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ABSTRACT 

 

 Nosocomial infections, also known as hospital-acquired infections, are infections caused 

by pathogens contracted in the hospital environment. It is possible that nosocomial infections are 

greater than a hospital-level problem, as factors about a hospital’s catchment population and 

geographic region could confer epidemiological risk (1). This research examines population and 

spatial effects on infection rates of Methicillin-Resistant Staphylococcus aureus (MRSA) and 

Clostridium difficile (C. diff) in 165 Pennsylvania hospitals. Infection rates were obtained from 

the CDC’s Hospital Compare dataset, and standardized based on patient days (2). Standardized 

infection rates were regressed against hospital size, as well as county-level socioeconomic data 

from the Area Health Resource File (AHRF) to assess catchment population trends (3). Hospitals 

were also compared by spatial autocorrelation analysis, and by local indicators of spatial 

association (LISA) (4,5). Finally, infection rates of MRSA and C. diff were compared by 

regression and spatial cross-correlation. This analysis finds that the size of a hospital has a 

significant positive effect on both the presence of infection and the rate of infection in that 

hospital. Concerning spatial risk, clustering of MRSA occurs in urban areas, with significant 

positive spatial autocorrelation observed out to a distance of 43 km. However, spatial analysis of 

C. diff shows inconclusive evidence of regional influence. Further, the infection rates of MRSA 

and C. diff are significantly correlated on a hospital-by-hospital basis, but are not correlated 

spatially. Thus, the conclusion from this research is that both hospital-level and regional-level 

factors likely contribute to these nosocomial infection rates. 
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Chapter 1  
 

Introduction 

Background 

Nosocomial infections are a persistent problem in the healthcare community that 

jeopardize patient health and lead to billions of dollars in waste every year. A point-prevalence 

study in 2012 showed that up to 3 percent of all patients in a hospital at a given time are there 

because of a hospital-acquired infection (HAI) (6). Some estimates project that that HAIs are 

responsible for upwards of $30 billion in healthcare costs annually in the United States (7). 

HAIs are not a new problem. There are studies of nosocomial infections in children’s 

wards dating all the way back to before WWII (8,9). This problem will not be going away any 

time soon, either. Pathogens have evolved to transmit to new hosts, and hospitals provide a dense 

population of susceptible targets. Even more disconcerting is that these pathogens are getting 

better at their job because of the evolution of antibiotic and antimicrobial resistance (10).  

In 1988, the CDC published specific definitions for the different type of nosocomial 

infections. They include surgical wound infections, primary bloodstream infections, pneumonia, 

urinary tract infections, bone and joint infections, cardiovascular system infections, central 

nervous system infections, ear eyes, nose, throat, and mouth infections, gastrointestinal tract 

infections, lower respiratory tract infections (excluding pneumonia), reproductive tract 

infections, skin and soft tissue infections, and systemic infections (11). Of these categories, the 

most common are pneumonia, surgical site infections, urinary tract infections, and primary 

bloodstream infections (12). 
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Infectious Bacteria 

There are a number of different bacteria that commonly cause HAIs. Some of the most 

prevalent include Staphylococcus aureus, Enterococcus spp., Acinetobacter spp., and 

Clostridium difficile (13). This study uses data for Methicillin-Resistant Staphylococcus aureus 

(MRSA) and Clostridium difficile (C. diff) (2). 

MRSA is one of, if not the single most common bacteria causing HAIs (13). In the 

hospital setting, MRSA is a cause of bloodstream infections, surgical site infections, and 

pneumonia (14). It is spread by contact with a contaminated wound, surface, or hands of a 

healthcare worker (HCW) (14). Staphylococcus aureus can live dormant or without showing any 

symptoms for long periods of time; because of this up to 1 in 3 people have Staphylococcus 

aureus colonized in their nasal cavity, and up to 1 in 50 have MRSA (14). Because MRSA is 

resistant to many common antibiotics, it leaves care providers with limited options to fight the 

infection (15). 

Clostridium difficile is a bacterium that colonizes the intestines and causes 

gastrointestinal system infections (16). C. diff spreads in a fecal-to-oral route, and is most 

commonly transmitted through the hands of an HCW who has touched a contaminated surface or 

instrument (16). Those at highest risk for contracting C. diff are the elderly and those on bacterial 

antibiotics who are receiving medical care (16). A big problem with control of C. diff is that 

while hand-washing does kill the bacteria, alcohol-based hand sanitizers do not. This means that 

“clean” hands may still be colonized; and that many hospital employees must change their 

typical sanitization practice before providing care to a patient with C. diff (17). 
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Infection Management 

As both infections are unique, rampant, and dangerous, the CDC has published toolkits 

for healthcare facilities to use to reduce the spread of MRSA and C. diff (18,19). Infection 

control measures center around proper hygiene, reducing contact with contaminated surfaces and 

individuals, and education of all HCW’s about the pathogens (18,19). Electronic presentations 

containing the core prevention strategies for each bacterium can be found in Appendix A. 

The primary focus of HAI control within a hospital is hand washing practice. It has been 

shown that there is a causal link between hand washing and risk of infection (20). Increasing 

hand washing compliance among HCW’s is thus a main goal of infection management protocols. 

Other management strategies include reducing skin-to-skin contact with the use of gloves, 

gowns, nose and eye protection; and proper handing of equipment that comes into contact with 

infected patients (21). 

On a larger scale, the CDC is just one of many partners from the Department of Health 

and Human Services that have joined forces in an attempt to control HAI incidence across the 

country. The goals of this alliance are to improve hospital policies and compliance with them 

through increasing incentive systems and regulatory oversight. (22) Furthermore, the incidence 

of hospital acquired infections is monitored at both the state and federal level through reporting 

to the National Healthcare Safety Network (NHSN) (23). Data reported through the NHSN is the 

primary source of data for this analysis (2). 
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Quality of Care 

There are a number of factors, both endogenous and exogenous, that could contribute to 

the quality of care received at a specific hospital. With regard to HAIs, high quality of care is 

represented by low infection rates, and vice versa.  

First, it is possible that infection risk could vary with the size of a hospital. The primary 

mode of HAI transmission is from the hands of a HCW to a patient (14,16). Every time a HCW 

comes in contact with a patient, it presents the chance for an infection to be passed. Thus, larger 

hospitals with more patients will have more HCW-patient contacts, and will have more chances 

for HAI transmission. In addition, hospital size may affect the resources available, such as extra 

rooms for proper warding and quarantine of infections. Previous research has shown that 

hospital-acquired pneumonia incidence is three times higher in hospitals where rooms have 

double occupancy than in hospitals with single occupancy (24). 

Second, it is possible that the probability of an infection could be linked to 

socioeconomic status. It has been shown that greater economic status has been linked to greater 

access to healthcare, especially in children (25). It is thus possible that hospitals that serve poor 

communities will serve more sick and susceptible populations, equating to higher infection rates.  

There also may be a rural vs. urban component of these infection rates. Research has 

indicated that rural areas have differential access to healthcare. Compared to urban areas, they 

have fewer community health centers, sometimes lacking sufficient access to care (26). This may 

mean that rural hospitals similarly serve more sick and susceptible populations, and thus exhibit 

higher infection rates. 

One possible way to measure the quality of care for a community is to look at the 

accreditation of its hospitals. The Joint Commission will accredit hospitals based on the quality 
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of care they provide, also known as JCAHO Accreditation (27). Looking at the number of 

JCAHO accredited hospitals serving an area is one metric that could be used to evaluate the 

quality of care received by that area. Furthermore, in 2012, Mumford et al. studied 77 hospitals 

in Australia and found a negative correlation between hospital S. aureus infection rates and 

hospital accreditation scores (28). Thus, it could be possible to estimate quality of care through 

HAI incidence analysis.  

Epidemiology 

Nosocomial infections could also be affected by spatial epidemiology. The spatial 

dynamics of many different diseases have been studied extensively, suggesting many different 

models of spatial spread, including waves and clusters (29,30). It is possible that these spatial 

effects, which play roles in the spread of community-acquired diseases, also have an effect on 

hospital-acquired diseases. If more patients are entering the hospital colonized with an infection, 

it increases the chances of contaminating HCWs, and thus increases chances of transmitting 

disease to an uncolonized patient in the hospital (31). Both MRSA and C. diff were once 

considered only nosocomial infections; however, it has been shown that it is possible to acquire 

both of the bacteria in the community as well, even for patients without predisposing risk factors 

(32,33). Thus, this phenomenon could apply to the spread of these diseases.  

By this logic, hospitals that are close together, and thus share the same catchment 

population, would be expected to experience similar community “pressures” and show similar 

infection rates. In addition, hospitals located in urban areas, where disease is given more 
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opportunity to spread to new hosts, would be expected to have greater community “pressures” 

and higher infection rates (34). 

Purpose 

Thus, since it is possible that HAIs may be a problem greater than hospital control 

measures, the purpose of this research is to identify what factors about a hospital, its population, 

and its location increase the risk of nosocomial infection. This purpose is achieved through 

investigation of three specific research questions. 

First, what factors about a hospital and its population affect its infection rates? Using 

patient days at each hospital, we can create a proxy to compare hospital size across the state. Do 

smaller or larger hospitals have higher infection rates? Looking at a hospital’s catchment 

population, are there any socioeconomic indicators of high infection rates?  

Second, is there a spatial component to the spread of HAIs? Using geographic 

coordinates, we can compare hospitals regionally and identify spatial trends. Are hospitals that 

are close in proximity to each other more correlated in their infection rates than those that are far 

apart? What happens when hospitals share the same catchment population? 

Finally, is there a difference between patterns of MRSA and C. diff incidence? The two 

diseases have different control measures and different modes of transmission; do they spread 

differently? Do they spread differently within a hospital, on a regional level, or both?
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Chapter 2  
 

Method 

To address the three main research questions outlined above, hospital infection data for 

both MRSA and C. diff were merged with geographic and socioeconomic data. Epidemiological 

statistical analyses were then performed, specifically population-based and spatial analyses of 

infection risk. These analyses were performed individually for each pathogen, and a cross-

comparison was performed between the two. All analyses were performed using the statistical 

software R (35). 

Sample 

The analysis was performed across a sample of hospitals (n=165) from the state of 

Pennsylvania. Hospital-level data, including location, patient days, and infection counts, was 

acquired from the Hospital Compare Dataset developed by the Centers for Disease Control 

(CDC) and collected through the National Healthcare Safety Network (NHSN) (2). County-level 

data, including population statistics and socioeconomic indicators, was acquired from the Area 

Health Resource File made available by the Bureau of Health Workforce and American Medical 

Association (3). Hospital-level and county-level data were merged using Federal Information 

Processing Standard (FIPS) code for the county location of each hospital. 

To achieve a standardized infection rate (SIR) across all hospitals, the total number of 

observed infections per-hospital, per-disease, was divided by the number of patient days per-

hospital, and multiplied by 1000: 
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SIR = [(Observed Cases) ÷ (Patient Days)] × 1000 

The SIR thus represents the total number of disease cases per 1000 patient days at each 

hospital. SIR data was plotted geographically to observe general trends and guide the ensuring 

research questions. 

Population Analysis 

The methods in this section outline the approach to answer the first research question, 

namely, what factors about a hospital and its population affect its infection rates? 

In order to determine what factors about a hospital and its catchment population 

contribute to infection rates, multiple regression analysis was performed. The SIR for both 

MRSA and C. diff were regressed against the variables listed in Table 1.  

 

Table 1. Population variables tested in multiple regression analysis 

Hospital-Level County-Level 

Patient Days Population density per square mile 

 Per-capita income 

 Median household income 

 Number of persons living in poverty 

 Percent of persons living in poverty 

 Percent of hospitals with JCAHO accreditation 

 

Next, stepwise selection of variables using Akaike information criterion (AIC) was 

performed to determine the most parsimonious model leading to differences in hospital infection 

rates (36). The resulting model was regressed again to determine significance using a two-sided 

t-test at p=0.05.  
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The effect of hospital size on the probability of an infection in a hospital was then 

investigated. To study presence or absence of an infection in a hospital, SIR data were converted 

to discrete categorical data. All hospitals with an SIR = 0 (infection absent) were assigned a 

value of 0, and all hospitals with an SIR > 0 (infection present) were assigned a value of 1. 

Logistical regression with a logit link function and binomial error was performed for patient days 

versus presence/absence data of each infection (37).  

 Finally, a spatial regression of MRSA was performed using the nlme package in R (38). 

Spatial and non-spatial regression models of the parsimonious function were compared using 

likelihood ratio tests (39). 

Spatial Analysis 

The methods in this section outline the approach to answer the second research question, 

is there a spatial component to the spread of nosocomial infections? 

Following population analysis, the effects of regional influence were investigated. Each 

hospital was analyzed using its SIR and the latitude and longitude coordinates of its location. All 

analyses were performed in R using the ncf package (40). 

First, spatial autocorrelation analysis was performed for each disease using correlograms 

with 10 km distance classes. Significance was calculated based on 1000 random resamples of the 

data (4). Significance was measured using a two-sided test at p=0.05. Spatial dependence was 

measured using Moran’s I (41). 
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Second, local indicators of spatial association (LISA) analysis was performed for each 

disease using a neighborhood size of 25 km. Significance was calculated based on 1000 random 

resamples of the data (5). Significance was measured using a two-sided test at p=0.05. 

Disease Cross-Comparison 

The methods in this final section address the third and final research question, is there a 

difference between patterns of MRSA and C. diff incidence? 

The patterns of the two diseases were compared using both a linear regression and spatial 

cross-correlation. Linear regression analysis was performed first, regressing the MRSA and C. 

diff SIR for each hospital Significance was measured using a two-sided t-test at p=0.05 (42). 

Spatial autocorrelation was then performed using the MRSA and C. diff SIR for each 

hospital, as well as the latitude and longitude coordinates of each hospital for location. As in the 

analysis above, the distance increment was set at 10 km, and significance was calculated based 

on 1000 random resamples of the data, using a two-sided test at p=0.05 (4).
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Chapter 3  
 

Results 

Depicted below are the original geographic outputs of SIR data that were used to gauge 

general trends in the data and guide the research questions. Visual observation displays some 

evidence of higher infection rates in urban areas than in rural areas, as shown by observations in 

the Philadelphia and Pittsburgh regions. All R output summaries are provided in Appendix B. 

Standardized Infection Rates of MRSA

 

Figure 1. Map of MRSA SIR across Pennsylvania hospitals 

In the map above, each circle represents one hospital, and the size of the circle is determined by 

the SIR for that hospital for MRSA. The circles are scaled in reference to the largest observation, 

which has a radius of 0.2 inches.   
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Standardized Infection Rates of C. diff

 

Figure 2. Map of C. diff SIR across Pennsylvania hospitals 

In the map above, each circle represents one hospital, and the size of that circle is determined by 

the SIR for that hospital for C. diff. The circles are scaled in reference to the largest observation, 

which has a radius of 0.2 inches.   

Population Analysis 

The results of this section address the first research question, exploring the effects of a 

hospital’s population on its infection risk. 

The results of the multiple regression of MRSA SIR against the variables outlined in 

Table 1 yielded one significant positive interaction: patient days (coefficient = 3.129e-09, 

standard error = 5.842e-08, t = 5.356, df = 148, p < 0.001). A total of three variables yielded 

positive correlations (patient days, population density, per capita income) while the remaining 



13 

four returned negative correlations (median household income, percent of persons in poverty, 

number of persons in poverty, percent of hospitals with JCAHO accreditation). However, the 

only statistically significant correlation observed was with patient days. 

Similarly, the results of the multiple regression of C. diff SIR against the variables 

outlined in Table 1 also yielded one significant interaction: patient days (coefficient = 2.709e-06, 

standard error = 5.742e-07, t = 4.718, df = 146, p < 0.001). A total of six variables yielded 

positive correlations (patient days, per capita income, median household income, percent of 

persons in poverty, number of persons in poverty, percent of hospitals with JCAHO 

accreditation) while only one returned a negative correlation (population density). However, the 

only statistically significant correlation observed was with patient days. 

The MRSA stepwise selection using AIC eliminated all but two variables to produce a 

parsimonious model for SIR. The remaining variables were patient days (coefficient = 3.133e-

07, standard error = 5.486e-08, t = 5.711, df = 153, p < 0.001) and population density 

(coefficient = 2.474e-06, standard error = 9.417e-07, t = 2.627, df = 153, p = 0.01). 

The C. diff stepwise selection using AIC eliminated all variables except for patient days 

(coefficient = 2.744e-06, standard error = 5.163e-07, t = 5.315, df = 152, p < 0.001). 

At this point, the SIR for each infection was plotted against the most significant 

interaction found: patient days. The resulting graphs are depicted below. In figure 3 and figure 4, 

it is observed that there are a number of hospitals where the SIR is exactly zero. 



14 

0e+00 1e+05 2e+05 3e+05

0
.0

0
0
.0

5
0
.1

0
0
.1

5
MRSA Infection Rates vs. Hospital Size

MRSA Patient Days

S
ta

n
d

a
rd

iz
e
d
 I
n

fe
c
ti
o
n

 R
a
te

 

Figure 3. Regression of MRSA SIR vs. patient days 
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Figure 4. Regression of C. diff SIR vs. patient days 

 

After organization into discrete categories, the SIR of all of the hospitals were organized 

into a box plot for each of the infections. Figures 5 and 6 both indicate a general trend that larger 

hospitals are generally more likely to have an infection present, or vice versa. 
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Figure 5. Hospital sizes divided by the presence or absence of an MRSA infection 
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Figure 6. Hospital sizes divided by the presence or absence of a C. diff infection 

 

 The results of the logistic regression of this categorical data are depicted below in figures 

7 and 8. The best-fitting line shows a clear sigmoidal curve of the probability of the presence of 

an infection as hospital size increases. Figures 7 and 8 show that there are more hospitals with C. 

diff present than with MRSA present. In addition, the probability of a C. diff infection increases 

at a lower hospital size than the probability of a MRSA infection.   
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Figure 7. Logistic Regression of MRSA infection probability with increasing hospital size 

In the figure above, the line plotted represents the maximum likelihood estimation of the logistic 

regression model, calculated by y = (e
(a+bx)

) / (1+e
(a+bx)

), where a and b are the coefficients from the 

logistic regression.  
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Figure 8. Logistic Regression of C. diff infection probability with increasing hospital size 

In the figure above, the line plotted represents the maximum likelihood estimation of the logistic 

regression model, calculated by y = (e
(a+bx)

) / (1+e
(a+bx)

), where a and b are the coefficients from the 

logistic regression.  

 

Finally, spatial regression analysis for MRSA showed that the interactions for both 

patient days (coefficient = 3.30e-07, standard error = 4.7e-08, t = 6.986, df = 153, p < 0.001) and 

population density (coefficient = 2.862e-06, standard error = 1.022e-06, t = 2.801, df = 153, p = 

0.006) remain significant even when accounting for regional influences. Furthermore, likelihood 
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ratio testing showed that parsimonious multiple regression and spatial regression were not 

significantly different (ratio = 3.537, p = 0.17). 

Spatial Analysis 

The results of this section address the second research question, namely, is there a spatial 

component to the spread of HAIs? 

Spatial autocorrelation analysis found significant positive autocorrelation for MRSA out 

to the third distance class (10 km classes). Overall, the autocorrelation yielded an intercept of x = 

43.154, indicating general positive autocorrelation out to a distance of 43.154 km. The 

correlations of the first four distance classes are listed in Table 2 and visualized in figure 9.  

 

Table 2. MRSA spatial autocorrelation results 

Distance Class Mean of Class Correlation P-Value 

1 5.90 km 0.2712 0.004 

2 14.97 km 0.1634 0.008 

3 25.22 km 0.1064 0.021 

4 35.10 km 0.0357 0.217 
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Figure 9. MRSA spatial autocorrelation graph 

In the graph above, each circle represents a distance class of the spatial autocorrelation 

analysis. Filled circles represent statistically significant distance classes. This analysis is only 

interested in the local autocorrelation, thus the significant interactions that appear after the 

original positive autocorrelation is lost can be disregarded.  

 

However, spatial autocorrelation analysis did not find significant autocorrelation for C. 

diff. Without any significant distance classes, the autocorrelation yielded an intercept of x = 0. 

The correlations of the first four distance classes are listed in Table 3 and visualized in figure 10.  
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Table 3. C. diff spatial autocorrelation results 

Distance Class Mean of Class Correlation P-Value 

1 5.97 km -0.0219 0.441 

2 14.97 km -0.0004 0.443 

3 25.26 km 0.0351 0.215 

4 35.08 km -0.0481 0.213 
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Figure 10. C. diff spatial autocorrelation graph 
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In the graph above, each circle represents a distance class of the spatial autocorrelation 

analysis. Filled in circles represent statistically significant distance classes. 

 

Following spatial autocorrelation analysis, local hotspots were identified using local 

indicators of spatial association (LISA). Figure 9 displays the LISA analysis for MRSA, while 

figure 10 shows the LISA analysis of C. diff.  

Qualitative observations suggest that MRSA hotspots exist in both of the major cities of 

Pennsylvania (Philadelphia and Pittsburgh), while most of the rural areas are generally cold spots 

for the disease. There are a few instances of hospitals with higher-than-average infection rates in 

rural areas, however only one of these instances is classified as statistically significant. 

Local Indicators of Spatial Association in MRSA

 

Figure 11. LISA plot of MRSA infection rates 
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In the graph above, hospitals with above-average infection rates are depicted by red circles, 

while hospitals with below-average rates are indicated by black squares. The size of the shape is 

indicative of distance from the mean infection rate. The circles are scaled in reference to the 

largest observation, which has a radius of 0.2 inches. Finally, shapes that are colored-in 

represent hospitals that exhibit significant autocorrelation with the other hospitals in their 

neighborhood (25 km). 

 

 

Unlike MRSA, observation of C. diff yields inconclusive results. There are no significant 

interactions found in the city of Philadelphia, and a smaller number of significant interactions 

found in Pittsburgh than in the rural and suburban areas that comprise the rest of the state. 

Local Indicators of Spatial Association in C. difficile

 

Figure 12. LISA plot of C. diff infection rates 

In the graph above, hospitals with above-average infection rates are depicted by red circles, 

while hospitals with below-average rates are indicated by black squares. The size of the shape is 

indicative of distance from the mean infection rate. The circles are scaled in reference to the 

largest observation, which has a radius of 0.2 inches. Finally, shapes that are colored-in 
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represent hospitals that exhibit significant autocorrelation with the other hospitals in their 

neighborhood (25 km). 
 

Disease Cross-Comparison 

The results of this final section concern the final research question, investigating if there 

is a difference between the patterns of MRSA and C. diff incidence. 

Linear regression of MRSA and C. diff infection rates yielded a statistically significant 

strong positive correlation between the two infections (coefficient = 0.0329, standard error = 

0.0088, t = 3.732, df = 152, p < 0.001). 

However, spatial cross-correlation between the two diseases yielded no statistically 

significant local cross-correlation, thus incidence is correlated at the hospital but not regional 

level. The correlations of the first four distance classes are listed in Table 4 and visualized in 

figure 13. 

 

Table 4. Spatial cross-correlation results 

Distance Class Mean of Class Correlation P-Value 

1 5.97 km -0.0192 0.391 

2 14.97 km 0.0304 0.217 

3 25.26 km 0.0324 0.195 

4 35.08 km 0.0986 0.009 

 



26 

0 100 200 300 400 500

-0
.3

-0
.2

-0
.1

0
.0

0
.1

Distance in KM

C
o
rr

e
la

ti
o

n

Spatial Cross-Correlation of MRSA and C. difficile in Pennsylvania

 
Figure 13. Spatial cross-correlation graph 

In the graph above, each circle represents a distance class of the spatial autocorrelation 

analysis. Filled in circles represent statistically significant distance classes. This analysis is only 

interested in local cross-correlation, which is not present here. Thus while individual points may 

be statistically significant, they can be disregarded.   
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Chapter 4  
 

Discussion

Analysis of Findings 

 This analysis investigates if there are any characteristics about a hospital’s population or 

region that contribute to its incidence rates of HAIs. The data suggest that there are both 

hospital-level and regional-level influences in nosocomial infection rate, especially for MRSA. 

 Analysis of MRSA revealed that there are two statistically significant factors that 

positively contribute to infection rates: hospital patient days and county population density. As 

described in the introduction, patient days is used as a proxy for hospital size, thus larger 

hospitals are more likely to have higher infection rates. This statement is also reinforced by the 

logistic regression of presence/absence of MRSA in hospitals. Figures 5 and 7 show that 

hospitals with an infection present are generally larger than hospitals with infection absent; and 

that larger hospitals have a higher probability of an infection present. 

 The current literature is ambiguous on the effect of hospital size on infection rates. Our 

findings support both the aforementioned Mumford et al. study and another study of Australian 

hospitals by McLaws et al., who found that larger hospitals exhibit higher infection rates (28,43). 

However, a 2015 study with a slightly different sample found that larger hospitals had a lower 

incidence of post-surgical infections than smaller hospitals (44). 

 MRSA infection rates were also significantly affected by county population density. This 

suggests that hospitals in urban areas generally have higher infection rates than hospitals in less 
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urban, or rural areas. This statement is also supported by the hospital days finding. Exploratory 

regression of hospital days versus population density indicates that the two variables are 

significantly positively correlated (coefficient = 5.078, standard error = 1.321, t = 3.843, df = 

154, p < 0.001). Logically, this makes sense, as hospitals in more densely populated areas need 

to serve larger communities; in addition, cities are often home to large tertiary and quaternary 

level care facilities, that perform more surgeries and treat more trauma cases.  

 Interestingly, none of the remaining county-level socioeconomic measures were 

correlated with MRSA SIR. One explanation could be that members of high socioeconomic 

status and low socioeconomic status receive the same level of care when it comes to nosocomial 

infection management. However, a 2014 study on hospital-acquired complications found that 

there were significant disparities in care for minorities and patients with Medicaid insurance 

(45). Thus, a more likely explanation is that county-level measures of socioeconomic data are 

just not effective at measuring individual patients, since there is a spectrum of wealthy to 

impoverished residents in each county. Both urban and rural areas have their share of affluent 

residents, as well as families who are at or below the poverty line (46). 

 Concerning MRSA, there is a significant component of SIR that can be attributed to 

spatial influences. Spatial autocorrelation analysis indicated that the infection rates of hospitals 

out to 43 kilometers apart are positively correlated with one another. After this point, there are 

random positive and negative autocorrelations, indicating that spatial influence is lost at greater 

distances. 

 LISA analysis with 25-kilometer neighborhoods showed that most of this spatial 

clustering occurs in urban environments. A majority of the significant interactions were found in 

the cities of Philadelphia and Pittsburgh, while most of the rural hospitals showed no spatial 
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interaction. However, it should be noted that for many rural hospitals, there were no other 

hospitals within 25 km for comparison. Thus, it is not possible to draw absolute conclusions on 

the lack of rural spatial clustering. 

 The existence of a spatial influence on infection risk is supported by findings in previous 

literature. In 2010, Simor et al. found that multiple strains of community-acquired MRSA have 

become endemic in hospital settings as well, supporting the idea that community spread can 

result in an increase in nosocomial incidence (47). In addition, genotyping analysis enabled a 

separate 2010 study to reconstruct spatiotemporal dispersion of hospital-acquired strains of 

MRSA across Central European hospitals, finding that strains of the ST225 clone of MRSA have 

spread spatially among hospitals within Central Europe (48). 

 Finally, the evidence of spatial influence on infection rates led us to use spatial regression 

to check for spurious conclusions due to spatial dependence. The spatial regression models 

confirmed that there are still significant interactions between MRSA SIR and hospital size, as 

well as population density, even when accounting for possible confounding spatial influence. 

The likelihood ratio test of the spatial linear regression and non-spatial parsimonious linear 

regression concluded that the two models are not significantly different, and we thus accept the 

findings of the multiple regression analysis.  

 Concerning C. diff, only one factor about a hospital’s population was found to be 

significant: hospital patient days. Once again, this is a proxy for hospital size. Thus, figures 6 and 

8 combine to illustrate that hospitals with an infection present generally are larger than hospitals 

with infection absent; and that larger hospitals have a higher probability of an infection present. 
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 None of the socioeconomic data showed a strong correlation with the infection rates of C. 

diff. As stated before with MRSA, this is likely because the county-level measure is not precise 

enough to measure the specific care given to individuals of each class.  

 Unlike MRSA, there is no significant component of the movement of C. diff that can be 

attributed to spatial influences. The spatial autocorrelation analysis found no spatial dependence 

in C. diff according to Moran’s I (41). Infection rates among hospitals that are close together are 

just as random as for hospitals that are far apart. 

 LISA analysis supports the findings of the spatial autocorrelation. Looking at figure 12, 

Philadelphia, the largest city in the state, lacks a single significant spatial hotspot, while a few 

other hot spots are dispersed across rural areas of the state. This is in stark contrast to the map for 

MRSA, where Philadelphia is covered in spatial hotspots. As stated before, in rural areas, there 

are some hospitals that lack another facility within their 25-km neighborhood, and thus we 

cannot draw absolute conclusions on all locations. 

 Unlike the case for MRSA, a search of the current literature on C. diff did not find any 

results that could either support or refute the findings of this analysis. Since there was no 

evidence of a regional influence on the infection rates of C. diff, spatial regression analysis was 

not performed.  

  Finally, analysis to compare the difference between the spread of the two infections 

yielded interesting results. While the rates of MRSA and C. diff were correlated by a regression 

analysis, they were not significantly correlated by spatial cross-correlation analysis. This means 

that within a facility, the SIR’s of the two infections are correlated. However, when considering 

SIR from a regional perspective, this correlation is absent. 
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 Perhaps this lack in regional correlation could be due to the fact that C. diff incidence 

does not show any evidence of significant spatial patterns. But there is another possible 

interpretation. This result could indicate that there are more differences in management of the 

same infection type at different hospitals (i.e. Hospital 1 MRSA vs. Hospital 2 MRSA) than 

management of different infection types at the same hospital (i.e. Hospital 1 MRSA vs. Hospital 

1 C. diff). This notion is supported in the current literature. A 2016 study of New York hospitals 

showed significant differences of C. diff infection rates between hospitals, supporting the idea 

that there are large differences in the management of the same infection at different care centers 

(49). Thus, while some our findings indicate a greater-than-hospital level problem, this result 

indicates that there remain hospital-level factors that are contributing to nosocomial infection 

incidence.  

 Another observed difference between the two diseases is that there are more hospitals 

with a MRSA infection absent than hospitals with a C. diff infection absent. In addition, the 

probability of the presence of an infection increases at a lower threshold for C. diff than for 

MRSA. Thus, while MRSA shows more spatial dependence, hospitals display more 

susceptibility to a C. diff infection than a MRSA infection. 

 It is unknown why one of the diseases shows spatial dependence while the other does not. 

One hypothesis could be the differential spread of MRSA and C. diff. Diseases will spread most 

effectively where there is the highest population of susceptible individuals (50). Since MRSA 

colonizes in wounds and surgical sites, hospitals with large populations of these patients will be 

at the highest risk (14). Referencing the correlation from above, larger hospitals are found in 

more densely populated areas. Furthermore, cities are more often home to large tertiary and 

quaternary care centers that perform more surgeries and treat more trauma cases. 
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Limitations and Future Directions 

 There are several potential limitations of this study. The first is that the population 

analysis in this study relied on county-level data. Pooling such a large number of residents results 

in an average that is not representative of all of its neighborhoods, and could potentially overlook 

serious gaps in care between socioeconomic classes.  

 A further data limitation is that the Hospital Compare dataset counts infections and 

patient days for an entire year, then presents the totals all at once. Thus, while the hospital data 

had excellent spatial resolution, they lacked a temporal component. This analysis is thus a cross-

sectional analysis. 

 One factor that hindered the spatial analysis was that there were many rural care centers 

analyzed that did not have other hospitals within a certain range to be compared to. Thus, both 

the spatial autocorrelation and LISA analyses may fail to include potential community effects in 

these rural areas simply because of a lack of other hospitals for comparison.  

 Along the same lines, there are many facilities that only have one or two other hospitals 

in their neighborhood for comparison. Using figure 12 as an example, in northeast Pennsylvania, 

there are two hospitals that show significant autocorrelation and infection rates above the mean 

SIR. However, each of those hospitals is the only facility in the other hospital’s neighborhood. 

Thus, statistical analysis sees that all of the hospitals in their neighborhood have higher-than-

mean infection rates, and labels this as a significant interaction. But, this “interaction” could just 

be two hospitals with high infection rates that happen to be within 25 km of each other. This 

example brings up the point that while this analysis finds many statistically significant results, 

not all of these may be practically important results. 
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 Another limitation is that while this analysis considers infection rate data to compare 

regionally, it does not include infection management data (such as hand washing data) on a 

hospital-by-hospital basis that could account for facility differences (18,19,20). It would be very 

interesting to integrate such information into the findings about the differences between the two 

infections at the facility level. 

 Lastly, the analyses may have been somewhat limited by their sample. While the state of 

Pennsylvania has a large population and a broad spectrum from urban to rural environments, it is 

possible that the study could benefit from more urban examples than just the two cities of 

Philadelphia and Pittsburgh. Many of the conclusions drawn from LISA analysis were taken 

from the effects observed in Philadelphia, which is just one city. 

 There are a number of future questions that can be addressed following this research, 

many of which arise from the aforementioned limitations of this study. First, it would be 

beneficial to follow up this study with a more comprehensive analysis of a larger geographic 

area. Perhaps a region of the country, or the entire country could be the basis of a future analysis. 

Next, it would be enlightening to align the findings of this report with findings on the efficacy of 

treatment protocols on infection rates at individual facilities. The integration of these findings 

could be beneficial for future targeting of problem hospitals or problem regions. 

 Finally, it could be beneficial to build mathematical models for the dynamics of 

nosocomial infections. At this crucial intersection between community-acquired and healthcare-

acquired disease, it could be beneficial to model this complex movement of disease to increase 

our ability to understand, manage, and predict outbreaks of nosocomial infection. 
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Conclusion 

In conclusion, the spread of nosocomial infection has both hospital-level and regional-

level inputs. The size of a hospital has a significant effect on that facility’s infection rates for 

both MRSA and C. diff. At the same time, spatial dependence is also observed for MRSA. 

Finally, it has been shown that while MRSA and C. diff do not co-vary spatially, their infection 

rates correlate on a facility-by-facility basis, indicating the importance of individual hospital 

efforts. Together, these findings show that nosocomial infections are a multi-faceted problem, 

requiring both hospital and regional levels of management to reduce their risk.  



 35 

Appendix A 

 

CDC Infection Prevention Measures 

 

Core Prevention Strategies

• Assessing hand hygiene practices

• Implementing Contact Precautions

• Recognizing previously colonized patients

• Rapidly reporting MRSA lab results

• Providing MRSA education for healthcare 

providers

 

Figure 14. MRSA Prevention Techniques Published by the CDC (18) 
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Summary of Prevention Measures 

• Contact Precautions for 
duration of illness 

• Hand hygiene in 
compliance with 
CDC/WHO 

• Cleaning and disinfection 
of equipment and 
environment 

• Laboratory-based alert 
system  

• CDI surveillance 

• Education 

• Prolonged duration of 
Contact Precautions*  

• Presumptive isolation  

• Evaluate and optimize 
testing 

• Soap and water for HH 
upon exiting CDI room 

• Universal glove use on 
units with high CDI rates* 

• Bleach for environmental 
disinfection 

• Antimicrobial stewardship 
program 

Core Measures Supplemental Measures 

* Not included in CDC/HICPAC 2007 Guideline for Isolation Precautions 
 

Figure 15. C. diff Prevention Techniques Published by the CDC (19) 
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Appendix B 

 

R Summaries for Regression Analyses 

 

Multiple regression analysis of MRSA standardized infection rates and socioeconomic 

correlates. (Question 1, Population Analysis) 

summary(mrsa.SES) 

##  
## Call: 
## lm(formula = M1000 ~ MRSAdays + Pop.Density + PerCap.Income +  
##     Median.Hshld + PctPoverty + NumPoverty + PctJCAHO, data = PAdata) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.05140 -0.02258 -0.01681  0.01865  0.16992  
##  
## Coefficients: 
##                 Estimate Std. Error t value Pr(>|t|)     
## (Intercept)    1.679e-02  6.031e-02   0.278    0.781     
## MRSAdays       3.129e-07  5.842e-08   5.356 3.19e-07 *** 
## Pop.Density    3.035e-06  4.282e-06   0.709    0.480     
## PerCap.Income  2.643e-07  8.214e-07   0.322    0.748     
## Median.Hshld  -1.610e-08  1.149e-07  -0.140    0.889     
## PctPoverty    -1.387e-04  2.267e-03  -0.061    0.951     
## NumPoverty    -1.520e-07  8.398e-07  -0.181    0.857     
## PctJCAHO      -2.356e-03  1.148e-02  -0.205    0.838     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.03686 on 148 degrees of freedom 
##   (9 observations deleted due to missingness) 
## Multiple R-squared:  0.2584, Adjusted R-squared:  0.2234  
## F-statistic: 7.368 on 7 and 148 DF,  p-value: 1.382e-07 
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Multiple regression analysis of C. diff standardized infection rates and socioeconomic correlates. 

(Question 1, Population Analysis) 

summary(Cdiff.SES) 

##  
## Call: 
## lm(formula = C1000 ~ Cdiffdays + Pop.Density + PerCap.Income +  
##     Median.Hshld + PctPoverty + NumPoverty + PctJCAHO, data = PAdata) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.60515 -0.21706 -0.06855  0.19817  1.49582  
##  
## Coefficients: 
##                 Estimate Std. Error t value Pr(>|t|)     
## (Intercept)    4.389e-02  5.569e-01   0.079    0.937     
## Cdiffdays      2.709e-06  5.742e-07   4.718 5.53e-06 *** 
## Pop.Density   -4.594e-05  3.958e-05  -1.161    0.248     
## PerCap.Income  4.255e-06  7.615e-06   0.559    0.577     
## Median.Hshld   6.885e-07  1.063e-06   0.648    0.518     
## PctPoverty     1.244e-02  2.096e-02   0.593    0.554     
## NumPoverty     6.441e-07  7.772e-06   0.083    0.934     
## PctJCAHO       2.098e-03  1.060e-01   0.020    0.984     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.3397 on 146 degrees of freedom 
##   (11 observations deleted due to missingness) 
## Multiple R-squared:  0.1696, Adjusted R-squared:  0.1297  
## F-statistic: 4.259 on 7 and 146 DF,  p-value: 0.0002617 

 

Stepwise elimination of socioeconomic correlates for MRSA using AIC. The resulting function 

is the parsimonious function. (Question 1, Population Analysis) 

step(mrsa.SES) 

## Start:  AIC=-1022.02 
## M1000 ~ MRSAdays + Pop.Density + PerCap.Income + Median.Hshld +  
##     PctPoverty + NumPoverty + PctJCAHO 
##  
##                 Df Sum of Sq     RSS      AIC 
## - PctPoverty     1  0.000005 0.20107 -1024.02 
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## - Median.Hshld   1  0.000027 0.20109 -1024.00 
## - NumPoverty     1  0.000045 0.20111 -1023.99 
## - PctJCAHO       1  0.000057 0.20112 -1023.98 
## - PerCap.Income  1  0.000141 0.20120 -1023.91 
## - Pop.Density    1  0.000683 0.20175 -1023.49 
## <none>                       0.20106 -1022.02 
## - MRSAdays       1  0.038968 0.24003  -996.39 
##  
## Step:  AIC=-1024.02 
## M1000 ~ MRSAdays + Pop.Density + PerCap.Income + Median.Hshld +  
##     NumPoverty + PctJCAHO 
##  
##                 Df Sum of Sq     RSS      AIC 
## - Median.Hshld   1  0.000027 0.20109 -1026.00 
## - NumPoverty     1  0.000043 0.20111 -1025.99 
## - PctJCAHO       1  0.000053 0.20112 -1025.98 
## - PerCap.Income  1  0.000152 0.20122 -1025.90 
## - Pop.Density    1  0.000847 0.20192 -1025.36 
## <none>                       0.20107 -1024.02 
## - MRSAdays       1  0.038972 0.24004  -998.38 
##  
## Step:  AIC=-1026 
## M1000 ~ MRSAdays + Pop.Density + PerCap.Income + NumPoverty +  
##     PctJCAHO 
##  
##                 Df Sum of Sq     RSS      AIC 
## - NumPoverty     1  0.000021 0.20111 -1027.98 
## - PctJCAHO       1  0.000071 0.20117 -1027.94 
## - PerCap.Income  1  0.000125 0.20122 -1027.90 
## <none>                       0.20109 -1026.00 
## - Pop.Density    1  0.004945 0.20604 -1024.21 
## - MRSAdays       1  0.039962 0.24106  -999.72 
##  
## Step:  AIC=-1027.98 
## M1000 ~ MRSAdays + Pop.Density + PerCap.Income + PctJCAHO 
##  
##                 Df Sum of Sq     RSS     AIC 
## - PctJCAHO       1  0.000082 0.20120 -1029.9 
## - PerCap.Income  1  0.000227 0.20134 -1029.8 
## <none>                       0.20111 -1028.0 
## - Pop.Density    1  0.008987 0.21010 -1023.2 
## - MRSAdays       1  0.041181 0.24230 -1000.9 
##  
## Step:  AIC=-1029.92 
## M1000 ~ MRSAdays + Pop.Density + PerCap.Income 
##  
##                 Df Sum of Sq     RSS     AIC 
## - PerCap.Income  1  0.000151 0.20135 -1031.8 
## <none>                       0.20120 -1029.9 
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## - Pop.Density    1  0.009015 0.21021 -1025.1 
## - MRSAdays       1  0.041349 0.24255 -1002.8 
##  
## Step:  AIC=-1031.8 
## M1000 ~ MRSAdays + Pop.Density 
##  
##               Df Sum of Sq     RSS     AIC 
## <none>                     0.20135 -1031.8 
## - Pop.Density  1  0.009080 0.21043 -1026.9 
## - MRSAdays     1  0.042919 0.24427 -1003.7 

##  
## Call: 
## lm(formula = M1000 ~ MRSAdays + Pop.Density, data = PAdata) 
##  
## Coefficients: 
## (Intercept)     MRSAdays  Pop.Density   
##   1.656e-02    3.133e-07    2.474e-06 

 

Stepwise elimination of socioeconomic correlates for C. diff using AIC. The resulting function is 

the parsimonious function. (Question 1, Population Analysis) 

step(Cdiff.SES) 

## Start:  AIC=-324.76 
## C1000 ~ Cdiffdays + Pop.Density + PerCap.Income + Median.Hshld +  
##     PctPoverty + NumPoverty + PctJCAHO 
##  
##                 Df Sum of Sq    RSS     AIC 
## - PctJCAHO       1   0.00005 16.847 -326.76 
## - NumPoverty     1   0.00079 16.848 -326.76 
## - PerCap.Income  1   0.03602 16.883 -326.44 
## - PctPoverty     1   0.04064 16.888 -326.39 
## - Median.Hshld   1   0.04842 16.896 -326.32 
## - Pop.Density    1   0.15544 17.003 -325.35 
## <none>                       16.847 -324.76 
## - Cdiffdays      1   2.56816 19.416 -304.92 
##  
## Step:  AIC=-326.76 
## C1000 ~ Cdiffdays + Pop.Density + PerCap.Income + Median.Hshld +  
##     PctPoverty + NumPoverty 
##  
##                 Df Sum of Sq    RSS     AIC 
## - NumPoverty     1   0.00082 16.848 -328.76 
## - PerCap.Income  1   0.03598 16.883 -328.44 
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## - PctPoverty     1   0.04159 16.889 -328.38 
## - Median.Hshld   1   0.05090 16.898 -328.30 
## - Pop.Density    1   0.15540 17.003 -327.35 
## <none>                       16.847 -326.76 
## - Cdiffdays      1   2.59621 19.444 -306.69 
##  
## Step:  AIC=-328.76 
## C1000 ~ Cdiffdays + Pop.Density + PerCap.Income + Median.Hshld +  
##     PctPoverty 
##  
##                 Df Sum of Sq    RSS     AIC 
## - PctPoverty     1   0.05352 16.902 -330.27 
## - Median.Hshld   1   0.05496 16.903 -330.26 
## - PerCap.Income  1   0.07566 16.924 -330.07 
## - Pop.Density    1   0.19151 17.040 -329.02 
## <none>                       16.848 -328.76 
## - Cdiffdays      1   2.59552 19.444 -308.69 
##  
## Step:  AIC=-330.27 
## C1000 ~ Cdiffdays + Pop.Density + PerCap.Income + Median.Hshld 
##  
##                 Df Sum of Sq    RSS     AIC 
## - PerCap.Income  1   0.02243 16.924 -332.06 
## - Median.Hshld   1   0.10005 17.002 -331.36 
## - Pop.Density    1   0.14658 17.048 -330.94 
## <none>                       16.902 -330.27 
## - Cdiffdays      1   2.60312 19.505 -310.21 
##  
## Step:  AIC=-332.06 
## C1000 ~ Cdiffdays + Pop.Density + Median.Hshld 
##  
##                Df Sum of Sq    RSS     AIC 
## - Median.Hshld  1   0.10247 17.027 -333.13 
## - Pop.Density   1   0.14859 17.073 -332.72 
## <none>                      16.924 -332.06 
## - Cdiffdays     1   2.70431 19.628 -311.24 
##  
## Step:  AIC=-333.13 
## C1000 ~ Cdiffdays + Pop.Density 
##  
##               Df Sum of Sq    RSS     AIC 
## - Pop.Density  1    0.0809 17.108 -334.40 
## <none>                     17.027 -333.13 
## - Cdiffdays    1    3.1918 20.218 -308.68 
##  
## Step:  AIC=-334.4 
## C1000 ~ Cdiffdays 
##  
##             Df Sum of Sq    RSS     AIC 
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## <none>                   17.108 -334.40 
## - Cdiffdays  1    3.1798 20.287 -310.15 

##  
## Call: 
## lm(formula = C1000 ~ Cdiffdays, data = PAdata) 
##  
## Coefficients: 
## (Intercept)    Cdiffdays   
##   4.087e-01    2.744e-06 

 

Logistic regression of presence/absence data for MRSA. (Question 1, Population Analysis) 

summary(mrsa.log) 

##  
## Call: 
## glm(formula = catMRSA ~ MRSAdays, family = binomial, data = PAdata) 
##  
## Deviance Residuals:  
##      Min        1Q    Median        3Q       Max   
## -2.26514  -0.62025   0.02053   0.55836   1.79771   
##  
## Coefficients: 
##               Estimate Std. Error z value Pr(>|z|)     
## (Intercept) -2.237e+00  4.156e-01  -5.384 7.30e-08 *** 
## MRSAdays     7.939e-05  1.373e-05   5.782 7.37e-09 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for binomial family taken to be 1) 
##  
##     Null deviance: 212.55  on 155  degrees of freedom 
## Residual deviance: 123.06  on 154  degrees of freedom 
##   (9 observations deleted due to missingness) 
## AIC: 127.06 
##  
## Number of Fisher Scoring iterations: 7 
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Logistic regression of presence/absence data for C. diff. (Question 1, Population Analysis) 

summary(mrsa.log) 

##  
## Call: 
## glm(formula = catMRSA ~ MRSAdays, family = binomial, data = PAdata) 
##  
## Deviance Residuals:  
##      Min        1Q    Median        3Q       Max   
## -2.26514  -0.62025   0.02053   0.55836   1.79771   
##  
## Coefficients: 
##               Estimate Std. Error z value Pr(>|z|)     
## (Intercept) -2.237e+00  4.156e-01  -5.384 7.30e-08 *** 
## MRSAdays     7.939e-05  1.373e-05   5.782 7.37e-09 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for binomial family taken to be 1) 
##  
##     Null deviance: 212.55  on 155  degrees of freedom 
## Residual deviance: 123.06  on 154  degrees of freedom 
##   (9 observations deleted due to missingness) 
## AIC: 127.06 
##  
## Number of Fisher Scoring iterations: 7 

 

Spatial regression of parsimonious model for MRSA risk. (Question 1, Population Analysis) 

MRSAspatial=gls(M1000~MRSAdays+Pop.Density, data=PAdata, 
corr=corSpatial(form=~Longitude+Latitude, type='exponential', nugget=T), 
na.action = na.omit) 
summary(MRSAspatial) 

## Generalized least squares fit by REML 
##   Model: M1000 ~ MRSAdays + Pop.Density  
##   Data: PAdata  
##         AIC       BIC   logLik 
##   -519.1521 -500.9695 265.5761 
##  
## Correlation Structure: Exponential spatial correlation 
##  Formula: ~Longitude + Latitude  
##  Parameter estimate(s): 
##        range       nugget  
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## 1.035606e-02 4.707759e-09  
##  
## Coefficients: 
##                   Value   Std.Error  t-value p-value 
## (Intercept) 0.015784163 0.003869455 4.079170  0.0001 
## MRSAdays    0.000000330 0.000000047 6.985607  0.0000 
## Pop.Density 0.000002862 0.000001022 2.801155  0.0057 
##  
##  Correlation:  
##             (Intr) MRSAdy 
## MRSAdays    -0.490        
## Pop.Density -0.297 -0.181 
##  
## Standardized residuals: 
##        Min         Q1        Med         Q3        Max  
## -1.5354382 -0.6005975 -0.4708485  0.5116159  4.6461416  
##  
## Residual standard error: 0.03637621  
## Degrees of freedom: 156 total; 153 residual 

 

Non-spatial regression of parsimonious model for MRSA risk. (Question 1, Population Analysis) 

MRSAnspatial=gls(M1000~MRSAdays+Pop.Density, data=PAdata, na.action = 
na.omit) 
summary(MRSAnspatial) 

## Generalized least squares fit by REML 
##   Model: M1000 ~ MRSAdays + Pop.Density  
##   Data: PAdata  
##         AIC       BIC   logLik 
##   -519.6146 -507.4929 263.8073 
##  
## Coefficients: 
##                   Value   Std.Error  t-value p-value 
## (Intercept) 0.016559561 0.003992517 4.147650  0.0001 
## MRSAdays    0.000000313 0.000000055 5.710786  0.0000 
## Pop.Density 0.000002474 0.000000942 2.626718  0.0095 
##  
##  Correlation:  
##             (Intr) MRSAdy 
## MRSAdays    -0.568        
## Pop.Density -0.200 -0.296 
##  
## Standardized residuals: 
##        Min         Q1        Med         Q3        Max  
## -1.4287815 -0.5923411 -0.4759785  0.5280542  4.6425237  
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##  
## Residual standard error: 0.03627672  
## Degrees of freedom: 156 total; 153 residual 

 

Likelihood ratio testing of spatial and non-spatial parsimonious models for MRSA risk. 

(Question 1, Population Analysis) 

anova(MRSAspatial, MRSAnspatial) 

##              Model df       AIC       BIC   logLik   Test  L.Ratio p-value 
## MRSAspatial      1  6 -519.1521 -500.9695 265.5761                         
## MRSAnspatial     2  4 -519.6146 -507.4929 263.8073 1 vs 2 3.537486  0.1705 

 

Spatial autocorrelation analysis of MRSA standardized infection rates. (Question 2, Spatial 

Analysis) 

correlogM 

## $n 
##   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  
## 162 252 308 319 301 324 301 379 346 376 339 370 328 348 327 400 321 244  
##  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  
## 273 253 232 237 246 205 227 193 232 216 218 199 229 219 199 230 214 205  
##  37  38  39  40  41  42  43  44  45  46  47  48  49  50  
## 262 290 267 300 236 277 190 157 101  75  69  75  16   3  
##  
## $mean.of.class 
##          1          2          3          4          5          6  
##   5.900423  14.973336  25.220960  35.095489  45.031338  54.907822  
##          7          8          9         10         11         12  
##  65.268720  75.060862  84.461315  95.008819 104.875276 115.197803  
##         13         14         15         16         17         18  
## 125.306052 134.824067 144.940366 155.144256 165.111019 175.075015  
##         19         20         21         22         23         24  
## 184.783039 194.731517 205.080271 215.018058 224.902043 234.936022  
##         25         26         27         28         29         30  
## 245.343340 255.031323 264.959576 275.141206 284.546951 295.088461  
##         31         32         33         34         35         36  
## 304.806148 314.987433 324.484232 335.066313 344.836722 355.167321  
##         37         38         39         40         41         42  
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## 364.636954 375.095745 385.050135 394.747207 405.062815 414.637548  
##         43         44         45         46         47         48  
## 425.091214 434.688302 445.056994 454.834671 465.487473 474.914357  
##         49         50  
## 483.663817 491.152659  
##  
## $correlation 
##             1             2             3             4             5  
##  0.2712317128  0.1634323411  0.1064009896  0.0357309327 -0.1534054294  
##             6             7             8             9            10  
## -0.0725722093 -0.0621976306 -0.0591666005  0.0237550626 -0.0326439373  
##            11            12            13            14            15  
## -0.0884982902  0.0886710512 -0.0160718590  0.0677471282  0.0697946582  
##            16            17            18            19            20  
##  0.0412276739 -0.0082451689  0.0639690367  0.0816036957  0.0077997117  
##            21            22            23            24            25  
## -0.1417360424 -0.0857296483  0.0006716193 -0.0055673545 -0.1599512483  
##            26            27            28            29            30  
##  0.0540161122 -0.1452750150 -0.2157804676  0.1476860182  0.1003522280  
##            31            32            33            34            35  
##  0.0618132714  0.1009671717 -0.1372093572  0.0317810647 -0.1842588225  
##            36            37            38            39            40  
## -0.0280425318  0.0090140299 -0.1729501872  0.0279362639  0.0254064300  
##            41            42            43            44            45  
##  0.0786899276  0.1344760750 -0.1929206916 -0.2111434335 -0.0585278169  
##            46            47            48            49            50  
## -0.0433273586 -0.0074454931  0.0330680784  0.1212375386 -0.3256685186  
##  
## $x.intercept 
## (Intercept)  
##    43.15429  
##  
## $p 
##  [1] 0.003996004 0.007992008 0.020979021 0.216783217 0.007992008 
##  [6] 0.108891109 0.138861139 0.138861139 0.254745255 0.284715285 
## [11] 0.058941059 0.021978022 0.431568432 0.075924076 0.072927073 
## [16] 0.137862138 0.489510490 0.118881119 0.075924076 0.388611389 
## [21] 0.017982018 0.098901099 0.431568432 0.486513487 0.010989011 
## [26] 0.200799201 0.017982018 0.001998002 0.012987013 0.066933067 
## [31] 0.138861139 0.054945055 0.031968032 0.282717283 0.004995005 
## [36] 0.394605395 0.399600400 0.002997003 0.266733267 0.286713287 
## [41] 0.088911089 0.009990010 0.015984016 0.008991009 0.258741259 
## [46] 0.347652348 0.464535465 0.324675325 0.233766234 0.215784216 
##  
## $call 
## [1] "correlog(x = Mdata$Longitude, y = Mdata$Latitude, z = Mdata$M1000, " 
## [2] "    increment = 10, resamp = 1000, latlon = TRUE, na.rm = TRUE, "    
## [3] "    quiet = FALSE)"                                                  
##  
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## attr(,"class") 
## [1] "correlog" 

 

Spatial autocorrelation analysis of C. diff standardized infection rates. (Question 2, Spatial 

Analysis) 

correlogC 

## $n 
##   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  
## 159 252 304 315 298 320 293 367 336 365 334 360 318 334 303 371 297 241  
##  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  
## 265 250 230 235 242 199 223 188 227 215 214 196 225 216 197 224 210 197  
##  37  38  39  40  41  42  43  44  45  46  47  48  49  50  
## 247 275 255 290 234 274 190 157 101  75  69  75  16   3  
##  
## $mean.of.class 
##          1          2          3          4          5          6  
##   5.965552  14.973336  25.259526  35.081028  45.023220  54.909635  
##          7          8          9         10         11         12  
##  65.325323  75.025045  84.443063  95.004474 104.883251 115.172357  
##         13         14         15         16         17         18  
## 125.297345 134.788100 144.968312 155.185487 165.184548 175.064883  
##         19         20         21         22         23         24  
## 184.726323 194.693819 205.065515 215.025299 224.943499 234.938926  
##         25         26         27         28         29         30  
## 245.317460 255.034876 264.945081 275.124793 284.570077 295.095568  
##         31         32         33         34         35         36  
## 304.814663 314.954609 324.460401 335.028789 344.842139 355.147635  
##         37         38         39         40         41         42  
## 364.686991 375.108562 385.111500 394.732028 405.068975 414.649213  
##         43         44         45         46         47         48  
## 425.091214 434.688302 445.056994 454.834671 465.487473 474.914357  
##         49         50  
## 483.663817 491.152659  
##  
## $correlation 
##             1             2             3             4             5  
## -0.0218701223 -0.0003924976  0.0350618491 -0.0480983103  0.0059286685  
##             6             7             8             9            10  
##  0.0890557219 -0.0574824122 -0.0046019189 -0.0706297496 -0.0039640007  
##            11            12            13            14            15  
## -0.0566972340  0.0354586203 -0.0951707765  0.0447615110 -0.0354207243  
##            16            17            18            19            20  
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## -0.0234589922  0.0555498994  0.0088216581 -0.0055427418  0.0011624498  
##            21            22            23            24            25  
## -0.0944605733 -0.0057090629 -0.0780452247  0.0763786055 -0.0946513770  
##            26            27            28            29            30  
##  0.0312664901  0.0335085756  0.0027841209 -0.0803232507 -0.0861823573  
##            31            32            33            34            35  
##  0.0732100299  0.1140084991 -0.0081214460  0.0588107352  0.0304454543  
##            36            37            38            39            40  
## -0.0507387249  0.0810886309 -0.1189234487 -0.0591332992 -0.0335892542  
##            41            42            43            44            45  
##  0.0577904977  0.0139766805  0.0307170052 -0.0669815683  0.0989944860  
##            46            47            48            49            50  
## -0.0441319875  0.0534651816 -0.0015872490  0.1432507865 -0.3163472077  
##  
## $x.intercept 
## [1] 0 
##  
## $p 
##  [1] 0.44055944 0.44255744 0.21578422 0.21278721 0.39160839 0.05594406 
##  [7] 0.17982018 0.45654346 0.11688312 0.48251748 0.15184815 0.17082917 
## [13] 0.04995005 0.16583417 0.28971029 0.35364635 0.12087912 0.38261738 
## [19] 0.47952048 0.46853147 0.08391608 0.48751249 0.12287712 0.11488511 
## [25] 0.08391608 0.29470529 0.26873127 0.44955045 0.12987013 0.11288711 
## [31] 0.12087912 0.02897103 0.48351648 0.15384615 0.27572428 0.26073926 
## [37] 0.07192807 0.02697303 0.19080919 0.31068931 0.15684316 0.33066933 
## [43] 0.28271728 0.20479520 0.12487512 0.34865135 0.23976024 0.49350649 
## [49] 0.20579421 0.17482517 
##  
## $call 
## [1] "correlog(x = Cdata$Longitude, y = Cdata$Latitude, z = Cdata$C1000, " 
## [2] "    increment = 10, resamp = 1000, latlon = TRUE, na.rm = TRUE, "    
## [3] "    quiet = FALSE)"                                                  
##  
## attr(,"class") 
## [1] "correlog" 

 

Spatial cross-correlation analysis of MRSA and C. diff standardized infection rates. (Question 3, 

Disease Cross-Comparison) 

correlogCompare 

## $n 
##   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  
## 318 504 608 630 596 640 586 734 672 730 668 720 636 668 606 742 594 482  
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##  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  
## 530 500 460 470 484 398 446 376 454 430 428 392 450 432 394 448 420 394  
##  37  38  39  40  41  42  43  44  45  46  47  48  49  50  
## 494 550 510 580 468 548 380 314 202 150 138 150  32   6  
##  
## $mean.of.class 
##          1          2          3          4          5          6  
##   5.965552  14.973336  25.259526  35.081028  45.023220  54.909635  
##          7          8          9         10         11         12  
##  65.325323  75.025045  84.443063  95.004474 104.883251 115.172357  
##         13         14         15         16         17         18  
## 125.297345 134.788100 144.968312 155.185487 165.184548 175.064883  
##         19         20         21         22         23         24  
## 184.726323 194.693819 205.065515 215.025299 224.943499 234.938926  
##         25         26         27         28         29         30  
## 245.317460 255.034876 264.945081 275.124793 284.570077 295.095568  
##         31         32         33         34         35         36  
## 304.814663 314.954609 324.460401 335.028789 344.842139 355.147635  
##         37         38         39         40         41         42  
## 364.686991 375.108562 385.111500 394.732028 405.068975 414.649213  
##         43         44         45         46         47         48  
## 425.091214 434.688302 445.056994 454.834671 465.487473 474.914357  
##         49         50  
## 483.663817 491.152659  
##  
## $correlation 
##             1             2             3             4             5  
## -0.0191898482  0.0304015167  0.0323760171  0.0985722010 -0.0336235143  
##             6             7             8             9            10  
##  0.0174394221 -0.1307166642 -0.0224892565 -0.0771160207 -0.0312074347  
##            11            12            13            14            15  
## -0.0811817407  0.0198667139  0.0534805556 -0.0056699125  0.0418221794  
##            16            17            18            19            20  
## -0.0129636606  0.0407030964 -0.0318491898  0.0137919970  0.0285191671  
##            21            22            23            24            25  
## -0.0837440483 -0.0063351026 -0.0057038189  0.0441966681  0.0064065536  
##            26            27            28            29            30  
##  0.0173483495 -0.0241735792 -0.1004781760  0.0172747278 -0.0002524151  
##            31            32            33            34            35  
##  0.0071256835  0.0441910408 -0.0304007445  0.0378847435  0.0576359464  
##            36            37            38            39            40  
## -0.0556517790 -0.0653136187 -0.0555154006 -0.0188150666  0.0496649269  
##            41            42            43            44            45  
##  0.0713558371  0.0759124864  0.0122954446 -0.0817618218  0.0905544671  
##            46            47            48            49            50  
##  0.0732451744 -0.0667099706  0.0458703371  0.1216689435 -0.3512587836  
##  
## $x.intercept 
## [1] 0 
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##  
## $p 
##  [1] 0.390609391 0.216783217 0.194805195 0.008991009 0.205794206 
##  [6] 0.336663337 0.002997003 0.266733267 0.035964036 0.208791209 
## [11] 0.019980020 0.273726274 0.084915085 0.465534466 0.117882118 
## [16] 0.375624376 0.161838162 0.245754246 0.387612388 0.248751249 
## [21] 0.036963037 0.465534466 0.480519481 0.185814186 0.442557443 
## [26] 0.369630370 0.327672328 0.025974026 0.327672328 0.479520480 
## [31] 0.419580420 0.174825175 0.298701299 0.205794206 0.123876124 
## [36] 0.148851149 0.068931069 0.107892108 0.367632368 0.100899101 
## [41] 0.057942058 0.027972028 0.386613387 0.083916084 0.101898102 
## [46] 0.176823177 0.183816184 0.223776224 0.192807193 0.173826174 
##  
## $call 
## [1] "correlog(x = CompareData$Longitude, y = CompareData$Latitude, "     
## [2] "    z = CompareData$M1000, w = CompareData$C1000, increment = 10, " 
## [3] "    resamp = 1000, latlon = TRUE, na.rm = TRUE, quiet = FALSE)"     
##  
## $corr0 
## [1] 0.2897498 
##  
## attr(,"class") 
## [1] "correlog" 

 

Linear regression model of MRSA and C. diff standardized infection rates. (Question 3, Disease 

Cross-Comparison) 

summary(compare.reg) 

##  
## Call: 
## lm(formula = M1000 ~ C1000, data = CompareData) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.06012 -0.02847 -0.01265  0.02345  0.15055  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept) 0.018294   0.005704   3.207 0.001635 **  
## C1000       0.032865   0.008805   3.732 0.000267 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
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## Residual standard error: 0.03966 on 152 degrees of freedom 
## Multiple R-squared:  0.08395,    Adjusted R-squared:  0.07793  
## F-statistic: 13.93 on 1 and 152 DF,  p-value: 0.0002675 
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