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ABSTRACT 

 

In recent years, there has been an increasing number of issues associated with the 

continued Metal Oxide Semiconductor Field Effect Transistor (MOSFET) scaling. As feature 

lengths shrink down to atomic sizes, problems with power consumption, heat dissipation, and 

quantum effects become more prevalent. The unique properties of ferroelectric materials and 

their ability to display a negative differential capacitance make them a promising candidate for 

the use in future transistor technology, and a potential successor to traditional silicon CMOS 

devices. By placing a ferroelectric material layer in place of the dielectric layer of a MOSFET, it 

is possible to achieve a subthreshold slope lower than the typical 60 mV/dec limit. This device is 

called a ferroelectric field effect transistor (FerroFET). In this work, we develop a computational 

model based on the Landau-Devonshire theory to extract Landau coefficients from polarization-

voltage data of a ferroelectric capacitor and simulate the current-voltage behavior of a FerroFET. 

We computationally demonstrate the gains of FerroFETs over conventional CMOS devices and 

explore properties of various ferroelectric materials. These FerroFETs have great potential for 

use in low power applications and could greatly revolutionize the current semiconductor 

industry. 
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Chapter 1: Literature Review 

1. Background and Limitations of Current MOSFET Technologies 

 The Metal Oxide Semiconductor Field Effect Transistor (MOSFET) has been an integral 

part of technological advancement in recent decades. The device uses an applied voltage to the 

gate terminal to modulate the drain current, and has been so remarkably successful in part due to 

its scalability [1]. By doping the semiconductor with different elements, NMOS and PMOS 

devices can be fabricated so that the drain current can be composed of either electrons or holes as 

charge carriers, and circuits with both types of devices are called Complementary MOSFETs 

(CMOS). The structure of the MOSFET has remained relatively constant since its creation, and 

previous limitations with CMOS technologies have been overcome through materials 

engineering. For example, leakage current caused by quantum tunneling, which occurred for gate 

dielectric thicknesses at approximately 1 nm, could be countered by using materials with a 

higher dielectric constant [1]. This allows for a greater oxide capacitance without having to 

further decrease the thickness of the oxide layer. 

 However, in recent years the scaling has slowed as the limits to conventional CMOS 

technology are reached. Microprocessor clock frequencies had increased exponentially for nearly 

20 years, but in 2005 reached a plateau when the rate of improvement greatly decreased [2]. 

Power dissipation is also a major issue, with both active and passive power contributing to the 

power per chip that must be removed [1]. In addition, as devices continue to be made smaller, the 

threshold voltage Vth must also be reduced so that the ON/OFF current ratio is acceptable. 
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However, decreasing Vth has the undesirable result of exponentially increasing the OFF current 

and creating leakage issues [2]. To combat some leakage currents that result from electron 

tunneling through the gate when the insulator layer is made very thin, dielectric materials with a 

high permittivity were brought into use. This solution has allowed for some continued scaling, 

but will also not allow for indefinite feature size reductions [2].     

 The major objective is now to design a device that can overcome these limitations of 

conventional MOSFET technology. Ideally, the device will have a lower subthreshold slope than 

the 60 mV/dec boundary experienced by standard FETs, meaning that it will require less than 60 

mV at 300 K to change the drain current by a factor of 10. Boltzmann statistics have 

fundamentally imposed restrictions on MOSFET operation with this limited subthreshold slope, 

and it is necessary to develop the next generation of devices that can operate beyond the present 

boundaries. Ferroelectric Field Effect Transistors (FerroFETs) have properties that make them an 

appealing candidate to serve as a successor to the MOSFET [3]. These novel devices incorporate 

a ferroelectric material layer as the gate insulator, which leads to a possible subthreshold slope 

lower than 60 mV/dec [2]. 

2. Ferroelectric Capacitors 

 When a voltage is applied to two metal terminals separated by a dielectric material, the 

positive and negative charges within the dielectric separate and the material polarizes. This is the 

concept behind a simple dielectric capacitor. Ferroelectric materials have a nonlinear 

polarization, so that small changes in the applied voltage can result in relatively large changes in 

the ferroelectric polarization [4]. This occurs due to the phase transition of the ferroelectric 
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between polar and nonpolar states, where the polarizability greatly increases. The spontaneous 

polarization that reverses above a specific critical voltage (coercive voltage) results in an 

accumulation of bound charge at the surface of the material, which can continue to increase 

while the applied voltage decreases [4]. There is an energy barrier that occurs due to the gate 

stack to charge injection, which is dependent on how the ferroelectric material is polarized [2]. 

Since capacitance is calculated by dividing the voltage by the charge between two layers, the 

result is a negative differential capacitance across the ferroelectric. This phenomenon is 

illustrated in Figure 1, with a ferroelectric capacitor on the left undergoing polarization states 

plotted to the right.  

   

 

Figure 1 A ferroelectric capacitor is shown on the left, with the white arrows signifying the direction of 

polarization. The growth of domains results in the ferroelectric undergoing a reversal of its polarization 

direction. The plot on the right shows the polarization as a function of the internal ferroelectric node 

voltage (blue) and the voltage across the ferroelectric capacitor (red), as well as points corresponding to 

the charge distributions shown on the left. Figure reproduced from ref. 4, 2015 Nature Materials. 

  

This negative differential capacitance generally occurs in materials with very high 

dielectric constants, and while the negative capacitance state of the ferroelectric capacitor is 
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unstable, it can be stabilized with the use of a dielectric capacitor in series [5]. A group at UC 

Berkeley led by Professor Sayeef Salahuddin placed a ferroelectric capacitor in series with a 

resistor, applied a voltage pulse, and measured the change in the resulting polarization [5]. The 

ferroelectric material Pb(Zr0.2Ti0.8)O3 (PZT) was 60 nm thick and grown on another 60 nm thick 

SrRuO3 ï buffered SrTiO3 substrate, and the resistor used in series was 50 kɋ [5]. Due to 

parasitic effects of the probe station and oscilloscope, there is an additional capacitance 

contributed in parallel to the ferroelectric capacitor. Then, the sum of the charge in the 

ferroelectric and parasitic capacitors is a function of time and is given by the expression: ὗὸ

 ᷿ ὭὸὨὸ where iR(t) is the current that flows through the 50 kɋ resistor [5]. By measuring the 

voltage across the ferroelectric capacitor, VF, the charge across the ferroelectric can then be 

calculated as ὗ ὸ ὗὸ ὅὠ ὸ.  

 When a voltage pulse from -5.4 V to +5.4 V to -5.4 V was applied, there was a brief 

window where the voltage across the ferroelectric capacitor VF and the charge within it Q were 

changing in opposite directions [5]. This leads to a negative dQ/dVF value, and therefore 

negative differential capacitance. These results are shown in Figure 2, where the polarization is 

plotted against the voltage across the ferroelectric, and calculated as the charge density, 

determined by the expression ὖὸ  ὗ ὸȾὃ.  
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This unique property of ferroelectric capacitors has the potential to solve some of the 

issues faced by current MOSFET technology. Not only would a lower switching voltage 

conserve energy, but also since heat dissipation is a major concern with the smaller and faster 

transistors, a solution would be to lower the required voltage applied to the gate [4]. Using 

negative capacitance from the ferroelectric, the lower gate voltage could be effectively amplified 

to allow for a lower voltage device operation.    

 

Figure 2 Experimental results of polarization P(t) plotted against VF(t) with an applied voltage pulse. 

In the regions marked AB and CD, the value of dP/dVF is negative, and therefore there is a negative 

differential capacitance between those points. Figure reproduced from ref. 5, 2014 Nature Materials. 
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3. Landau Theory 

 Landau theory was developed in the 1930s as a model to describe the equilibrium 

behavior of a system near a phase transition using an analysis based on symmetry [6]. It 

effectively provides a link between the microscopic models and what is observed 

macroscopically. This theory is particularly appropriate for homogenous and bulk ferroelectric 

materials because it relies on a special averaging of the local fluctuations [6]. To characterize the 

paraelectric-ferroelectric phase transition, Landau theory expands the free energy expression as a 

power series with respect to the order parameter P, which is the polarization [6].  

 The first application of Landau theory specifically to ferroelectrics was done by 

Devonshire, leading to the Landau-Devonshire theory for bulk, single crystal ferroelectrics with 

uniform polarization [6]. Neglecting the strain field, which is accurate for a uniaxial ferroelectric 

material, and excluding higher order terms after the sixth, the free energy can be written as 

Ὂ
ρ

ς
ὥὖ

ρ

τ
ὦὖ

ρ

φ
ὧὖ Ὁὖ 

where a, b, and c are constant coefficients. This expression is a relatively accurate and concise 

statement of the free energy, where the energy origin for a free, unpolarized, and unstrained 

crystal is zero [6]. A comparison of the free energy plotted against polarization is shown in 

Figure 3 for two different material types. 
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Figure 3 Plots of free energy versus polarization for (a) a paraelectric material and (b) a ferroelectric 

material. Figure reproduced from ref. 6, 2008 A Landau Primer for Ferroelectrics. 

 

The equilibrium point of the free energy occurs at the minima of the function, and this 

can be determined by 

‬Ὂ

‬ὖ
π 

which yields a function that gives the electric field E as a function of the polarization P 

Ὁ ὥὖ ὦὖ ὧὖ  

From the above expression, with measured polarization data of a ferroelectric material under an 

applied electric field, the constants a, b, and c (which are also referred to as Ŭ, ɓ, and ɔ) can be 

experimentally determined. These values are then used to extrapolate and simulate the behavior 

of a ferroelectric material in different contexts. 

 In addition, the size of the ferroelectric material can influence its dielectric constant [7]. 

For example, in lead titanate, the maximum dielectric constant occurs when the material has an 

average grain size of 100 nm [7]. Material thickness can have an effect on susceptibility, 

spontaneous polarization, and Curie temperature, so this must also be kept in mind while 

generating models for ferroelectric material behavior [7]. 
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4. Ferroelectric Field Effect Transistors 

 The Ferroelectric Field Effect Transistor (FerroFET) is a device that is similar in 

structure to the MOSFET but replaces the dielectric layer with a ferroelectric material. In some 

instances, a high-Ê dielectric is also inserted as a buffer interlayer between the ferroelectric and 

semiconductor [8]. Because of the differential negative capacitance possible across the 

ferroelectric layer, it becomes possible to obtain a subthreshold slope in a FerroFET less than the 

60 mV/dec conventional MOSFET limit. The negative capacitance across the ferroelectric 

material layer is in series with the positive capacitance across the semiconductor, summing to 

allow the device current to increase at much higher rates than previously possible in standard 

MOSFETs [8].   

Recently, a FerroFET using PbZr0.52Ti0.48O3 (PZT) as the ferroelectric gate insulator and 

HfO2 as a buffer layer showed incredibly steep slope switching, attaining 13 mV/dec at 300K in 

strong inversion [8]. This behavior is consistent with the predictions from Landau-Devonshire 

theory, confirming the feasibility of FerroFET devices despite approximations in the model and 

the fact that the Landau-Devonshire theory describes single crystal ferroelectrics, rather than 

polycrystalline ones such as PZT.   

 This FerroFET was fabricated on (100) p-type silicon with Phosphoryl chloride (POCl3) 

diffusion for doping the n-type source and drain. The HfO2 layer was 10 nm thick and deposited 

between the ferroelectric and substrate layer in order to prevent any reactions between them, and 

the PZT layer was 100 nm thick [8]. Although it would be ideal for the PZT and HfO2 layers to 

be thinner, the oxide needed to be thick enough such that the Pb could not diffuse through and 

react with the substrate during the rapid thermal annealing at a high temperature. In addition, the 
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ferroelectric layer had to be thick enough to have a significant negative capacitance contribution 

[8].  

  The steep switching, approximately 13 mV/dec, for the PZT FerroFET with a 10 µm 

channel length occurred in strong inversion when Vgs = 12.6 V [8]. A hysteresis of approximately 

10 V was required for turn off [8]. These values, along with the Id-Vg characteristics of the 

device, provide empirical evidence confirming the relative accuracy of models based on the 

Landau-Devonshire theory. Experimental data is shown in Figure 4. 

 

Figure 4 (a) Id-Vg characteristics of a FerroFET with PZT as the gate insulator and 10 µm channel length 

for Vds = 0.1 V and Vds = 1 V. (b) Limited x-domain of the same plot showing the steep turn on and off. 

(c) Very low subthreshold swing observed during strong inversion. (d) Id-Vd characteristics showing 

saturation. Figure reproduced from ref. 8, 2015 IEEE. 
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The deviceôs precise mechanism of switching can be understood by first separately 

examining characteristics of the ferroelectric capacitor and baseline silicon MOSFET. The Q-V 

characteristics of the standard Si FET can be obtained by experimentally measuring the C-V 

characteristics and integrating [8]. Then, the accumulation capacitance is removed from the total 

capacitance so that the Q-V relationship for the baseline Si FET is determined with the effect of 

the oxide capacitance [8]. Q-V data is also obtained for the ferroelectric capacitor, and the 

ferroelectric and Si FET are combined in series to produce an approximation for the behavior of 

the corresponding FerroFET [8]. The FerroFET model is further explored computationally in this 

work with experimental data from various ferroelectric capacitor materials.  
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Chapter 2: Extracting Landau Coefficients of Ferroelectric Capacitors 

 

1. Experimental Data from Ferroelectric Capacitors 

As discussed previously, the first goal of this work is to determine the Landau 

coefficients Ŭ, ɓ, and ɔ from the Landau Khalatnikov (LK) equation, given below: 

Ὁ ‌ὖ ‍ὖ ‎ὖ  

The polarization versus electric field values in the LK equation are experimentally 

measured from different ferroelectric capacitor materials. The polarization and electric field data 

presented in this work were measured with a Radiant system. A triangular wave is input with the 

applied voltage range sweeping from -10 V to 10 V, and the corresponding charge can then be 

determined. While there are numerous methods to measure the P-E hysteresis loop of a 

ferroelectric, one relatively simple method uses a Sawyer-Tower circuit to integrate the current 

so that the measured voltage is proportional to the charge [9]. A Sawyer-Tower circuit is shown 

in Figure 5, where the ferroelectric capacitor and linear capacitor (sense capacitor) are in series 

with each other and located between the stimulus signal and ground [10]. The sense capacitor is 

chosen to reduce noise from the signal but remain small compared to the stimulus voltage so that 

the voltage across the ferroelectric capacitor can still be accurately measured [10]. Typically, 

capacitance values on the order of 5 nF are appropriate [10].  
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Figure 5 Sawyer-Tower Circuit. The upper capacitor is the ferroelectric, and the lower sense 

capacitor is linear. Figure reproduced from ref. 10, 2016 Radiant Technologies, Inc. 

 

The structure pictured in Figure 6(a) is a ferroelectric capacitor with a 100 nm thick lead 

zirconium titanate (PZT) layer deposited onto a 10 nm thick dielectric HfO2 layer. The top 

electrode is nickel and the bottom electrode is heavily doped Si++. Sputter deposition with an 

argon pressure of 2.5 mT was used to deposit the PZT onto the HfO2. The crystallization 

temperature was 620°C and the voltage sweeps were done with a triangular pulse that had a 1 ms 

period. Placing a dielectric layer between the ferroelectric material and semiconductor serves to 

prevent the lead in the PZT from diffusing into the substrate material and reacting at high 

temperatures.  

The hysteretic polarization versus voltage loops for this structure are shown in Figure 

6(b) with -2 V to 2 V sweeps to -22 V to 22 V sweeps. The larger voltage sweeps tend have more 

symmetrical hysteresis loops with rounded corners, and in general have more accurate LK fits. 
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Figure 6 (a) A ferroelectric capacitor composed of a 100 nm layer PZT deposited on 10 nm HfO2. (b) The 

experimentally measured polarization versus voltage hysteresis loops from the structure described in (a).  

 

 Decreasing the thickness of the PZT layer deposited on HfO2 yields differently shaped 

hysteresis loops when polarization is measured against applied voltage sweeps. Figure 7 shows 

the polarization versus voltage curves for the same Ni/PZT/10 nm HfO2/Si++ structure, but with 

varying thicknesses of PZT. The sputter deposition process for 50 nm and 35 nm PZT both had 

argon pressures of 2.5 mT. The crystallization temperature for 50 nm PZT was 620°C, and the 
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crystallization temperature for 35 nm PZT was 590°C. Both structures were characterized with 

triangular voltage pulses that had a 1 ms period. 

 

 

Figure 7 Polarization versus voltage curves for the capacitor structure with (a) 50 nm of PZT 

deposited on 10 nm of HfO2 and (b) 35 nm of PZT deposited on 10 nm of HfO2 
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 Adding a layer of the transition metal platinum between the ferroelectric and dielectric 

layers changes the physical structure of the material and therefore has an impact on the electrical 

characteristics. When PZT is deposited on Pt, the average grain dimension becomes 

approximately three times smaller than that of PZT deposited directly on HfO2. This is because 

Pt has a lower nucleation barrier for PZT than HfO2, and reducing the grain size allows the PZT 

to switch at lower voltages. Scanning Electron Microscope images of the two structure types are 

shown in Figure 8 and illustrate the differences in grain sizes.  

 

Figure 8 SEM images for a structural comparison of PZT deposited on (a) HfO2 and (b) Pt 

 

 The coercive voltage is seven times smaller in the Ni/PZT/Pt/HfO2/Si++ ferroelectric 

capacitor than in the Ni/PZT/HfO2/Si++ ferroelectric capacitor. The polarization versus voltage 

curves for this type of structure are much narrower and are plotted in Figure 9 for PZT 

thicknesses of 100 nm and 50 nm.  

 These hysteresis loops for the PZT deposited on Pt ferroelectric capacitors are shifted 

laterally and not centered at the origin because of the work function difference between the 

heavily doped silicon electrode (~4.05eV) and the nickel electrode (~5.04 eV). For the later LK 

fi t calculations, the curves are appropriately shifted to be centered at the origin. The ferroelectric 

capacitor structures are also pictured in Figure 9.  
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Figure 9 Ferroelectric capacitor structures on the left and their corresponding polarization versus 

voltage hysteresis loops on the left. (a) 100 nm of PZT deposited on 100 nm Pt. (b) 50 nm PZT deposited 

on 100 nm Pt. 

 

Varying the thickness of the Pt layer also affects the electrical characteristics of the 

ferroelectric capacitor, and Figure 10 shows the polarization versus voltage curves for 100 nm of 

PZT deposited onto 100 nm, 60 nm, and 35 nm Pt. The hysteresis loop that occurs even for 

thinner layers of Pt show an opportunity to potentially continue decreasing the thickness of the 

PZT layer in this ferroelectric capacitor, allowing for further scaling. The plots in Figure 10 were 
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experimentally measured from structures with titanium as one electrode (instead of nickel), with 

100 nm of PZT deposited on varying thicknesses of Pt and 10 nm of HfO2. As with the previous 

plots, these measurements were performed with a triangular wave with 1 ms period.  

 

 

Figure 10 Polarization versus voltage curves for ferroelectric capacitors with 100 nm of PZT 

deposited on (a) 100 nm Pt, (b) 60 nm Pt, (c) 35 nm Pt. 

  

2. Extracting Landau Coefficients: P-E Data Input Only 

 Using the polarization versus electric field data obtained in the previous section, a Matlab 

script was written to fit the LK curve to the data and extract the Landau coefficients of the 

ferroelectric capacitor. The script first determines which experimental data points to use in fitting 
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the LK curve, since the ñunstableò region through the middle of the hysteresis curve contains 

values on the LK curve but not from the experimental data. The inflection points on the lower 

right and upper left of the P-E hysteresis curve correspond with the inflection points of the LK 

equation, and so identifying these points is key in obtaining an accurate fit. To do so, the script 

determines the minimum and maximum voltage values (the edges of the voltage sweep) and their 

corresponding polarization values. It then fits a linear line through the two points that divides the 

data into an upper and lower half. Because the data is now divided into two halves, each of the 

two data sets is a function and a tenth degree polynomial is then fit to the upper half data as well 

as the lower half data. This process shown in Figure 11, with a linear line dividing the measured 

data into two halves, each fit with a 10th degree polynomial which is then used to determine the 

inflection points. 

 

 

Figure 11 A polarization versus voltage hysteresis curve with a linear line dividing it into two 

halves. A 10th degree polynomial is fit and superimposed onto each half, and these polynomials are used 

to find the inflection points, designated with arrows.  



19 

 

 The points that will be used for the LK fit are the values from the minimum voltage to 

the lower inflection point, and upper inflection point to the maximum voltage. To find these 

inflection points, the first, second, and third derivative of each polynomial is calculated.  The 

upper point occurs in the second quadrant when the first derivative is positive, the second is 

negative, and third is zero. The lower point occurs in the fourth quadrant when the first 

derivative is positive, the second is positive, and the third is zero. The data points to the correct 

side of the inflection point are then selected, as well as 10% of points from the opposite side for 

continuity purposes. The subset of polarization and voltage data points that are used for the LK 

fit are plotted in Figure 12. 

 

 

Figure 12 The subset of data points selected from the original data set that are used to compute the LK fit. 
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 With this new set of points, the code uses a modified least squares regression method to 

determine the Landau coefficients Ŭ, ɓ, and ɔ. This is done by setting the voltage matrix equal to 

the sum of the polarization matrix containing the first, third, and fifth powers of each 

polarization value multiplied by their respective Landau coefficients and the residuals. In the 

following matrix expression, n represents the number of data points, V is the applied voltage, P 

is the measured polarization, Ŭ, ɓ, and ɔ are the Landau coefficients, and Ů is the residual or error 

between the experimental data and ideal fit. 
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 To minimize the total residual, the partial derivatives of the sum of the residuals with 

respect to Ŭ, ɓ, and ɔ are set equal to zero. These three equations are then solved to determine the 

three Landau coefficients.  The equations are shown below: 
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 This method of calculating the Landau coefficients is effective for ideal polarization 

versus voltage loops. However, when there is asymmetry or corner rounding of the hysteresis 

loop (a non-ideal shape), the accuracy of the generated coefficients decreases. In this case, a 
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second script that requires additional user input can be used instead, and this is discussed in the 

next section. 

3. Extracting Landau Coefficients: P-E Data and Additional User Input 

This second Matlab script also accepts the ferroelectric capacitor P-E data as an input, but 

also requires additional user input in order to correct for non-ideal hysteresis loop shapes in 

which the inflection points are not apparent. The program plots the P-E data loop in a figure that 

gives the user a crosshair to select a minimum of six points (to define the fifth degree LK 

polynomial) that trace the desired LK curve. There is no maximum number of points that can be 

selected, so further points may be chosen to increase the accuracy of the fit. With these user 

defined points, the same modified least squares regression method as before is then implemented 

to solve for the Landau coefficients. Figure 13 shows the Matlab-generated user interface for 

selecting points of interest for the LK fit. 
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Figure 13 The user interface which plots the experimental P-V ferroelectric capacitor data and 

allows for the LK fit points to be specified. 

 

This second method has the advantage of yielding relatively accurate Landau coefficient 

values for non-ideal polarization-voltage curves. In other words, when the hysteresis loop is 

narrow or the inflection points are not well defined, allowing the user to ñtraceò points on the 

desired LK fit curve can return more logical results. However, unlike the first method, because of 

the additional user input required, the second method may yield varying Landau coefficients on 

repeated runs on the same data if the user does not select the exact same points each time. The 

first method, where only the polarization versus voltage data is input, will output the same results 

for a specific data set with every run. 
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4. A Comparison of the Two Methods 

 The different levels of user input required for the two methods discussed previously can 

result in different LK fits and Landau coefficient values. Symmetric hysteresis loops with well 

defined inflection points generally result in similar LK fits regardless of the level of user input, 

and this is shown in Figure 14. Because the measured P-V loops were relatively symmetric, the 

LK fits by each of the methods yield very similar results.  

 

 

 

Figure 14 Measured polarization versus voltage data for 100 nm PZT deposited on 10 nm HfO2 with 

computed LK fits superimposed. (a) LK fit computed with only P-V data input. (b) LK fit computed with 

P-V data and additional user defined points input. 

 

 

 Hysteresis loops that are not as symmetric or do not have very clearly defined inflection 

points will have more pronounced differences in the values of the calculated coefficients. An 

example of this is shown in Figure 15. Because the loop is extremely narrow, the code is unable 

to compute an accurate LK fit (with the negative capacitance region) when only the P-V data is 
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input. However, additional user input can help to define the inflection points and obtain a more 

accurate fit. 

 

 

Figure 15 Measured polarization versus voltage data for 100 nm PZT deposited on 100 nm Pt with 

computed LK fits superimposed. (a) LK fit computed with only P-V data input. (b) LK fit computed with 

P-V data and additional user defined points input. 
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Chapter 3: LK Fits and Landau Coefficients from Experimental Data 

1. PZT deposited on 10 nm HfO2 

Using the computational methods described in the previous section, this chapter presents 

the LK fits and Landau coefficients derived from experimental polarization versus voltage loops 

for various ferroelectric capacitors. Figure 16 shows plots that superimpose the calculated LK fit 

curves onto the measured polarization versus voltage hysteresis loops. These LK fit curves are 

based on the Landau coefficients Ŭ, ɓ, and ɔ from the LK equation, and the polarization is plotted 

against voltage rather than electric field for consistency since voltage and electric field are 

proportional by the thickness of the ferroelectric. To obtain the most accurate fit, the largest 

voltage sweeps were used for each material type and thickness. This is because the inner loops of 

the polarization versus voltage plots were often too narrow to clearly see the hysteretic behavior 

because of the limited range of the voltage sweep. The computational methods described in the 

previous section yield the most accurate results with relatively symmetric loops that have clear 

inflection points. Since the measured data sets contain non-ideal hysteresis loop shapes, for 

consistency the method requiring additional user input to determine fit points was used to 

calculate all fits and coefficients. Figure 16 shows the LK fits for the 100 nm, 50 nm, and 35 nm 

thick PZT layers grown on 10 nm HfO2. 
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Figure 16 LK curves plotted on the polarization versus voltage hysteresis loops for (a) 100 nm, 

(b) 50 nm, (c) 35 nm PZT deposited on 10 nm HfO2. The blue curves represent experimental data and the 

orange curves are the computationally generated LK fits. 

  

 Because capacitance is defined as the charge between two electrodes divided by the 

voltage between them, the middle of the LK curve where polarization increases as voltage 

decreases is referred to as an ñunstableò region, and represents the region of negative differential 

capacitance across the ferroelectric.  
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2. PZT deposited on 100 nm Pt 

 Figure 17 also shows plots of LK fits for the polarization versus voltage data from 

ferroelectric capacitors structured with 100 nm and 50 nm of PZT deposited on 100 nm Pt. 

Because of the work function differences between the heavily doped silicon electrode (~4.05eV) 

and the nickel electrode (~5.04 eV), the measured polarization versus voltage curves were not 

centered at the origin. For LK fit calculations, the loops were appropriately shifted laterally to be 

symmetric about the origin.  

 

 

Figure 17 LK fit curves plotted on the polarization versus voltage loops for (a) 100 nm PZT 

(shifted -0.71 V to be centered about the origin) and (b) 50 nm PZT (shifted -0.98 V) deposited on 100 

nm Pt.  
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3. PZT Deposited on Varying Thicknesses of Pt 

 The polarization versus voltage data for the ferroelectric capacitor structures with varying 

Pt thicknesses were more irregularly shaped with inflection points that were not clearly defined. 

As a result, the LK fit curves for these structures do not precisely fit the experimental data but 

are still valid approximations. Figure 15 shows the plots of these fits for 100 nm PZT deposited 

on 100 nm, 50 nm, and 35 nm layers of Pt. The top electrode for the structures in Figure 18 was 

titanium, and the Pt sat on a 10 nm layer of HfO2. As in the previous data sets, the loops were 

shifted laterally to be symmetric about the origin. 
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Figure 18 LK fit curves plotted on the polarization versus voltage loops for 100 nm PZT deposited on (a) 

100 nm Pt (shifted -0.36 V to be centered about the origin), (b) 60 nm Pt (shifted -0.33 V), (c) 35 nm Pt 

(shifted -0.38V). 
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4. Landau Coefficients for all Ferroelectric Capacitor Structures 

 The Landau Coefficients for the ferroelectric capacitor structures discussed previously 

are compiled in the following Table 1. These values correspond to the LK fits that were plotted 

in the previous figures, and were computed using the method involving additional user input to 

determine the points to fit.  

PZT 
(nm) 

Pt 
(nm) 

HfO
2
 

(nm) 
Ŭ 
(m/F) 

ɓ 
(m
5
/F/C

2
) 

ɔ 
(m
9
/F/C

4
) 

100 None 10 -6.3x10
8
 4.9x10

9
 -3.9x10

9
 

75 None 10 -1.7x10
9
 1.3x10

11
 -1.9x10

12
 

50 None 10 -1.9x10
9
 4.7x10

10
 -2.1x10

11
 

35 None 10 -8.7x10
8
 3.4x10

9
 3.2x10

9
 

100 100 10 -2.7x10
7
 9.8x10

7
 6.5x10

8
 

100 60 10 -1.6x10
8
 2.2x10

9
 -3.4x10

9
 

100 35 10 -1.9x10
8
 3.9x10

9
 -1.0x10

10
 

50 100 10 -1.9x107 8.1x107 -1.9x109 

Table 1 Landau coefficients compiled for various ferroelectric capacitor structures. 

 

These Landau coefficients Ŭ, ɓ, and ɔ are dependent on the shape of the hysteresis loops 

as well as dielectric constants which are influenced by temperature [11]. 
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Chapter 4: Simulating I -V Characteristics of a FerroFET 

 

To simulate the current ï voltage (I-V) characteristics of a ferroFET with given 

ferroelectric material and thickness, it is possible to first take experimental data describing the 

electrical behavior of a conventional silicon FET as a baseline. Extracting the charge ï voltage 

relationship for the baseline Si FET is done by first measuring the capacitance ï voltage 

relationship [7]. A voltage is applied to the gate of the FET while the source and drain are 

grounded and the measured C ï V characteristics are integrated to obtain the Q ï C relationship. 

Subsequently, it is necessary to subtract the capacitance contributed from accumulation from the 

total capacitance so that the resulting Q ï V relationship is for the baseline Si FET without the 

oxide layer having an effect [7]. 

Then, using the Landau coefficients calculated from the polarization versus voltage data 

from the ferroelectric capacitor, determine the voltage drop across the ferroelectric layer and sum 

it in series with the voltage drop across the baseline FET. The ñunstableò region of negative 

capacitance will cause a hysteresis in the I-V curve. The total voltage across both the baseline 

FET and ferroelectric layer is plotted against the current in forward (increasing) and backward 

(decreasing) voltage sweeps. Figure 19 is an example of I-V characteristics that were derived 

from a ferroelectric capacitor and baseline transistor. The calculations assume that the 

ferroelectric material contribution to the voltage scales linearly with the thickness of the 

ferroelectric layer. The ferroFET shows a clear gain in current as a result of the negative 

capacitance region.  
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Figure 19 An example of simulated I-V characteristics of a ferroFET with differing thicknesses of the 

ferroelectric layer compared to the I-V characteristics of the baseline transistor. 

 

The Matlab script to accomplish this first organizes the data points in order of increasing 

current values and then steps through the voltage values. For the forward voltage sweep, the 

script checks each voltage value to ensure that voltage increases as current does and plots each 

point. Any point in which the voltage decreases with an increase in current is removed, and the 

code continues to step through each voltage value until finding one that is greater than the initial. 

Then, a linear line is fit between the two points around the removed ones. This process continues 

until the maximum voltage is reached. The backward voltage sweep process is similar, except 

that the voltage must decrease with decreasing current, and points that violate this physical 

principle are removed.  
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When the result is plotted, as in Figure 19, there is a hysteresis in the I-V curves from the 

ferroelectric layer. Thicker ferroelectrics show a higher gain, but larger hysteresis over the 

baseline Si FET.  
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Chapter 5: Future Work  

1. Other Ferroelectric Materials 

Ferroelectric field effect transistors have great potential to be the solution to CMOS 

scaling problems. The low power required switch a ferroFET makes them an energy efficient 

candidate for the next generation of devices. However, there is still much to be understood about 

the characteristics and behaviors these transistors. One major goal would be to determine the 

ideal ferroelectric material for use. This work primarily explores characteristics of the 

ferroelectric PZT. However, a thin film ferroelectric material with fewer defects and more 

uniform crystallinity would likely perform closer to the theoretical models based on Landau-

Devonshire theory [7]. In addition, the ferroelectric properties of interest are not constant for 

PZT when thicknesses are scaled down to the 10-30 nm range, and the reduced ferroelectric 

behavior for thin films would decrease the performance of the devices [7]. 

Recently, it has been proposed that the antiferroelectric material HfZrO2 (HZO) can be 

used in FETs for steep switching, low power electronics [12]. Since the oxide is halfnium-based, 

it is compatible with current CMOS processes while still displaying ferroelectric characteristics. 

The negative capacitance allows for voltage amplification and a group at the National Taiwan 

University showed devices able to attain a minimum subthreshold slope of 23 mV/dec and an 

average subthreshold slope of 50 mV/dec [12]. Thus, HZO may be a suitable material for low 

power devices. 
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2. The Quantum Metal FerroFET 

An additional issue with some current ferroFET designs is that many ferroelectric 

materials are not electrically well matched to semiconductors [13]. In order to accomplish steep 

switching, it is necessary for the negative differential capacitance across the ferroelectric layer 

summed with the positive capacitance across the other layers to be as close to zero as possible so 

that small changes in gate voltage will result in large changes in drain current. However, 

semiconductors do not present a constant capacitive load when going from depletion to inversion 

[13]. This makes it difficult to ensure low a subthreshold slope for the device. FerroFETs also 

require homogenous polarization across the device, but this is not always possible due to the 

mixed domains of the material [13].  

One solution is a proposed quantum metal ferroFET, which involves depositing a very 

thin layer of metal between the semiconductor and ferroelectric layer [13]. The metal layer is so 

thin that it behaves as a 2D electron gas and presents a constant ñquantum capacitanceò to the 

ferroelectric layer [13]. Because the layer is extremely thin, it has a low charge carrier density 

and therefore can have a changing work function as the polarization of the ferroelectric layer 

changes, attenuating large charge swings within the ferroelectric [13]. The quantum metal 

ferroFET has not yet been fabricated, and so the next step would be to create the device and 

compare its performance to the predictions. 

Overall, ferroFETs show great promise in the field of low power electronics as CMOS 

devices reach their scaling limits. Future work on this topic will need to determine the ideal 

ferroelectric material, address ferroelectric-semiconductor mismatch issues, and obtain a greater 

understanding of the ferroFET device behaviors. 
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Appendix A: Matlab Code for LK Fit (P -E Data Input Only) 

 

%read in data  

dataPoints = 'insert file path here' ;  

P = xlsread(dataPoints, 'B:B' );  

V = xlsread(dataPoints, 'A:A' );  

  

%Vmin, Vmax, and indices  

[Vmin, Imin] = min(V);  

[Vmax, Imax] = max(V);  

  

%points for linear fit  

Vlin(1) = V(Imin);  

Vlin(2) = V(Imax);  

Vlin(3) = 0;  

Plin(1) = P(Imin);  

Plin(2) = P(Imax);  

Plin(3) = 0;  

  

flin = polyfit(Vlin,Plin,1);  

  

%generate curves 1 and 2  

C1index = 1;  

C2index = 1;     

for  i=1:length(V)  

    if  P(i) > polyval(flin,V(i))  

        C1V(C1index) = V(i);  

        C1P(C1index) = P(i);  

        C1index = C1index+1;  

    end  

    if  P(i) < polyval(flin,V(i))  

        C2V(C2index) = V(i);  

        C2P(C2index) = P(i);  

        C2index = C2index+1;  

    end  

end  

  

%fit polynomials to curves 1 and 2  

fC1 = polyfit(C1V,C1P,10);  

fC2 = polyfit(C2V,C2P,10);  

  

%get the parts of the data to fit LK  

firstDer1 = polyder(fC1);  

secondDer1 = polyder(firstDer1);  
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thirdDer1 = polyder(secondDer1);  

  

%Curve 1 derivative tests: first=+, second= - , third=0  

r = roots(thirdDer1);  

for  i=1:length(r)  

    try  

        if  r(i)>max(C1V) || r(i)<min(C1V)  

            r(i)=[];  

        end  

    catch  exception  

        %if elements are deleted, length(r) will go out of 

bounds  

    end  

end  

  

for  i=1:length(r)  

    if  polyval(seco ndDer1,r(i))<0  

        if  polyval(firstDer1,r(i))>0  

            if  exist( 'cutoffV1' , 'var' ) == 1  

                if  

polyval(firstDer1,r(i))>polyval(firstDer1,r(cutoffIndex))  

                    cutoffV1 = r(i);  

                    cutoffIndex = i;  

                end  

            end  

            if  exist( 'cutoffV1' , 'var' ) == 0  

                cutoffV1 = r(i);  

                cutoffIndex = i;  

            end  

        end  

    end  

end  

  

%Curve 2 derivative tests: first=+, second=+, third=0  

firstDer2 = polyder(fC2);  

secondDer2 = polyder(firstDer2);  

thirdDer2 = polyder(secondDer2);  

  

r2 = roots(thirdDer2);  

for  i=1:length(r2)  

    try  

        if  r2(i)>max(C2V) || r2(i)<min(C2V) || r2(i)<0  

            r2(i)=[];  

        end  

    catch  exception  
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        %if elements are deleted, length(r2) will go out of 

bounds  

    end  

end  

  

for  i=1:length(r2)  

    if  polyval(secondDer2,r2(i))>0  

        if  polyval(firstDer2,r2(i))>0  

            if  exist( 'cutoffV2' , 'var' ) == 1  

                if  abs(polyval(firstDer2,r2(i)) - fli n(1)) < 

abs(polyval(firstDer2,r2(cutoffIndex)) - flin(1))  

                    cutoffV2 = r2(i);  

                    cutoffIndex = i;  

                end  

            end  

            if  exist( 'cutoffV2' , 'var' ) == 0  

                cutoffV2 = r2(i);  

                cutoffIndex = i;  

            end  

        end  

    end  

end  

  

%only keep points close to LK curve  

LKindex = 1;  

for  i=1:length(C1V)  

    if  C1V(i)>=(cutoffV1 - max(V)*0.1)  

        LK1V(LKindex) = C1V(i);  

        LK1P(LKindex) = C1P(i);  

        LKi ndex = LKindex+1;  

    end  

end  

  

  

LKindex = 1;  

for  i=1:length(C2V)  

    if  C2V(i)<=(cutoffV2+max(V)*0.1)  

        LK2V(LKindex) = C2V(i);  

        LK2P(LKindex) = C2P(i);  

        LKindex = LKindex+1;  

    end  

end  

  

  

LKV = [LK1V LK2V];  

LKP = [LK1P LK2P];  
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A = [LKP; LKP.^3; LKP.^5];  

syms a b c;  

X = [a b c];  

  

ERR = LKV -  X*A;  

  

S = ERR.^2;  

sqSum = sum(S);  

EQ1 = diff(sqSum,a);  

EQ2 = diff(sqSum,b);  

EQ3 = diff(sqSum,c);  

[alpha,beta,gamma]=solve(EQ1,EQ2,EQ3);  

double(alpha)  

double(beta)  

double(gamma)  

  

  

%calculate V  values for P = [min,max] from LK fit  

Ptest = linspace(min(P),max(P),200);  

for  i=1:length(Ptest)  

    Vtest(i) = alpha*Ptest(i) + beta*(Ptest(i))^3 + 

gamma*(Ptest(i))^5;  

end  

  

plot(V,P, 'o' )  

hold on 

plot(Vtest,Ptest, 'g' )  

title( 'Method 1' )  

xlabel( 'E (MV/cm)' )  

ylabel( 'P (uC/cm2)' )  

  

V1 = linspace( - 10,10,100);  

P1 = polyval(flin,V1);  

figure  

plot(V1,P1)  

hold on 

plot(C1V,C1P, 'gd' )  

plot(C2V,C2P, 'ro' )  

plot(C1V,polyval(fC1,C1V), 'bx' );  

plot(C2V,polyval(fC2,C2V), 'c*' );  

figure  

plot(LK1V,LK1P, 'rd' )  

hold on 

plot(LK2V,LK2P, 'rd' )
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Appendix B: Matlab Code for LK Fit (P -E Data and Additional User Input) 

 

 

%read in data  

dataPoints = 'insert file path here' ;  

P = xlsread(dataPoints, 'B:B' );  

V = xlsread(dataPoints, 'A:A' );  

  

%plot input data and prompt for user specified points  

plot(V,P, 'o' )  

[LKV,LKP] = ginput;  

title( 'Method 2' )  

xlabel( 'E (V/cm)' )  

ylabel( 'P (C/cm2)' )  

  

LKV = LKV.';  

LKP = LKP.';  

  

A = [LKP; LKP.^3; LKP.^5];  

syms a b c;  

X = [a b c];  

  

ERR = LKV -  X*A;  

  

%sum of least squares error  

S = ERR.^2;  

sqSum = sum(S);  

EQ1 = diff(sqSum,a);  

EQ2 = diff(sqSum,b);  

EQ3 = diff(sqSum,c);  

[alpha,beta,gamma]=solve(EQ1,EQ2,EQ3);  

double(alpha)  

double(beta)  

double(gamma)  

  

%generate the LK fit  

Ptest = linspace(min(P),max(P),200);  

for  i=1:length(Ptest)  

    Vtest(i) = alpha*Ptest(i) + beta*(Ptest(i))^3 + 

gamma*(Ptest(i))^5;  

end  

  

hold on 

plot(Vtest,Ptest, 'g' )  
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Appendix C: Matlab Code for I-V Simulations  

dataPoints = 'insert file path here' ;  

I = xlsread(dataPoints, 'A:A' );  

V = xlsread(dataPoints, 'B:B' );  

  

semilogy(V,I, 'bx' , 'MarkerSize' ,15)  

xlabel( 'Total Voltage (V)' )  

ylabel( 'Current (A/um)' )  

points = [I V];  

  

%order by increasing I  

points = sortrows(points);  

p2index = 1;  

j=1;  

  

%forward V sweep  

while  j<length(points)  

    V1 = points(j,2);  

    V2 = points(j+1,2);  

    I1 = points(j,1);  

    I2 = points(j+1,1);  

     

    if  V2<V1 

        foundNextpt = 0;  

        counter = 1;  

        while  foundNextpt==0  

            if  points(j+counter,2)>V1  

                V3 = points(j+counter,2);  

                I3 = points(j+counter,1);  

                 

                V4 = points(j+counter - 1,2);  

                I4 = points(j+counter - 1,1);  

                foundNextpt = 1;  

            end  

            counte r = counter + 1;  

        end  

         

        x(1)=V3;  

        x(2)=V4;  

        y(1)=I3;  

        y(2)=I4;  
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        flin = polyfit(x,y,1);  

         

        Itemp = polyval(flin,V1);  

         

        pointsfor(p2index,1) = Itemp;  

        pointsfor(p2index,2) = V1;  

        p2index = p2index+1;  

         

        j = j + counter;  

         

    else  

        if  p2index ==1  

            pointsfor(p2index,1) = I1;  

            pointsfor(p2index,2) = V1;  

            pointsfor(p2index+1,1) = I2;  

            pointsfor(p2index+1,2) = V2;  

            p2index = p2index+2;  

            j=j+1;  

        else  

            pointsfor(p2index,1) = I2;  

            pointsfor(p2index,2) = V2;  

            p2index = p2index+1;  

            j=j+1;  

        end  

    end  

end  

hold on 

semilogy(pointsfor(:,2),pointsfor(:,1), 'g' , 'LineWidth' ,4)  

  

%backwards V sweep  

k=length(points);  

pbindex = 1;  

while  k>1  

    V1 = points(k,2);  

    V2 = points(k - 1,2);  

    I1 = points(k,1);  

    I2 = points(k - 1,1);  

     

    if  V2>V1 

        counter = 2;  

        ktemp = k;  

        while  ktemp>1  

            try  

                V3 = points(k - counter,2);  

                V4 = points(k - counter - 1,2);  

                I3 = points(k - counter,1);  
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                I4 = points(k - counter - 1,1);  

            catch  

                ktemp=0;  

                k=0;  

            end  

             

            if  V3<V1 

                x(1)=V3;  

                x(2)=V4;  

                y(1)=I3;  

                y(2)=I4;  

                flin = polyfit(x,y,1);  

                 

                Itemp = polyval(flin,V1);  

                pointsback(pbindex,1) = Itemp;  

                pointsback(pbindex,2) = V1;  

                pbindex = pbindex+1;  

                ktemp=0;  

                k=k - counter;  

            end  

            ktemp=ktemp - 1;  

             

            counter = counter+1;  

        end  

         

    else  

        if  k==length(points)  

            pointsback(pbindex,1)=I1;  

            pointsback(pbindex,2)=V1;  

            pointsback(pbindex+1,1)=I2;  

            pointsback(pbindex+1,2)=V2;  

            pbindex = pbindex+2;  

        else  

            pointsback(pbindex,1)=I2;  

            pointsback(pbindex,2)=V2;  

            pbindex = pbindex + 1;  

        end  

    end  

    k = k -  1;  

end  

semilogy(pointsback( :,2),pointsback(:,1), 'r -- ' , 'LineWidth' ,4)  

legend( 'Measured data' , 'Forward sweep' , 'Backwards sweep' )  
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