THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE

DEPARTMENT OF ARCHITECTURAL ENGINEERING

THE HEALTH CENTRE: STRUCTURAL REDESIGN WITH REINFORCED CONCRETE FLAT SLAB AND SHEAR WALL SYSTEMS

HANNAH VALENTINE SPRING 2016

A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in Architectural Engineering with honors in Architectural Engineering

Reviewed and approved* by the following:

Linda M. Hanagan, PhD, P.E. Associate Professor of Architectural Engineering Thesis Supervisor

Richard G. Mistrick, PhD, P.E. Associate Professor of Architectural Engineering Honors Adviser

* Signatures are on file in the Schreyer Honors College

ABSTRACT

The Health Centre is a 750,000 square foot university hospital expansion located in the southeastern United States. Built adjacent to existing hospital facility 'Clinic B,' this ten-story L-shaped offers state-of-the-art medical technology, additional research space, and hundreds of new hospital beds. At a height of 166 feet, the Health Centre will be the tallest building in the surrounding area when its construction is complete in 2016.

The Health Centre takes its architectural cues from classical Italian and contemporary sources. Façade materials used on the building include stucco, metal panels, and a glass curtain wall. A green roof and four story underground parking garage contribute towards its goal of LEED silver certification. Structural design considerations by the engineer of record included flexibility of interior spaces and the possibility of future vertical expansion.

This structural redesign of the Health Centre aims to reduce slab thickness for a more efficient use of materials and potential reduction in floor-to-floor heights. After an initial study of the existing cast-in-place skip joist gravity system, a flat slab was selected as an alternative design option. Precast reinforced concrete shear walls replaced the existing concrete moment frame system to resist wind and seismic building loads on the building. Three-dimensional modeling and hand calculation methods determined the modal response of the redesigned gravity system and its feasibility under the current criteria for vibration sensitive research equipment. Relocation of mechanical equipment Impact of the redesign and vibration criteria on construction cost and schedule.

TABLE OF CONTENTS

LIST OF FIGURES	V
LIST OF TABLES	vii
ACKNOWLEDGEMENTS	viii
Chapter 1 Existing Building and Structural Systems	1
1.1 General Building Overview	1
1.2 Existing Structural Systems	3
1.2.1 Overview	3
1.2.2 Foundations	4
1.2.4 Gravity System	6
1.2.5 Lateral System	8
1.3 Load Path	10
1.4 Structural Details	12
Chapter 2 Codes and Loading Conditions	
2.1 Applicable Codes	13
2.2 Gravity Loads	14
2.2.1 Original Design Loads	14
2.2.2 Roof Loads	14
2.2.3 Floor Loads	15
2.2.4 Perimeter Loads	16
2.3 Lateral Loads	16
2.3.1 Wind Loads	16
2.3.2 Seismic Loads	17
Chapter 3 Flat Slab and Shear Wall Design	19

3.1 Design Proposal	19
3.1.1 Problem Statement	19
3.1.2 Construction Breadth	19
3.1.3 Mechanical Breadth	20
3.1.4 MAE and Schreyer Requirements	20
3.2 Weighing Alternative Design Solutions	21
3.3 Two-Way Flat Slab with Drop Panels	22
3.3.1 Preliminary Design and Codes	22
3.3.2 Modeling and Results	22
3.4 Gravity Columns	28
3.4.1 Preliminary Design and Codes	28
3.4.2 Modeling and Results	29
3.5 Shear Wall Design	31
3.5.1 Preliminary Design and Codes	31
3.5.2 Lateral Loads	32
3.5.3 Modeling and Verification	33
3.5.4 Results	37
3.5.5 Conclusions	38
Chapter 4 Vibration Considerations and Analysis	39
4.1 Literature Review	39
4.1.1 Design Guide 11 Walking Excitation	39
4,1.2 Design Guide 11 Vibration Sensitive Equipment	41
4.1.3 Vibration Criteria	42
4.1.4 Design Approach	44
4.1.5 Equipment Specific Requirements	48
4.2 Design Objectives	49

4.3 Modeling Approach51
4.4 Vibration Analysis53
4.5 Conclusions
Chapter 5 Construction Schedule and Cost Comparison
5.1 Detailed Cost Analysis55
5.2 Schedule Analysis
Chapter 6 Mechanical Breadth
6.1 Cooling Load Study58
6.2 Conclusions61
Appendix A Structural References
A.1 Slab References
A.2 Column References64
A.3 Lateral References
Appendix B Construction References
B.1 Estimate References67
B.2 Schedule References
BIBLIOGRAPHY
ACADEMIC VITAE

LIST OF FIGURES

Figure 1: Site Plan (Courtesy of SmithGroupJJR)1	
Figure 2: East Elevation (left) and South Facade (right) (SmithGroupJJR)2	
Figure 3: Typical Building Floor Plans (SmithGroupJJR)2	
Figure 4: Overall Building Structure (Walter P. Moore)	
Figure 5: Typical Drilled Pier Details (Walter P. Moore)4	
Figure 6: Typical Foundation Detail (Walter P. Moore)5	
Figure 7: Partial Foundation Plan (Walter P. Moore)	
Figure 8: Typical Bay from Third Floor Area D Floor Plan (WPM)7	
Figure 9: Typical Floor Section (Walter P. Moore)7	
Figure 10: Typical Column Splice and Steel Expansion Details {Walter P. Moore)	
Figure 11: Ellipse Column Detail (Walter P. Moore)	
Figure 12: Fourth Floor Concrete Moment Frames (Walter P. Moore)9	
Figure 13: Typical Deep Beam Cross-Section (Walter P. Moore)10	0
Figure 14: Building Section Looking North (SmithGroupJJR)1	1
Figure 15: West HSS Canopy Connection to Concrete Framing (Walter P. Moore)	2
Figure 16: Seismic Story Forces Diagram	8
Figure 17: 4th Floor Longitudinal Design Strip Plan2	3
Figure 18: 4th Floor Latitudinal Design Strip Plan	3
Figure 19: Floors 7-9 Depression and Drop Panel Perspective	4
Figure 20: Floors 1-3 Short Term Deflections	5
Figure 21: Typical Bay Top (Above) and Bottom (Bellow) Bars2	7
Figure 22: Gravity Model for RAM Structural System	8
Figure 23: Column Design Groups	9

Figure 24: Exterior Facade of the Health Centery (SmithGroupJJR)	32
Figure 25: Shear Wall Layouts of 1st, 5th, and 7th floors, respectively	34
Figure 26: Etabs COM and COR results	35
Figure 27: Elevator Core Shear Wall Cross Section at Base	38
Figure 28: Selected Bay for Vibration Analysis	50
Figure 29: SAP2000 3-Bay Model	51
Figure 30: Excited Mode Shape from Midspan Analysis	52
Figure 31: Interior (left) and Exterior (right) Bay Vibrational Velocities	53
Figure 32: Structural System Cost Comparison Graph	56
Figure 33: Microsoft Project Construction Schedule	57
Figure 34: Metal Panel Wall Section	58

LIST OF TABLES

Table 1: Applicable Codes
Table 2: Original Design Loads 14
Table 3: Roof Gravity Loads Summary 15
Table 4: Floor Gravity Loads Summary 15
Table 5: Perimeter Load Summary 16
Table 6: Design Criteria 17
Table 7: Wind Load Summary17
Table 8: Seismic Load Summary 18
Table 9: Gravity System Decision Matrix 21
Table 10: Axial Load Verification
Table 11: Column Group Final Design
Table 12: Revised Wind Story Forces in Perpendicular and Parallel Directions
Table 13: Revised Seismic Story Shear and Overturning Moment
Table 14: Etabs Property Summary
Table 15: Center of Mass and Rigidity Comparison
Table 16: Seismic Coefficients
Table 17: Base Shear Comparison
Table 18: Shear Distribution Check
Table 19: Seismic and Wind Drift Limits 37
Table 20: SAP2000 Analysis Output 52
Table 21: Detailed Cost Estimate Comparison 55
Table 22: Building Material U-Values
Table 23: Cooling Load Calculations 60

ACKNOWLEDGEMENTS

I would like to thank the following people who supported my senior thesis efforts, and encouraged me throughout my five years in Penn State Architectural Engineering:

- The people of SmithGroupJJR for mentoring me during my previous summer internship. In particular, Paul Tonti, for providing me with architectural consultation on the building and the connections necessary to complete this thesis.
- The engineers of Walter P. Moore for providing me with structural documentation for the existing building and answering my early questions.
- The AE faculty for sharing their advice and knowledge, especially my advisors Dr. Linda Hanagan and Dr. Richard Mistrick.
- My classmates and friends for their constant support and willingness to provide distractions when needed. Thank you Sharon and Josh for your structural insights and thesis consultations.
- My parents, without whom I would not have attended Penn State. Thanks Mom, structural AE grad of the class of 1984!

Chapter 1

Existing Building and Structural Systems

1.1 General Building Overview

The Health Centre is a university hospital expansion project consisting of a nine-story hospital bed tower with a mechanical penthouse and four-story underground parking garage. Located in the southeastern United States in the middle of a university campus, this Lshaped concrete building is adjacent to existing hospital facilities referred to as 'Clinic B.' Figure 1 shows the site plan of the Health Centre and the surrounding campus facilities. The hospital features a lower green roof and new state-of-the-art technical facilities - including an ICU, emergency department, clinical facilities, and med-surg patient rooms. Upon

Figure 1: Site Plan (Courtesy of SmithGroupJJR)

completion in 2016, the building will be certified LEED Silver.

The new building will add approximately 450,000 square feet and 210 new hospital beds to the existing hospital complex. It a "core-and-shell" building with adaptable spaces and the possibility for future expansion on the lower fourth floor roof. SmithGroupJJR was the party responsible for the architectural design and programming of the building's interior spaces. Walter P. Moore was responsible for the building's existing structural design.

Figure 2: East Elevation (left) and South Facade (right) (SmithGroupJJR)

The tallest building in the immediate area, the Health Centre stands out architecturally with a glass and metal façade system as depicted in Figure 2. In addition to the new technical facilities, the building site features a new entry drive for easier patient access and sustainable initiatives such as bioswales. As the building increases in height, its floor plan becomes restricted to the rectangular bed tower area. Elevators are located in the northern end of the tower, and extend the full height of the building. Three main floor plans exist throughout the building, depicted in Figure 3. As the building increases in height, it becomes narrower and loses its L-shape.

Figure 3: Typical Building Floor Plans (SmithGroupJJR)

1.2 Existing Structural Systems

1.2.1 Overview

Above ground, The Health Centre is mainly a cast-in-place concrete frame structure, as shown in Figure 4. The choice in structural material was driven by the contractor McCarthy Building Construction, who noted the availability of concrete over steel in the building's southeastern location. Cast-in-place floors are one-way slabs that connect the building's diaphragm. Bays are 30'x30' squares wherever possible.

Figure 4: Overall Building Structure (Walter P. Moore)

The below-grade parking garage consists of two-way post-tensioned flat slabs. Foundations are typically cast-in-place spread footings, with some deep drilled piers on competent rock. CMU walls in the building are non-load bearing. A steel bridge connects the structure to other campus buildings. Due to the life-safety concerns for hospital structures, The Health Centre is Building Category IV under ASCE 7-05. The building lateral loads per ASCE 7-05 used basic wind speeds of 90 MPH and Seismic Design Category C

1.2.2 Foundations

The two primary foundation types used in this building are drilled piers and spread footings. All foundations were designed to be 4,000 psi normal weight concrete and are spaced the width of a typical 30'x30' bay in most locations.

Figure 5: Typical Drilled Pier Details (Walter P. Moore)

Drilled piers are located mainly underneath the parking structure and the western side of the building. They were designed for 80 ksf net end bearing pressure on competent rock. There are 14 types of drilled piers with pier diameters ranging from 36" to 96". The piers use both #3 and #4 ties spaced at 12" and typically have #11 bars for vertical reinforcement. Typical details for drilled piers are provided in Figure 5. In some locations, drilled piers are embedded into the rock a depth of 5'-0".

Rectangular spread footings range in size from 4'x6'x18" with #6 rebar to 12'x12'x82" with #9 rebar. They were designed for 30 ksf net pressure on competent rock or 2 ksf net pressure on compacted soil depending on their location in the building. Some spread footings have an equivalent drilled pier that the contractor may choose to use instead. Typical details for spread footings are shown in Figure 6, while a partial foundation layout is provided in Figure 7.

Figure 6: Typical Foundation Detail (Walter P. Moore)

Figure 7: Partial Foundation Plan (Walter P. Moore)

1.2.4 Gravity System

A typical bay size of 30'x30' is used throughout the building, as depicted in Figure 8. The floor system consists of a cast-in-place one-way skip-pan joists. Typical girders are 36"x25" and typical purlins are 9"x25" with #8 top and bottom bars. A typical section detail for the floor system is provided in Figure 9. In some locations – usually near floor openings or slab depressions – there is variation in beam width and depth.

The flat floor slab depth ranges from 5" to 14" thick, with a typical depth of 5" and 7". Top and bottom bars vary in size and **Figure 8: Typical Bay from Third Floor Area D Floor Plan (WPM)** spacing depending on the slab location, but are typically #3 or #4 spaced at 12". Some depressions in the slab occur for medical equipment and other hospital technology. All floor system components for the hospital bed tower and parking garage are 5,000 psi normal weight concrete.

Figure 9: Typical Floor Section (Walter P. Moore)

For the bed tower, column size decreases as floor level increases. Parking garage columns are typically 28"x44" with 22 #9 rebar for vertical reinforcement. From the ground floor of the bed tower to the bottom of the fourth level, most columns are 28"x32" with vertical reinforcement consisting of 12 #8 rebar. Floors above the fourth floor, including the penthouse, typically have 24"x24" square columns with 8 #8 vertical reinforcement. A column splice is used when these size changes occur (Figure 10). Some columns have also been sized for future steel expansion. 7000 psi normal weight concrete is used for all cast-in-place columns.

Figure 10: Typical Column Splice and Steel Expansion Details {Walter P. Moore)

Ellipse concrete columns are used in some locations, including underneath the bridge structure, and are detailed in Figure 11. Additionally, W14 structural steel encased in concrete is used in some locations between the ground and fourth levels when columns do not continue below grade to the underground parking garage.

1.2.5 Lateral System

Above grade, concrete moment frames resist lateral loads in both the north-south and eastwest directions (Figure 12). All beams and columns above grade are detailed to resist gravity and lateral loads. Below grade, exterior shear walls resist soil and potential seismic forces. 7000 psi normal weight concrete is used for all lateral system vertical elements. Lateral loads are transferred into the moment frames and shear walls through the floor diaphragm. Large girder sizes on the exterior are typically 50"x48". A concrete floor diaphragm consisting of a 5" one-way flat slab and 25" deep beams (in most locations) transfers the lateral load throughout the building (Figure 13). Due to the nature of this lateral system, concrete moment frames extend the full height of the building with some stopping at the fourth floor green roof.

Figure 12: Fourth Floor Concrete Moment Frames (Walter P. Moore)

Basement shear walls in the parking garage begin at the bottommost level and end at grade. Typically 2' thick and approximately 50' high, they extend around the exterior of the parking structure. A 1.5"x3" continuous shear key and standard hooks connect the walls to the posttensioned floor diaphragm. Design for service requirements take into consideration the lateral deflection of wind. Wind loads with a 10-year mean recurrence interval were considered for a lateral deflection of the typical floor height/400.

Figure 13: Typical Deep Beam Cross-Section (Walter P. Moore)

1.3 Load Path

The loads under consideration for this report are gravity, wind, and seismic loads. All three load cases follow a different path throughout the building.

For gravity loads, the load path begins at the penthouse roof. Roof live and dead loads are carried by columns to the floor below. On the penthouse level, mechanical equipment and cooling tower loads are carried by the concrete floor diaphragm and distributed to the columns. This process of load distribution continues throughout the remaining levels, noting the additional green roof loads on the fourth level. At grade, dead and live loads on the floor are distributed onto slab on grade and cast-in-place grade beams. Eventually, all building gravity loads are carried by the columns to the drilled pier and spread footing foundations. Depending on the foundation location, these loads are either distributed into surrounding compact soil or competent rock.

Figure 14: Building Section Looking North (SmithGroupJJR)

Wind loads place a lateral pressure on the bed tower façade. Pressure generates a force on the exterior façade that is distributed along its surface. This force is distributed based on stiffness to building elements. Exterior moment frames will take some of the lateral load, and the floor diaphragm will distribute the remaining lateral force to the other concrete moment frames. The columns of the moment frames will carry the lateral force and its foundation will resist overturning moment created by the lateral force, as depicted in Figure 14.

Seismic loads are due to ground acceleration during a seismic event. Ground acceleration causes building acceleration, which is based on the building mass and is quantified during design as story forces. The forces caused by acceleration are distributed on each floor according to stiffness of building framing elements. Above grade, seismic story forces are distributed by the diaphragm to concrete moment frames and carried by the columns down to the foundations. Below grade, seismic story forces are taken to the foundations by the exterior shear walls. The diaphragm will not distribute seismic forces as much due to the exterior location of the walls and their similarity in stiffness in each direction.

1.4 Structural Details

An architecturally exposed structural steel (AESS) canopy is a major architectural feature on the western side of the building. The canopy consists of double steel plate fins welded to AESS $4^{2}x^{2}x^{1/2}$ HSS. The canopy is connected to and supported by a 2x3 steel plates and 4x4x5/16double angle kicker. These steel supports are welded to embed plates to connect the canopy to the concrete framing as seen in Figure 15.

Figure 15: West HSS Canopy Connection to Concrete Framing (Walter P. Moore)

Post-tensioning is utilized in the four-story underground post-tensioned parking garage. Structures such as parking garages are often post-tensioned to prevent deflection and sagging due to car weight, and allow longer bay spans. At the exterior of the structure, the post-tension slab connects to a cast-in-place columns. 1" of clear cover for top and bottom of the slab is typical above and below anchors. #4 back-up bars are located between the tendon anchors. At the stressing end are pocket formers. Once the tendons are cut, the pocket is capped with non-shrink, non-staining grout.

Chapter 2 Codes and Loading Conditions

2.1 Applicable Codes

All known applicable building codes and standards are listed in Table 1. An exemption for the structural design permitted the use of 2006 ICC (International Code Council) codes as amended by the state. The rest of the building systems use 2012 ICC codes. A Special Land Use Permit was obtained from the county to build on land zoned for office-institutional use.

Category	Applicable Code		
Building Code	2006 IBC Structural Documentation Only		
	2012 International Building Code		
	2012 International Existing Building Code		
Energy Code	2012 International Energy Conservation Code		
Fire Code	2012 International Fire Code		
Mechanical Code	2012 International Mechanical Code		
Plumbing Code	2012 International Plumbing Code		
Fire Protection	NFPA 10 Standard for Portable Fire Extinguishers 2010		
	NFPA 13 Installation of Sprinkler Systems 2010		
	NFPA 14 Standard for the Installation of Standpipe and Hose Systems 2010		
	NFPA 70 National Electrical Code 2011		
	NFPA 72 National Fire Alarm and Signaling Code 2010		
	NFPA 101 Life Safety Code 2000		
Accessibility	ADA 2010		
	ICC/ANSI 117.1 Accessible and Usable Buildings and Facilities 2003		
Elevators	ASME A17.1 Safety Code for Elevators and Escalators 2010		
American Society of Civil Engineers	ASCE 7-05 Minimum Design Loads for Buildings and Other Structures		
	ASCE 7-10 Non-Structural Requirements		
American Concrete Institute	ACI 318 Building Code Requirements for Structural Concrete		
American Institute of Steel Construction	Steel Construction Manual, Edition Unknown		

Table 1: Applicable Codes

2.2 Gravity Loads

2.2.1 Original Design Loads

Design dead and live loads used for The Health Centre are tabulated in Table 2 below. Live loads for each occupancy/use category were taken from ASCE 7-05. Dead loads for different room types were taken from construction documentation. Unless otherwise noted as NR (non-reducible), live loads are reducible. In particular, horizontal framing floor members in parking garages did not have reduced live loads.

Occupancy/Use	Superimposed Dead Load (psf)	Live Load - Uniform (psf)	Live Load – Concentrated (lbs)
Green Roof/Outdoor Area (RF2)	100	100 NR	-
Typical Hospital Areas (HOS3)	15	100	2000
Hospital Diagnostic Areas (HOS2)	75	350 NR	106,000
Mech./Elec. Rooms (MEC)	75	150 NR	2000
Penthouse Roof (RFPH)	50	20	-
Mixed Use Areas (MU1)	55	100	2000
Restroom (RR)	40	100	-
Patient Rooms (PAT)	15	80 + 15 psf (partitions)	1000
Lobbies and Corridors (PUB1)	15	100	2000
Parking Garage (PK1)	5	40 NR	3000
Storage (STO)	15	125 NR	2000
Kitchen (KIT)	95	150 NR	2000
Typical Roof (RF3)	25	20 NR	-
Insulated Roof (RF1)	50	20 NR	-

Table 2: Original Design Loads

2.2.2 Roof Loads

This section summarizes the roof gravity loads due to dead and live loads. Values provided in Table 3 are based upon standard values in engineering practice, ASCE 7-05, manufacturer data,

and previous design experience. Due to the southern location of the building, snow loads were low and did not control design values.

Load Type	Dead	Live
Typical Roof	83 psf	20 psf
		Not reduced
Penthouse Roof	40 psf	20 psf
	(50 psf SDL from structural drawings)	Not reduced
Green Roof	103 psf	100 psf
		Not reduced

Table 3: Roof Gravity Loads Summary

2.2.3 Floor Loads

Floor dead and live loads were determined for both the bed tower and parking garage floor systems in Table 4. Table values include slab self-weight for the two typical 5 and 7 inch slabs. All dead load values are for the typical 30'x30' bay and are based upon standard values in engineering practice and design experience.

Table 4: Floor Gravity Loads Summary

Floor Use	Dead	Live
Typical Hospital Areas	5″ slab – 86 psf 7″ slab – 111 psf	100 psf – reduced (design value)
Corridors + Lobbies	5″ slab – 86 psf 7″ slab – 111 psf	100 psf
Stairs	5″ slab – 86 psf 7″ slab – 111 psf	100 psf
Mechanical Rooms	5″ slab – 86 psf 🛛 + 200 K mech. equip 7″ slab – 111 psf	150 psf
Diagnostics + Imaging	5″ slab – 86 psf 🛛 + 80 K diagnostic equip. 7″ slab – 111 psf	350 psf – not reduced (design value)
Patient Rooms (Designed as Hospital – Corridor)	5″ slab – 86 psf 7″ slab – 111 psf	80 psf
Parking Garage	5″ slab – 86 psf 7″ slab – 111 psf	40 psf

2.2.4 Perimeter Loads

The building perimeter enclosure produces a linear dead load through its attachment to the main building structure. The Health Centre has three main enclosure systems: curtain wall, stucco panels, and metal panels. Perimeter load values for these systems are listed in Table 5.

Each system has a different load path that is dependent on its connection to the structure. The curtain wall's framing system is connected to the main structure by a structural steel plate and embedded metal stud. Loads transfer from the stucco wall via continuous light gauge angles attached to continuous light gauge zees. The light gauge zees are connected by a fiberglass thermal spacer clip to gypsum sheathing, which takes the load to the main structure via another light gauge zee. A light gauge zee connects the metal wall panels to the main structure, and load is transferred through the steel bolts.

Table 5: Perimeter Load Summary

Wall Type	Dead Load
Curtain Wall	16 psf
Panel Systems	18 psf

2.3 Lateral Loads

2.3.1 Wind Loads

Wind loads were calculated for the existing building and structural system according to ASCE 7-05 provisions. Table 6 shows the design criteria used for the perpendicular and parallel wind directions and Table 7 lists the resulting wind loads. The building frame is flexible, and the gust effect factor changes with the redesigned structural system. New wind pressures are presented later on for the redesigned structural system.

Table 6: Design Criteria

Basic Wind Speed	V =	90	mph (Figu	re 6-1)
Directionality Factor	K _d =	0.85	(Tabl	e 6-4)
Occupancy Category		IV	(Tabl	e 1-1)
Importance Factor	=	1.15	(Tabl	e 6-1)
Topographic Factor	K _{zt} =	1	(Wal	ter P. Moore)
Exposure Category		В	(Wal	ter P. Moore)

Table 7: Wind Load Summary

Level	Floor Height	Windward (psf)		Leeward Pressure		Length (ft)		Shear (K)	
	(ft)	Perp	Parallel	Perp	Parallel	Perpendicular	Parallel	Perpendicular	Parallel
2	16	11.3508864	11.3508864	11.5738502	9.36093007	280.5	285	102.886218	94.4458831
3	17	11.545473	11.54547302	11.5738502	9.36093007	280.5	285	110.244493	101.291523
4	17	13.0535194	13.05351936	11.5738502	9.36093007	421.25	255	176.3627505	97.1666383
5	17	14.1723924	14.17239245	11.5738502	9.36093007	421.25	255	184.3752804	102.016953
6	15	15.2264033	15.22640333	11.5738502	9.36093007	421.25	285	169.3441022	105.11085
7	15	15.9561032	15.95610317	11.5738502	9.36093007	421.25	90	173.9548931	34.1779949
8	15	16.5804019	16.58040192	11.5738502	9.36093007	421.25	90	177.8996808	35.0207982
9	15	17.1884851	17.18848512	11.5738502	9.36093007	421.25	90	181.7420066	35.8417105
penthouse	19	17.772245	17.77224499	11.5738502	9.36093007	421.25	90	234.8788097	46.3977294
						Base Shear (k)		1511.688234	651.470081

2.3.2 Seismic Loads

Seismic loads for The Health Centre were calculated using the Equivalent Lateral Force (ELF) method provisions from ASCE 7-05 chapters 11 and 12. Seismic loads account for the weight of the existing structure, including the floors, mechanical rooms, and green roof. Below in Table 8 are values for Seismic Story Shear V_x . The corresponding story and floor forces and building overturning moment are depicted in the diagram in Figure 16. For the structural redesign, the shear wall lateral system and flat slab gravity system will have a different seismic response and weight. New seismic loads will be introduced in later sections.

Level	h _x (ft)	w _x (k)	k	w _x h _x ^k	C _{vx}	F _x (k)	h _x *F _x (ft-k)
Penthouse Roof	213.3	783.9	1.7715	28587331.8	0.004986	5.688352	1213.3256
Penthouse Level	188.2	3987	1.7715	449950176	0.078482	89.5318	16849.884
Level 9	173.2	4487.5	1.7715	510591748	0.089059	101.5984	17596.835
Level 8	158.2	4487.5	1.7715	466371908	0.081346	92.79942	14680.868
Level 7	143.2	4487.5	1.7715	422152069	0.073633	84.00048	12028.869
Level 6	128.2	6492.4	1.7715	727049465	0.126814	144.6694	18546.623
Level 5	111.2	6492.4	1.7715	630638850	0.109998	125.4855	13953.989
Level 4	94.2	8774.7	1.7715	910933937	0.158888	181.2591	17074.605
Level 3	77.2	7232.2	1.7715	530047588	0.092452	105.4697	8142.2613
Level 2	62.2	7232.2	1.7715	427059067	0.074489	84.97689	5285.5624
Level 1	47.2	7232.2	1.7715	324070546	0.056525	64.48407	3043.648
P4	30.9	6010.7	1.7715	152870684	0.026664	30.41845	939.93011
P3	20.6	6010.7	1.7715	101913790	0.017776	20.27897	417.74671
P2	10.3	6010.7	1.7715	50956894.8	0.008888	10.13948	104.43668
P1	0	6010.7	1.7715	0	0	0	0
				•		1140.8	129878.58

Table 8: Seismic Load Summary

Figure 16: Seismic Story Forces Diagram

Chapter 3 Flat Slab and Shear Wall Design

3.1 Design Proposal

3.1.1 Problem Statement

The existing structure of the Health Centre bed tower meets all necessary strength, code, and serviceability requirements. Additionally, the building meets the contractor's request for a concrete structural system. To continue to fulfill this request and pursue a deeper knowledge of concrete design, further consideration will be given for alternative concrete gravity and lateral systems for the bed tower. The alternative systems will be selected to satisfy the client's desire to fit in more with the surrounding university campus buildings and decrease the Health Centre's overall height. Solutions will explore the feasibility of a thinner gravity system to decrease story heights above grade. The below grade parking garage gravity system will not be included in the scope of this redesign.

A scenario in which the client wishes to replace some patient beds with additional research areas that use vibration sensitive equipment will be introduced for the alternative structural system. Such areas will be designed for the appropriate vibration criteria.

3.1.2 Construction Breadth

The impact of the alternative structural system on construction cost and schedule will be analyzed in a construction breadth. In general, changes to the structural system will alter the critical path of construction. The new critical path – in addition to the new cost of materials - will affect the overall project cost. Cost and schedule analysis will be used to determine the feasibility of the proposed structural system.

3.1.3 Mechanical Breadth

The warmer southeastern US climate identifies cooling loads as a design driver when selecting HVAC systems for the building. Hospital and research areas in particular require proper mechanical conditioning for a building to function properly. The addition of large shear walls to the exterior and interior of the building will act as insulation and potentially retain cold air throughout the course of the day. However, the addition of thick concrete walls can also keep heat in the building, and is a potential coordination issue between mechanical and structural systems outside of shear wall and duct locations. This breadth will study the change in building envelope R values caused by the addition of shear walls. The Cooling Load Temperature Difference method, along with Appendix E of Mechanical and Electrical Equipment for Buildings, 10th edition and 1997 ASHRAE Fundamentals tables will be consulted for a preliminary analysis of the effects of shear walls on the building cooling loads.

3.1.4 MAE and Schreyer Requirements

Work for this thesis will meet requirements set by both the Schreyer Honors College and the Department of Architectural Engineering. To satisfy Honors College requirements, an investigation of current requirements, research, and design approaches for vibration sensitive equipment will be carried out. This investigation will focus on information relevant for equipment typically found in hospital and research laboratories, including microscopes and MRI equipment. Both steel and concrete structures will be considered, with a focus on the redesigned concrete structure of the Health Centre. Appropriate finite element analysis software, such as SAP2000, will be used to model a three-bay span of the Health Centre for vibration analysis. The results of this modeling and research will provide a better understanding of building stiffness and behavior under walking excitation. Overall, this investigation will provide experience for situations that may occur in the structural engineering industry and encourage professional development.

Additionally, the proposed concrete redesign will fulfil requirements for the Graduate School of the Pennsylvania State University. Coursework from AE 530: Advanced Computer

Modeling of Building Structures will be used to construct and verify a three-dimensional computer model of the redesigned building in Etabs. SAP2000 will also be utilized to verify Etabs output and analyze the fundamental period of several bays for vibration analysis. Modeling the building in three dimensions will promote a greater understanding of building behavior, stiffness, and various end and joint conditions. Coursework from AE 538: Earthquake Resistant Design of Buildings will be used to provide seismic reinforcing detailing for the shear wall design that increases ductility and strength in a seismic event.

3.2 Weighing Alternative Design Solutions

Three alternative gravity systems were explored for the Health Centre structural redesign. The systems under consideration include a composite wide-flanged steel system, a two-way flat slab, and non-composite steel joists. All gravity framing systems maintained the 30'-0" x 30'-0" bay size of the existing structure for better coordination with the below-grade parking garage. The parking garage gravity system will remain the same post-tension flat plate system as the original structure. Potential structural systems were evaluated based on strength and serviceability. Additional consideration was given to architectural and construction concerns in the final decision matrix show in Table 9. The flat slab system was chosen for the redesign proposal due to the ability to maintain a both thinner slab and a stiffer structure at drop panel locations.

	Existing: One-Way Slab	Composite Steel	Two-Way Slab	Non-Composite Joists					
Architectural Coordination									
Depth	25"	22"	10"	29"					
Fire Rating	> 2 hr	2 hr	> 2 hr	2 hr					
Fire Protection Type	None	Cementitious/Sprayed	None	Cementitious/Sprayed					
Construction Statistics									
Cost	\$21.45 / SF	\$28.41 / SF	\$16.70 / SF	\$23.90 / SF					
Durability	High	Acceptable	High	Acceptable					
Structural Considerations									
Weight	175.1 psf	48.3 psf	125 psf	50.4 psf					
Servicability	N/A	Vibrations	N/A	Vibrations					
Lateral Systems									
Concrete Shear Wall	Yes	Yes	Yes	No					
Steel Moment Frame	No	Yes	No	Yes					
Steel Braced Frame	No	Yes	No	Yes					
Moving Forward?	N/A	YES	YES	NO					

Table 9: Gravity System Decision Matrix

3.3 Two-Way Flat Slab with Drop Panels

3.3.1 Preliminary Design and Codes

The two-way flat slab system was an economical choice for the building's regular 30'x30' bays, spanning large distances with less concrete than the existing one-way skip joist system. Due to the large 30 ft span, issues with punching shear were expected from the beginning of design. The addition of drop panels would eliminate problems with punching shear and stiffen the system for later vibration considerations for the 5th and 6th floors. This system would also reduce floor thickness, one of the main goals of the redesigned system. Overall, the floor system is regular and a typical mesh of reinforcing is possible for the bottom and top bars. However, regular slab depressions for beds on floors 7-9 and openings for elevators and mechanical shafts will require special detailing. Although edge beams were considered during the preliminary alternative solution analysis, they were not implemented in the final design. 5000 psi concrete strength if necessary

Code considerations for design used ACI 318-11. The use of ASCE 7-05 for the redesigned system was chosen for a more consistent comparison to the gravity and lateral loads of the existing structure. Design of the two-way flat slab system followed ACI Chapter 13: Two-Way Slab Systems of the ACI 318-11 Building Code Requirements for Reinforced Concrete. The direct design method detailed in ACI Chapter 13 was used to obtain preliminary slab and initial drop panel thickness. Typical floors considered for design include the 1st–3rd floors, 4th floor, 5th–6th floors, and 7th–9th floors. Dead, live, roof live, and snow loads were all determined according to engineering experience and ASCE 7-05. All ASCE 7-05 load combinations were considered during design. The penthouse floor and its atypical loads were also included in the design scope.

3.3.2 Modeling and Results

Design of the two-way flat slab system had several iterations. Preliminary sizes obtained from the direct design method were used for the first design iteration in RAM Concept. A 10 in

slab was initially used per minimum requirements from ACI 318-11 Table 9.5c to simplify calculation of slab deflections. Drop panels were kept to the minimum width of the span/6. Most drop panels are 10'x10' squares, with the exception of panels along grid lines J and 13. Initial drop panel thicknesses assumed the depth of a typical 2x4 dimensional lumber and a horizontal ³/₄" for formwork, totaling 14 ¹/₄ inches from the top of the slab. The initial sizes required larger rebar sizes than expected, and several iterations of design followed. Design spans were laid out in both the N-S and E-W Directions, as shown in Figure 17 and Figure 18. Column and middle strip widths are typically 14'-2" in both directions for typical bays due to the square bay size. Square bays also allowed top and bottom reinforcing to be uniform in both directions.

Design iterations for slab and drop panel thicknesses considered during design are listed on the following page. The final thicknesses chosen for design were an 11 in slab with 19 ¼ drop panels, matching dimensions suggested by the CSRI Manual of Standard of Practice. This choice maintained the thinnest slab possible for punching shear limitations without requiring larger rebar sizes or excessively tight rebar spacing. Note that all drop panel thicknesses listed below begin at the top of the slab.

- 10 in slab with 14 ¹/₄ in drop panels
- 11 in slab with 14 ¹/₄ in drop panels
- 13 in slab with 17 ¹/₄ in drop panels
- 11 in slab with 19 ¹/₄ in drop panels

A standard mesh of #5 rebar for bottom reinforcement and #7 rebar for top reinforcement in column and middle strips is maintained throughout the typical conditions in both directions. Top and bottom reinforcement in the longitudinal direction was considered more critical due to the longer spans, and assigned a minimum clear cover of 0.75 in. In the latitudinal direction, top and bottom reinforcement was assigned a minimum clear cover of 1.5 in. The exception for this is at slab depressions on the $7^{th} - 9^{th}$ floor. Top reinforcement in these locations is 2 in lower than the typical standard mesh. Slab thickness also extends 2 in below the 11 in slab due to issues with excessive deflections shown in RAM Concept. A 3-D perspective view of floors 7-9 is shown in Figure 19. When modeling the slab, slab depressions, and slab openings in RAM Concept, a priority of 1, 2, and 3 were assigned to each element, respectively.

Figure 19: Floors 7-9 Depression and Drop Panel Perspective

Punching shear was checked at all columns in RAM Concept and via hand calculations located in Appendix A.1. The punching shear radius used in RAM Concept was increased to 11 ft on interior columns to consider critical sections both a distance d/2 away from the column and a distance d/2 away from the drop panel. "Max Shear Core" was selected to include the thickness of the drop panels in RAM Concept punching shear checks. Deflection limits of 1/240 were also checked during the design process in RAM Concept. The choice of an 11 in. slab based on Table 9.5(c) from ACI 318-11 prevented most issues with deflection, as the minimum thicknesses listed in the table are based on previous experience with concrete design and performance over the years. However, some locations required further study on all floors, as highlighted in Figure 20.

Figure 20: Floors 1-3 Short Term Deflections

In location A, multiple openings in the slab required an increase in floor stiffness. A drop panel was run between columns across the 30' bay in this location. Additionally, beams were added to frame the bay in this location. The width of the beams was kept the width of the column for constructability, and a preliminary depth of 36 in was assigned. These adjustments solved the short and long term deflections issues in this location.

In location B, a 45 ft bay span from the original architectural layout created problems with excessive deflections. Drop panels were run between columns in this location, but short term deflections were still 7 inches in some locations. Framing solutions with beams were considered and a preliminary study of the effects of this framing system was run in RAM Concept. Ultimately,

these solutions proved to add more weight and create deflections in other areas of the slab, and were not pursued further. To best solve deflection issues in these locations, the bay size should be adjusted and shortened. Due to this change necessitating the relocation of mechanical and hospital equipment, the project architect would need to be consulted.

A typical bay from the 4th floor is shown in Figure 21. Typical top bars for all floors are (10) #7 at 15". Typical bottom bars for all floors are (18) #5 at 11". All RAM Concept floor plans are located in the Appendix, along with direct design hand calculation verification. Additional vibration analysis of the two-way flat slab system will be discussed in Chapter 4. A typical interior bay on the 5th and 6th floors will be assessed for AISC Design Guide 11 provisions for MRI equipment. Precedent for using Design Guide 11 criteria for concrete gravity systems is discussed in the attached literature review, and includes buildings such as Cornell's Nanotechnology Laboratory constructed in 2013 and Duke's Science Center constructed in 2006.

Figure 21: Typical Bay Top (Above) and Bottom (Bellow) Bars
3.4 Gravity Columns

3.4.1 Preliminary Design and Codes

Gravity columns were designed to support all building gravity loads. As a result, axial load on shear walls could essentially be neglected with the exception of self-weight later in the design process. An exception to this is exterior columns, which may still have moments due to lateral loads. The preliminary column sizes were chosen based upon the existing column dimensions of the Health Centre in combination with the CSRI manual. These sizes were 28"x28", 20"x20", and 18"x18" and checked with initial strength calculations for typical preliminary building loads. Column splices will occur at changes in column size as the building height increases. Locations of columns were kept the same as the original layout. The change in lateral system from intermediate concrete moment frames to concrete shear walls meant that column orientation was

Figure 22: Gravity Model for RAM Structural System

no longer integral to resisting wind and seismic forces, and square columns could be used.

Loads and load combinations used for gravity column design came from ASCE 7-05. Loads for design were checked with these preliminary loads, and then taken from the RAM Structural System model shown in Figure 22. ACI 318-11 Chapters referenced during design include: Chapter 9: Strength and Serviceability Requirements, Chapter 10: Flexure and Axial Loads, and Chapter 21: Earthquake Resistant Structures.

3.4.2 Modeling and Results

Initial column sizes were placed into RAM Structural System to obtain building loads for RAM Concept and SP Column analysis. Columns were fixed-fixed between floors, and pinnedfixed at the lowest parking level below grade. The largest unbraced length for column design was 17 ft for building floors, and 23 ft for the penthouse roof. Columns were then modeled with dead, live, and roof live loads obtained from

RAM in StructurePoint (SP) Column.

Figure 23: Column Design Groups

Cracked property modifiers of 0.35 and 0.7 were used for beams and columns, respectively, during design in SP Column and RAM. Columns were placed into four design groups based on building loads, accounting for differences in loading such as the green roof between column lines A and B. Column groups also considered location to account for the floor plan decreasing area as the building height increases. Figure 23 shows the column groups used for design.

Inputs for SP Column considered slenderness due to columns above and below. An f²c value of 5000 psi was used for columns. 6000 psi concrete was considered, but ultimately not implemented because column sizes were acceptable to obtain the required strength. Service and factored load combinationswere run for all iterations of design in SP Column. Once initial column

sizes were run and resized in SP Column, the new column sizes were updated RAM Structural System and RAM Concept. The new building loads from RAM were then input in SP Column. This iterative process occurred until the column capacity in SP Column could carry the updated building loads. Typical column loads in Table 10 were first determined for the controlling $1.2D + 1.6L + 0.5L_r$ load case to corroborate building loads.

				Total Axial Load (K)				
Level	Dead (psf)	Live (psf)	Red. Live (psf)	Dead	L or L _r	1.2D+1.6L+.5L _r		
Penthouse Roof	40	20	20	36	13.9998	50.200		
Penthouse	86	150	150	113.4	135.000	359.080		
Level 9	86	80	40	190.8	171.000	509.560		
Level 8	86	80	34.142	268.200	201.728	651.605		
Level 7	86	80	32	345.6	230.528	790.565		
Level 6	86	80	32	423	259.328	929.525		
Level 5	86	80	32	500.4	288.128	1068.485		
Level 4	86	100	40	577.8	324.128	1218.965		
Level 3	86	100	40	655.2	360.128	1369.445		
Level 2	86	100	40	732.6	396.128	1519.925		
Level 1	86	100	40	810	432.128	1670.405		
Parking 1	105	40	40	904.5	468.128	1841.405		
Parking 2	105	40	40	999	504.128	2012.405		
Parking 3	105	40	40	1093.5	540.128	2183.405		
Parking 4	105	40	40	1188	576.128	2354.405		
					Axial + 1.2 Self Wt.	2557,205		

Trib Area =	900	ft ²
K _{LL} =	4	
Roof Trib=	700	ft ²
Self-Weight=	169	К

Note: L_r excluded from total axial live load total and added as .5 L_r to third column.

Table 11 shows the final dimensions and reinforcing for all four column groups. All columns were designed to have equal bars on all sides, with a minimum clear cover of 0.75 in. A clear cover of 1 ¹/₄ in is typical for most columns. Reinforcing ratios were kept below 4% to avoid mechanical column splicing. Group 4 columns required a larger column size to have enough capacity to extend from the lowest parking deck to the penthouse roof and carry increased loads from the occupied green roof. Final column sizes considered coordination with maintaining proper circulation on the parking garage levels.

Column Group	Floor	Sq. Dim. (in)	Bars	As (in ²)	Rein. Ratio
	P04-Level 1	30	(16) #8	12.64	0.014044
1	Level 1-4	24	(18) #8	14.22	0.024688
Ŧ	Level 4-9	20	(16) #8	12.64	0.031600
	Penthouse	20	(8) #8	6.32	0.015800
	P04-Level 1	28	(12) #9	12	0.015306
2	Level 1-4	22	(16) #10	20.32	0.041983
	Level 4-6	20	(16) #8	12.64	0.031600
	P04-Level 1	28	(8) #9	8	0.010204
2	Level 1-4	22	(8) #8	6.32	0.013058
5	Level 4-9	20	(8) #7	4.8	0.012000
	Penthouse	20	(8) #7	4.8	0.012000
	P04-Level 1	36	(16) #11	24.96	0.019259
	Level 1-4	32	(24) #11	37.44	0.036563
4	Level 4-9	24	(8) #8	6.32	0.010972
	Penthouse	20	(8) #7	4.8	0.012000

Table 11: Column Group Final Design

3.5 Shear Wall Design

3.5.1 Preliminary Design and Codes

Shear walls resist lateral building loads in both the North-South and East-West directions around the elevator core, mechanical shafts, and exterior walls. Due to the changes in floor plan on each level, designing a completely symmetric shear wall layout was not possible. Exterior walls shift backwards as the building height increases, and floors 7-9 are much smaller in area than the lower levels. Architectural coordination also complicated the placement of shear walls. As a core and shell building, the architectural floor plan has no permanent walls to ensure future flexibility of the spaces. Windows surround the building exterior, as seen in Figure 24.

Ultimately, an architectural design decision was made to prioritize keeping open interior spaces over coordination with the exterior window façade. This decision created 15 ft architectural

spaces on the west exterior façade that could be used for potential offices, conference rooms, or waiting areas in the hospital. The final design layout is shown in Figure 25.

Figure 24: Exterior Facade of the Health Centery (SmithGroupJJR)

Design of the shear walls follows the provisions of ACI 318-11 Chapters as follows: Chapter 9: Strength and Serviceability Requirements, Chapter 10: Flexure and Axial Loads, Chapter 11: Shear and Torsion, and Chapter 21: Earthquake Resistant Structures. Cracked section modifiers for out-of-plane bending will be used when modeling both gravity and lateral concrete elements per ACI requirements. The 2006 International Building Code and minimum design loads from ASCE 7-05 were referenced for consistency with the gravity structural system.

3.5.2 Lateral Loads

Wind and seismic loads were both recalculated for the new structural system. A new gust effect factor was found for wind loads, and seismic loads were updated for the new structural system and building masses. Overall, seismic forces controlled for strength design. Equivalent Lateral Force procedure was permitted for use to determine the new building loads. Both seismic and wind loads were considered for building deflection limits. New lateral loads for the redesigned structure are listed in Tables 12 and 13.

Level	Floor Height	Windward (psf)		Leeward Pressure		Length (ft)		Shear (K)	
	(ft)	Perp	Parallel	Perp	Parallel	Perpendicular	Parallel	Perpendicular	Parallel
2	16	11.3508864	11.3508864	11.5738502	9.36093007	280.5	285	102.886218	94.4458831
3	17	11.545473	11.54547302	11.5738502	9.36093007	280.5	285	110.244493	101.291523
4	17	13.0535194	13.05351936	11.5738502	9.36093007	421.25	255	176.3627505	97.1666383
5	17	14.1723924	14.17239245	11.5738502	9.36093007	421.25	255	184.3752804	102.016953
6	15	15.2264033	15.22640333	11.5738502	9.36093007	421.25	285	169.3441022	105.11085
7	15	15.9561032	15.95610317	11.5738502	9.36093007	421.25	90	173.9548931	34.1779949
8	15	16.5804019	16.58040192	11.5738502	9.36093007	421.25	90	177.8996808	35.0207982
9	15	17.1884851	17.18848512	11.5738502	9.36093007	421.25	90	181.7420066	35.8417105
penthouse	19	17.772245	17.77224499	11.5738502	9.36093007	421.25	90	234.8788097	46.3977294
						Base Shea	ar (k)	1511.688234	651.470081

Table 12: Revised Wind Story Forces in Perpendicular and Parallel Directions

Table 13: Revised Seismic Story Shear and Overturning Moment

Level	h _x (ft)	w _x (k)	k	w _x h _x ^k	C _{vx}	F _x (k)	h _x *F _x (ft-k)
Penthouse Roof	213.3		1.31	0	0	0	0
Penthouse Level	188.2	3987	1.31	3805379.17	0.126135	270.5592	50919.232
Level 9	173.2	4487.5	1.31	3841512	0.127332	273.1282	47305.798
Level 8	158.2	4487.5	1.31	3411653.76	0.113084	242.5656	38373.881
Level 7	143.2	4487.5	1.31	2994262.11	0.099249	212.8894	30485.767
Level 6	128.2	6492.4	1.31	3747473.6	0.124215	266.4421	34157.879
Level 5	111.2	6492.4	1.31	3110301.86	0.103095	221.1398	24590.741
Level 4	94.2	8774.7	1.31	3382508.99	0.112118	240.4934	22654.483
Level 3	77.2	7232.2	1.31	2148073.27	0.071201	152.7261	11790.458
Level 2	62.2	7232.2	1.31	1618586.19	0.05365	115.0801	7157.9805
Level 1	47.2	7232.2	1.31	1127546.46	0.037374	80.16757	3783.9095
P4	30.9	6010.7	1.31	537985.611	0.017832	38.25031	1181.9346
P3	20.6	6010.7	1.31	316294.115	0.010484	22.48824	463.25767
P2	10.3	6010.7	1.31	127568.021	0.004228	9.069975	93.420746
P1	0	6010.7	1.31	0	0 0		0
						2797	272958.74

3.5.3 Modeling and Verification

Etabs was chosen to model the new shear wall system. The model included floor diaphragms and shear walls, with the assumption that gravity loads would be carried by the gravity columns. To determine the best layout, walls were placed in ETABS in prospective locations on

the exterior and around elevator and mechanical shafts with the same initial 16" wall section. Etabs analysis showed this layout and wall thickness meant that many shear walls had inadequate flexural strength to resist seismic loads at the lowest building level. An iterative process of increasing shear wall thicknesses to a typical thickness of 18" and identifying appropriate interior locations on the open floor plans for additional shear walls led to the final shear wall layouts shown in Figure 25. Assumptions for the Etabs model are listed in Table 14.

Table	14:	Etabs	Property	Summary
-------	-----	-------	-----------------	---------

Element	Туре	Properties	Modifiers	Assumptions	
Shear Wall	shall_thin	f'c = 6000 psi	l = 0.351 _g	Cracked concrete	
	311011-01111	thickness = 18",20",22"	Self-Wt. = 1.0	Fixed at base	
Diaphragm	shell_thin	f'c = 5000 psi	l = 0.25l _g	Cracked concrete	
	Sheh-thin	thickness = 13"	-	Rigid	

Figure 25: Shear Wall Layouts of 1st, 5th, and 7th floors, respectively

During the iterative design process, building eccentricities were checked on each level to limit the level of torsional shear on each floor. After the final layout was determined, centers of mass and rigidity were calculated for the 5th floor of the model to verify results. Table 15 and

Figure 26 depict the results of both Etabs and hand calculations. Overall, results verify the model for center of mass. Differences in center of rigidity between the calculated and Etabs values may be attributed to the manner in which Etabs calculates element stiffness. A unit load is applied in the x and y direction, causing rotations R_{zx} and R_{zy} , respectively. A unit moment is applied to the z-axis for rotation R_{zz} . The building's center of rigidity is calculated by determining $-R_{zy}/R_{zz}$ and R_{zx}/R_{zz} . The spreadsheets used for the hand calculation analysis of center of rigidity are located in Appendix A.3.

Table 15: Center of Mass and Rigidity Comparison

	COM _x (ft)	COM _y (ft)	COR _x (ft)	COR _y (ft)	e _x (ft)	e _y (ft)
Calculated	129.2158	160.9153	62.16482	89.01671	67.05097	71.89855
Etabs	126.0024	161.4631	94.4072	116.1521	31.5952	45.311
% error	-2.48684	0.340456				

Figure 26: Etabs COM and COR results

For strength design, seismic load cases controlled design. Etabs generated seismic loads used for analysis, after verifying that the loads were similar to base shear and story forces determined from the previous hand calculations. Etabs load combinations consider ASCE 7 requirements that the building design accounts for 100 percent of seismic loading in one direction, and 30 percent of seismic loading in the other. Table 17 shows the base shear comparison between Etabs and hand calculated loads. For Etabs seismic loading, all seismic coefficients and factors were user defined from the inputs for ordinary reinforced concrete shear walls. listed in Table 16. The bottom story considered in seismic as the lowest parking level, and the penthouse roof as the top story.

Table 16: Seismic Coefficients

User-Defir	Program Defined Inputs		
Factors	Seismic Coeff.		
R = 4	Ss =.228	Fa = 1.2	
Omega = 2.5	S1 = 0.086	Fv = 1.7	
C _d = 4	Long Period = 12s	SDS = .1824	
Importance = 1.5	Site Class C	SD1 = 0.0975	

Table 17: Base Shear Comparison

Base Shear Comparison						
F (K)						
Solomia	Calculated	2145				
Seisinic	Etabs	2681.408				

Final verification of the Etabs model analyzed lateral load distribution on the 5th floor level. Calculations verified that the amount of shear in each wall approximately matched distribution based on the relative stiffness of each wall and torsional effects, as listed in Table 18. Shear values in Table 3.10 checked walls for forces in the perpendicular direction, shown in white. Some differences in load distribution between Etabs and hand calculations may be attributed to the difference in methods for calculating relative stiffness. Additionally, the use of three-dimensional computer model allows for calculation of a more accurate building period than can be obtained from the approximation equations in ASCE 7 commentary.

		Rol	Direct Shear (K)		Torsional Shear (K)				Total Shear (K)
Object	R _x (lb-in)	Stiffness	Seismic	d _i (ft)	R _x *d _i (k-ft ²)	$R_x * d_i^2 (k-ft^3)$	R _i d _i /J (1/ft)	V _t - Seismic	Seismic
A6	50756464	0.112483	24.173	258.9832924	1095423.019	4633316615	4.72761E-05	0.730462206	24.903
P1	21238612	0.047068	10.115	183.9832924	325629.1518	576325943.2	1.7566E-05	0.271412295	10.386
P4	21238612	0.047068	10.115	183.9832924	325629.1518	576325943.2	1.81297E-05	0.280121206	10.395
Р3	62035679	0.226551	48.686	167.4832924	865828.308	4476020552	4.83597E-05	0.747205228	49.433
P5	62035679	0.226551	-	-	-	-	-	-	-
A1	21238612	0.047068	-	-	-	-	-	-	-
P6	21238612	0.047068	10.115	150.4832924	266338.0258	471387506.4	1.4876E-05	0.229848301	10.345
P11	1.08E+08	0.239293	51.424	60.98329241	548737.9582	4937636767	3.0649E-05	0.473557942	51.898
A4	1.2E+08	0.265882	57.138	74.01670759	740016.4754	7398659056	4.13326E-05	0.638630285	57.777
P7	18407968	0.040794	8.767	28.98329241	44460.29302	68201970.55	2.48327E-06	0.038368997	8.805
P8	18407968	0.040794	8.767	13.98329241	21450.33314	32904753.66	1.19808E-06	0.018511524	8.785
Р9	20888305	0.076283	-	-	-	-	-	-	-
P10	20888305	0.076283	-	-	-	-	-	-	-
12-CD	50756464	0.112483	24.17258789	29.01670759	122732.1236	519120720.7	6.85504E-06	0.10591717	24.279
P13	1.08E+08	0.394331	-	-	-	-	-	-	-

Table 18: Shear Distribution Check

3.5.4 Results

Story drifts for wind and seismic loading conditions were obtained from Etabs output. Table 19 evaluates this output against allowable inter-story drifts from ASCE 7-05 seismic limitations of $0.010h_{sx}$. Wind drifts are evaluated against a limitation of H/400, where H is the total height of the story. All stories met the allowable drift limitations in both the x and y directions.

Table 19: Seismic and Wind Drift Limits

C 1	h (ft)	Wind			Seismic		
Story		H/400 (in)	Story Deflect. (in)	Acceptable?	0.010h _{sx} (in)	Drift (in)	Acceptable?
Penthouse	23.5	5.706	0.786335	Yes	1.8	0.2785	Yes
9	15	5.256	0.697929	Yes	1.8	0.2784	Yes
8	15	4.806	0.609323	Yes	1.8	0.2774	Yes
7	15	4.356	0.521461	Yes	1.8	0.2753	Yes
6	15	3.906	0.436133	Yes	2.04	0.3177	Yes
5	17	3.396	0.345983	Yes	2.04	0.287	Yes
4	17	2.886	0.262567	Yes	2.04	0.2983	Yes
3	17	2.376	0.165761	Yes	1.92	0.1649	Yes
2	16	1.896	0.111967	Yes	1.92	0.122	Yes
1	16	1.416	0.068157	Yes	1.956	0.0966	Yes
P1	16.3	0.927	0.032648	Yes	1.236	0.0451	Yes
P2	10.3	0.618	0.016079	Yes	1.236	0.0302	Yes
P3	10.3	0.309	0.001666	Yes	1.236	0.0138	Yes
P4	10.3	0	0	Yes	0	0	Yes

An example shear wall design based on the loads from the worst case Etabs load combination is show in Figure 27. Hand calculations for this design are provided in the Appendix. Design of shear walls was run in Etabs to determine approximate areas of steel required for a building cost estimate and verify walls had adequate strength for all seismic load cases. However, the program was not used as a black box to design the walls themselves.

Figure 27: Elevator Core Shear Wall Cross Section at Base

3.5.5 Conclusions

The redesigned shear wall lateral system introduced architectural coordination issues that were not present with the existing moment frame system. A core-and-shell building aims to maintain a flexible floor plan such that interior spaces may shift with the building occupant's needs. Coordination of such spaces with a constantly changing floor plan along the building height and a curtain wall exterior is difficult with a shear wall lateral system. Overall, the redesigned system is a less efficient use of space and would require further architectural coordination in the design process.

Chapter 4

Vibration Considerations and Analysis

4.1 Literature Review

The following is a review of existing literature for structural engineers who wish to design for vibration sensitive equipment. Current industry practice is to follow standards set by Design Guide 11, released by the American Institute of Steel Construction (AISC). This literature review will also explore other design criteria and engineering practices, as well as the possible sources of structure-borne vibrations.

The most recent edition of AISC Design Guide 11 was published in 1997. It defines basic floor vibration terminology and principles for vibration design of structural steel. Additionally, the document provides acceptance criteria for floor vibration design, discussion of various vibration sources, and example calculations.

4.1.1 Design Guide 11 Walking Excitation

Current AISC criterion for floor vibrations due to walking excitation were developed based upon North American floor systems constructed over 20 years ago. Floors of this age typically have a natural frequency between 5 and 8 hz. Floors with a natural frequency above 9 hz will not usually have significant resonance under walking excitation. Recent changes in the ways in which floors are designed and constructed - including the introduction of limit states design, longer span lengths, and lightweight concrete - have resulted in floors with frequencies lower than 5 hz than cannot always be properly predicted by the criterion provided by AISC data.

A floor system is properly designed for walking excitation if the peak acceleration does not exceed the acceleration limit ao / g. For typical offices, residences, and churches, ao / g is equal to 0.5%. Acceleration is evaluated for both girder and joist panel modes, and is based upon effective weight, member properties, and beam spacing. Continuity effects allow for a 50 percent increase in the effective weight considered, with the exception of beams framing into columns and joists connected solely at their top chord.

The damping of walking excitation due to the effects of non-structural elements, such as partitions, furnishings, and occupants, is considered by the modal damping ratio. Recommended modal damping ratios range from 0.01-0.05, with 0.05 typically used for buildings with partitions that extend the entire height of the floor. Additionally, floor stiffness is considered for floor systems with a natural frequency greater than 9-10 hz. The criterion for walking excitation vibrations should be evaluated with consideration for the location of walkways in a building. Exterior panels are typically stiffer due to exterior cladding and will not have the steady traffic flow of an interior corridor. Panels with interior floor edges may require stiffening due to a reduction in mass.

Current AISC criterion for floor vibrations due to walking excitation were developed based upon North American floor systems constructed over 20 years ago. Floors of this age typically have a natural frequency between 5 and 8 hz. Floors with a natural frequency above 9 hz will not usually have significant resonance under walking excitation. Recent changes in the ways in which floors are designed and constructed - including the introduction of limit states design, longer span lengths, and lightweight concrete - have resulted in floors with frequencies lower than 5 hz than cannot always be properly predicted by the criterion provided by AISC data.

A floor system is properly designed for walking excitation if the peak acceleration does not exceed the acceleration limit ao / g. For typical offices, residences, and churches, ao / g is equal to 0.5%. Acceleration is evaluated for both girder and joist panel modes, and is based upon effective weight, member properties, and beam spacing. Continuity effects allow for a 50 percent increase in the effective weight considered, with the exception of beams framing into columns and joists connected solely at their top chord.

The damping of walking excitation due to the effects of non-structural elements, such as partitions, furnishings, and occupants, is considered by the modal damping ratio. Recommended modal damping ratios range from 0.01-0.05, with 0.05 typically used for buildings with partitions that extend the entire height of the floor. Additionally, floor stiffness is considered for floor

systems with a natural frequency greater than 9-10 hz. The criterion for walking excitation vibrations should be evaluated with consideration for the location of walkways in a building. Exterior panels are typically stiffer due to exterior cladding and will not have the steady traffic flow of an interior corridor. Panels with interior floor edges may require stiffening due to a reduction in mass.

4,1.2 Design Guide 11 Vibration Sensitive Equipment

General requirements for vibration sensitive equipment are to be used when product vibration criteria is not available. Chapter 6 of AISC Design Guide 11 provides one such set of general requirements for floors with frequencies between 1 Hz and 80 Hz. The greatest vibrational velocity of a floor may be determined from its frequency and the type of equipment under consideration. For example, equipment used for eye or neuro surgery is designed for a vibrational velocity of 2,000 micro inch/second.

Sensitive equipment used for viewing enlarged images, such as microscopes, may be designed for a more specific vibrational velocity based upon the magnification level of the equipment. It should be noted that 40x magnification is typical for surgical and workshop equipment. Peak vibrations are considered for this design method, while the decay rate of vibration and its effect on the human eye's perception is ignored.

Peak vibration of floors is usually caused by walking excitation. Walking creates a force pulse whose maximum force and decay rate is dependent upon the person's walking speed and weight. The maximum floor displacement due to a force pulse is dependent on the aforementioned factors and the fundamental natural frequency of the floor. The value of the maximum floor displacement is dependent on the beams and girders with consideration for composite action, while ignoring effects due to the slab and deck. If floor mass stays fairly constant, redesign of floors for vibration sensitive equipment will depend on increasing the floor's stiffness.

Typically, it is sufficient to stiffen the bays in which the sensitive equipment is located. A stiffer bay may be achieved with minor changes to the floor framing. Shortened spans will create

a less flexible framing system. Stiffening the greater contributor to the floor's deflection - beams or girders - will also decrease floor flexibility.

Other redesign possibilities include moving the equipment further from areas with high walking traffic and closer to column lines, and placing expansion joints between corridors and the rooms with sensitive equipment. A separate structure may also be designed to support the vibration sensitive equipment if it is rigidly connected to the structural system to prevent amplification of vibrations. If sensitive equipment is not located in the middle of the bay or only slow walking may occur in the laboratory space, Design Guide 11 suggests computer analysis to determine floor vibration in the scenarios required for design.

4.1.3 Vibration Criteria

Generic Vibration Criteria for Vibration Sensitive Equipment

The use of vibration criterion curves as the basis for the generic requirements of vibrationsensitive equipment is widely accepted in the engineering community. Since their establishment in the 1980's, VC curves have been published by organizations such as the American Institute of Steel Construction in Design Guide 11 and the Institute of Environmental Sciences and Technology. These curves are based upon root-means-square velocity to account for the variation in maximum sensitivity of people and equipment, and are designed to be used for the most sensitive equipment in each equipment category.

Alternatives to the VC curves exist but have not been widely accepted for various reasons. The Medearis Time Domain Method uses the time between peak displacements instead of frequency to assess sensitive equipment (Gordon). However, the Medearis Method is impractical when equipment manufacturers do not provide a time criterion for vibration evaluation. In development at the time Gordon's writing was the Ahlin Response Spectrum Method. The Ahlin Method is based upon the idea of a vibration response spectrum similar to the ones used in seismic design. Further review of this method was required to determine its practicality for a wider use. VC curves common in today's vibration assessment may vary in accuracy of predicting actual behavior. Base conditions not accounting for the effects of HVAC equipment that may be installed nearby in the building may have been used to determine the manufacturer criteria. As vibration sensitive equipment ages, its performance will naturally decay over time. If a specific bay is designed for the equipment location, it decreases the flexibility of the space. Equipment must stay in the correct location to perform properly. With the technological advances of sensitive equipment, it may be necessary to revise VC curves for lower frequencies (Gordon). Overall, there is a clear need for further review of the accepted method of vibration criteria.

Vibration Criteria for Sensitive Equipment

Equipment may be considered sensitive to vibrations if internal relative displacement of components will affect equipment performance (Ungar, 1992). Additionally, equipment sensitivity to vibrations may be due to movement relative to an observer, such as in the case of a microscope. Amplitude criteria curves for equipment are based upon the most severe vibrations considered acceptable from experimental tests run at multiple frequencies and directions. Most vibrational velocity curves are developed from data from multiple manufactures. These curves, as previously mentioned, show that low frequencies may tolerate higher velocity vibrations. Ungar also discusses the development of the one-third octave bands and the decision to assume 10% critical damping that is currently used in Design Guide 11.

Studies by House and Randell evaluated the acceptability of various vibration environments for a range of microscope magnification (Ungar, 1992). As frequency increases, the eyes cannot follow the movement of object being magnified and views a blurry image. Depending on the type of observation being made, this blurring may still be considered acceptable.

Evolving Criteria for Research Facilities: I - Vibration

In 2005, generic criteria for vibration equipment reflects the evolution and progress made since the development of the VC curves in the 1980's. The VC curves remain a standard for generic vibration evaluation. Two important changes to these curves include the addition of curves VC-E, VC-F, and VC-G (Amick, 2005). These curves were introduced after the growth of the semiconductor industry, and are used for such equipment. Additionally, some curves were

flattened since the original VC curves were introduced to account for additional sensitivity of equipment to lower frequencies.

The nano-science industry has also impacted the development of criteria for vibration sensitive equipment with its need for additional consideration for noise and low frequency sensitivity. Unlike in 1980, most sensitive equipment is now designed with internal isolation (Amick, 2005). The NIST-A criterion was introduced to account for pneumonic isolation increasing performance of sensitive equipment at frequencies less than 4 Hz. Ambient site survey data from existing nanotechnology facilities is still being collected and researched to determine if existing facilities meet the theoretical NIST-A criterion.

New technology is making it possible to adjust floor stiffness to meet the needs of sensitive equipment. Step-and-scan systems can now adjust the rectile and stage of equipment as needed, with forces from such adjustments being supported by the structure. Such systems are creating a new consideration for dynamic stiffness requirements that will need to be considered in addition to vibration in future structural design (Amick, 2005).

4.1.4 Design Approach

Vibration Control Design of High Technology Facilities

The sources of vibration for sensitive equipment can be broken down into three categories: external, internal, and service machinery. External sources include construction activities, highways and railroads, and nearby outdoor machinery. The most common internal source of vibration is pedestrian traffic in corridors (Ungar, 1990). In general, service machinery refers to HVAC equipment. Each vibration source has different design solutions. In his 1990 paper, Ungar, suggests solutions that are applicable for all vibration sources, such as stiffening the overall structure, which were covered in previous discussion of Design Guide 11.

Ungar's solutions including addressing external vibrations at the foundation level. Isolation of foundations through the use of air springs or bearing pads help mitigate soil vibration effects on the building structure. Changing the footprint and shape of the foundation can also be used to "tune" the building to attenuate a desired range of frequencies. In Japan, "tuned absorbers" have been successful with reducing soil vibrations. These tuned absorbers are large masses, typically concrete slabs, mounted to foundations to create a spring-mass system that dampens vibration. Although not always possible in practice, proper site selection away from sources of external vibration will eliminate the issue as well.

Internal vibrations may be mitigated by a structural solution suggested by Ungar in his 1990 paper. Corridors are the largest source of internal vibrations, and locating these closer to column lines and away from midspan is one possible way to reduce vibration. Pedestrian "bridges" that frame corridors directly into columns help reduce the transmittance of vibrations throughout the structure. A physical joint between structure supporting sensitive equipment and corridor structure may also achieve outcome. However, the authors also suggests non-structural solutions for internal vibration problems. They include placing signs requesting occupants to walk more slowly or eliminating long corridors as possible solutions for decreasing internal vibrations. These solutions seem impractical to enforce, particularly in a hospital setting that requires rolling of hospital beds and corridors for patient movement.

Mechanical vibration sources may be partially controlled with careful selection and placement of equipment. If the mechanical equipment is placed on grade, it may be isolated with sleeved columns on bedrock, a tuned bed of fill, or an air spring system (Ungar, 1990). Important to note for mechanical vibration is its tendency to transmit through other building components, such as piping and conduits.

Floor System Vibration Control

LeMessurier Consultants reviewed current practices for floor system vibration control in existing concrete and composite steel buildings using criteria from AISC Design Guide 11 (Hines). Concrete systems were evaluated using Design Guide 11 requirements and uncracked concrete sections during the design process. Experimental methods were used to estimate excited natural frequencies during a simulated vibration of the floor system and assess the its natural frequencies under resonance testing. Damping of each floor system was estimated after each resonance test. Situations not covered in detail in Design Guide 11, specifically irregular floor systems and concrete floor systems, are also discussed by LeMessurier and Hines. Irregular floor systems, such as cantilevers or bridge walkways, may have special boundary conditions that require more attention than the typical floor system. Coupling between bays and proximity to columns have a greater impact on the performance of such systems. Depending on the situation, LeMessurier subscribes to the view that a finite element analysis model of the whole or subsection of the structural system may be necessary.

Concrete floor systems have much higher damping than structural steel floor systems, but in practice have been designed for AISC Design Guide 11 requirements. Some challenges in designing concrete floor systems for vibration control include a difficulty predicting fundamental frequencies and the depending of the natural frequency on the bay's end connections. The appropriate times to use approximations versus a finite element model are dependent upon the situation and the structure.

Limiting Effects of Construction Vibrations on Sensitive Equipment

Construction-related ground vibrations may impact nearby laboratory and medical vibration sensitive equipment. Because experimental data can be discarded or timed around construction activities, the main concern for these vibrations stems from damage to the equipment itself. Operating rooms and MRI equipment may also experience vibrations that render the equipment and space unusable during construction activities. Sources of construction vibration include driving piles, blasing, and the use of vibratory compactors (Ungar, 2011).

Ungar discusses developments in the assessment of construction vibration effects on vibration sensitive equipment, particularly in a research and hospital setting. Because vibration criteria provided by manufacturers for equipment may be conservative or for operation at the most sensitive setting, users of sensitive equipment are the best course for evaluating construction effects. Methods of user evaluation range from dropping a large concrete block to simulate construction vibrations to having users occupy the space during construction activities.

If construction vibrations are determined to be a problem, there are several courses of action one can take. Scheduling construction and sensitive equipment activities to occur at

different times of day may work for hospitals with operating rooms. Alternative methods of construction may also be used, such as using vibratory pile drivers instead of impact pile drivers. These solutions are likely to add cost to the project (Ungar, 2011). However, they may be the best approach if significant vibration reduction is required. Structural measures, including slurry walls and trenches, are limited in their effectiveness and are only able to reduce construction vibration by a factor of 5 to 10.

Case Studies of Structures with Man-Induced Vibrations

These case studies review five types of structures that may experience vibrations due to human activity: footbridges, gymnasiums, dance and concert halls without fixed seats, concert halls and theaters with fixed seats, and swimming pool diving boards. The types of human activities that can cause vibration in these settings include walking, running, jumping, dancing, clapping, and swaying (Bachmann). To address man-induced vibrations, a designer may choose to frequency tune the structure, calculate and compare the vibration response spectra to acceptance criteria such as Design Guide 11, or stiffen the structure with damping or vibration absorbers.

According to Hines, frequency tuning designs a structure such that the frequencies of its modes of vibration avoid the range of frequencies typical for the human activities under consideration. The five types of structures previously discussed all have a different set of criteria typically used for frequency tuning. These natural frequency requirements may also be used to install a tuned-vibration absorber.

For example, reinforced concrete gymnasiums and sports halls recommend a natural frequency greater than 7.5 Hz (Bachmann). Such recommendations are based upon experiments in a two-story cast-in-place concrete gymnasium with a ribbed slab. Dynamic behavior was induced by two methods: dropping sandbags and having schoolchildren perform a standardized jumping test. Data from this experiment identified the damping ratio of the floor and the peak amplitudes for velocity and acceleration. It was determined in this case study that floor damping was 3% of g, less than the 5% or 10% typically required for serviceability, and that the structure needed fixed. The course of action chosen in this instance was keep the existing floor and install

a steel girder grid underneath. This caused the fundamental frequency to change to 7.47 Hz, close to the 7.5 Hz recommended by the article's authors.

Vibration Design of Concrete Floors for Serviceability

ADAPT provides guidance on determining the vibration response of a reinforced concrete floor system. Recommendations are given for the appropriate load cases and property modifications for reinforced concrete vibration analysis. These recommendations include damping factors, extent of cracking to consider, and modulus of elasticity adjustments. The Pdelta effects of post-tensioning on vibration response are also discussed by Aalami in this technical note. Two examples are provided for approximation hand-calculation verification of natural frequencies of a reinforced concrete floor system.

4.1.5 Equipment Specific Requirements

Vibration Sensitivity of Laboratory Bench Microscopes

In 2002, experiments were performed to confirm current standards for the vibration sensitivity of microscopes mounted on lab benches. Microscopes of 40x, 100x, 400x, and 1000x were tested to determine when motion was perceptible during use and establish a "threshold of perception." The threshold of perception determined the conditions at which vibratory motion was first perceptible during microscope use. Taken into account during the experimental process were the effects of both horizontal and vertical motion, and the movement and properties of the lab bench. Also studied were the dynamic effects of frequency and amplitude on 1000x microscopes. They determined that the sensitivity of the microscopes tested was highest at resonant frequencies between 10 and 50 Hz. Overall, these experiments confirmed that current standards are appropriate for microscope equipment (Amick, 2007).

Meeting the Vibration Challenges of Next-Generation Photolithography Tools

One of the challenges in meeting the vibration requirements of sensitive equipment is the lack of an industry standard for the manner in which the requirements are reported (ESTECH).

The new photolithography tools includes step-and-scan systems, which provide a way to assess the dynamic resistance properties of structural floors and pedestals in terms of receptance spectra. The receptance spectra is the inverse of the response spectra, which is typically measured via displacement, velocity, or acceleration as discussed in Design Guide 11. In order to use step-andscan systems, floors must meet the receptance, stiffness, and frequency spectrums of these scanner systems.

The authors of the ESTECH report discuss and assess design philosophy of floors and pedestals. Floors designed to stricter VC curves are most likely to meet the receptance criteria requirements of step-and-scan systems. A combination of receptance criteria and floor stiffness controls the design of a fabricated floor for vibration requirements. VC curves will adequately address the ambient vibration criteria of step-and-scan systems, but require further review for meeting receptance criteria. Pedestals fabricated from steel or concrete may be combined with the floor structure to satisfy a scanner's resistance requirements.

4.2 Design Objectives

The Health Centre is a university hospital with a range of medical and research and diagnostic equipment from microscopes to MRI machines. Excessive floor vibrations can disrupt the performance of such equipment, and therefore should be considered during the design process of hospitals and research buildings. Typical sources of vibration in the Health Centre are from walking, including both the faster walking speeds induced when transporting a patient and the slower walking speeds of hospital residents. While steel is more prone to issues with vibration, particularly due to walking excitation, concrete may also have such issues. The longer 30 ft bay spans of the Health Centre and decrease in stiffness of the redesigned gravity system suggested the need for further investigation into the floor system's dynamic behavior.

After reviewing the available literature for vibration sensitive equipment and design for vibration control, AISC Design Guide 11 was selected as the basis for evaluation of the new gravity system. Design Guide 11 VC curves and requirements for vibration sensitive equipment are the most established in industry practice, and have been applied to concrete buildings such as Cornell's

Nanotechnology Library in 2003. The Design Guide 11 chapters considered in this investigation are Chapter 4: "Design for Walking Excitation" and Chapter 6: "Design for Sensitive Equipment." ADAPT Technical Note: "Vibration Design of Concrete Floors for Serviceability" was also referenced for guidance on the level of damping, extent of cracking, and other unique concrete conditions to consider.

An interior bay on fifth and sixth floors, as shown in Figure 28 was selected for this vibration evaluation. These floors were large enough that it would be feasible to place operating rooms, research microscopes, and MRI equipment in the area. Design Guide 11 provides vibrational velocity limitations as the acceptance criterion for various types of sensitive equipment. Velocity limitations are often used for vibration design because they are applicable over a range of given frequencies. Table 6.1 in Design Guide 11 provides vibrational velocity criterion for different types of vibration sensitive equipment and sensitive environments, from operating rooms to MRI machines. Ultimately, two velocity limitations of 500 micro-in/sec for MRI equipment and 8,000 micro-in/sec for operating rooms were identified as possible vibration criteria for this study. Walking paces considered from Design Guide 11 Table 6.2 ranged from 100 steps/minute to 50 steps/minute to account for the range in walking speed of hospital visitors and patients.

4.3 Modeling Approach

After designing the gravity system in RAM Concept, a typical span of three 30'x30' interior bays on the fifth floor was modeled in SAP2000. Modeling three bays instead of one allowed for the consideration of the monolithic nature of concrete when assessing its dynamic and

static behavior. Creating a separate model for vibration analysis ensured that the appropriate load cases and material properties to be considered during analysis. Additionally, the three-bay model gives a better general overview of the floor's behavior, rather than its behavior in a specific section of the building. The analysis is not location dependent if the MRI equipment location changes.

Figure 29: SAP2000 3-Bay Model

The 11" concrete slab and 19.75" drop panels were modeled as thin shell elements. Drop panels are 10 ft wide, and were extended past the columns 5 ft on the exterior edges. Columns are 24"x24", and were modeled to half of the floor height both above and below the slab. Columns at this point were pinned under the assumption that there would be zero moment at this point on the column. Figure 29 shows a two-dimensional and three-dimensional view of the SAP2000 model used for vibration analysis. Several property modifiers were used based on recommendations from ADAPT Technical Note: "Vibration Design of Concrete Floors for Serviceability." Cracked sections were considered by modifying the flexural moment of intertia to 0.25Ig for slabs and 0.7Ig

for columns. 5000 psi concrete properties were modified to allow for 0.05 modal damping and $1.2E_c$ to better reflect dynamic loading conditions. This modified 5000 psi concrete was used for slabs, drop panels, and columns. Areas were divided into 10"x10" discrete elements to manually create the desired fine mesh, and ensure that this mesh aligned properly between area elements of varying thickness and columns.

Figure 30: Excited Mode Shape from Midspan Analysis

Two static load cases were modeled: self-weight plus a 1 kip point load applied to the center of the slab, and self-weight plus a 1-kip load applied to the center of the exterior bay. This allowed for a comparison of behavior between the two load locations. Two modal load cases were created with the same respective loads. Table 20 shows the results obtained from both load cases, while Figure 29 shows the excited mode shape of the bays from the application of the 1 kip load at the center of the three bays.

Table	20:	SAP2000	Analysis	Output
--------------	-----	----------------	----------	--------

Load Case	∆p (in)	F _n (Hz)	T (s)
Interior Bay	-0.001359	5.1715	0.19337
Exterior Bay	-0.016204	5.1715	0.19337

4.4 Vibration Analysis

Using the results from the analysis model, Design Guide 11 equation 6.4b was used to determine the vibrational velocity from the two SAP2000 load cases. Values of Uv for walking

$$V = \frac{U_v \Delta_p}{f_n}$$

speeds of 100, 75, and 50 steps per minute were considered for the purposes of this study. The graphs in Figure 31 summarize the results of the vibrational velocities determined for each walking speed and loading condition considered. Hand calculations for all graph results may be found in Appendix A.1. All walking speeds for the interior 1 kip load passed vibrational velocity requirements for operating rooms, while only a walking speed of 50 steps/min satisfied any velocity requirements for the exterior 1 kip load case.

Figure 31: Interior (left) and Exterior (right) Bay Vibrational Velocities

The vibrational velocities determined from the exterior 1 kip model are significantly larger than expected for a concrete slab with deep drop panels. Therefore, the exterior bay may not be the best 1 kip load location for determining accurate and meaningful modal frequencies and deflections. Further analysis and conclusions will consider only the interior bay results.

4.5 Conclusions

Review of the vibration analysis results indicates that the flat slabs on floors 5 and 6 are adequately designed for operating room conditions at all walking speeds. The current architectural narrative indicates these floors are mainly for hospital beds, which may occasionally function as an operating room environment. Therefore, these floors perform well to their current function, and no changes are required for the gravity system design.

However, if the hospital wished to move MRI equipment to this floor, there may be vibration issues to consider further. Typically, performing to vibrational velocity criteria for walking speed of 75 steps/min is adequate for design in a hospital or laboratory environment. To decrease a bay's vibrational velocity to 500 u-in/min at 75 steps/min, several changes could be made to the design. These changes include increasing the concrete strength, increasing the slab and/or drop panel thickness, and decreasing the span length. Additionally, a waffle slab – which is typically stiffer than a flat slab – could be used in areas that would house MRI equipment.

Chapter 5

Construction Schedule and Cost Comparison

5.1 Detailed Cost Analysis

Both existing and redesigned structural systems utilize cast-in-place concrete systems. These systems have similar contributors to overall cost, including formwork, concrete, shoring, and finishing. However, the removal of joists and decrease in some column sizes was expected to decrease the overall amount of concrete used for the Health Centre. The following section compares and contrasts the costs of both systems.

To estimate the cost of the redesigned flat slab and shear wall system, a detailed estimate was performed using RS Means Building Construction Cost Data 2014. Takeoffs for structural elements were tabulated from measurements taken from the RAM and Etabs models, including the square footage of formwork for walls and slabs, the linear footage of slab openings, and weight of rebar. Some takeoffs were simplified by dividing the building into lower-left (LL), lower-right (LR), upper-left (UL), and upper-right (UR) sections. The spreadsheet used for these takeoffs is located in the Appendix. The numbers obtained from building takeoffs were multiplied by the total cost multiplier to determine the overall building cost. A location factor decreased the overall building cost. The total cost of the redesigned structural system was \$12,825,404.

	Existing	Redesign				
Slab + Beams	\$10,404,390	\$9,065,737				
Columns	\$2,676,476	\$1,847,487				
Shear Walls	-	\$1,912,180				
Misc. Steel	\$1,273,915	-				
Total	\$14,354,781	\$12,825,404				

The cost of the existing double-skip joist and intermediate concrete moment frame structure was obtained from a detailed estimate for the building provided by McCarthy Construction. To obtain an accurate comparison between building systems, only structural elements that were changed in the redesign were considered in the existing structural cost. Elements such as the structural steel framing of the exterior bridge were not included in the existing structural system cost because they did not change with the redesigned structure. A total cost of \$14,354,781 was determined from the information provided. Table 21 and Figure 32 provide a numerical and visual breakdown of the differences in cost between the redesigned and existing.

Figure 32: Structural System Cost Comparison Graph

A decrease in cost of \$1,529,400 for the redesigned structural system was determined from the detailed cost estimates. Overall, this is a 10.6% difference in total structural system cost. However, this is a preliminary comparison between structural systems. The redesigned structural system is less refined than the original design. The cost of resolving excessive deflections across the 45 ft bays – whether an architectural or increase in concrete strength – would likely increase the redesigned system cost. If the client wishes to meet vibration requirements in some building locations, an increase in concrete strength or waffle slab may also affect the building cost.

5.2 Schedule Analysis

While two cast-in-place structural systems should have similar construction schedules, a schedule was determined for the redesigned structural system for a base comparison with the existing system. Only the superstructure was considered in the scope of this schedule, as the below-grade parking garage was unchanged in the redesigned system. Construction above grade for the Health Centre began in September 2014. September 1, 2014 was used as the start date for the redesigned structural system. Scheduling information was input into Microsoft Project, as shown in Figure 33, and an overall timeline was developed. To determine the duration of each

task, each floor was divided into zones. Zones were typically around 7,000 total sq ft. Zone sizes were based upon the amount of square-footage that could typically be covered per day. An expanded view of the schedule with zones is in the Appendix.

Figure 33: Microsoft Project Construction Schedule

For the redesigned flat slab and shear wall structural system, the total duration was expected to last 385 days, or 55 weeks. Construction spans from September 1, 2014 to February 19, 2016. This projected schedule assumes that no other tasks will occur during construction of the concrete superstructure, which is unlikely to occur during actual construction. The estimated schedule for the redesigned structural system is approximately two months longer than the actual schedule of the existing building. The double-skip joist and concrete moment frame system topped out in December, 2015. One of the reasons the existing system takes less time to construct is the lack of shear walls. Shear walls are an additional element to frame and place rebar and concrete for during the construction of the building.

Chapter 6

Mechanical Breadth

6.1 Cooling Load Study

The addition of shear walls to the Health Centre introduced large concrete masses to portions of the building's exterior. These walls will provide additional insulation for the building during the summer, fall, and spring in the southeastern US climate. As temperatures in this part of the United States do not stay below freezing for long, heating loads will likely remain unaffected by the addition of shear walls. This breadth will study the change in R values caused by the addition of shear walls to the building exterior using the Cooling Load Temperature Difference (CLTD) method. The window and aluminum panel system will be the exterior wall section considered in this analysis, as shown in Figure 34. Solar heat gain with and without the shear wall and the effects of the cooling load on the current HVAC system capacity for this zone will be considered in this study.

Figure 34: Metal Panel Wall Section

The CLTD method uses the equation $q = U \ge A \ge CLTD$, where q is solar heat gain, U is the heat transfer coefficient, A is the area, and CLTD is the cooling load temperature difference. The heat transfer coefficient U is determined for each material by taking the inverse of its R value. R values in Table 22 are from Table E.1 of Mechanical and Electrical Equipment for Buildings (12th edition) for the per-inch-thickness specified in the table. The aluminum curtain wall assembly R value and U factor were obtained from specifications provided by SmithGroupJJR.

Material	Thickness (in)	R- Value	Material	Thickness (in)	R- Value
Aluminum	2.25	2.22	Aluminum	2.25	2.22
Curtain Wall			Curtain Wall		
Rigid Insulation	4	18.2	Rigid Insulation	4	18.2
Gypsum Wall 0.25		0.32	Gypsum Wall	0.25	0.32
Sheathing			Sheathing		
	Total R-Value	20.74	Shear Wall	20	2
	U-Value (1/R _{total})	0.048216			
		I		Total R-Value	22.74
				U-Value (1/R _{total})	0.043975

Table 22: Building	Material	U-1	Values
--------------------	----------	-----	--------

For a building assembly without shear walls, a total U value of 0.043975 was obtained. With the addition of shear walls, the total U value for the building envelope is 0.048216. The square-footage considered for calculations will be 60 ft, the width of one exterior wall, multiplied by 15 ft the height of one of the upper floors.

CLTD values were determined from 1997 ASHRAE Fundamentals Table 32. The principle wall material for shear walls was considered to be 200 mm high density filled concrete block (C18) for best comparison to the thickness and properties of shear walls. The principle wall material for the non-shear wall system was considered concrete columns for this study. This used 100 mm high density concrete (C5). While the systems taken from ASHRAE Fundamentals tables are not direct comparisons to the systems in the building, they will be used as a preliminary study to determine if a further, more detailed, study would be required for the building. The aluminum panel system is steel, or light-weight, siding with an R value between 0.44 and 0.53. Therefore, the wall types from Table 33C were determined to be 4 and 3 for the shear wall and non-shear wall

systems, respectively. The south facing shear wall located at 40 degrees north latitude was considered for this study.

ASHRAE Fundamentals Table 23 shows the results of the cooling load analysis for a 24 hour period during the month of July. Each hour has a different CLTD value that varies with the wall type. Overall, the daily total cooling load is 9,301 BTU/hr for a building envelope with shear walls and 10,111 BTU/hr for a building envelope without shear walls. The addition of shear walls decreases the overall cooling load by 810 BTU/hr for the zone on this floor.

		U		CL	CLTD		q (BTU/hr)	
Hour	Area (ft ²)	No SW	SW	No SW	SW	No SW	SW	
1	900	0.048216	0.043975	4	6	173.5776	237.467	
2	900	0.048216	0.043975	3	4	130.1832	158.3113	
3	900	0.048216	0.043975	2	3	86.78881	118.7335	
4	900	0.048216	0.043975	1	2	43.39441	79.15567	
5	900	0.048216	0.043975	1	1	43.39441	39.57784	
6	900	0.048216	0.043975	0	1	0	39.57784	
7	900	0.048216	0.043975	0	0	0	0	
8	900	0.048216	0.043975	1	1	43.39441	39.57784	
9	900	0.048216	0.043975	2	0	86.78881	0	
10	900	0.048216	0.043975	5	1	216.972	39.57784	
11	900	0.048216	0.043975	9	3	390.5497	118.7335	
12	900	0.048216	0.043975	13	7	564.1273	277.0449	
13	900	0.048216	0.043975	17	11	737.7049	435.3562	
14	900	0.048216	0.043975	21	16	911.2825	633.2454	
15	900	0.048216	0.043975	23	19	998.0714	751.9789	
16	900	0.048216	0.043975	23	23	998.0714	910.2902	
17	900	0.048216	0.043975	22	24	954.677	949.8681	
18	900	0.048216	0.043975	20	23	867.8881	910.2902	
19	900	0.048216	0.043975	17	22	737.7049	870.7124	
20	900	0.048216	0.043975	14	19	607.5217	751.9789	
21	900	0.048216	0.043975	12	17	520.7329	672.8232	
22	900	0.048216	0.043975	9	13	390.5497	514.5119	
23	900	0.048216	0.043975	8	11	347.1553	435.3562	
24	900	0.048216	0.043975	6	8	260.3664	316.6227	
					Total	10110.9	9300.792	

 Table 23: Cooling Load Calculations

6.2 Conclusions

The CLTD analysis indicates that the addition of shear walls will decrease the overall cooling load on the mechanical system in the region of the building by the 60 ft south-facing shear wall by 810 BTU/hr over the course of a day. Over the course of a year, this is approximately 295,650 BTU/hr total. In this instance, the shear walls are not completely exposed by the aluminum panel system and provide additional insulation for the building. This change is not large enough to significantly impact building systems, as the client requested that cooling systems provide additional capacity for potential expansion. Three 1250 ton centrifugal chillers, two 1250 ton cooling tower cells, and a 400 ton heat pump chiller serve the building. Dedicated air-handling units for individual patient and operating areas will also remain unaffected.

Appendix A

Structural References

A.1 Slab References
Prelim. Sizing

Flat Slab w/ drop panels + w/o spandrel beams 1) Min thickness of slab (table 8.3.1.1) Exterior Pavels: ln/33 = (30)(12)-20 = 10.3" Interior Panels: $l_{n}/36 = (30)(12)-20 = 9.44''$ 20" column, fy = 60,000 psi 36 2) Direct Design Method (ACI 318-14, 8.10.2) · 3 continuous spans V · Successive spans not different by > 13 / · Max offset = 9'-4" 0.2(30A)=6' < 8-4" 3) Equivalent Frame Method = Col strip + Middle Strip dim, for 20" col floos + 14'2" + 14'2" 7'-1"" l2=l,= (30)(12)-20= 340" 0 D Middle Strip + Col Strip = 14'-2" fic = 5000 psi for slabs + columns Dead: 23 psf Self WH: 150 x (1/12) = 137.5 psf Live: 100 psf Live: 100 psf Loreduction: Exterior: Lox 0.4 15 15 15 = 0.957 = 0.957 Interior: Lox 10.4 $m_{0.25} + \frac{15}{\sqrt{1(30x_{30})}} = 0.75 + \frac{15}{\sqrt{5}p_{1}^{2}}$ W= 1.2(23+137.5psf)+ 1.6(95,7) = 346 psf Wint = 1,2(23+137,5psf)+1.6(75) = 313 psf

3-0235 3-0236 3-0237 3-0137

00000

2 4) One-Way Shear V1 = (346 psf)(14.167 ft)(30 ft) = 147 K $\phi V_e = \phi 2 \lambda J f'_e b_w d = 0.75(2) J 5000 (30' \times 12^{in}/4) (9.5^{in})$ = 363 K 5) Two-Way (Punching) Shear - Critical location @ d/2 = 19.25 - 1.5/2 = 8.875 in for drop panels - Critical perim bo = 4(20+2(8.875) = 151 in 17.25 \$V2 = \$4 \$ JF2 bod = 0.75(4) J5000 (151) (19.25-1.5) $V_{\rm H} = (0.376 \text{ ksf}) [30x30 - (\frac{20 + 2(2.875)}{12^{-7}\text{A}})^2] = 334 \text{ k} < 569 \text{ k}$.". 19.25" drop pavels OK Direct Design Prelim Sizing d = 151 = 8.51 > 2 : ACI ogn 11-32 applies AVE= p(asd + 2) 2 JFE bod Interior Col: 0.75 (40(17.75) +2)(1) J5000(151)(17.75)=953K Corver Col: 0.75 (20(17.75) +2)(1) 5000 (151) (17.75)=618K OK 19.25" 111 Idels 10'-0" 6) Slab Moments + Prelim Reinforcing $M_0 = W_u l_2 l_n^2 = (346 \text{ psf})(14.167\text{ ft})(28.3\text{ ft})^2 = 491 \text{ k-ft}$ ACI 13.6.3.3 slab w/o Interior + Edge Beams

3 Interior Span: -Mu = -0.70M = -0.70(491kft) = -344 kft +Mu = +0.52Mo = 0.52(491kft) = 255 kft Exterior Span: - Mu = -0.26 Mo = -0.26(491 k-ft) = -128 k-ft Interior Neg. Moments; Col. Strip: 0.75(-344 k-ft) = -258 k-ft Mid. Strip: 0.25(-344 k-ft) = -86 k-ft 5 SQUARES 5 SQUARES 5 SQUARES FILLER Interior Pos. Moments: SHEETS -SHEETS -SHEETS -SHEETS -SHEETS -Col. Strip: 0.6(255 k-A) = 153 k-A Mid. Strip: 0.4(255 k-A) = 102 k-A 200 200 1111 As, min Requirements 3-0235 -3-0236 -3-0237 -3-0137 -As, min = 0.00186h = 0.0018(12")(11")=0.2376 in2/A $A_{s,reg} = \frac{M_{u,k}(12 \text{ in/A})}{\phi f_{y}gl} \quad \begin{array}{l} \phi = 0.9\\ f_{y} = 60 \text{ ks};\\ f_{d} = 60 \text{ ks};\\ gl = 0.95d = 0.95(9.5) = 9.025 \end{array}$ Mu (#++) As, way Use Spacing 1 Asiatual Location 258K-A 6,35 int 12 #73 1411 -00 153kf 3.77 14 # 5'5 11.51 tcol -26 k# 2,12:17 8#7's 21 8 18" min -mid 102 KA 251:2 10#5'S 16.5" +mid Verify steel in tension ... Pos col strip check $\mathcal{E}_{5} = \frac{d-c}{c} \mathcal{E}_{cu} = \left(0.008\right) 0.25 - 0.7175 = \left[0.00355\right] = 10.75$ $a = \frac{14(6,31)(60)}{0.85(5)(96)} = 0.638 \quad \text{lat } b = column \text{ transfer zole} \\ 1.5(24)(2) + 24 = 96^{11}$ $C = \frac{\alpha}{B_1} = \frac{0.638}{0.8} = 0.7975'$ wildum Es=0.00355>0.00205 OK

Floor 4 | Top Bars Plan

Floor 4 | Bottom Bars Plan

Floors 5-6 | Top Bars Plan

and short suff ------ه د بي مر ، بي مر و و 8 1 15 11 1 1225 i. 386386 2163 87 B. E - <u>19 19 25 26</u> C C C C H C C C C **W II No 20 (1 No 20 11 N** C (2) الك كالا and a 1 10.11 -1 1 12 11 1.8 R, _____ ľ . 100 1010 221 2 1a i añ e **E 6** i. -1 _ П 1 12 12 :5 :1 ÷ -_ i and П 8 arta 1 1 1000 ÷. و کار کار که سه ما که موجد از از این مرد ما 100 100 100 100 2322

Floors 5-6 | Bottom Bars Plan

Floor 7-9 | Top Bars Plan

Floor 7-9 | Bottom Bars Plan

Penthouse | Top Bars Plan

Penthouse | Bottom Bars Plan

Vibrational Velocity Design Guide 11: fn >5.0 $V = \frac{U_v \Delta p}{F_v} (6.46)$ 1) Mid-Bay Interior : (joint 62 5 SQUARES 5 SQUARES 5 SQUARES FILLER $\Delta_p = 0.001359 \text{ in/i000 II}_{= 1.359.4 \text{ in/Ib}}$ $F_n = 5.1715 \text{ Hz} = 1.359.4 \text{ in/Ib}$ T= 0.1933675 · Mid-Bay Interior Considering all Walking paces ... (Table 6.2) 0 3-0235 3-0236 3-0237 3-0237 Steps/min Uv (lb-Hz) 100 25,000 75 5,500 50 1,500 · 1 kip Exterior COMET $V_{100 \text{ step/min}} = \frac{(25,000)(1.359 \text{ uin}/1b)}{5.1715} = 4.879.5$ D 0 1 $V_{75 \text{step/min}} = (5,500)(1.359 \text{min}) = 14145 \\ 5.1715 = 14145 \\ \text{min}s$ $V_{505669/min} = \frac{(1, 500)(1.359 \frac{110}{6})}{5.1715} = 8965$ uin/s (2) Exterior: Ap= 0.016204 in/100016=16.204 uin/16 F. = 5. 1715 HZ T= 0.19337 5 $V_{100 \text{ step/min}} = (25000)(16.204 \, \mu \text{in/1b}) = 78,333.2 \, \mu \text{in/s}$ 5.1715 $V_{75 step/min} = (5,500) (16,204 4/m/b) = 17,233.3 4 m/s$ 5.1715 Vso stephin = (1,500)(16.204 4/16) = 4700.0 1/16/5

A.2 Column References

Initial Column Sizes Typical Column: D12 (see excel) $f_{c}^{i} = 5,000$ SQUARES 8×8 level9: 509.6K 20×20 79'-0" 50 SHEETS 100 SHEETS 200 SHEETS 200 SHEETS -level 4: 1219 K 111 2HX2H 3-0235 -3-0236 -3-0237 -3-0137 -49-0" -level 1; 1670 K 28×28 COMET 47-4" -parking1:2354K Parking-Level 1 Try 28×28 Axial Str. Check: \$Pn = 0.8 \$ [0.85 fc (Ag-As) + fy As] $A_g = (28)^2 = 784 in^2$ 2,354000 0.8 (0.65) [0.85 (5000) (784-A2) + (60,000 A2] 4526923 = 3332000 - 4250 As + 60000 A Try#95. Az=1.00 in2 281 21.4/1.00 = 21.424 bars, 6 on each side W/1.5 cover..., 28-3=25% = 5" spaces spColumn +rial: 28 × 28 with 24 # 95

2 Level 1-Level 4 Try 24×24 Aq = (24'm) = 576 in Axial Str. Check $3211538.5 = [2448000 - 4250A_{s} + 60,000A_{s}] + (60,000)A_{s}]$ 5 SQUARES 5 SQUARES 5 SQUARES FILLER SHEETS -SHEETS -SHEETS -SHEETS - $Try 20 \#8s = 0.79 \times 20 = 15.8 in^2$ sp Column Trial: 24x24 with 20 #85 - 50 - 100 - 200 - 200 3-0235 -3-0236 -3-0237 -3-0137 -Level 4-Level 9 Try 18×18, Ag = 324 Axial Str. Check COMET $\begin{array}{r} 1219,000 = 0.8(0.65)[0.85(5000)(324-A_{s})+60000A_{s}]\\ 234423] = 1377000 - 4250A_{s} + 60000A_{s}\\ A_{s} = 17.3 \text{ in}^{2}\\ Try 20 \times 20, A_{s} = 400\\ A_{s} = 11.55 \text{ in}^{2}, 16 \#85\end{array}$ sp Column Trial: 20x20 with 16#8's Level 9- Penthouse: Try 18×18, Ag = 324 $509600 = 0.8(0.65)[0.85(5000)(324-A_{s}) + (9000A_{s}]$ $980000 = 1377000 + 55750A_{s}$ $A_{s} = 10.8 \text{ in}^{2}$ spColumn trial: Kx18 with 16#85

A.3 Lateral References

1 Shear Wall Check Along Line C5-C6 t=24" from COM/COR iterations 5 SQUARES 5 SQUARES 5 SQUARES FILLER 11-1-06 11/1-1001 criticalista 10-51 00000 13'-6" 131-611 301-011 3-0235 3-0236 3-0237 3-0137 Critical Section for 30-0" span # see excel for Etabs Min of $\frac{|hw/2|}{|w/2|} = \frac{103/2}{30/2} = \frac{15'}{30/2} = \frac{15'}{30$ COMET Slenderness. Max unsupported wall ht = 17'-0' "w/lu = 190.3/30 = 6.34 > 2 : Wall is sender Design Forces for 30' direction $M_{\mu} = 23,436$ fl-k = 281232000 16-in $V_{\mu} = 515.874$ K Pu = selt wt = 150 pcf (190.33 ft) (30 ft) (19/12) Load Combo: 1.30 + 1.0E (controls) d= 0.8 lw= 0.8 (30)(12) = 288 in Nu= 1.3 (1285 K) = 1670.5 K $A_q = (30 \times 12)(22) = 7920 \text{ in}^2$ $V_{c} = \left| 2\left(1 + \frac{N_{u}}{500 A_{b}}\right) \lambda \sqrt{f_{c}} h d = \right|$ $3.3 \lambda J F_{c}hd + \frac{N_{u}d}{4l_{W}}$ $[0.6\lambda J F_{c}' + \frac{l_{W}(1.25\lambda J F_{c}' + 0.2\frac{N_{u}}{e_{W}h})]hd$ $\frac{M_{u}}{\sqrt{u}} - \frac{g_{W}}{\sqrt{u}}$

(2) Ve = 2(1+ 1610,500) J6000 (22)(288) = 1487.7 K 3.3 V6000 (22)(288) + 1670 500 (288) = 1953.7K $\frac{3.3\sqrt{6000} (421200) + 4(30 \times 12)}{[0.6\sqrt{6000} + \frac{360(1.25\sqrt{6000} + 0.2(\frac{1670500}{300 \times 22})}{281232000} - \frac{360}{2}](22)(28)}{\frac{281232000}{515,874} - \frac{360}{2}} = 1162.8 \text{ K}$ \$V_c = 0.75 (1162.8) = 872.1K > 515.9 K ACI 313-11 requires... 00000 $P_{t} = \frac{A_{V, haiz}}{h_{S}} \ge 0.60205$ for #5 or des (ACI 1432) 3-0235 3-0236 3-0237 3-0137 COMET 52 = 3h =3(22)=66" mil 18 $P_{t} = \frac{A_{V, horiz}}{(H_{0})(22)} = 0.0020, A_{V} = 0.792in^{2} = 0.396in^{2}$ 2 curains Nach#63 $P_{t} = A_{v} \ge 0.0025 (ACI 14.3,36)$ Use diff. real. $A_V = 0.99.5$ $2 rows = 0.495 in^2$. Use 2 rows of #71's @ 18"OC, $P_t = \frac{(0.60in^2)(2)}{(15)(22)} = 0.00303$ Fexura : $P_{2, \text{min}} = \begin{bmatrix} 0.0625 \text{ controls} \\ 0.062085 \end{bmatrix} (0.002716 \text{ controls}) \\ = 0.062085 \end{bmatrix}$ $W/12''OC. Spacing: A_{5} = 0.0025$ A_{5} = 0.661 in²/₂ rows = 0.33 in²

Try 2 rows of #6@ 12"O.C. $P_2 = \frac{2(0.441;w^2)}{(22)(12)} = 0.0033$ MacGuager <u>Ch. 18</u>: T = As fy = 14 (1.00 in2) (60 ksi) = 840 k 5 SQUARES 5 SQUARES 5 SQUARES FILLER $d = l_{W} - (3 + 3(6)) = 288 - (3 + 3(6)) = 267$ in = <u>840+1670.5</u> 0.85(6)(22) 3 6@6in *Eestimate* #95 $\alpha = \frac{T + N_u}{0.85 f_c b} = \frac{840 + 1670.5}{0.85 (6)(22)}$ 00000 a = 22.38 in 3-0235 3-0235 3-0237 3-0137 $\phi M_n = \phi \left[T(d - \frac{\alpha}{2}) + N_u \left(\frac{lw - \alpha}{2} \right) \right]$ $= 0.9 \left[\frac{240}{267} - \frac{22.38}{2} \right) + 1670.5 \left(\frac{288 - 22.38}{2} \right) \right]$ COMET = 393065 k-in = 32755 k-fl > 23436 k-ft = D Try 4@6 in spacing + 10 #95 $T = 10 (1.00 \text{ in}^2) (60 \text{ ks})^2 = 600 \text{ k}$ d = 288 - (3+26) = 273 ina = 600 + 1670.5 = 20.24 in 0.85(6)(22) $\phi M_{h} = 0.9 \left[600(273 - \frac{20.24}{2}) + 1670.5 \left(\frac{288 - 20.24}{2} \right) \right]$ = 343237 K-in = 28603 A-k > 23436 K-A =D Try 4@ 6 in spacing + 10 #85 $A = 10(0.79 \text{ in}^2) = 7.9 \text{ in}^2$ T = (7.9)(60 ksi) = 474 k $\alpha = \frac{474}{0.85(6)(22)} = 19.11 \text{ in}$ $\phi M_n = 0.9 \left[474 \left(273 - \frac{19.11}{2} \right) + 1670.5 \left(\frac{262 - 14.11}{2} \right) \right]$ = 314456 k-in = 26,204 At-k > 23436At-k ...45e Shear Capacity Check: $M_{pr} = T\left(d - \frac{a}{2}\right) + N_{pr}\left(\frac{l_{W} - a}{2}\right) = 474\left(273 - \frac{15.68}{2}\right) + 1357\left(\frac{288 - 156}{2}\right)$ $N_{pr} = \frac{1670.5}{100} + (20 f)(30 f)(80 psf) = 1357 = 25,871 fk$ $\alpha = \frac{47471295}{0.85(6)(22)} = 15.68 \text{ m}$

Shear Wall Check Based on MacGregor Recommendation ... $V_{u}(cap-based) = \frac{M_{pr}}{O(5h_{w})} = \frac{25871H-k}{O(5(190,33H))} = 271.9K$ 2719KK V2, OK SQUARES SQUARES SQUARES Shear Str. $A_{cv} = h l_{W} = 288 in (22 in) = 6336 in^{2}$ SHEET $V_n = A_{cv} (\alpha_z \lambda JF_z + \rho_x f_y)$, $\alpha_z = 2.0$ for = (6336)(2 J6000 + 0.00303(6000)) Stender Wall HS HS 00000 3-0235 3-0236 3-0237 3-0137 = 2133,5 K Check $V_n \leq 8A_{ev} \sqrt{f_e}$ (ACI 318-11 9,3.2.3) = 3926 K COMET \$Vh = 0.75(2133.5 K) = 1600.1K> 515.874K 9K

Wind Load Pressures – Perpendicular

Building Geometry

B =	421.25	ft
L =	285	ft
h =	166	ft
z _{bar} =	99.6	ft

Variables Used

Basic Wind Speed	V =	90	mph	(Figure 6-1)
Directionality Factor	K _d =	0.85		(Table 6-4)
Occupancy Category		IV		(Table 1-1)
Importance Factor	=	1.15	_	(Table 6-1)
Topographic Factor	K _{zt} =	1		(Walter P. N
Exposure Category		В		(Walter P. N

(6-15)

(Table 6-1) (Walter P. Moore) (Walter P. Moore)

Calculation of K_z and q_z

 $q_z = 0.00256K_zK_{zt}K_dV^2I$

Story	Height (ft)	K _z - Case 1	K _z - Case 2	q _z - Case 1 (psf)	q _z - Case 2 (psf)	
2	16	0.7	0.58	14.1886	11.7563	
3	32	0.712	0.712	14.4318	14.4318	
4	49	0.805	0.805	16.3169	16.3169	
5	66	0.874	0.874	17.7155	17.7155	
6	83	0.939	0.939	19.0330	19.0330	(Table 6-3)
7	98	0.984	0.984	19.9451	19.9451	
8	113	1.0225	1.0225	20.7255	20.7255	
9	128	1.06	1.06	21.4856	21.4856	
penthouse	143	1.096	1.096	22.2153	22.2153	
roof/q _h	166	1.142	1.142	23.1477	23.1477	= q _h

*Note: Only discrepency between Case 1 and 2 values occurs at 16 ft

Gust Effect Factor G_f

See pages 1-3 of wind calcs for detailed calculations and code references.

Natural Frequency	n ₁ =	0.364	Hz	(C6-15)
Resonant Response Factor	g _R =	3.7889544		(6-9)
Background & Wind Factor	g _v , g _Q =	3.4		(6-9)
Mean Hourly Wind	V _{z,bar} =	75.4275119	mph	(6-14)
Turbulence Length	L _{z,bar} =	440.022037		(6-7)
Reduced Frequency	N ₁ =	2.12346951		(6-12)
Resonant Responcse Factor	R =	0.25258702		(6-10)
Turbulence Intensity	I _z =	0.25583445		(6-5)
Background Response Factor	Q =	0.75878531		(6-6)
Flexible Gust Effect Factor	G _f =	0.82602947		(6-8)

External Pressure Coefficient $\mathbf{C}_{\mathbf{p}}$

See pages 3 of wind calcs for detailed calculations.

	L/B =	0.6766	
	h/L =	0.5825	
	Θ=	< 10	degrees
Windward Wall	C _p =	0.8	
Leeward Wall	C _p =	-0.5	
Side Wall	C _p =	-0.7	
Roof - 0 to h/2	C _p =	-0.9	-0.18
Roof - h/2 to h	C _p =	-0.9	-0.18
Roof - h to 2h	C _p =	-0.5	-0.18
Roof - >2h	C _p =	-0.3	-0.18

(Figure 6-6)

Design Wind Pressure P

$p = qG_fC_p - q_i(Gc_{pi})$	(6-19)						Net Pres	ssure (psf)
Location	z (ft)	q _z / q _h (psf)	Cp	G _f	q _z G _f Cp (psf)	GC _{pi}	q _z G _f C _p - q _h (+GC _{pi})	q _z G _f C _p - q _h (-GC _{pi})
Windward	16 - Case 1	14.1886	0.8	0.826029	9.3762	0.18	5.2096	13.5428
	16 - Case 2	11.7563	0.8	0.826029	7.7688	0.18	3.6022	11.9354
	32	14.4318	0.8	0.826029	9.5369	0.18	5.3703	13.7035
	49	16.3169	0.8	0.826029	10.7826	0.18	6.6160	14.9492
	66	17.7155	0.8	0.826029	11.7068	0.18	7.5402	15.8734
	83	19.0330	0.8	0.826029	12.5775	0.18	8.4109	16.7440
	98	19.9451	0.8	0.826029	13.1802	0.18	9.0136	17.3468
	113	20.7255	0.8	0.826029	13.6959	0.18	9.5293	17.8625
	128	21.4856	0.8	0.826029	14.1982	0.18	10.0316	18.3648
	143	22.2153	0.8	0.826029	14.6804	0.18	10.5138	18.8470
	166	23.1477	0.8	0.826029	15.2965	0.18	11.1300	19.4631
Leeward	All	23.1477	-0.5	0.826029	-9.5603	0.18	-13.7269	-5.3938
Side	All	23.1477	-0.7	0.826029	-13.3845	0.18	-17.5511	-9.2179
Roof (0'-83')	166	23.1477	-0.9	0.826029	-17.2086	0.18	-21.3752	-13.0420
Roof (83'-166')	166	23.1477	-0.9	0.826029	-17.2086	0.18	-21.3752	-13.0420
Roof (166'-332')	166	23.1477	-0.5	0.826029	-9.5603	0.18	-13.7269	-5.3938
Roof (> 332')	166	23.1477	-0.3	0.826029	-5.7362	0.18	-9.9028	-1.5696

Wind Load Pressures - Parallel

Building Geometry

B =	285	ft
L =	421.25	ft
h =	166	ft
z _{bar} =	99.6	ft

Variables Used

Basic Wind Speed	V =	90	mph
Directionality Factor	K _d =	0.85	
Occupancy Category		IV	
Importance Factor	=	1.15	
Topographic Factor	K _{zt} =	1	
Exposure Category		В	

(Figure 6-1) (Table 6-4) (Table 1-1) (Table 6-1) (Walter P. Moore) (Walter P. Moore)

(Table 6-3)

Calculation of K_z and \boldsymbol{q}_z

 $q_z = 0.00256K_zK_{zt}K_dV^2I$

(6-15)						
Story	Height (ft)	K _z - Case 1	K _z - Case 2	q _z - Case 1 (psf)	q _z - Case 2 (psf)	
2	16	0.7	0.58	14.1886	11.7563	
3	32	0.712	0.712	14.4318	14.4318	
4	49	0.805	0.805	16.3169	16.3169	
5	66	0.874	0.874	17.7155	17.7155	
6	83	0.939	0.939	19.0330	19.0330	
7	98	0.984	0.984	19.9451	19.9451	
8	113	1.0225	1.0225	20.7255	20.7255	
9	128	1.06	1.06	21.4856	21.4856	
penthouse	143	1.096	1.096	22.2153	22.2153	
roof/q _h	166	1.142	1.142	23.1477	23.1477	= q,

*Note: Only discrepency between Case 1 and 2 values occurs at 16 ft

Gust Effect Factor G_f

See pages 6-7 of wind calcs for detailed calculations and code references.

Natural Frequency	n ₁ =	0.364	Hz	(C6-15)
Resonant Response Factor	g _R =	3.7889544		(6-9)
Background & Wind Factor	g _v , g _Q =	3.4		(6-9)
Mean Hourly Wind	V _{z,bar} =	75.4275119	mph	(6-14)
Turbulence Length	L _{z,bar} =	440.022037		(6-7)
Reduced Frequency	N ₁ =	2.12346951		(6-12)
Resonant Responcse Factor	R =	0.25258702		(6-10)
Turbulence Intensity	I _z =	0.25583445		(6-5)
Background Response Factor	Q =	0.75878531		(6-6)
Flexible Gust Effect Factor	G _f =	0.82602947		(6-8)

External Pressure Coefficient C_p

See pages 7 o	f wind ca	lcs for c	letailed	calcu	lations.

	L/B =	1.4781	
	h/L=	0.3941	
	Θ=	< 10	degrees
Windward Wall	C _p =	0.8	
Leeward Wall	C _p =	-0.4044	
Side Wall	C _p =	-0.7	
Roof - 0 to h/2	C _p =	-0.9	-0.18
Roof - h/2 to h	C _p =	-0.9	-0.18
Roof - h to 2h	C _p =	-0.5	-0.18
Roof - >2h	C _p =	-0.3	-0.18

(Figure 6-6)

Design Wind Pressure P

$p = qG_fC_p - q_i(Gc_{pi})$	(6-19)						Net Pre	ssure (psf)
Location	z (ft)	q _z / q _h (psf)	Cp	G _f	q _z G _f Cp (psf)	GC _{pi}	q _z G _f C _p - q _h (+GC _{pi})	q _z G _f C _p - q _h (-GC _{pi})
Windward	16 - Case 1	14.1886	0.8	0.826029	9.3762	0.18	5.2096	13.5428
	16 - Case 2	11.7563	0.8	0.826029	7.7688	0.18	3.6022	11.9354
	32	14.4318	0.8	0.826029	9.5369	0.18	5.3703	13.7035
	49	16.3169	0.8	0.826029	10.7826	0.18	6.6160	14.9492
	66	17.7155	0.8	0.826029	11.7068	0.18	7.5402	15.8734
	83	19.0330	0.8	0.826029	12.5775	0.18	8.4109	16.7440
	98	19.9451	0.8	0.826029	13.1802	0.18	9.0136	17.3468
	113	20.7255	0.8	0.826029	13.6959	0.18	9.5293	17.8625
	128	21.4856	0.8	0.826029	14.1982	0.18	10.0316	18.3648
	143	22.2153	0.8	0.826029	14.6804	0.18	10.5138	18.8470
	166	23.1477	0.8	0.826029	15.2965	0.18	11.1300	19.4631
Leeward	All	23.1477	-0.4044	0.826029	-7.7324	0.18	-11.8990	-3.5658
Side	All	23.1477	-0.7	0.826029	-13.3845	0.18	-17.5511	-9.2179
Roof (0'-83')	166	23.1477	-0.9	0.826029	-17.2086	0.18	-21.3752	-13.0420
Roof (83'-166')	166	23.1477	-0.9	0.826029	-17.2086	0.18	-21.3752	-13.0420
Roof (166'-332')	166	23.1477	-0.5	0.826029	-9.5603	0.18	-13.7269	-5.3938
Roof (> 332')	166	23.1477	-0.3	0.826029	-5.7362	0.18	-9.9028	-1.5696

Gust Effect Calculations

Inputs							
Natural Freq (n)	0.364	S	g _R =	3.788954	R	n	value
C =	0.3		z _{bar} =	85.8	R _h	3.174428	0.265486
alpha _{bar} =	0.25		V _{barz} =	75.42751	R_B	9.351243	0.10122
b _{bar} =	0.45		L _{zbar} =	440.022	R_L	21.18055	0.046099
h =	143	ft	N ₁ =	2.12347	R _n	N/A	0.086073
V =	90	mph	R =	0.252587			
epsilon =	0.333333		I _z =	0.255834			
fancy I =	320		Q =	0.758785			
beta =	0.02		G _f =	0.826029			

Wind Pressures

Level	Floor Height	Windward (psf)		Leeward	Pressure	Length (ft)	Shear (K)		
	(ft)	Perp	Parallel	Perp	Parallel	Perpendicular	Parallel	Perpendicular	Parallel	
2	16	11.3508864	11.3508864	11.5738502	9.36093007	280.5	285	102.886218	94.4458831	
3	17	11.545473	11.54547302	11.5738502	9.36093007	280.5	285	110.244493	101.291523	
4	17	13.0535194	13.05351936	11.5738502	9.36093007	421.25	255	176.3627505	97.1666383	
5	17	14.1723924	14.17239245	11.5738502	9.36093007	421.25	255	184.3752804	102.016953	
6	15	15.2264033	15.22640333	11.5738502	9.36093007	421.25	285	169.3441022	105.11085	
7	15	15.9561032	15.95610317	11.5738502	9.36093007	421.25	90	173.9548931	34.1779949	
8	15	16.5804019	16.58040192	11.5738502	9.36093007	421.25	90	177.8996808	35.0207982	
9	15	17.1884851	17.18848512	11.5738502	9.36093007	421.25	90	181.7420066	35.8417105	
penthouse	19	17.772245	17.77224499	11.5738502	9.36093007	421.25	90	234.8788097	46.3977294	
							nr (k)	1511.688234	651.470081	

Modified Wind Loads Estimate building freq: 0.364s (ETABS) . Building not rigid SQUARES SQUARES SQUARES Table 6-2: C=0.30 a=1/4.0 T=0.45 동동 8888 Z= 0.4(143) 190.32-47,32= 143.71 30 Taking structural ht from bottom of penthouse: h= 3-0236 3-0236 3-0237 3-0137 COMET V= 75.4 L== 440 $R_n: N = \frac{4.6nh}{V}$ Updated Gr: 0.826

Updated Bed Tower Ordinary Reinforced Conc. Shear Walk R=4 SQUARES SSQUARES SSQUARES FILLER 1=2,5 Cd = 4T=15 50 SHEETS 100 SHEETS 200 SHEETS 200 SHEETS Permitted for site Class C $C_{s} = \frac{S_{ps}}{(R/I)} = \frac{0.1424}{4/15} = 0.0644$ Need not exceed... -0236 -0236 -0237 -0237 $C_{s} = \frac{5p_{1}}{T(\frac{R}{T})} = \frac{0.09747}{(1.12)(\frac{9}{1.5})} = 10.03263$ Fundamental Períod COMET $T = C_{1}h_{n}^{\times} = (0.02)(214.1)^{0.75} = 1.125$ $C_1 = 0.02$ x = 0.75 (Table 12.8-2) hn= 214,1 ft New K Value T=0.55 1.123 1.31 T=2,55 2 V = GW = (0.03263) (85732) = 2797K

67.7K loof Wind pent 105.25 89.8k level 9 86.6. tevel 8 83.3. level7 8 - 5 SQUARES 1 - 5 SQUARES 1 - 5 SQUARES 1 - FILLER 79.5K level6 83.9K level 5 3-0235 - 50 SHEETS -3-0236 - 100 SHEETS -3-0237 - 200 SHEETS -3-0137 - 200 SHEETS level 4 77.3 66.3K level 3 61.2K level 2 level 1 77 \$00.5 K COMET roof 60.9K-> 262.8K pent 5 265.4K level9 level 8 235.7K level7 206.8K 258.9K level6 214.9 K. level 5 233.7K level 4 level 3 148.4K level2 IIISK. 729K 382K 21.8K level 1 P-1 P-2 sak > P-3 P-4 V= 2143 K OTM = 273, 198 ft-K

Object	Weight (pcf)	Area (ft ²)	Thickness (ft)	Point Load (k)	x (ft)	y (ft)	w*x	w*y
Slab	150	60200	0.916666667	8277.5	126	163	1042965	1349233
Drop Panels	150	4100	0.6875	422.8125	131	148	55388.44	62576.25
A6	150	450	1.5	101.25	75	348	7593.75	35235
P1	150	202.5	1.833333333	55.6875	65.5	273	3647.531	15202.69
P4	150	202.5	1.833333333	55.6875	113.5	273	6320.531	15202.69
P3	150	450	1.833333333	123.75	60	256.5	7425	31741.88
P5	150	450	1.833333333	123.75	120	256.5	14850	31741.88
A1	150	202.5	1.833333333	55.6875	65.5	239.5	3647.531	13337.16
P6	150	202.5	1.833333333	55.6875	113.5	239.5	6320.531	13337.16
P11	150	900	1.5	202.5	210	150	42525	30375
A4	150	900	1.666666667	225	210	15	47250	3375
P7	150	210	1.5	47.25	75	118	3543.75	5575.5
P8	150	210	1.5	47.25	75	103	3543.75	4866.75
Р9	150	228	1.5	51.3	68	110.5	3488.4	5668.65
P10	150	228	1.5	51.3	82	110.5	4206.6	5668.65
12-CD	150	450	1.5	101.25	75	60	7593.75	6075
P13	150	900	1.5	202.5	285	60	57712.5	12150

Center of Mass – 5th Floor

COM_x 129.2158 ft

COM_y 160.9153 ft

Center of Rigidity – 5th Floor

Object	Dir.	h (ft)	b (ft)	Thickness (ft)	h ³ /(Eb ³ t)	1.2h/Gbt	k (lb-in)	Rel Stiffness	x (ft)	y (ft)	k*x	k*y
A6	у	15	30	1.5	1.57285E-09	1.8129E-08	50756464.3	0.112482959	75	348	-	17663249574
P1	Y	15	13.5	1.833333333	1.41221E-08	3.2962E-08	21238612.3	0.047067541	65.5	273	-	5798141165
P4	Υ	15	13.5	1.833333333	1.41221E-08	3.2962E-08	21238612.3	0.047067541	113.5	273	-	5798141165
P3	Х	15	30	1.833333333	1.28688E-09	1.4833E-08	62035678.6	0.226551461	60	256.5	3722140715	-
P5	Х	15	30	1.833333333	1.28688E-09	1.4833E-08	62035678.6	0.226551461	120	256.5	7444281430	-
A1	Υ	15	13.5	1.833333333	1.41221E-08	3.2962E-08	21238612.3	0.047067541	65.5	239.5	-	5086647652
P6	Υ	15	13.5	1.833333333	1.41221E-08	3.2962E-08	21238612.3	0.047067541	113.5	239.5	-	5086647652
P11	Υ	15	60	1.5	1.96606E-10	9.0645E-09	107978025	0.239293418	210	150	-	16196703815
A4	Υ	15	60	1.6666666667	1.76946E-10	8.1581E-09	119975584	0.265881575	210	15	-	1799633757
P7	Υ	15	14	1.5	1.54763E-08	3.8848E-08	18407967.9	0.040794463	75	118	-	2172140212
P8	Υ	15	14	1.5	1.54763E-08	3.8848E-08	18407967.9	0.040794463	75	103	-	1896020693
P9	Х	15	15.2	1.5	1.20926E-08	3.5781E-08	20888305	0.076283135	68	110.5	1420404742	-
P10	Х	15	15.2	1.5	1.20926E-08	3.5781E-08	20888305	0.076283135	82	110.5	1712841013	-
12-CD	Y	15	30	1.5	1.57285E-09	1.8129E-08	50756464.3	0.112482959	75	60	-	3045387858
P13	Х	15	60	1.5	1.96606E-10	9.0645E-09	107978025	0.39433081	285	60	3.0774E+10	-
E	=	4415201	lb/in ²							COR	62.1648193	ft

COR_y 89.0167076 ft

e_x -67.050971 ft

e_y -71.898546 ft

G = 1838667.08 lb/in²

		Rel.	Direct Shear (K)			Torsional Shear (K)				
Object	R _x (lb-in)	Stiffness	Seismic	d _i (ft)	R _x *d _i (k-ft ²)	$R_x * d_i^2 (k-ft^3)$	R _i d _i /J (1/ft)	V _t - Seismic	Seismic	
A6	50756464	0.112483	24.173	258.9832924	1095423.019	4633316615	4.72761E-05	0.730462206	24.903	
P1	21238612	0.047068	10.115	183.9832924	325629.1518	576325943.2	1.7566E-05	0.271412295	10.386	
P4	21238612	0.047068	10.115	183.9832924	325629.1518	576325943.2	1.81297E-05	0.280121206	10.395	
P3	62035679	0.226551	48.686	167.4832924	865828.308	4476020552	4.83597E-05	0.747205228	49.433	
P5	62035679	0.226551	-	-	-	-	-	-	-	
A1	21238612	0.047068	-	-	-	-	-	-	-	
P6	21238612	0.047068	10.115	150.4832924	266338.0258	471387506.4	1.4876E-05	0.229848301	10.345	
P11	1.08E+08	0.239293	51.424	60.98329241	548737.9582	4937636767	3.0649E-05	0.473557942	51.898	
A4	1.2E+08	0.265882	57.138	74.01670759	740016.4754	7398659056	4.13326E-05	0.638630285	57.777	
P7	18407968	0.040794	8.767	28.98329241	44460.29302	68201970.55	2.48327E-06	0.038368997	8.805	
P8	18407968	0.040794	8.767	13.98329241	21450.33314	32904753.66	1.19808E-06	0.018511524	8.785	
P9	20888305	0.076283	-	-	-	-	-	-	-	
P10	20888305	0.076283	-	-	-	-	-	-	-	
12-CD	50756464	0.112483	24.17258789	29.01670759	122732.1236	519120720.7	6.85504E-06	0.10591717	24.279	
P13	1.08E+08	0.394331	-	-	-	-	-	-	-	

Load Distribution – 5th Floor Seismic Loads

		Rel.	Direct Shear (K)		Torsional Shear (K)						
Object	R _x (lb-in)	Stiffness	Seismic	d _i (ft)	R _x *d _i (k-ft ²)	$R_x * d_i^2 (k-ft^3)$	R _i d _i /J (1/ft)	V _t - Seismic	Seismic		
A6	50756464	0.112483	-	-	-	-	-	-			
P1	21238612	0.047068	-	-	-	-	-	-			
P4	21238612	0.047068	-	-	-	-	-	-			
Р3	62035679	0.226551	48.686	194.3351807	1004643	5193642005	9.4066E-05	1.355420292	50.041		
P5	62035679	0.226551	48.686	194.3351807	1004643	5193642005	9.25471E-05	1.333534862	50.019		
A1	21238612	0.047068	-	-	-	-	-	-			
P6	21238612	0.047068	-	-	-	-	-	-			
P11	1.08E+08	0.239293	-	-	-	-	-	-			
A4	1.2E+08	0.265882	-	-	-	-	-	-			
P7	18407968	0.040794	-	-	-	-	-	-			
P8	18407968	0.040794	-	-	-	-	-	-			
Р9	20888305	0.076283	16.39324561	48.33518067	84136.67	146456029.5	7.87782E-06	0.113513513	16.507		
P10	20888305	0.076283	16.39324561	48.33518067	84136.67	146456029.5	0.000261509	0.113513513	16.507		
12-CD	50756464	0.112483	-	-	-	-	-	-			
P13	1.08E+08	0.394331	84.74169103	2.164819326	19479.41	175279016.2	0.000111134	0	84.742		

COB calcs - Shear Wall Stiffness - Fixed-fixed between floors and the - 5 SQUARES - 5 SQUARES - 5 SQUARES - FILLER $K = \overline{\left(\frac{h^3}{Eb^2 t} + \frac{1.2h}{Gbt}\right)}$ See excel... h=15 11 3-0235 - 50 SHEETS -3-0236 - 100 SHEETS -3-0237 - 200 SHEETS -3-0137 - 200 SHEETS b COR: (104 ft, 1619 ft) COMET Eccentricity: X-div: 104-965 = 7.5A <u>y-div:</u> 1619-149 = 12.9 ft

COM cales 1) Center of Slab 36,130 A2 @ (130 H, 75 A) 24,070 A2 @ (45A, 275 A) 5 SQUARES 5 SQUARES 5 SQUARES FILLER $X: \frac{(130 \text{ A})(36,130 \text{ A}^2) + (45 \text{ A})(24,070 \text{ A})^2}{36(30 + 24076)} = 96 \text{ A}$ 50 SHEET 100 SHEET 200 SHEET 200 SHEET Y: (75)(36,130) + (275)(24070) = 148 A 36130 + 24070 3-0235 3-0236 3-0237 3-0137 Center of Drop Panels 14(100 A2) @ (45, 245) 27(100 A²) @ (130,75) X: 14(100)(45) + 27(100)(130) = 101 ft41(100) y: 14(100)(245) + 27(100)(75) = 133 ft 41(100) See Attached Excel, COM at (96.5, 149. A)
Floor 5 0 COR + COM Caks Excel Spreadsheet Verification (see Wall Layout for Wall A6. Corresponding Labels) Wt: 150 pcf Thickness: 18/12= 1.5 ft Area = 30 ft length x 15 ft ht = 450 ft² SQUARES 5 SQUARES 5 SQUARES FILLER Pt load: (150 pcf) (1.5 ft) (450 ft2) = 101.25 k X=75ft Y=348ft 포오오오 200 200 W(x) = 101.25(75) = 7593.75W(y) = 101.25(348) = 35235111 3-0235 3-0236 3-0237 3-0137 * See excel for other values Note: Dimensions COM, = 129.2158 A changed put directly COMY = 160,9153A cales vertical spread sheet output Stiffness of Wall A6 $\frac{h^{5}}{Eb^{3}t} = \frac{(15 \text{ H})^{3}}{(4415201 \text{ H}^{2})(30 \text{ H})^{3}(18 \text{ in})}$ = 1.5728 + 10 1/16 $\frac{1.2h}{Gbt} = \frac{1.2(15ft)}{(1838667.08\frac{16}{102})(30ft)(16)} = 1.8129 \times 10^{8} in/16$ $K = \frac{1}{1.5726 \times 10^9 + 1.8129 \times 10^8} = 50756783.64$ see excel for relative stiffness values

COMET

Appendix B

Construction References

B.1 Estimate References

Forms in I	Place																	
Section			Activity	Floor	Total	Crew	Daily Output	LH	Unit	Material	Labor	Equip	Total	Crews	Duration	Total \$	Location	Factored Cost
031113	20	1600	Exterior spandrel, job-built plywood, 24" wide, 3 use	TOTAL	9078.42	C-2	315	0.152	SFCA	0.99	6.8		7.79		28.82038	70720.89	0.875	61880.78033
				LL	2019.93													
				LR	0)												
				UL	7058.49													
				UR	0													
031113	20	2600	Interior beam, job-built plywood, 24" wide, 3 use	TOTAL	3060	C-2	385	0.125	SFCA	1	5.55		6.55		7.948052	20043	0.875	17537.625
				LL	0)												
				LR	0)												
				UL	3060													
				UR	0													
031113	25	7700	20"X20" column	TOTAL	11700	C-2	420	0.076	SECA	1.08	3.32		4.4		27.85714	51480	0.875	45045
				11														
				LR														
				LIR														
031113	25	7700	24"X24" column	ΤΟΤΑΙ	16593 3	C-2	440	0.073	SECA	0.78	3 17		3 95		37 71205	65543 54	0 875	57350 59313
031113	23	7700		101742	10555.5			0.075	51 67 (0.70	5.17		5.55		57.71205	03343.34	0.075	57550.55515
				I R														
021112	25	7755	20"X20" column		1618 5	C_2	440	0.073	SECA	0.00	2 17		1 16		10 56/77	10227 76	0 875	16020 54
031113	25	1155			4040.5	10-2	440	0.075	JICA	0.33	5.17		4.10		10.30477	19337.70	0.875	10920.54
021112	25	7755	26"Y26" column		671 45	6.2	460	0.07		0.97	2.02		2.0		1 450674	2619 655	0.975	2201 222125
051115	25	//55			0/1.45	C-2	400	0.07	SFCA	0.87	5.05		5.9		1.459074	2016.055	0.875	2291.323123
	_																	
	_																	
024442	25	2050	The shake share a second to be the best second to difficult	UR	145044.0		500	0.004	6564	2.24	4.24		6.52		200.4000	050604.0	0.075	024055 4062
031113	35	2050	Flat slab, drop panels, job-built plywood, to 15 high,	TUTAL	145811.0	L-2	509	0.094	SFCA	2.31	4.21		0.52		286.4669	950691.9	0.875	831855.4062
	_																	
	_																	
				UL														
001110				UR					0.501	0.10								
031113	35	2250	Flat slab, drop panels, job-built plywood, 15'-20' high	TOTAL	410591./	C-2	480	0.1	SFCA	2.43	4.47		6.9		855.3994	2833083	0.875	2478947.57
	_		4 use															
	+			LR		ļ												
				UL														
				UR													_	
031113	35	7101	Edge forms, 7" to 12" high, 4 use	TOTAL	11972.5	C-1	350	0.091	L.F.	0.18	3.98		4.16		34.20714	49805.6	0.875	43579.9
	+			LL														
				LR														
				UL														
				UR														
031113	35	7500	Depressed area forms to 12" high, 4 use	TOTAL	3696	6 C-1	300	0.107	' L.F.	0.92	4.65		5.57		12.32	20586.72	0.875	18013.38
				LL														
				LR											ļ			
				UL														
				UR														
031113	85	2500	Wall, job-built plywood, 8' to 16' high, 3 use	TOTAL	64448.79	C-2	375	0.128	SFCA	0.89	5.7		6.59		171.8634	424717.5	0.875	371627.8561
				LL	18205.53													
				LR	11156.4													
				UL	18800.46	5												

				UR	16286.4													
031113	85	2850) Wall, job-built plywood, over 16' high, 4 use	TOTAL	114790.3	C-2	330	0.145	SFCA	0.82	6.5		7.32		347.8494	840264.9	0.875	735231.8151
				LL	26775.87													
				LR	35758.8													
					29042.82													
				UR	23212.8													
Shores					25212.0	1				1		1	I				L	
Soction			Activity	Eleor	Total	Crow	Daily Output	1 🖬	Unit	Matorial	Labor	Equip	Total	Crows	Duration	Total Ś	Location	Eactored Cost
021505	70	0500	Aluminum joicts and stringers, spaced @ 2' 0.C., per me	TOTAL	6297	2 carp		0.267		Iviaterial	12.25	Lquip	12.25	CIEWS	Duration			68460 65625
031303	70	0300	Aluminum joists and stimgers, spaced @ 2 O.C., per mo.	TOTAL	0307	z carp	00	0.207	LA.		12.23		12.23			78240.75	0.873	08400.03023
	_																	
	_			LK														
	_			UL						-								
				UR														
031505	70	3600) #3 post shore, 8'-10" to 16'-1" high, 3800# capacity	TOTAL	6387				EA.	187			187			1194369	0.875	1045072.875
	_			LL														
	_			LR														
				UL														
				UR														
031505	70	1500	Reshoring	TOTAL	556403.4	2 Carp	1400	0.011	S.F.	0.58	0.52		1.1		397.431	612043.7	0.875	535538.2436
				LL														
				LR														
				UL														
				UR														
Rebar and	d Acce	ssories	5			-			-				-	-		-		
Section			Activity	Floor	Total	Crew	Daily Output	LH	Unit	Material	Labor	Equip	Total	Crews	Duration	Total \$	Location	Factored Cost
032111	60	0252	2 Columns, #8-#18	TOTAL	700491.8	4 Rodm	4600	0.007	Lb.	0.5	0.35		0.85		152.2808	595418	0.875	520990.7763
				LL														
				LR														
				UL														
				UR														
032111	60	0402	PElevated slahs #4-#7	ΤΟΤΑΙ	3311400	4 Rodm	5800	0.006	lh	0.5	0.28		0.78		570 931	2582892	0 875	2260030 5
002111		0102		101712	5511100	- noun	5000	0.000	2.0.	0.5	0.20		0.70		570.551	2302032	0.075	220003013
				L R														
	-																	
	-																	
022111	60	0702	Malle #2 #7		267552	4 Rodm	6000	0.005	l h	0.5	0.27		0.77		44 50217	206015.0	0.975	100762 0220
052111	00	0702	2 Walls, #5-#7	TUTAL	20/555	4 KOUIII	0000	0.005	LD.	0.5	0.27		0.77		44.59217	200015.8	0.875	100203.0330
	_				145001													
	_				18114.5					-								
	_			UL	//323					-								
		0		UR	26454.5													
032111	60	0752	Walls, #8-#18	TOTAL	116704.7	4 Rodm	8000	0.004	Lb.	0.5	0.2		0.7		14.58809	81693.29	0.875	/1481.62875
					55959		ļ		ļ						 	ļ		
ļ				LR	20877.3	ļ	ļ									ļ		
				UL	29705.4													
				UR	10163													
Placing Co	oncret	e																
Section			Activity	Floor	Total	Crew	Daily Output	LH	Unit	Material	Labor	Equip	Total	Crews	Duration	Total \$	Location	Factored Cost
033113	35	0400	Heavyweight concrete, ready mix, 5000 psi	TOTAL	23405.5				CY	110			110			2574605	0.875	2252779.375
				LL														
				LR														
				UL														
				UR														
033113	35	0411	Heavyweight concrete, ready mix, 6000 psi	TOTAL	4504.5				СҮ	113			113			509008.5	0.875	445382.4375
				LL	909.3													
				LR	1351.5													
				UL	1507 1													
L	1	I			1 1307.1	I	I		1	1		1	1	l	1	1	1	

				UR	736.6												
033113	70	0800	Columns, 24" thick, pumped	TOTAL	2495.5	C-20	92	0.696	CY	27.5	8.45	35.95		27.125	89713.23	0.875	78499.07188
				LL													
				LR													
				UL													
				UR													
033113	70	1600	Slabs over 10" thick, pumped	TOTAL	20910	C-20	180	0.356	CY	14	4.31	18.31		116.1667	382862.1	0.875	335004.3375
				LL													
				LR													
				UL													
				UR													
033113	70	5350	Walls, 15" thick, pumped	TOTAL	4504.5	C-20	120	0.533	CY	21	6.45	27.45		37.5375	123648.5	0.875	108192.4594
				LL	909.3												
				LR	1351.5												
				UL	1507.1												
				UR	736.6												
033513	30	0125	Bull float and manual float	TOTAL	556403.4	C-10	2000	0.012	SF	0.5		0.5		278.2017	278201.7	0.875	243426.4744
				LL													
				LR													
				UL													
				UR													
·			<u>.</u>	•	•		• •			•			•	3461.322		TOTAL	12,825,404.46

Section			Activity	Unit		Floor 1-3	Floor 4	Floor 5-6	Floor 7-Pent	Total
031113	20	1600	Exterior spandrel, job-built plywood, 24" wide, 3 use	SFCA	TOTAL	2524.5	1003.98	1849.98	3699.96	9078.42
					LL	1215	114.99	229.98	459.96	2019.93
					LR	0	0	0	0	0
					UL	1309.5	888.99	1620	3240	7058.49
					UR	0	0	0	0	0
031113	20	2600	Interior beam, job-built plywood, 24" wide, 3 use	SFCA	TOTAL	1080	360	540	1080	3060
					LL	0	0	0	0	0
					LR	0	0	0	0	0
					UL	1080	360	540	1080	3060
					UR	0	0	0	0	0
031113	25	7700	20"X20" column	SFCA	TOTAL	0	2550	5100	4050	11700
						0				0
						0				0
						0				0
						0				0
031113	25	7700	24"X24" column	SFCA	TOTAL	8296.65	8296.65	0	0	16593.3
					LL					0
					LR					0
					UL					0
					UR					0
031113	25	7755	30"X30" column	SFCA	TOTAL	4648.5	0	0	0	4648.5
					LL					0
					LR					0
					UL					0
					UR					0
031113	25	7755	36"X36" column	SFCA	TOTAL	671.45	0	0	0	671.45
					LL					0
					LR					0
					UL					0
					UR					0
031113	35	2050	Flat slab, drop panels, job-built plywood, to 15' high,	SFCA	TOTAL	0	0	0	145811.64	145811.64
			2 use		LL					0
					LR					0
					UL					0
					UR					0
031113	35	2250	Flat slab, drop panels, job-built plywood, 15'-20' high	SFCA	TOTAL	222618	70517.91	117455.8	0	410591.73
			4 use		LL					0
					LR					0
					UL					0
					UR					0
031113	35	5500	Slab box outs, over 10 S.F.	L.F.	TOTAL	946.38	472.1	685.38	1044	3147.86
					LL	0	0	0	0	0
					LR	163.38	163.38	163.38	0	490.14
					UL	783	308.72	522	1044	2657.72
					UR	0	0	0	0	0
031113	35	7101	Edge forms, 7" to 12" high, 4 use	L.F.	TOTAL	3765	1412.5	2705	4090	11972.5
										0
										0
										0

										0
021112	25	7500	Depressed area forms to 12" high 4 use	1 0	ΤΟΤΑΙ	0	0	0	2606	2606
051115	55	7500		L.I .	TOTAL	0	0	0	5050	0.00
										0
						+				0
						-				0
031113	35	8000	Perimeter deck and rail for elevated slabs straight		τοται	3765	1/12 5	2705	/090	11972 5
051115	55	0000		L.I .		5705	1412.5	2705	-050	0
					IR					0
										0
					UR	-				0
031113	85	2500	Wall job-built plywood, 8' to 16' high, 3 use	SECA	ΤΟΤΑΙ	42909.99	0	0	21538.8	64448,7936
001110	00	2300				9626 734	0	0	8578.8	18205 5336
					IR	11156.4	0	0	0	11156 4
						10970.46	0	0	7830	18800.46
						11156.4	0	0	5130	16286.4
031113	85	2850	Wall job-built plywood over 16' high 4 use	SECA	ΤΟΤΔΙ	66919.65	19356.88	28513.76	0	114790 2912
051115	05	2050		JICA		15013.23	5280.88	6/81 76	0	26775 8712
					IR	17398.8	6120	122/10	0	35758.8
						17108.82	6018	5916	0	290/12 82
						17398.8	1938	3876	0	23042.02
Shores						17550.0	1550	3870	0	23212.0
Section			Activity	Unit	Floor	Floor 1-3	Floor 4	Floor 5-6	Floor 7-Pent	Total
031505	70	0500	Aluminum joists and stringers spaced @ 2° O C per mo	FΔ	ΤΟΤΑΙ	9/3 5	1123 5	1890	2/130	6387
031303	70	0500	Adminum joists and stringers, spaced @ 2 O.C., per mo.			545.5	1123.3	1000	2430	0307
						-				
						-				
						-				
021505	70	3600	#2 post shore 8'-10" to 16'-1" high 2800# capacity	EV		0/12 5	1122 5	1900	2/20	6297
031303	70	5000	#5 post shore, 8 -10 to 10 -1 high, 5800# capacity	LA.		545.5	1125.5	1090	2430	0387
						-				
						-				
						-				
021505	70	1500	Pochoring	C.E.		222619	70517.01	117/55 0	145011 64	EE6402.27
031303	70	1300	Resitoring	JF		222018	70317.91	11/455.0	143011.04	550405.57
Dobar and	Accossorios				IOK					
Repar and A	ACCESSORIES			Linit	Floor	Floor 1.2	Floor 4	Floor F. C	Floor 7 Dont	Total
022111	60	0252	Activity			FIUUE 1-5	FI001 4		1001 7-Pelit	
052111	00	0252	Columns, #8-#18	LD.		440900	-	120001.7	122022.1	700491.8
						+				
										<u> </u>
022444	<u> </u>	0.402	Flowertod clobe #4 #7	l h		1152000	450200	724000	075300	2211400
032111	60	0402	Elevaled slads, #4-#7	LD.	TOTAL	1152000	450200	/34000	975200	3311400
										
					UK					

032111	60	0702	Walls, #3-#7	Lb.	TOTAL	267553				267553
			*Floor 1-3 includes below grade and level 4		LL	145661				145661
					LR	18114.5				18114.5
					UL	77323				77323
					UR	26454.5				26454.5
032111	60	0752	Walls, #8-#18	Lb.	TOTAL	116704.7				116704.7
					LL	55959				55959
					LR	20877.3				20877.3
					UL	29705.4				29705.4
					UR	10163				10163
Placing Co	ncrete									
Section			Activity	Unit	Floor	Floor 1-3	Floor 4	Floor 5-6	Floor 7-Pent	Total
033113	35	0400	Heavyweight concrete, ready mix, 5000 psi	CY	TOTAL	8764.4	3081	4968.5	6591.6	23405.5
			*Flor 1-3 includes below grade		LL					
					LR					
					UL					
					UR					
033113	35	0411	Heavyweight conrete, ready mix, 6000 psi	CY	TOTAL	4504.5				4504.5
					LL	909.3				909.3
					LR	1351.5				1351.5
					UL	1507.1				1507.1
					UR	736.6				736.6
033113	70	0800	Columns, 24" thick, pumped	CY	TOTAL	1210.4	259	518.5	507.6	2495.5
					LL					
					LR					
					UL					
					UR					
033113	70	1600	Slabs over 10" thick, pumped	CY	TOTAL	7554	2822	4450	6084	20910
					LL					
					LR					
					UL					
					UR					
033113	70	5350	Walls, 15" thick, pumped	CY	TOTAL	4504.5				4504.5
					LL	909.3				909.3
					LR	1351.5				1351.5
					UL	1507.1				1507.1
					UR	736.6				736.6
033513	30	0125	Bull float and manual float	SF	TOTAL	222618	70517.91	117455.8	145811.64	556403.37
					LL					
					LR					
					UL					
					UR					

B.2 Schedule References

ID	Task Name	Duration	Start	Finish	2014
				Aug	1st Half 2nd Half 1st Half Son Oct Nov Doc Ion
0	The Health Centre	385 davs	Mon 9/1/14	Fri 2/19/16	The Health Centre
1	First Floor Slab	26 days	Mon 9/1/14	Mon 10/6/14	First Floor Slab
2	Zone 1	4 days	Mon 9/1/14	Thu 9/4/14	Zone 1
3	Zone 2	4 days	Wed 9/3/14	Mon 9/8/14	Jone 2
4	Zone 3	4 days	Fri 9/5/14	Wed 9/10/14	Zone 3
5	Zone 4	4 days	Tue 9/9/14	Fri 9/12/14	Zone 4
6	Zone 5	4 days	Thu 9/11/14	Tue 9/16/14	Jone 5
7	Zone 6	4 days	Mon 9/15/14	Thu 9/18/14	Zone 6
8	Zone 7	4 days	Wed 9/17/14	Mon 9/22/14	Zone 7
9	Zone 8	4 days	Fri 9/19/14	Wed 9/24/14	Zone 8
10	Zone 9	4 days	Tue 9/23/14	Fri 9/26/14	De Service 2010 De Service 201
11	Zone 10	4 days	Thu 9/25/14	Tue 9/30/14	Sone 10
12	Zone 11	4 days	Mon 9/29/14	Thu 10/2/14	Sone 11
13	Zone 12	4 days	Wed 10/1/14	Mon 10/6/14	Zone 12
14	First Floor Columns	25 days	Mon 9/15/14	Fri 10/17/14	First Floor Columns
15	Zone 1	3 days	Mon 9/15/14	Wed 9/17/14	Zone 1
16	Zone 2	3 days	Wed 9/17/14	Fri 9/19/14	🖌 Zone 2
17	Zone 3	3 days	Fri 9/19/14	Tue 9/23/14	Zone 3
18	Zone 4	3 days	Tue 9/23/14	Thu 9/25/14	😕 Zone 4
19	Zone 5	3 days	Thu 9/25/14	Mon 9/29/14	Zone 5
20	Zone 6	3 days	Mon 9/29/14	Wed 10/1/14	Jone 6
21	Zone 7	3 days	Wed 10/1/14	Fri 10/3/14	Zone 7
22	Zone 8	3 days	Fri 10/3/14	Tue 10/7/14	Zone 8
23	Zone 9	3 days	Tue 10/7/14	Thu 10/9/14	Zone 9
24	Zone 10	3 days	Thu 10/9/14	Mon 10/13/14	Zone 10
25	Zone 11	3 days	Mon 10/13/14	Wed 10/15/14	Zone 11
26	Zone 12	3 days	Wed 10/15/14	Fri 10/17/14	Jone 12
27	First Floor Walls	11 days	Mon 10/6/14	Mon 10/20/14	First Floor Walls
28	Zone 1	2 days	Mon 10/6/14	Tue 10/7/14	Zone 1
29	Zone 2	2 days	Tue 10/7/14	Wed 10/8/14	Jone 2
30	Zone 3	2 days	Wed 10/8/14	Thu 10/9/14	> Zone 3
31	Zone 5	2 days	Thu 10/9/14	Fri 10/10/14	Cone 5
32	Zone 6	2 days	Fri 10/10/14	Mon 10/13/14	Tone 6
33	Zone 7	2 days	Mon 10/13/14	Tue 10/14/14	> Zone 7
34	Zone 9	2 days	Tue 10/14/14	Wed 10/15/14	Zone 9
35	Zone 10	2 days	Wed 10/15/14	Thu 10/16/14	Zone 10
36	Zone 11	2 days	Thu 10/16/14	Fri 10/17/14	Zone 11
37	Zone 12	2 days	Fri 10/17/14	Mon 10/20/14	Zone 12
38	Second Floor Slab	26 days	Mon 10/20/14	Mon 11/24/14	Second Floor Slab
		Task		Inactive Task	Manual Summary Rollup External Milestone 🔷 Manual Progress
Projec	t: The Health Centra	Split		Inactive Milestone	Manual Summary Deadline
Project: The Health Centre		Milestone	•	Inactive Summary	Start-only Critical
		Summary		Manual Task	Finish-only Critical Split
		Project Summary		Duration-only	External Tasks Progress
					Page 1

BIBLIOGRAPHY

Aalami, Bijan O, "Vibration Design of Concrete Floors for Serviceability," *ADAPT Technical Note 290*, Web, 14 Feb, 2016.

ACI 318-11, "Building Code Requirements for Structural Concrete", American Concrete Institute, 2011.

AISC, Steel Construction Manual (14th Edition ed.). American Institute of Steel Construction.

Amick, Hall, Michael Gendreau, Todd Busch, and Colin Gordon, *Evolving criteria for research facilities: I - Vibration*, SPIE Conference 5933: Buildings for Nanoscale Research and Beyond, July 2005, Web, 18 Nov. 2015.

<http://www.colingordon.co/sites/default/files/pdf/HA_MG_TB_CG_Evolving_Criteria_SPIE20 05.pdf>

Amick, Hal., Matthew Stead, "Vibration Sensitivity of Laboratory Bench Microscopes," Sound and Vibration, February 2007, Web, 22 Nov, 2015. http://www.sandv.com/downloads/0702amic.pdf>

ASCE, ASCE 7-05: Minimum Design Loads for Buildings and Other Structures, ASCE/AEI, 2005.

American Society of Heating, Refrigerating and Air-Conditioning Engineers, ASHRAE Handbook : Fundamentals, Atlanta, GA, ASHRAE, 1997. Murray, Thomas M., David E. Allen, and Eric E. Ungar. Design Guide 11: Floor

Vibrations Due to Human Activity. American Institute of Steel Construction, Oct. 2003. http://www.civil.umd.edu/~ccfu/ref/Design-Guide-11-floor-vib.pdf

Bachmann, H, "Case Studies of Structures with Man-Induced Vibrations." *Journal of Structural Engineering*, Vol. 118, No. 3, March 1992, Web, 1 Dec. 2015.

Gordon, Colin G, *Generic Criteria for Vibration-Sensitive Equipment*, SPIE Proceedings Volume 1619, 1991, Web, 18 Nov. 2015.

<http://research.physics.berkeley.edu/packard/related/Vibrations/Gordon-SPIE99.pdf>

Hines, E.M. M. Ravindra, C.D. Blanchet, M. Sanayei, M.D. Dodge, R. Viesca, *Floor System Vibration Control*, Tufts University, 2005, Web, 20 Nov. 2015. http://engineering.tufts.edu/cee/people/sanayei/documents/2005_FloorSystemVibrationControl. pdf>

Photolithography Tools, ESTECH 2001 Annual Technical Meeting, Phoenix, Arizona, April 24, 2001, Web, 22 Nov. 2015. http://www.colingordon.co/sites/default/files/pdf/Amick-Bayat%20IEST01.pdf>

Ungar, Eric E., Douglas H. Sturz, Hal Amick, *Vibration Control Design of High Technology Facilities*, Sound and Vibration, July 1990. Web. 20 Nov. 2015. http://www.colingordon.co/sites/default/files/pdf/Ungar_Sturz_Amick_1990.pdf

Ungar, Eric E, *Vibration Criteria for Sensitive* Equipment, Inter-noise 92 : Noise control and the public : proceedings ; the 1992 International Conference on Noise Control Engineering, Toronto, Canada, July [20-22], 1992.

Ungar, E. and Zapfe, J, "Limiting Effects of Construction Vibrations on Sensitive Equipment," Pract. Period. Struct. Des. Constr., 10.1061/(ASCE)SC.1943-5576.0000090, 199-203, 2011.

Waier, P. R., *RS Means Building Construction Cost Data 2014*, Reed Construction Data, 2014.

Walter T. Grondzik, A.G. Kwok, J. R. B. S, *Mechanical and Electrical Equipment for Buildings*, Wiley, 2010

ACADEMIC VITAE

Hannah N. Valentine

hnv5006@psu.edu

Objective

	Pursue a full-time structural engineering position for the summer of 2016 and obtain a Professional Engineer license after working in practice.
	Education The Pennsylvania State University, University Park, PA Schreyer Honors College B.A.E./M.A.E. Architectural Engineering ABET Accredited Structural Option EIT Upon Graduation Architectural Studies Minor
	The Pantheon Institute, Rome, Italy Summer 2014 Studied 12 credits of Penn State courses including daylighting, cartography, and architecture
Work Experience	SmithGroupJJR Structural Intern, Detroit MI Summer 2015 Modeled canopy, mechanical support framing, and other structures in RISA-3D Reviewed steel shop drawings for 4 sequences of steel beams, columns & connections Prepared hand calculations for wind, seismic, and façade loading analysis Worked with senior through graduate engineers on interdisciplinary coordination in Revit
	The Pike Company Project Engineer Intern, Cornell University, NY Summer 2013 Managed on-site project drawing updates, daily RFIs, and the project punchlist for the Comell Food Science building Coordinated orders of supplies and delivered bids for local projects
	 Delta Engineers Transportation Intern, Endwell, NY Completed road surveys for the Road Protection Program Checked calculations, completed pick-up work in Microstation, and collected project bids for Transportation department projects
Involvement	Structural Engineer's Association (SEA), President 2015-2016 Planned meetings, guest speakers, and annual trip to the American Institute of Steel Construction conference
	Global Architecture Brigades, Secretary 2011-2013 Assisted with planning trip to rural Honduras to work on the construction of a medical center and a secondary school with the local communities Constructed compost latrines in an indigenous Kuna community in Darien, Panama
Awards	 Schreyer Honors College Academic Excellence Scholarship William and Wyllis Leonhard University Scholarship Recipient of the Thomas J. Watson Memorial Scholarship
Organizations	 Student Society of Architectural Engineers (SSAE) American Institute of Steel Construction (AISC) Engineering Orientation Network Mentor National Association of Home Builders 2012 Construction Competition
SofVaware	RAM SAP2000 RISA 3D ETABS STADD Revit Newforma AutoCAD Sketchup
Relevant Courses	Advanced Steel and Concrete Design Interdisciplinary BIM Studio Steel Connections Computer Modeling of Buildings Earthquake Resistant Design Building Failures