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ABSTRACT 
 

 This thesis focuses on a problem in the context of the commercial seed industry. 

Specifically, it investigates how seed producers can estimate the distribution of 

production yields when only truncated data from some trials is available, i.e., the 

numerical values are observable for some but not all data points. There are a few different 

ways to combat this issue. One is to take the data points available, assume that they 

constitute the entire data set, and then use them to estimate the mean and standard 

deviation. Another approach is to acknowledge the presence of other unobserved data 

points and estimate the mean and standard deviation by assigning a weight to each 

observation available. The thesis describes a mathematical development for the second 

approach, and then shows that this approach is superior over the first approach.  Using 

illustrative example, the increase in dollar amount for a representative problem in the 

commercial seed industry is also calculated.  
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Chapter 1 

Introduction 
 

Supply chain contracts are common in business and involve two or more parties 

negotiating on the prices and quantities of good being delivered. The focus in this thesis 

is on contracting situations in which the production process is subject to a random yield. 

Random yield means that the output from a production system is unknown. This 

uncertain output creates a supply risk in the supply chain. As a result, when designing the 

contract, there needs to be a determination from the two sides about how and to what 

proportion the yield risk will be divided. A scenario, and one that this thesis could be 

helpful for, is if a supplier is responsible for providing a fixed amount to the buyer and 

bears the complete yield risk. From the supplier’s perspective she should charge a 

premium for bearing the risk. From the buyer’s perspective the premium paid should be 

commensurate to the risk. Therefore it is necessary for the buyer to understand how 

uncertain the yield is. With this information, buyers can better negotiate contracts with 

suppliers. In this thesis we will focus on quantifying the yield uncertainty in terms of its 

probability distribution.  

 When trying to determine the probability distribution of the yield, it is usually 

necessary to rely on past data. But sometimes all past data may not have numerical 

values. Our focus will be on the case when a number of observations were made for the 

yield, but only a portion of these observations actually have a particular numerical value 

attached to them. For example, we consider the problem faced by an agribusiness firm 

that contracts with contract-farmers to produce seeds. A common contract in this domain 

is that if the total production from a field exceeds the amount requested by the firm the 
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firm does not observe the yield obtained by the contract-farmer. But if the total 

production is lower than the ordered quantity then the firm will be able to deduce the 

yield obtained in the field from the amount of seed delivered by the contract-farmer. Say 

a firm entered into such contracts with 30 contract-farmers for specific amounts. In 19 of 

these cases the yield were low, the contract-farmers were not able to meet the firm’s 

demand and transferred their entire output to the firm. The firm deduced the yield values 

for these 19 observations. For the remaining 11 cases the firm knows that the yields 

exceeded a threshold but does not know their true values. This scenario is known as 

having truncated data. For a side of the contract negotiations such as the buyer, not 

having that data available can make determining yield estimates a truly tough task.  

 There are a few ways to construct probability distributions from truncated data. 

One approach is to take the observations that are available, say the 19 data in the context 

discussed above, and then use these data to determine the mean and standard deviation. 

Another method, and the one in which this thesis will attempt to prove is better, is to 

reference the fact that there is a larger data set, the 30 observations, by applying specific 

weights to the known numerical observations such that the weights take into account the 

total sample size of 30 and the number of available values 19. In this way, the missing 

data are not ignored, and instead, are taken into account. Over the course of the thesis, an 

analytical method will be discussed for the latter approach and a numerical benefit will be 

discussed to show how helpful recognizing the non-numerical observations can be. 

Finally, a numerical study will quantify the likely monetary impact of using approach in 

industry setting.  

 



 3 

Business Application 

 In the previous section of the introduction, the general idea of the thesis was 

explained. We now expand more on the industry context that motivated this research. 

This research is motivated by the commercial seed industry. In this industry, a company, 

say Company A, sell seeds to farmers so that they can grow crops on their land. 

However, the seeds themselves were not made by Company A, instead they were grown 

by suppliers who sell their seeds to Company A. Contracts between a firm like Company 

A and the supplier are designed such that Company A pays a contracted price to the seed 

supplier in exchange for the desired amount. Contracts are done annually. The negotiated 

price typically depends on the yield that suppliers can obtain from their land. However, 

not all parties of the agreement typically have the yield data from prior years.  

 As an illustration suppose Company A ordered 1000 pounds of seed from their 

particular supplier of seeds. When it came to picking up the order, the supplier reveals 

that they were only able to produce 700 pounds of seed from say 10 acres of land they 

have. As a result, Company A can clearly mark that the yield for that year was 70 pounds 

per acre of seed for that particular supplier. However, in the event that the production was 

above the ordered amount of 1000 pounds, then Company A would not have an idea of 

what the actual yield was. Now, take that example for the one-year and expand it to cover 

a ten-year span. There is the possibility that Company A may only know the yield for six 

out of the ten years. The company is then at a disadvantage when it comes to negotiations 

because they do not have all of the historical data while the supplying farmers do. At that 

point, in order to predict the yield distribution, Company A could use the two approaches 

to estimate the yield distribution described earlier in the thesis. They could take the yields 
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from the six years with the known data and attempt to do something as simple as take the 

average of the outputs and use that as the predicted yield for the coming year. Or 

Company A could take the second approach of taking into account that there is ten years 

worth of data, and although only six years carry a numerical value, there is still worth in 

acknowledging that there were four years that exceeded the prescribed order amount. The 

challenge is to translate this acknowledgment into a mathematical approach. The goal of 

this thesis is to show how this can be done.  

Methods to be used 

 I will use a number of different analytical tools in the thesis. These tools include 

software include Microsoft Excel, in which both regression analysis and the Solver 

function were used, and Matlab, which is used thoroughly to show the difference between 

the two main approaches to create a yield estimate. Sections later in the thesis will 

describe how each of these programs can aid in accomplishing the goal of testing the 

hypothesis. Results will be listed in each section and analyzed to determine their meaning 

and importance to the overall task at hand.  
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Chapter 2 

Literature Review 

The main academic work that we draw upon is a journal article by E.H. Lloyd 

from Imperial College, which is entitled “Least-Squares Estimation of Location and Scale 

Parameters Using Order Statistics”. Within the paper is an important formula that will be 

used in testing the efficacy of the two approaches, ignoring non-numerical, unknown data 

or embracing it. The formula as listed in the paper is as follows,  

𝜽𝜽� = (𝒑𝒑′𝛀𝛀𝒑𝒑)−𝟏𝟏𝒑𝒑′𝛀𝛀𝒀𝒀                 (1)      

with the vector θ of mean and standard deviation (Lloyd, 1952), and  Y is the vector of 

the observations for which data are available such that all data are below a certain 

threshold value. The portion of the formula before the Y variable denotes the weights 

assigned to each observation, that has a numerical value, in order to estimate the mean 

and standard deviation. If one goes back to the example within the introduction, Y would 

list all of the yield values that are below the order quantity of say 100 pounds per acre. 

The symbol Ω denotes a variance-covariance matrix of a master data set that will 

discussed in more detail shortly. We will also define 𝒑𝒑′ shortly with more details. 

Finally, we will compare the estimates of the mean and standard deviation obtained from 

this approach with the estimates obtained from the conventional formulas used on the 

data for which numerical values are available.    

Other scholarly articles have shown that using additional information can be 

beneficial to forecasting. In the journal article “Analysis of Perishable-Inventory Systems 

with Censored Demand Data”, it is noted the tradeoffs that are involved when trying to 

use inventory to hinder censored data. The authors write “...although stocking more units 
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increases the likelihood of overstocking and therefore increases the cost of the current 

period, it reduces the chance of demand being censored, and hence improves the 

accuracy of demand estimation for future periods” (Lu, Song, Zhu, 2008). Here, the 

additional information is obtained by buying more inventories. Inventories that do not get 

stocked out provide valuable information for the future because then there is less 

censored data. In the article, it notes how there is an “information benefit”, which is the 

reduction in costs and “better future inventory decisions” that come as a result of having 

elevated inventories (Lu, Song, Zhu, 2008). From the work done in their paper, the 

results showed that “the optimal solution uses the information to improve the demand-

distribution updating” and “under the optimal policy, the higher the inventory level is, the 

more the reduction of the future cost (or equivalently, the larger the informational value) 

will be” (Lu, Song, Zhu, 2008). Thus, in this case, it is noted how a company could 

obtain additional information by increasing inventory levels.  

 Another article that shows the benefit of information is entitled “Repeat tourism 

in Uruguay: modelling truncated distributions of count data”. The issue that the article 

discusses is that in surveys of visitors to Uruguay, a count method was used to record 

how many visits a tourist has made to the country in all. However, there were specific 

categories for visits 1 through 5, but after five visits, all tourists were grouped together 

into a single, large category. Due to this counting procedure, there was accurate data for 

the number of tourists who visited the country five times or fewer but not more, e.g., 70 

times. While this clustering was done in part because those who have traveled to a 

country numerous times have difficulty remembering the specific number of visits (Brida, 

Pereyra, Scuderi, 2012), nevertheless, this resulted in a truncated distribution. To estimate 
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the underlying distribution of the number of visits, the authors used a quantile regression. 

In the regression, socioeconomic characteristics and costs incurred to go to the location 

were used in part of the model to estimate the distribution. Overall, this article shows 

again the benefit of using additional information, in this case socioeconomic 

characteristics, in finding out more about truncated data.  

 Finally, an article from Timothy J. Lowe and Paul V. Preckel entitled “Decision 

Technologies for Agribusiness Problems: A Brief Review of Selected Literature and a 

Call for Research” summarily goes through a litany of issues that the agribusiness 

industry faces. One anecdote within the article mentioned how another group of 

researchers used linear programming for optimization, but not just for determining 

operational actions that would maximize profit. In what was called “goal programming”, 

a team worked with Senegalese farmers to take into account what goals they had from 

farming, whether it was growing enough food for their families or making more money 

so that it could be invested in livestock (Lowe, Preckel, 2004). After conducting a survey 

with farmers where they discussed their goals in farming, weights were made for the 

“goal program”, thus producing an effective model (Lowe, Preckel, 2004). Thus, again it 

is shown that including additional information and attaching it to a model has a beneficial 

effect on the results.  

 To the best of our knowledge, using truncated data for yields to estimate 

agribusiness yields and then applying these distributions to production planning problems 

has not been discussed before.   
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Chapter 3 

Analytical Models 

Let 𝜇𝜇,𝜎𝜎 denote the mean and standard deviation, respectively, of the probability 

distribution. We take a sample of i=1,2,…,n observations, which we denote as 𝑋𝑋𝑖𝑖. Next, 

we arrange these n observation in the ascending order and denote the values as 

𝑌𝑌1,𝑌𝑌2, … ,𝑌𝑌𝑛𝑛. We focus on the case when only k of these values are available. In the 

context of the seed industry this situation occurs when the firm has placed orders for say 

100 bags per acre from n=10 farmers. A total of k=6 farmers obtained yields that were 

less than 100, and so the firm has these data available, but does not have the data 

available for the remaining 4 instances.  

Benchmark 

The benchmark approach for estimating yields is to take the observations below a 

the threshold value, and then use those values to estimate the mean and standard 

deviation for future outputs, as 

  �̂�𝜇 = (∑ 𝑌𝑌𝑡𝑡𝑘𝑘
𝑡𝑡=1 )/𝑘𝑘,  

and  

 𝜎𝜎 � = �∑ 𝑌𝑌𝑡𝑡2
𝑘𝑘
𝑡𝑡=1 −𝜇𝜇�2

𝑘𝑘−1
  

 According to this thesis’s hypothesis, this approach is less accurate than the 

second approach; an order statistics based computation for mean and standard deviation. 
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Order Statistics Based Computation for Mean and Standard Deviation 

The order statistics based computation is an alternative approach to estimate mean 

and standard deviation from truncated data. We first discuss how order statistics can be 

used to estimate mean and standard deviation when all numerical values are available. 

Then we discuss how this approach is useful when the numerical values are observable 

only for a few data in the observation set. We first define the standardized values 𝑉𝑉𝑟𝑟; 𝑟𝑟 =

1, … , 𝑛𝑛 as   

 

                   𝑉𝑉𝑟𝑟 = (𝑌𝑌𝑟𝑟 −  𝜇𝜇)/𝜎𝜎              (3) 

𝑉𝑉1  ≦  𝑉𝑉2  ≦ ⋯  ≦  𝑉𝑉𝑛𝑛                    

Subsequently we define 𝛼𝛼𝑟𝑟 as the average value of the rth ordered observation in a 

sample of size n:  

                 𝐸𝐸(𝑉𝑉𝑟𝑟) =  𝛼𝛼𝑟𝑟                       (4) 

We also define the covariance between the observations i,j (i.e., between 𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗) as 

             𝑉𝑉𝑉𝑉𝑟𝑟�𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗� =  𝜔𝜔𝑖𝑖𝑗𝑗                 (4) 

and denote the variance covariance matrix for all 𝑉𝑉𝑖𝑖 as ω.  

Lloyd (1952) showed that from the ordered observations 𝒀𝒀, the variance covariance 

matrix ω, and the matrix 𝒑𝒑 = [𝟏𝟏 𝜶𝜶], the mean and standard deviations are estimated as:  

               𝜽𝜽� = (𝒑𝒑′𝛀𝛀𝒑𝒑)−𝟏𝟏𝒑𝒑′𝛀𝛀𝒀𝒀             (5) 

where Ω = ω-1.  

Next we discuss how this theory can be used to estimate the mean and standard deviation 

when only k of n data have numerical values. We will specifically focus on the case when 

these k observations are below a threshold T. This may be the case when the firm places 
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an order for say 1000 bags of seed, and is aware that if the contract-farmers’ yield is 

below T, they would not be able to provide complete demand. Of n farmers that the firm 

signs the contract with, k of them eventually observe the yield lower than T and hence the 

firm is aware of the yields in these instances.  

When only k of n observations are available, the firm will continue to use formula 

(5) above, with the difference that the matrix sizes will be equal to k. Specifically, 𝒑𝒑 will 

be of size 2xk composed of the first k columns of the original matrix, and Ω will be kxk 

and will be composed of the first k rows and columns of the original matrix. Intuitively 

by using these elements we are acknowledging that our available k values are from a set 

of n values.    
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Chapter 4 

Simulation Study 

We next discuss a simulation study conducted to compare the performances of the two 

approaches for estimating the mean and standard deviation for a normal yield 

distribution. The focus on the normal distribution is motivated by its widespread use in 

the agribusiness domain.  

We used Matlab for the study. The set up for the Matlab code involved first setting up a 

master data set HW1 with random numbers of mean 0 and standard deviation of 1. This 

master data set comprised of 100,000 sets of 30 numbers, each generated independently. 

Each set of 30 numbers was put in ascending order. Next, the following code is used   

Cv = cov(HW1); 

alphafor10=mean(HW1,1); 

in order to create a variance-covariance matrix for the master data set, and to calculate the 

alphas for each column of data. In this scenario, since we are generating sets of 30 

numbers repetitively there are 30 alphas, and the matrix Ω=Cv is of size 30x30. This 

represents our training data set.  

 To create the testing data set, the set-up first starts with setting aside space for 

1000 iterations, and then creating a set of 30 randomly generated numbers with mean 100 

and standard deviation 5 (alternations will also be done with this number). These 

numbers are then sorted as in the training set. A countif function is then set-up with the 

code in order to calculate what numbers are below the designated threshold value. The 

code below is for the threshold value T=100, and we will report the results for different 

threshold values.   
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HW2 = sort(HW2,2); 

c=0; 

for d = 1:size; 

        if(HW2(1,d)<100) 

            c=c+1; 

        end 

end 

 The variable “c” is the count of the numbers below the threshold value (in this 

case 100). With those steps, the data is now set up to complete the two different 

approaches.  

 

Computation of Mean and Standard Deviation Using Benchmark 1 

To compute the mean and standard deviation, a simple mean and standard deviation was 

needed for the truncated data. The code for this function was the following: 

y=HW2(1:c); 

temp = zeros(1, 2); 

temp(:,1) = mean(y); 

temp(:,2) = std(y); 

thetasnaive(ex,:) = [temp(:,1)  temp(:,2)]; 

Here, “y” is the set of all observation that are below the threshold value. We take the 

simple mean and standard deviation of these numbers and denote them as “thetanaive”, a 

matrix with estimations of the mean and standard deviation for this scenario.  
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Computation of Mean and Standard Deviation Using Order Statistics Based 

Approach 

In order to compute the mean and standard deviation for the order statistics based 

approach, we first determined how many observations in each of the set of 30 

observations were below the threshold. Suppose that 15 numbers were below the 

threshold value, then c would be 15, and a 15 x 15 variance-covariance matrix would be 

taken from the master 30 x 30 matrix. Finally, only the alphas were taken for those 

columns below the threshold. The following code was used to perform this computation: 

clear onesv; 

Covar = Cv(1:c,1:c); 

alpha=alphafor10(1:c); 

ctemp=c; 

for i=1:ctemp 

 onesv(1:i)=1; 

end 

Once the appropriate  Ω and 𝒑𝒑 were available we used formula (5) to estimate the mean 

and standard deviation, using the following code:  

Sigma=inv(Covar); 

p=[onesv'  alpha']; 

pdash=transp(p); 

theta=(inv(pdash*Sigma*p))*pdash*Sigma*y'; 

thetasorder(ex,:) = transpose(theta); 

end 
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In the next section, we compare the mean and standard deviations obtained from the two 

approaches.  
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Chapter 5 

Results for Estimation of Mean and Standard Deviation 

The simulation study provided 1000 estimates of mean and standard deviation 

from the benchmark approach and using our approach. We next compared these values 

against the true values to determine which approach was more accurate. To show the 

results in a clear manner, graphs will be used to demonstrate the difference between the 

estimates obtained from the two approaches. Five thresholds were chosen to test the 

approaches: 90, 100, 105, 125, and 150 with the intent of showing if threshold values 

affect the performance of the approaches at all. Two graphs were made for each of these 

thresholds; one showing how the estimates’ means performed against the target mean, 

and one showing how the estimates’ standard deviations performed against the target 

standard deviation.  

 Figures 1(a) and (b) show the results for the threshold value of 90. Figure 1(a) 

shows that as the standard deviation of the true distribution increases, the order statistics 

based approach continues to provide high quality estimates of the standard deviation. But 

the performance of the naïve approach deteriorates continuously, creating a large gulf 

between the performances of the two approaches.  

Figure 1(b) shows that this trend persists for the estimate of the standard deviation.  
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Figure 1. Mean Estimates for Threshold of 90 

 

 

Figure 2. Standard Deviation Estimates for Threshold of 90 

 

 

Next, the threshold value of 100 was tested: 
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Figure 3. Mean Estimates for Threshold of 100 

    

  

Figure 4. Standard Deviation Estimates for Threshold of 100 
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The threshold of 100 graphs shows much of the same determination. The new approach 

performs extremely well while the old approach of using truncated data does not reach 

the target by a significant margin.  

 Figures 5 and 6 show the same trend to persist for the threshold value of 105. 

 

Figure 5. Mean Estimates for Threshold of 105 

 

Figure 6. Standard Deviation Estimates for Threshold of 105 
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As before, the mean estimates for the non-truncated data, ordered estimate approach 

reveal results that are extremely close to the targets, while the old approach is lacking in 

performance. Do note the improved performance for the truncated data approach as the 

threshold increases. Although still not performing better than the ordered estimate 

approach, the old approach sees a small improvement between graphs.  

 Figures 7 and 8 show the results for the threshold of 125.  

 

Figure 7. Mean Estimates for Threshold of 125     

 

  

Figure 8. Standard Deviation Estimates for Threshold of 125 
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Although the overall difference is not that significant between this pair of graphs and the 

previous sets, there are some noticeable changes within the graphs. Notice in the mean 

estimate graph, at the beginning of the x-axis, from standard deviations 0 to about 15, the 

two approaches are actually very similar and perform well. Only when the standard 

deviation continues to increase does the new approach outshine the old one. Meanwhile, 

in the standard deviation estimate graph, the old approach continues to do better, even 

having a respectable trajectory. As seen with the mean graph, at the first few standard 

deviations, the truncated data method keeps pace with the target. With higher standard 

deviations, the method eventually falls apart compared to the ordered method, however.  

 Finally, the last threshold to be tested was of 150.  

        

Figure 9. Mean Estimates for Threshold of 150 
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Figure 10. Standard Deviation Estimates for Threshold of 150 

 

Here, the mean and standard deviations of the truncated approach continue to perform 

better, matching the targets for a longer time.  

 To sum the findings of this section the ordered estimate approach, the “new 

approach” in the graphs, was overwhelmingly the better method to use to predict the 

mean and standard deviation of the yield distribution. Each instance, no matter the 

threshold value, returned the same outcome – using an ordered estimate approach to 

predicting yields is the preferred method.  

 With regards to the threshold value, a trend that one can see from the graphs is 

that the benchmark truncated data approach performed better as the threshold value 

increased. If this trend were to be applied to a real-life example, this would make a good 

deal of sense. An example would be for a particularly large retailer who sells bikes and 

wants to predict what to buy in the future. At a threshold of 75, not many demand 

numbers may fall below that value. Therefore, the retailer may be working with severely 
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truncated data. Therefore, purchase quantities in the future may be too skewed towards 

the lower demand observations, in turn risking stock-outs. If, however, the retailer were 

to increase the threshold value of 150, i.e. holding starting with 150 bikes per day, there 

is a higher potential for there to be bikes left over and for the demand to be clearly seen. 

In essence, a higher threshold value can mean less truncated data and more information to 

make better decisions about forecasts of future inventory. Although it would be ideal to 

stock large quantities of inventory and in return have lots of information to make 

purchasing decisions in the future, it is not possible because of costs for inventory and 

obsolete items. Instead, retailers could use the ordered estimate approach to more 

accurately predict future demands.  

Monetary Implications for the Seed Industry 

 The Matlab results were certainly promising for the ordered estimates approach, 

but there is another question regarding how much this new method could actually save 

for a company. To apply this thesis to a business case, we revisited the commercial seed 

producer’s problem. We considered that the seed producer wanted to optimize its 

expected profit using the estimate of the yield distribution using the data available. 

Mathematically, the firm’s problem is stated as: 

max
Q

−𝑐𝑐𝑐𝑐 + 𝑝𝑝𝐸𝐸[min (𝑐𝑐 𝑦𝑦�,𝐷𝐷)] 

where c is the per acre production cost, p is the selling price per bag, Q is the number of 

acres used, 𝑦𝑦�  is random yield, and D is the fixed demand. On further simplification the 

problem is written as: 

max
Q

𝑝𝑝 ∫ 𝑐𝑐𝑦𝑦 ∗ 𝜙𝜙
𝑦𝑦<𝐷𝐷𝑄𝑄
𝑦𝑦=0

(𝑦𝑦)𝑑𝑑𝑦𝑦 + 𝑃𝑃 ∫ 𝐷𝐷𝜙𝜙(𝑦𝑦)𝑑𝑑𝑦𝑦 − 𝐶𝐶𝑐𝑐∞
𝑦𝑦>𝐷𝐷/𝑄𝑄            (5) 
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where 𝜙𝜙(𝑦𝑦)𝑑𝑑𝑦𝑦 is the pdf (probability density function) of the yield. After completing this 

integral, the formula then turns into the following: 

 
max
Q

 pQ[-σ2𝜙𝜙(D/Q) + μ𝛷𝛷(D/Q)] + PD[1 – 𝛷𝛷(D/Q)] – cQ          (6) 

 
where 𝜙𝜙 �𝐷𝐷

𝑄𝑄
� is the pdf, while Φ(𝐷𝐷

𝑄𝑄
) is the cdf, cumulative probability function. We set up 

this formulation in Solver in Excel with the price as 150, cost as 7500, 100 values of 

estimated means and standard deviations that come from the Matlab results for both 

approaches where the threshold value was 100, target mean was 100, and standard 

deviation was 30, demand as 10000, an actual mean of 100, and an actual standard 

deviation of 30. For each of the 100 instances, the solver optimized the profit function to 

provide the optimal acreage and the expected profit.  

 We ran the solver the model a total of 200 times, 100 times using the mean and 

standard deviation obtained using the naïve approach, and then 100 times using the mean 

and standard deviation using the order statistics approach. We then compared the 

difference in the expected profit from the two approaches. This analysis showed that on 

average the maximum profit under the old approach was $528, 529, while the new 

approach had a maximum of $572, 845. Therefore, using the order statistics based 

approach increases the expected profit by $44, 316, which is equivalent to 8% of profit.   

 This analysis reinforces that the ordered estimates approach is the preferred 

technique.  
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Chapter 6 

Conclusion 

 The goal of this thesis was to test two separate approaches for estimating yields in 

the seed industry when truncated data was available. In the first approach only the 

available data were used to estimate the mean and standard deviation. In the second 

approach a weight was applied to each known observation using the sample size of all 

data. To test these two methods, Matlab code was developed to run a simulation based 

numerical study. The results revealed that the second approach is superior. The estimates 

of the mean and standard deviation obtained using this approach were consistently more 

accurate, on average, than the first approach. This trend persisted for varying values of 

standard deviation and truncation.  

Finally, we applied these findings in the context of Dow AgroSciences. In test 

case with realistic data we found that the new approach could improve the expected profit 

for the firm by 8%. The future research should strive to implement these findings in 

practice.  
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Appendix 
 
Matlab Code:  
 
clc, clear  
 
rng(1); 
 
iterationssize=100000; 
 
size=30; 
 
HW1 = zeros(iterationssize,size);  
 
trans = zeros(size,2); 
 
for m = 1:iterationssize  
 
    for n = 1:size  
 
        HW1(m,n) = normrnd(0,1);  
 
    end 
 
end 
 
 
HW1 = sort(HW1,2); % sorts rows in ascending order 
 
 
Cv = cov(HW1); 
 
alphafor10=mean(HW1,1); 
 
 
for ex = 1:1000; 
 
HW2 = zeros(1,size); 
 
 
    for d = 1:size; 
 
        HW2(1,d) = normrnd(100,20); 
 
    end 
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HW2 = sort(HW2,2); 
 
c=0; 
 
for d = 1:size; 
 
        if(HW2(1,d)<100) 
 
            c=c+1; 
 
        end 
 
end 
 
 
clear onesv; 
 
Covar = Cv(1:c,1:c); 
 
alpha=alphafor10(1:c); 
 
ctemp=c; 
 
for i=1:ctemp 
 
    onesv(1:i)=1; 
 
end 
 
 
y=HW2(1:c); 
 
 
temp = zeros(1, 2); 
 
temp(:,1) = mean(y); 
 
temp(:,2) = std(y); 
 
thetasnaive(ex,:) = [temp(:,1)  temp(:,2)]; 
 
 
Sigma=inv(Covar); 
 
 



 27 

 
 
 
p=[onesv'  alpha']; 
 
 
pdash=transp(p); 
 
 
theta=(inv(pdash*Sigma*p))*pdash*Sigma*y'; 
 
 
thetasorder(ex,:) = transpose(theta); 
 
 
end 
 
 
     
 
mean(thetasnaive) 
 
mean(thetasorder) 
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