for mm = 1:length(motT) 
    switch motT(mm) 
        case 1 
            motF(mm) = motA(mm)*(4.11433/plk)*(0.25*(1-abs(motX(mm)-cX)/clk)^(-2)-0.25+abs(motX(mm)-

cX)/clk); 
            if (motX(mm)-cX) < 0 
                motF(mm) = -motF(mm); 
            end 
        case 2 
            motF(mm) = motA(mm)*(4.11433/pld)*(0.25*(1-abs(motX(mm)-cX)/cld)^(-2)-0.25+abs(motX(mm)-

cX)/cld); 
            if (motX(mm)-cX) < 0 
                motF(mm) = -motF(mm); 
            end 
    end 
end 
  
Ks = zeros(kins + dyns,4); 
  

  
Simu = struct; 
Simu(1).motX = motX; 
Simu(1).motA = motA; 
Simu(1).motF = motF; 
Simu(1).motT = motT; 
Simu(1).cX = cX; 
Simu(1).t = 0; 
cc = 1; 
uu = 0; 
uuu = 0; 
sim_time = 0; 
while Simu(cc).t < 10 
         
    if length(sim_time) > 30 
        if sim_time(length(sim_time)) == sim_time(length(sim_time)-30) 
            Simu(cc) 
            error('infinite loop') 
        end 
    end   
  



50 

 

    motX1 = motX; 
    motA1 = motA; 
    motF1 = motF; 
    cX2 = cX; 
  
    for mm = 1:length(motT) 
        if cc == 1 
            vel = 0; 
        else 
            vel = (Simu(cc).motX(mm) - Simu(cc-1).motX(mm))/(Simu(cc).t - Simu(cc-1).t); 
        end 
        Ks = setRates(mm,motT,motA,motF,vel,Ks); 
  
        if motA(mm) == 0 
            motX(mm) = cX; 
        end 
    end 
  
    Dw = (1./Ks).*log(1./rand(size(Ks))); 
    if size(Ks,1) == 1 
        motnum = 1; 
        ratenum = find(Dw == min(Dw)); 
    else 
        [motnum,ratenum] = minarr(Dw); 
    end 
             
    if Dw(motnum,ratenum) < 0.0001 
        Dw(motnum,ratenum) = 0.0001; 
    end 
  
    [motX,motA,valid] = simEvent(motnum,ratenum,motX,motA,motT,motS,cX,pfs,clk,cld); 
  
    if valid == 0 
        uu = uu + 1; 
    end 
  
    motF = zeros(1,length(motT)); 
    for mm = 1:length(motT) 
        switch motT(mm) 
            case 1 
                motF(mm) = motA(mm)*(4.11433/plk)*(0.25*(1-abs(motX(mm)-cX)/clk)^(-2)-0.25+abs(motX(mm)-

cX)/clk); 
                if (motX(mm)-cX) < 0 
                    motF(mm) = -motF(mm); 
                end 
            case 2 
                motF(mm) = motA(mm)*(4.11433/pld)*(0.25*(1-abs(motX(mm)-cX)/cld)^(-2)-0.25+abs(motX(mm)-

cX)/cld); 
                if (motX(mm)-cX) < 0 
                    motF(mm) = -motF(mm); 
                end 
        end 
    end 
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    cF = sum(motF)-F; 
     
    motF_plus = zeros(1,length(motT)); 
    for mm = 1:length(motT) 
        switch motT(mm) 
            case 1 
                motF_plus(mm) = motA(mm)*(4.11433/plk).*(0.25*(1-abs(motX(mm)-(cX+0.1))/clk).^(-2)-

0.25+abs(motX(mm)-(cX+0.1))/clk); 
                if (motX(mm)-(cX+0.1)) < 0 
                    motF_plus(mm) = -motF_plus(mm); 
                end 
            case 2 
                motF_plus(mm) = motA(mm)*(4.11433/pld).*(0.25*(1-abs(motX(mm)-(cX+0.1))/cld).^(-2)-

0.25+abs(motX(mm)-(cX+0.1))/cld); 
                if (motX(mm)-(cX+0.1)) < 0 
                    motF_plus(mm) = -motF_plus(mm); 
                end 
        end 
    end 
  
    cF_plus = sum(motF_plus)-F; 
     
    motF_minus = zeros(1,length(motT)); 
    for mm = 1:length(motT) 
        switch motT(mm) 
            case 1 
                motF_minus(mm) = motA(mm)*(4.11433/plk).*(0.25*(1-abs(motX(mm)-(cX-0.1))/clk).^(-2)-

0.25+abs(motX(mm)-(cX-0.1))/clk); 
                if (motX(mm)-(cX-0.1)) < 0 
                    motF_minus(mm) = -motF_minus(mm); 
                end 
            case 2 
                motF_minus(mm) = motA(mm)*(4.11433/pld).*(0.25*(1-abs(motX(mm)-(cX-0.1))/cld).^(-2)-

0.25+abs(motX(mm)-(cX-0.1))/cld); 
                if (motX(mm)-(cX-0.1)) < 0 
                    motF_minus(mm) = -motF_minus(mm); 
                end 
        end 
    end 
  
    cF_minus = sum(motF_minus)-F; 
  
    if abs(cF_plus) < abs(cF)                 
        while abs(cF) > 1             
            cX = cX + 0.1; 
            for mm = 1:length(motT) 
                switch motT(mm) 
                    case 1 
                        if abs(motX(mm)-cX) >= clk                     
                            valid = 0; 
                            uuu = uuu + 1; 
                            break 
                        end 
                    case 2 
                        if abs(motX(mm)-cX) >= cld                    
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                            valid = 0; 
                            uuu = uuu + 1; 
                            break 
                        end 
                end 
            end 
  
            if valid == 0 
                break 
            end 
  
            motF = zeros(1,length(motT)); 
            for mm = 1:length(motT) 
                switch motT(mm) 
                    case 1 
                        motF(mm) = motA(mm)*(4.11433/plk)*(0.25*(1-abs(motX(mm)-cX)/clk)^(-2)-

0.25+abs(motX(mm)-cX)/clk); 
                        if (motX(mm)-cX) < 0 
                            motF(mm) = -motF(mm); 
                        end 
                    case 2 
                        motF(mm) = motA(mm)*(4.11433/pld)*(0.25*(1-abs(motX(mm)-cX)/cld)^(-2)-

0.25+abs(motX(mm)-cX)/cld); 
                        if (motX(mm)-cX) < 0 
                            motF(mm) = -motF(mm); 
                        end 
                end 
            end 
  
            cF = sum(motF)-F;             
        end 
    elseif abs(cF_minus) < abs(cF)                 
        while abs(cF) > 1             
            cX = cX - 0.1; 
            for mm = 1:length(motT) 
                switch motT(mm) 
                    case 1 
                        if abs(motX(mm)-cX) >= clk                     
                            valid = 0; 
                            uuu = uuu + 1; 
                            break 
                        end 
                    case 2 
                        if abs(motX(mm)-cX) >= cld                    
                            valid = 0; 
                            uuu = uuu + 1; 
                            break 
                        end 
                end 
            end 
  
            if valid == 0 
                break 
            end 
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            motF = zeros(1,length(motT)); 
            for mm = 1:length(motT) 
                switch motT(mm) 
                    case 1 
                        motF(mm) = motA(mm)*(4.11433/plk)*(0.25*(1-abs(motX(mm)-cX)/clk)^(-2)-

0.25+abs(motX(mm)-cX)/clk); 
                        if (motX(mm)-cX) < 0 
                            motF(mm) = -motF(mm); 
                        end 
                    case 2 
                        motF(mm) = motA(mm)*(4.11433/pld)*(0.25*(1-abs(motX(mm)-cX)/cld)^(-2)-

0.25+abs(motX(mm)-cX)/cld); 
                        if (motX(mm)-cX) < 0 
                            motF(mm) = -motF(mm); 
                        end 
                end 
            end 
  
            cF = sum(motF)-F;             
        end 
    end 
     
    if valid == 1 
        motF = zeros(1,length(motT)); 
        for mm = 1:length(motT) 
            switch motT(mm) 
                case 1 
                    motF(mm) = motA(mm)*(4.11433/plk)*(0.25*(1-abs(motX(mm)-cX)/clk)^(-2)-0.25+abs(motX(mm)-

cX)/clk); 
                    if (motX(mm)-cX) < 0 
                        motF(mm) = -motF(mm); 
                    end 
                     
                case 2 
                    motF(mm) = motA(mm)*(4.11433/pld)*(0.25*(1-abs(motX(mm)-cX)/cld)^(-2)-0.25+abs(motX(mm)-

cX)/cld); 
                    if (motX(mm)-cX) < 0 
                        motF(mm) = -motF(mm); 
                    end 
            end 
        end 
  
        Simu(cc+1).motX = motX; 
        Simu(cc+1).motA = motA; 
        Simu(cc+1).motF = motF; 
        Simu(cc+1).motT = motT; 
        Simu(cc+1).cX = cX; 
        Simu(cc+1).t = Simu(cc).t + Dw(motnum,ratenum); 
  
        cc = cc + 1; 
    else 
        motX = motX1; 
        motA = motA1; 
        motF = motF1; 
        cX = cX2; 
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    end 
end 
  
end 
  
%% setRates 
  
function Ks = setRates(mm,motT,motA,motF,vel,Ks) 
k_kon_min = 0.1; 
k_kon_max = 10; 
d_kon_min = 0.1; 
d_kon_max = 10; 
switch motT(mm) 
    % it's a kinesin 
    case 1 
        % if motor is detached 
        if motA(mm) == 0 
            % on rate 
            if vel >= -0 
                Ks(mm,1) = k_kon_min; 
            elseif vel >= -212 
                Ks(mm,1) = -((k_kon_max - k_kon_min)/212)*vel + k_kon_min; 
            else 
                Ks(mm,1) = k_kon_max; 
            end 
            % off rate 
            Ks(mm,2) = 0; 
            % rate at which it steps forward 
            Ks(mm,3) = 0; 
            % rate at which it steps backward 
            Ks(mm,4) = 0; 
        % if motor is attached 
        else 
            % set on rate to zero since its already on 
            Ks(mm,1) = 0; 
            % if its an assisting load 
            if motF(mm) <= 0 
                Ks(mm,3) = 100; 
            % if its a light hindering load 
            elseif motF(mm) <= 2.5 
                Ks(mm,3) = 100*exp(-.162*motF(mm)); 
            elseif motF(mm) <= 7.76 
                Ks(mm,3) = (1/.0036)*exp(-0.57*motF(mm)); 
            else 
                Ks(mm,3) = 1/.3; 
            end 
            
            % define the backward stepping rate 
            if motF(mm) <= 7.76 
                Ks(mm,4) = Ks(mm,3)/(802*exp(-.95*motF(mm))); 
            else 
                Ks(mm,4) = 6.61; 
            end 
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            % define the off rate 
            if motF(mm) <= 0 
                Ks(mm,2) = 0.79 - 1.56*motF(mm); 
            else 
                Ks(mm,2) = 0.79*exp(motF(mm)/6.1); 
            end 
        end 
  
    % it's a dynein 
    case 2 
        % negate the force because it prefers to walk to the (-) end 
        motF(mm) = -1*motF(mm); 
        % if motor is detached 
        if motA(mm) == 0 
            % on rate 
            if vel <= 0 
                Ks(mm,1) = d_kon_min; 
            elseif vel <= 800 
                Ks(mm,1) = ((d_kon_max - d_kon_min)/800)*vel + d_kon_min; 
            else 
                Ks(mm,1) = d_kon_max; 
            end 
            % off rate 
            Ks(mm,2) = 0; 
            % rate at which it steps forward 
            Ks(mm,3) = 0; 
            % rate at which it steps backward 
            Ks(mm,4) = 0; 
        % if motor is attached 
        else 
            % set on rate to zero since its already on 
            Ks(mm,1) = 0; 
              
            if motF(mm) <= 1 
                step_rat = 2.015; 
            elseif motF(mm) <= 10 
                step_rat = -0.1707*motF(mm) + 2.186; 
            else 
                step_rat = 0.479; 
            end 
             
            if motF(mm) <= 0.3 
                net_step = 21.678; 
            elseif motF(mm) <= 1 
                net_step = 31.606 - 33.095*motF(mm); 
            else 
                net_step = -1.489; 
            end 
             
            Ks(mm,3) = net_step./(1-1/step_rat); 
  
            % define the backward stepping rate 
             
            Ks(mm,4) = Ks(mm,3)/step_rat; 
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            % define the off rate 
            if motF(mm) <= 0 
                Ks(mm,2) = exp(-motF(mm)/3); 
  
            elseif motF(mm) <= 1.7 
                Ks(mm,2) = exp(0.8155*motF(mm)); 
  
            else 
                Ks(mm,2) = 1/(0.254*(1-exp(-motF(mm)/1.97))); 
  
            end 
        end 
  
end 
         
end 
  
%% minarr 
  
function [r,c] = minarr(X) 
  
% find column where min is 
Y = min(X); 
c = find(Y == min(Y)); 
  
% only return one answer if there is a tie 
if length(c) > 1 
    X(:,c(2):end) = []; 
end 
c = c(1); 
  
% find row where min is 
Y = min(X'); 
r = find(Y == min(Y)); 
  
end 
  
%% simEvent 
  
function [motX,motA,valid] = simEvent(motnum,ratenum,motX,motA,motT,motS,cX,pfs,clk,cld) 
valid = 1; 
motnum; 
ratenum; 
switch ratenum 
    % attach that motor to the microtubule 
    case 1 
        motA(motnum) = 1; 
        motX(motnum) = pfs*round((cX + pfs*round(3*randn))/pfs); 
    % detach that motor from the microtubule 
    case 2 
        motA(motnum) = 0; 
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        motX(motnum) = cX; 
    % step that motor forward 
    case 3 
        switch motT(motnum) 
            case 1 
                if abs(motX(motnum)+motS(motnum)-cX) < clk 
                    motX(motnum) = motX(motnum) + motS(motnum); 
                else 
                    valid = 0; 
                end 
            case 2 
                if abs(motX(motnum)+motS(motnum)-cX) < cld 
                    motX(motnum) = motX(motnum) + motS(motnum); 
                else 
                    valid = 0; 
                end 
        end 
    % step that motor backward 
    case 4 
        switch motT(motnum) 
            case 1 
                if abs(motX(motnum)-motS(motnum)-cX) < clk 
                    motX(motnum) = motX(motnum) - motS(motnum); 
                else 
                    valid = 0; 
                end 
            case 2 
                if abs(motX(motnum)-motS(motnum)-cX) < cld 
                    motX(motnum) = motX(motnum) - motS(motnum); 
                else 
                    valid = 0; 
                end 
        end 
end 
  
end 
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