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Abstract

Over fifty mathematical models have been published to project the number of cases and the
success of epidemic intervention strategies in the 2014 West African Ebola outbreak. Structural
and parametric uncertainties exist between and within models, making it challenging to quantita-
tively rank the utility of intervention tools. Without a formal method of comparison, policymakers
are forced to subjectively decide which models should dictate decision-making. Value of informa-
tion (VOI) analysis, commonly used in economics and resource management, quantifies the extent
to which decision-making is hampered by such uncertainties, thus providing guidance as to how to
prioritize future information gathering. We focused on one of the most established models and per-
formed a two scenario analysis to explore the uncertainties about hospital and funeral transmission
and to demonstrate the utility of value of information analysis to address parametric uncertainties.
We implemented a stochastic simulator using the Gillespie exact algorithm on a six compartment
SEIHFR model introduced by Legrand et al [1]. We found that decreasing community transmis-
sion is universally most effective at minimizing case count and mortality. Public health policy
in the 2014 Ebola outbreak should likely have targeted community transmission more intensely
through awareness campaigns, distribution of household protective kits, and by encouraging self-
quarantine.
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Chapter 1

An Overview of Ebola
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Overview
The Filoviridae family consists of three of the most deadly and poorly understood single-

stranded negative RNA viruses, including cuevavirus, marburgvirus, and ebolavirus. Ebolavirus
causes Ebola virus disease (EVD), formerly known as Ebola hemorrhagic fever. The genus Ebolavirus
contains five species: Zaire ebolavirus, Sudan ebolavirus, Taï forest ebolavirus (previously known
as Côte d’Ivoire ebolavirus), Bundibugyo ebolavirus, and Reston ebolavirus. Four of the strains are
known to infect humans. Reston ebolavirus was only documented in primates when infected mon-
keys were imported to Reston, Virginia from the Philippines. Eighteen countries have encountered
EVD through laboratory contamination or zoonotic spillover.

Disease Progression
EVD is transmitted via blood and bodily fluids such as mucous, urine, vomit, semen, and

saliva. After exposure, individuals will not exhibit symptoms during an incubation period between
2 and 25 days [2]. Once patients develop symptoms, they are considered infectious to others.
Patients will most commonly present fever, diarrhea, fatigue, joint/muscle/abdominal pain, and
vomiting [3, 4]. Most infected individuals will seek medical attention between three and seven
days after symptoms develop. Initial symptoms of EVD are frequently mistaken for other tropical
diseases such as malaria and dengue [5]. Differentiation occurs when EVD patients enter the
terminal hemorrhagic phase, which includes internal hemorrhaging, subcutaneous bleeding, and
the vomiting of blood [4]. Time to death is dependent on the subtype but on average half of Ebola
patients will succumb to the virus in seven to eleven days [3]. Dehydration is the most common
cause of death due to severe vomiting and diarrhea. Although there is no difference in infection
rates for gender or age, patients over 40-years-old are more likely to succumb to the virus [3].
There is no known cure for Ebola. Vaccine development is underway but none are available on the
market. Currently, health care workers treat symptoms and focus on rehydrating patients.

Historical outbreaks
The first two documented outbreaks of Ebola in humans occurred simultaneously in 1976 near

the Ebola River in the Democratic Republic of Congo (DRC), formerly known as Zaire, and in
Sudan near the DRC border [6, 7]. The Zaire outbreak had a mortality rate of 89% and is the
namesake of the Ebola zaire subtype. Similarly, E. sudan caused a 53% mortality rate in Sudan.
Sudan also hosted the third outbreak in 1979. Both the 1976 and 1979 outbreaks began with cotton
factory workers [8]. The 1979 Sudan outbreak had a higher mortality rate (66%) than the previous
one, but it affected fewer people.

After these initial three outbreaks, fifteen years passed before Ebola was seen in humans again.
Ebola re-emerged as a new strain in the Ivory Coast in 1994 when a scientist was infected while
autopsying a wild chimpanzee [9]. This is the only case of Taï forest documented in humans and
the first case found in West Africa. E. zaire reappeared in Gabon in 1994 when three gold-miner
camps in the forest were exposed to the virus. When the miners became infected and sought
medical treatment, they spread the virus to the local hospital and its nearby inhabitants, causing a
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second round of infection [10]. The Zaire virus also appeared in the DRC in 1995 and mirrored the
1976 outbreak, exhibiting an 81% mortality rate. Transmission occurred primarily in the two town
hospitals and drove the persistence of the outbreak [11]. Again in 1996, E. zaire infected people in
Gabon when village children handled a chimpanzee carcass they found in the forest [12]. Gabon
hosted a third outbreak at the end of 1996, which began when hunters contracted the virus while
in the forest. This was the first recorded outbreak with a notable geographic distribution. The
hunters sought traditional medical treatment, exposing and infecting local healers. The healers, in
turn, infected nearby villages, whilst a doctor naively traveled from Gabon to South Africa, where
he infected a healthcare worker who succumbed to the virus days later. The October 1996 Gabon
outbreak lasted 6 months and affected Gabon and South Africa [12].

No infections were noted between 1997 and 2000. In 2000, Uganda recorded the largest Ebola
outbreak to that date with 425 cases [13]. E. sudan was responsible for the epidemic and continued
its trend of lower mortality rates than E. zaire (40.7%). Not a year passed before Gabon was victim
to E. zaire again in a series of independent outbreaks between October 2001 and March 2002
[14]. Hunters were implicated as the source of the outbreak and continued to reintroduce the virus
through the handling of infected wildlife. The next outbreak occurred in the Republic of Congo in
late 2002. Once again, a mining camp had interacted with wild carcasses and dispersed the virus
to villages in the vicinity [15]. The number of cases began trending downward with the 2003 and
2004 outbreaks in the Republic of Congo and Sudan, respectively [16, 17]. The 2004 outbreak was
the smallest recorded Ebola epidemic with only 17 cases.

After no outbreaks for three years, Ebola reemerged in 2007 with outbreaks in Sudan and
Uganda [18]. Bundibugyo ebolavirus was first recorded in the 2007 Uganda outbreak with the
lowest historical mortality rate of 25% [19]. Zaire ebolavirus came out of hiding in 2008 in the
DRC with a slightly lower mortality rate (47%) than was previously recorded for the Zaire subtype
[20]. Another infection-free period ensued between 2009 and 2011. A string of small outbreaks in
Uganda and DRC caused by the Sudan and Bundibugyo subtypes, respectively, occurred in 2012
[21].

Two independent outbreaks coincided in 2014, both caused by Zaire ebolavirus. The DRC was
home to the smaller and shorter of the two outbreaks, affecting 69 people and lasting four months
[22]. The other outbreak accumulated more cases than the sum of the historical outbreaks and
persisted from December 2013 through early 2016 when the final cases were recorded. The 2014
West Africa Ebola outbreak was globally televised and classified as an international public health
emergency. Cases were recorded in ten countries, but the foci of the epidemic were in Guinea,
Liberia, and Sierra Leone. Over 28,500 people contracted the virus, and over 11,300 people had
succumbed to the disease as of March 31, 2016 [23].

In addition to direct mortality, the outbreak lead to a complete breakdown of public health
infrastructure. The interruption of routine vaccinations for communicable disease such as measles
is predicted to leave thousands of children susceptible in the coming years [24]. The expected
number of measles cases is anticipated to rise by 100,000 in a year and a half. This could create
up to 16,000 deaths due to measles as an indirect consequence of the Ebola outbreak. The Ebola
epidemic was an immediate international public health crisis, but its indirect impact in public health
may also be seen for years to come.
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Table 1.1: Ebola outbreaks have occurred intermittently since 1976. The majority
of historical outbreaks have been concentrated in Sudan, the Democratic Republic
of Congo, and Uganda. They have been caused by a variety of suspected hosts.
However, the most recent outbreak in Guinea, Sierra Leone, and Liberia surpassed
previous impacts of Ebola and reached unprecedented case counts.

Year Site of Outbreak
Suspected Source

Strain
Case

Mortality Rate
of Infection Count

1976 DRC (Zaire) Unknown Zaire virus 318 88% [6]
1976 Sudan Bats Sudan virus 284 53% [7]
1979 Sudan Bats Sudan virus 34 65% [8]
1994 Ivory Coast Chimpanzee Ivory Coast virus 1 0% [9]
1994 Gabon Wildlife Zaire virus 52 59% [10]
1995 DRC Wildlife Zaire virus 315 81% [11]
1996 Gabon Chimpanzee Zaire virus 37 57% [12]
1996 Gabon Chimpanzee Zaire virus 60 75% [12]
2000 Uganda Unknown Sudan virus 425 53% [13, 25]
2001 Gabon Gorilla/Antelope Zaire virus 65 82% [26]
2002 Republic of Congo Wildlife Zaire virus 143 89% [15]
2003 Republic of Congo Unknown Zaire virus 35 82% [16]
2004 Sudan Unknown Sudan virus 17 41% [17]
2007 Sudan Unknown Sudan virus 264 71% [18]
2007 Uganda Unknown Bundibugyo virus 149 25% [19, 25]
2008 DRC Fruit bats Zaire virus 32 47% [20]
2012 Uganda Unknown Sudan virus 11 36.4% [21, 25]
2012 DRC Unknown Bundibugyo virus 36 36.1% [21]
2012 Uganda Unknown Sudan virus 6 50% [21, 25]
2014 DRC Unknown Zaire virus 66 74% [22]

2014
Liberia, Guinea,

Bats Zaire virus
28646

40% [23, 5]
and Sierra Leone (as of 3/31/16)

Zoonoses and Spillover Events
Zoonotic spillover events occur when humans become infected with an animal disease. Such

spillovers are responsible for three of every five infectious diseases [27]. Bacteria, viruses, fungi,
and parasites are responsible for zoonotic diseases such as avian influenza, severe acute respiratory
syndrome (SARS), malaria as well as Ebola. Ebola does not maintain a robust chain of transmis-
sion in humans and requires zoonotic spillover events to initiate what are normally short, stuttering



5

chains of transmission. Most of the historical Ebola outbreaks occurred through direct contact with
wildlife. The most commonly documented infected animals were gorillas, chimpanzees, and duik-
ers. During human Ebola outbreaks, there was a marked decline in these animal populations [14].
High decomposition rates in equatorial forests usually prevents human interaction with wildlife
carcasses, but in the 2001 Gabon outbreak, 64 animal carcasses were reported by villagers, some
of which tested positive for Ebola virus [14]. This rare occurrence suggests high death rates for
large mammal populations in the vicinity, mirroring the human outbreak. Surveillance of nearby
animal populations known to contract Ebola could aid in the prediction and prevention of Ebola
outbreak and limit the risk of human exposure.

Large mammals are prominent carriers of Ebola but are not suspected to be the reservoir
species. Bats serve as a natural reservoir, or long-term host, for a number of emerging infectious
diseases such as SARS, Hendra virus, Nepa virus, and rabies. Three fruit bat species, the hammer-
headed fruit bat (Hypsignathus monstrosus), Franquet’s epauletted bat (Epomops franqueti), and
the little collared fruit bat (Myonycteris torquata), appear to exhibit asymptomatic Ebola, suggest-
ing their suitability as reservoir [28]. Similar suspicions were raised in the 2007 DRC outbreak.
Transmission chains were traced back to the capture and consumption of migratory fruit bats [29].
To date, we still know too little about bat biology to conclusively named bats as the reservoir of
Ebola, but it is known that bats are the reservoir of the related zoonotic Marburg filovirus [30].

Transmission Venues
Interaction with an infected animal is the crucial first step in Ebola primary infections and

usually occurs in forests where interaction with wildlife is more common. There have also been
recorded outbreaks in cotton factories, where bats were noted to be present. After the initial case,
Ebola usually spreads in three main venues: in the community/home, in the hospital, and at funer-
als.

An infected individual will often return home after initial exposure. After symptoms develop,
his or her entire family may be exposed to the virus. A family member will usually become the
caretaker of the infectious loved one. Because Ebola spreads through contact with bodily fluids,
Ebola is highly contagious within a household. When the loved one desires medical attention
or becomes too ill to care for, the infected individual travel to nearby hospital for admittance.
Hospitals can be a journey away; when a sick family member travels, community members outside
the immediate family are also exposed to the virus.

Nosocomial infections are a cause for concern in Ebola outbreaks. Initially, Ebola patients
exhibit flu-like symptoms that can easily be mistaken for other infections such as malaria. The
additional precautions to prevent secondary infections necessary for an Ebola patient will not be
taken for the first hospitalized cases during an outbreak. Health care workers (HCWs) are highly
at-risk for infection due to the frequency of interactions with the patient. HCWs can also spread the
virus to other susceptible patients in the hospital as well as their own families in the community.
Despite hospital care, Ebola can easily claim the lives of half of infected individuals.

Secondary cases also occur during traditional burial practices. Traditional funeral practices
in many African countries include touching, kissing, and washing of the deceased by immediate
family members [31]. A paternal aunt or elder female in the patrilineal line is responsible for
washing and preparing the body. During the service, all attendees are welcome to touch the body
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as a final goodbye. Given that the viral load is highest at death, this makes burials the most
contagious venue for Ebola infection.

Ebola Management
The unprecedented outbreak in 2014-2016 left public health management with little direction.

A range of interventions were suggested and enacted with varying success. To curb the impact of
the outbreak, interventions targeted the three primary transmission venues.

Personal protective equipment (PPE) was mandated for HCWs to prevent contraction and
spread of the virus. However, PPE is extremely limiting. Due to the high temperatures in West
Africa, one to three hour time limits were placed on HCWs wearing PPE [32]. This restriction con-
trols the number of patients receiving care within each time window. Thus, there were not enough
HCWs to provide the same level of continuous care as when these precautions were not taken. In
particular, the use of PPE limited the level of rehydration patients could receive [3]. Rehydration
is vital to lowering mortality rates.

Extensive travel to the hospital was considered a burden on the sick and unnecessarily exposed
community members to the virus. Ebola treatment units (ETUs), which were equipped with rapid
diagnostic kits, functioned as emergency Ebola-care facilities with the goal to reduce the time
from symptom presentation to isolation [32]. Lack of hospital space was an increasing issue with
the outbreak. Estimates for the number of necessary hospital beds exceeded those available and
pledged by the United States [33]. ETUs were built to curb this issue and make medical care more
readily available.

Another tactic used for public health management was community awareness through educa-
tional campaigns [34]. Public education about the epidemic aimed to make community members
more likely to perform preventative behaviors and self-quarantine to prevent contraction or spread
of the virus. Community cooperation allowed for more efficient and effective healthcare. People
feared that they would contract Ebola from a hospital when they visited for non-Ebola treatment.
This fear motivated individuals to avoid medical treatment altogether, for both Ebola and non-
Ebola cases, leaving Ebola cases in the community to drive up community transmission [35]. To
curb community transmission, UNICEF issued household protective kits which contained PPE,
disinfectants, and instructions on proper disposal [36].

Due to the indigenous culture, funerals presented a major opportunity for virus transmission.
Health agencies attempted to thwart funereal transmission by regulating burial practices. Bodies
were placed in leak-resistant bags by trained professionals donning PPE [37]. Burials occurred at
at least two meters depth in a cemetery in the absence of family members.

While all management practices are likely to have been important in stemming the epidemic,
it is unknown which action(s) were more important and why. Demographic and spatial hetero-
geneities cause some of the uncertainty in intervention. Resolving this uncertainty may be impor-
tant for a prompt, effective response in future outbreaks.
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Chapter 2

Determinants of Epidemic Size
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The Basic Reproductive Number, R0

Epidemiologists estimate the transmission potential of a directly transmitted disease through
its basic reproductive number, R0. R0 describes the number of secondary cases caused by a single
introduction into a completely susceptible population. Several factors affect the basic reproductive
rate such as the rate of contact within a host population, the duration of infectiousness, and the
probability of transmission while infectious. These factors are utilized to quantify R0 through
many approaches, including model-based approaches and detailed model fitting [38]. Assuming
exponential, density-dependent infections, the simplest relationship is the transmission rate times
the infectious period [39]. For endemic immunizing infections, R0 is also related to the mean age
of infection. Anderson and May estimated that R0 is approximately equal to the ratio of mean life
expectancy and the mean age of infection [40].

For an infection to spread in a population, R0 must be greater than 1. In other words, a primary
case must transmit to more than one person, on average, for a disease to circulate. IfR0 is less than
one, the transmission will die out. Frequently, the goal of epidemic management is to force R0

below its critical threshold to discourage disease persistence, but sometimes epidemiologists focus
on the effective reproductive ratio, RE instead. RE is a similar quantity to R0. RE is the mean
number of secondary cases in a partially immune population and is a more realistic estimate during
an ongoing outbreak. When a disease grows without density dependence, the effective reproductive
ratio is approximately equal to the basic reproductive ratio (RE ' R0) [41]. The level of immunity
within a population can also slow disease transmission. If one half of a population is immune or
not susceptible to a disease, RE becomes one half of R0.

Depletion of Susceptibles
Transmission to susceptible individuals is crucial to the persistence of every epidemic. Thus,

management can focus on reducing the prevalence of susceptibles or on reducing transmission
to new susceptibles. When a fraction of 1/R0 of all of the susceptibles have been infected, an
epidemic will begin to recede. Once most susceptible individuals have become immune, the virus
cannot effectively transmit to the remaining viable hosts. This creates an initial exponential rise in
the number of infected individuals and then a subsequent fall as individuals recover or are removed
from the susceptible pool. For acute, highly infectious diseases to persist in a population, there is
a critical threshold of susceptible individuals known as critical community size (CCS). CCS is
vital for the persistence of measles as well as other infectious diseases [42]. If the number of
susceptibles falls below the CCS, the disease cannot effectively transmit and will fade out. This
type of fadeout is known as a susceptible bottleneck.

Another cause of loss of persistence is the transmission bottleneck. Transmission bottlenecks
occur when transmission is interrupted, and the disease cannot come into contact with susceptible
individuals. Small stochastic fluctuations in transmission can remove all the pathogens from the
system. Due to the lack of a vaccine, forcing a susceptible bottleneck is nearly impossible unless
Ebola emerges in a highly immune population. Instead, public health management focuses on
interrupting transmission through a transmission bottleneck by attempting to bring RE below 1.
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Final Epidemic Size
The final epidemic size is dependent on the basic reproductive number and the size of the pop-

ulation. Infections will accumulate exponentially for logN
R0

generations until susceptible individuals
are depleted [41]. If transmission is density-dependent, the generation time will be longer than the
density-independent case, meaning that the epidemic will take longer to deplete the susceptibles.
In a simple epidemic, we expect the epidemic to grow to approximately as e−R0 (as long as R0 is
around two). However, the distribution of final epidemic sizes is most similar to e−R0 toward the
end of the epidemic, due to disease-induced mortality [43].

The 2014 Ebola Outbreak
A detection failure and delayed response are frequently blamed for the uncharacteristic size of

the 2014 West Africa Ebola epidemic. Ebola had never been detected in West Africa before 2014,
so intial cases were not recognized until significant transmission had occurred. The three foci of
the epidemic, Guinea, Sierra Leone, and Liberia, had recently stabilized after political unrest or
civil wars, which left damaged healthcare infrastructure in its wake. Hospitals did not have the
resources or space to treat the cases that flooded their doors. Health care workers were also in
shortage, limiting the number of patients that could be treated even further.

Population mobility reignited cases across borders. People move freely across borders in search
of food or work, as most people in Guinea, Sierra Leone, and Liberia live in a state of poverty. The
porous borders allowed for constant reintroduction of disease despite heavy intervention in any
single area. Large households increase epidemic risk and may have contributed to the spread of
Ebola in West Africa [44]. With effective household quarantines, the effect of household size may
be mitigated.

The response to the 2014 West Africa outbreak was too little and too late. Funding for vaccine
development came months into the outbreak and resulted in minute progress. Few Ebola vaccines
have even entered Phase I of human clinical trials [45]. Additionally, educational campaigns at-
tempted to raise community awareness of the Ebola epidemic by citing its danger and seriousness.
The campaigns were partially effective in educating the public of preventative measures but made
some people wary of seeking medical treatment at all.
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Chapter 3

Value of Information Analysis
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Adaptive Management
Public health management during ongoing epidemics is frequently affected by uncertainties,

which limit management success. Two prominent types of uncertainties exist: those we can re-
solve through learning and those we cannot [46]. Aleatory (stochastic) uncertainties encompass
uncontrollable environmental variation. Epistemic uncertainties characterize a lack of information
on how a process occurs. These latter uncertainties can be resolved through further investigation
into the state of the system.

During an outbreak, we usually attempt to resolve uncertainties by assessing prior epidemics
and management approaches. However, the most relevant and predictive information is collected
as the epidemic progresses. Retrospective analyses can also mislead uncertainty resolution if an
active outbreak is drastically different from historical records, as in the case of the 2014 Ebola
outbreak relative to the 24 previous outbreaks. To achieve the most beneficial management, active
data collection can be incorporated into adaptive management models.

Adaptive management integrates science and policy by incorporating active data collection into
decision-making during management. This efficiently guides resource allocation and information
gathering to resolve uncertainties and maximize benefit. Adaptive management is a structured,
decision-making framework that iteratively updates under dynamic, uncertain outbreak conditions.

Value of information (VOI) analysis is a technique, commonly used in economics [47], which
quantifies the extent to which decision-making is hampered by uncertainties, providing guidance
as to how to prioritize future information gathering. The VOI analysis provides an objective,
quantitative indication of the most effective strategy to direct public health decision-making in the
midst of an epidemic [48].

Expected Value of Perfect Information Analysis
Expected value of perfect information (EVPI) analysis quantifies the objective value of resolv-

ing uncertainties prior to decision implementation [48]. This structured framework guides the effi-
cient allocation of resources and information gathering to inform decision-makers. EVPI compares
the cost/benefit of having perfect information about the resolved uncertainties to the cost/benefit
of the current information. In other words, EVPI analysis is the comparison of the optimum of
the average values, which are weighted expectations across competing models, and the average of
the optimum values contingent on each model. EVPI analysis evaluates all possible model and
management combinations in terms of their ability to achieve a stated objective. Each model in the
comparison is weighted based on the likelihood of it being the most realistic model:

EVPI =
∑
k

pk(opt
i
Cik)− opt

i

∑
k

pkCik (3.1)

This model denotes pk as the probability model k is the most realistic model such that
∑

k pk =
1. The optimum across the i interventions is represented by opt

i
, and Cik is the cost/benefit of each

action.
EVPI analysis can also evaluate policy robustness under different management objectives. Dur-

ing the course of an epidemic, multiple simultaneous objectives may recommend contradicting
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management interventions or objectives may switch. For example, in the 2014 West Africa Ebola
outbreak, the minimization of caseload and the minimization of mortality were of utmost impor-
tance. In another possible scenario, in an early outbreak, public health administration may strive to
minimize the probability of a major epidemic. If a threshold is passed and the epidemic appears to
have entered the major regime, the objective will likely then switch to the most prominent problem
at hand.

Heterogeneities Cause Uncertainty
Demographic and spatial heterogeneities exist even within a single epidemic outbreak. As in

the 2014 Ebola outbreak, transmission rates varied amongst venues and countries. Uncertainties
in transmission rates makes it difficult to develop and enact targeted management when the crucial
transmission venue (i.e. in the hospital, in the community, or at funerals) has not been identified.
If management is misdirected, unnecessary resources are lost, and the epidemic staggers on longer
than it could. By incorporating adaptive management into active policy decision-making, we can
make more confident decisions through uncertainty resolution.

In particular, nosocomial and funeral transmission in the 2014 Ebola outbreak were highly
variable across space and demographics. Different parameterizations drove drastically different
caseload and mortality projections, making policy decisions difficult. We here study the uncer-
tainty in these parameters through the EVPI framework.
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Chapter 4

Mathematical Models of Infectious Disease
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Why Do We Model?
People use models every day to make decisions about their lives. Most people would look

at an expensive car and come to the conclusion that they could not afford it. An individual’s
budget is a model for their income allocation that they can use to predict the consequences of
buying something too expensive. Models can be a means for evaluating plausible outcomes when
testing could be expensive, dangerous, or impossible, but there are numerous reasons models are
developed. Models can streamline the empirical experimentation process through identification
of important variables and key hypotheses. Some models represent general patterns and trends
that seem too complex to visualize. During infectious disease epidemics, models can test how a
system will behave under different management interventions, identify management that optimizes
an objective, and guide decision-making where action cannot wait for more detailed information.

Models are an important tool in infectious disease ecology. Infectious disease dynamics are
commonly modeled to provide predictions for caseload, mortality rates, and the efficacy of vac-
cines [49, 50]. Policymakers use disease models for optimizing vaccine protocols, resource allo-
cation, and the identification of important management parameters.

Approaches to Modeling
Modeling schemes in epidemiology take many forms such as compartment, network, branch-

ing process, or agent-based models. Compartmental models are the most common approach to
modeling disease dynamics and treat disease stages as discrete states. The standard epidemic
compartmental model is the Susceptible-Infected-Removed (SIR) model (Figure 4.1). Initially,
everyone in a population of size N is susceptible (S) to the disease. The susceptible individuals
are exposed to the infectious agent and become infected (I) with the disease at a rate β. Infected
individuals are then removed (R) from the system by death or recovery in 1/γ days. The closed
SIR model assumes the epidemic happens so quickly that susceptible recruitment may be ignored.
Compartmental models also assume random mixing within the population, meaning that every in-
dividual has the same probability of contracting the disease. This framework is the building block
for all compartment models.
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S 
β 

I R 
γ 

Figure 4.1: The closed SIR model prohibits nat-
ural introduction or removal of individuals from
the system and assumes that every individual has
the same probability of contracting the disease.
Disease is transmitted at a rate β from infected in-
dividuals (I) to susceptible individuals (S). Once
a person is infected, they are removed from the
infected class through recovery or death in γ days
on average.

dS

dt
=
−βSI
N

dI

dt
=
βSI

N
− γI

dR

dt
= γI

N = S + I +R

(4.1)

An expansion of the SIR model is the SEIR model (Figure 4.2). This framework includes a
separate state for individuals who have been exposed (E) to the infectious agent but have not yet
become infectious. The SEIR model is most commonly used when there is a notable latent period
in the disease process which creates a lag between exposure and infection.

 
 
 
  

S 
β 

I R 
γ 

E 
α 

Figure 4.2: The SEIR model differs from the SIR
model by the inclusion of an exposed class. After
a susceptible individual (S) interacts with an in-
fectious person and becomes infected, he or she
is considered to be exposed (E) until becoming
infectious themselves (I). Infectious individuals
either recover or succumb and are removed (R)
from the system.

dS

dt
=
−βSI
N

dE

dt
=
βSI

N
− αE

dI

dt
= αE − γI

dR

dt
= γI

N = S + E + I +R

(4.2)

Modeling the 2014 Ebola Outbreak
When the 2014 Ebola outbreak began reaching unprecedented caseloads, over 55 models, rang-

ing complexity and approach, were published. Caseload and mortality projections are key for pre-
dicting epidemic size and guiding management, but there was prominent disagreement between
models. Caseload projections ranged from five thousand to over a million cases [49, 51, 52].
Structural differences also infiltrated the model space. Thirty-seven of the published models were
variations of an SEIR framework, whereas the remaining 18 were less similar (branching pro-
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cess, spatial models, etc.). This extreme variability amongst models complicated the management
decision-making process.

The SEIHFR Model
We examined the model published first by Legrand et al. [1] for the 1995 Kitwit, DRC and

2000 Gulu District, Uganda outbreaks and refurbished by Rivers et al. [49] for the 2014 West
Africa outbreak to explore uncertainties between nosocomial and funeral transmission rates.

Legrand et al. built on the standard SEIR model to create the SEIHFR model. The additional H
and F represent hospital and funeral states, respectively. Historically, Ebola outbreaks have three
main arenas for transmission: in the home or community, in the hospital, and during burial rituals.
To encompass the differing transmission venues, separate compartments are included for hospitals
and funerals. Thus, Legrand et al.’s [1] model consists of six compartments with individuals clas-
sified as: 1) susceptible individuals (S) that can be infected with Ebola by coming into contact with
an infected individual; 2) exposed individuals (E) that have been infected but are not yet infectious;
3) living infected individuals (I) that have contracted Ebola virus and are infectious to others but
have not been hospitalized; 4) hospitalized individuals (H) that have contracted Ebola virus and are
infectious; 5) individuals who have died from Ebola virus (F) and can still infect others through
the funeral process; 6) removed individuals (R) that are no longer infectious to others (cured or
buried). Figure 4.3 is a schematic representation of the model.
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Figure 4.3: Susceptible individuals (S) are exposed to EVD at a rate λ. After a latent period of 1/α
days, exposed individuals (E) become infectious (I) to others. Once infectious, θ% of individuals
will seek medical attention (H) at a rate γH . The remaining (1 − θ)% will either succumb to the
illness at a rate δ1 and enter traditional funeral proceedings (F) in 1/γD days, or recover (R) at a
rate (1− δ1)γI . A hospitalized individual can either die at a rate δ2γDH or recover in 1/γIH days.
All dead individuals are buried in 1/γF days and are removed from the system.

In terms of parameterization, susceptible individuals (S) are assumed to be exposed to EVD at
a rate λ, where λ is the composition of the transmission from infectious, hospitalized, and funeral
states. Explicitly, λ = βII+βHH+βFF

N
. Each interaction of a susceptible individual with an infected
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individual is represented by a different transmission rate, depending on whether transmission oc-
curs in the community (βI), hospital (βH), or at a funeral (βF ). After exposure, individuals (E)
become infectious (I) after an average latent period of 1/α days. The latent period for Ebola ranges
between 2 and 25 days [2]. Infectious individuals diverge into three pathways. Some of the sick
(θ%) seek medical attention in 1/γH days on average. If hospitalized, individuals succumb to the
illness at a rate δ2γDH . The case fatality ratio for hospitalized individuals is defined as δ2. Hospi-
talized individuals are only hospitalized for 1/γDH days on average before they die or recover in
1/γIH days. From the infectious state, individuals that were not hospitalized ((1− θ)%) move into
the funeral class at a rate δ1γD. The case fatality ratio for unhospitalized cases is defined as δ1.
On average, individuals enter the funeral state in 1/γD days. Recovery is also possible for unhos-
pitalized cases in 1/γI days. Funeral proceedings last 1/γF days on average before individuals are
completely removed from the system. In its deterministic form, the detailed equations governing
the system is the following set of six coupled ordinary differential equations (ODEs).

dS

dt
= −βISI + βHSH + βFSF

N
dE

dt
=
βISI + βHSH + βFSF

N
− αE

dI

dt
= αE − [γHθ1 + γI(1− θ)(1− δ1) + γD(1− θ)δ1]I (4.3)

dH

dt
= γHθ1I − (γDHδ2 + γIH(1− δ2))H

dF

dt
= γD(1− θ1)δ1I + γDHδ2H − γFF

dR

dt
= γIH(1− δ2)H + γI(1− θ)(1− δ1)I + γFF

We are interested in parametric uncertainty for nosocomial (βH) and funeral (βF ) transmission
on caseload and mortality. Community transmission is harder to estimate and was not selected
for use in this analysis. It is appropriate to examine this system within a stochastic framework.
Including stochasticity in the model accounts for the demographic stochasticity naturally seen
during the epidemic.
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Chapter 5

Methodology
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Overview
Over 50 models have been published about the 2014 outbreak, each with its own parameteri-

zation and structure. To investigate the effect of uncertainty in funeral transmission and hospital
transmission on management recommendations, we consider a single model with two versions.
The original model parameterization was identified as Model I. Model II was the same model
framework with the parameter values of funeral transmission and hospital transmission switched.
Reflecting on the level of uncertainty surrounding the transmission rates, the simplest comparison
was to switch the rates between the transmission venues. We examined the contrasting models
under two objectives, minimization of caseload and minimization of mortality, using the EVPI
framework in Liberia and Sierra Leone. Liberia and Sierra Leone are similarly located in West
Africa but have very different economics, governments, and demographies.

Parameterization
Rivers et al. [49] published their paper early in the epidemic, so extensive information about the

model parameters was not available. Instead, model fitting was informed by the Uganda outbreak
in 2000, and the most recent data from the 2014 outbreak was given a preferential weighting [49].
Rivers et al. performed the model parameterization by fitting the outbreak data to the deterministic
system of equations through least squares optimization. The optimizer was limited by the range of
validity for each parameter. For example, probabilities were constrained between zero and one.

As seen in Table 5.1, parametric differences exist between Liberia and Sierra Leone in terms of
magnitude. Because the parameters are fitted values, a level of uncertainty surrounds each estimate.
Additional parametric uncertainty is attributed to the data. The parameterization developed by
Legrand et al. [1] for the 2000 Uganda outbreak served as seed values for the optimization but
the 2014 West Africa outbreak behaved very differently to the outbreak in Uganda; it is unlikely
that the parameters were similar overall. The most recent outbreak data at the time was also used
to fit the model, but parameters are not static. Throughout an epidemic with no intervention,
there is a level of dynamicity in the parameters. The 2014 outbreak was also heavily affected by
underreporting and misdiagnosis, which can skew case counts and mortality rates.

Within each country there are spatial and demographic heterogeneities. Because transmission
interruption is a target for public health management, we are interested in resolving uncertainties
between hospital and funeral transmission. To do this, we created a two scenario situation where
Model I is the original model parameterization. Model II has the same parameterization but now
the fitted values for hospital transmission (βH) and funeral transmission (βF ) are switched.
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Table 5.1: Rivers et al. fit the model parameters using data from the early 2014 Ebola
epidemic using least squares optimization. The R0 values were estimated using next
generation methods.

Parameter Liberia Sierra Leone
Fitted Value Fitted Value

Size of the Population 10,000 10,000
Number of Index Cases 1 1
Contact Rate, Community (βI) 0.160 0.128
Contact Rate, Hospital (βH) 0.062 0.080
Contact Rate, Funeral (βF ) 0.489 0.111
Incubation Period (1/α) 12 days 10 days
Time until Hospitalization (1/γH) 3.24 days 4.12 days
Time from Hospitalization to Death (1/γDH) 10.07 days 6.26 days
Duration of Traditional Funeral (1/γF ) 2.01 days 4.50 days
Duration of Infection (1/γI) 15.00 days 20.00 days
Time from Infection to Death (1/γD) 13.31 days 10.38 days
Time from Hospitalization to Recovery (1/γIH) 15.88 days 15.88 days
Fraction of Infected Hospitalized (θ) 0.197 0.197

θ1 =
θ[γI(1−δ1)+γDδ1]

θ[γI(1−δ1)+γDδ1]+(1−θ)γH
0.053 0.073

Case Fatality Ratio (δ) 0.50 0.750
Case Fatality Ratio, Unhospitalized (δ1)

δ1 =
δγI

δγI+(1−δ)γDH
0.47 0.609

Case Fatality Ratio, Hospitalized (δ2)
δ2 =

δγIH
δγIH+(1−δ)γDH

0.39 0.542

Basic Reproductive Ratio, R0 2.53 1.93

Management Interventions
We explored the impact of four management interventions on the outbreak. We assumed that

each management action resulted in a 25% effect as seen in Table 5.2. The interventions range in
complexity, cost, and clarity. Community behavior change is modeled through a decrease in com-
munity transmission (βI), but there is significant difficulty in enacting and measuring efficacy of
community interventions. This may be the least socially feasible intervention proposed. Theoreti-
cally, individuals should have a higher rate of survival in the hospital where they can be treated. To
model increased hospital recruitment, we increased the proportion hospitalized (θ). Rehydration
should theoretically result in fewer deaths, so we modeled this by decreasing the hospitalized
case fatality ratio (δ2). Finally, due to the risk that funeral proceedings present, we modeled the
regulation of burial practices by decreasing funeral transmission (βF ). This reduction could be



21

achieved in a number of ways such as requiring HCWs to wear PPE, keeping the family of the
deceased a safe distance away, prohibiting manipulation of the body after death, etc.

Table 5.2: Four management actions (increased hospitalization, increased commu-
nity awareness, more rehydration, and regulated funeral proceedings) were explored
and assumed to have a 25% intensity (i.e. an increase or decrease, as appropriate, for
that parameter). The altered parameters and their new fitted values are shown. The
R0 for each model was estimated using next generation methods.

Model Management Parameter
Original Modified

R0Fitted Value Fitted Value
Liberia 2.53

Model I

Hospitalization θ 0.197 0.246 2.48
Community awareness βI 0.160 0.120 2.05
Rehydration δ2 0.39 0.29 2.52
Burial practices βF 0.489 0.367 2.41

Model II

No Management 3.04
Hospitalization θ 0.197 0.246 3.22
Community awareness βI 0.160 0.120 2.56
Rehydration δ2 0.39 0.29 3.06
Burial practices βF 0.062 0.0465 3.03

Sierra Leone 1.93

Model I

Hospitalization θ 0.197 0.246 1.91
Community awareness βI 0.128 0.096 1.57
Rehydration δ2 0.542 0.407 1.94
Burial practices βF 0.111 0.083 1.83

Model II

No Management 1.88
Hospitalization θ 0.197 0.246 1.87
Community awareness βI 0.128 0.096 1.52
Rehydration δ2 0.542 0.407 1.89
Burial practices βF 0.080 0.060 1.81

Each intervention targets a different transmission pathway. Figure 5.1 illustrates which path-
ways are affected by each management action. The green arrow indicates management that directly
targets transmission pathways. This includes community awareness and regulating burial practices.
With these actions, our goal is to decrease the transmission rates. The oranges arrows represent the
effect of hospital recruitment. Although this management does not directly stem transmission, it
controls the dissemination of infected individuals. If the proportion hospitalized is high, then fewer
sick individuals will remain in the community or transition to the funeral state. Theoretically, this
management is best when hospital transmission is low. Finally, the blue arrows indicate the effect
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of lowering the hospital case fatality ratio. When the ratio is decreased, more individuals should
be funneled into the recovered state instead of the funeral state. Lowering the hospital case fatality
ratio also has an indirect effect on the unhospitalized case fatality ratio (δ1). When fewer people
enter the funeral class, the risk of contracting Ebola decreases, leaving fewer people infected. In
turn, fewer unhospitalized people will succumb to the virus if only because there are fewer people
infected.
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Figure 5.1: The SEIHFR transition pathways are affected by different management actions. Com-
munity awareness and regulating burial practices directly affect the transmission rates (green).
The orange arrows represent the pathways affected by hospital recruitment. Changing the hospital
mortality ratio affects the pathways in blue.

Stochastic Implementation
To use the EVPI framework, we estimated case load and death count under each model and

management combination for each country. We chose to simulate the model stochastically in order
to provide a range of possible epidemic trajectories. The average final case count and mortality
count for each model/management combination were eventually compared in the EVPI table. We
performed 1000 stochastic simulations on a population of 10,000 individuals.

Model simulations were performed using Gillespie’s exact algorithm [53]. The elapsed time
(transition) for each iteration was randomly picked from an exponential distribution with the pa-
rameter equal to the sum of the transition rates. A transition was randomly sampled from the
possible transitions with a multinomial probability proportional to its relative rate. The counts
in each compartment were updated accordingly. We assumed that parameters were fixed across
simulations. All simulations were run in the open-source software R [54] using the code in the
Appendix.

There are two prominent approaches to stochastic simulation: fixed-time and event-based al-
gorithms. In a fixed-time Markov chain, the probability of moving from one state to the next is
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fixed and independent of any transitions that occurred previously. It is a prospective approach
which is blind to everything outside its current state. However, we chose an event-based approach.
In an event-based stochastic algorithm, the transition probability is proportional to the number of
individuals in each compartment at the given time. The particular transition and elapsed time are
randomly generated, most frequently from an exponential distribution. Each state transition is cal-
culated exactly, so each trial is an exact sample from the possible outcomes. The exact Gillespie
algorithm [53] frequently becomes computationally intensive as only one transition occurs at each
time step requiring, instead, the use of the τ -leap approximation [55] to address this problem. The
τ -leap approximation for stochastic simulation is less computationally intensive and more efficient
for larger systems as updating occurs less often. Although a margin of error exists the τ -leap
aproximation is an excellent proxy for the exact Gillespie algorithm [55]. Because computational
constraints were not an issue in this project, we chose to use the exact Gillespie algorithm.

R0 Estimation by Next Generation Methods
The next generation method is the most general of several methods for calculating R0 for

compartmental models. In short, the next generation method framework allowsR0 to be calculated
when there are multiple compartments of infected individuals because it accounts for difference
in structure [56]. Models with underlying age or spatial structures can also use the approach to
estimate R0. To follow this method, two matrices are formed. The first, F , stores all of the new
infections. V , the second matrix, is the vector difference between all loss of infection (V −) and the
gain of infection (V +) between infected compartments (i.e. infections transferring compartments
but not new infections). We take the partial derivatives of F and V with respect to the infected state
variables to form two Jacobian matrices, f and v. R0 is the maximum eigenvalue of the matrix
product of f and v evaluated at the disease-free equilibrium.

For the SEIHFR model, we identify all new infections in the matrix F .

F =


βISI+βHSH+βFSF

N

0
0
0


Next, we form V , which is the difference in the loss of infection and the transfer of infections
between infected compartments. V takes the form:

V = V −−V + =


αE

γI(1− θ1)(1− δ1)I + δ1(1− θ1)γDI + γHθ1I
γIH(1− δ2)H + γDHδ2H

γFF

−


0
αE
γHθ1I

γDHδ2H + δ1(1− θ1)γDI


Now, we generate the Jacobian matrices for F and V by taking the partial derivatives with respect
to the four infected states. The Jacobian matrices are 4× 4 matrices of the form:
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f =


0 βIS

N
βHS
N

βFS
N

0 0 0 0
0 0 0 0
0 0 0 0



v =


α 0 0 0
−α (1− θ1)(1− δ1) + δ1(1− θ1)γD + γHθ1 0 0
0 −γHθ1 γIH(1− δ2) + γDHδ2 0
0 −δ1(1− θ1)γD −γDHδ2 γF


Finally, R0 is the maximum eigenvalue of the matrix product of the two Jacobian matrices f

and v. Explicitly, fv−1|dfe, where dfe = {S = 1, E = 0, I = 0, H = 0, F = 0, R = 0}.
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Chapter 6

Results
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To illustrate the expected value of perfect information (EVPI) framework, we performed 1000
stochastic simulations on a population of 10,000 individuals. We examined two differing scenarios,
which weighed uncertainties of funeral contact rate (βF ) against the hospital transmission rate (βH)
under different objective functions in both Liberia and Sierra Leone.

The expected trajectory of the SEIHFR model takes the form shown in Figure 6.1. The total
number of susceptible individuals will decay through time as the number of removed individuals is
monotonically increasing. The four interior compartments (Exposed, Infectious, Hospitalized, and
Funeral) exhibit initial exponential growth, reach their maximum, and decay to zero. How quickly
the outbreak occurs will vary between stochastic realizations, so the peaks in the interior states will
shift through time. Generally, every iteration will have a similar form.
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Figure 6.1: The susceptible compartment monotonically decreases as infection occurs. The four
interior compartments (Exposed, Infected, Hospitalized, and Funeral) exhibit parabolic behavior
through the introduction and removal of individuals from each compartment over time. The re-
moved class grows monotonically by the accumulation of recovered or deceased individuals. In
general, each simulation behaves similarly.

Stochastic epidemics typically progress in one of two fashions. They either go extinct early
leading to a ’minor epidemic’ or progress to the susceptible bottleneck causing a ’major epidemic.’
The likelihood of the two outcomes depends on R0. A range of epidemic sizes were possible
through the stochastic simulations of the model. Figure 6.2 illustrates the case count distribution for
Liberia with no management imposed. Results for Sierra Leone were qualitatively the same. The
majority of realizations resulted in a major outbreak (>8000 cases). However, under the SEIHFR
structure and the current parameterization, the epidemic has a 34.4% chance of being a minor
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epidemic. The caseload and mortality count distributions under the various management actions
share similar distributions to this one.
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Figure 6.2: The distribution of case counts for Liberia with the original parameterization under
no management shows a bimodal distribution. The majority of simulations resulted in a major
epidemic with over 80% of the population becoming infected. Minor epidemics occurred 34.4%
of the time.

Each cell in the EVPI table represents a unique combination of model and intervention. Un-
der Objective 1: minimize caseload, each cell contains the projected average number of cases and
range of cases under the model-intervention combination. Similarly, for Objective 2: minimize the
number of deaths, the projected mean number of deaths and range of death counts is displayed.
The four management actions most likely be practical are increased hospital recruitment (HOS),
community transmission reduction (COMM), improved hospital treatment, specifically, rehydra-
tion (REH), and burial regulation (BUR). Each intervention is imposed on the contrasting models
and contrasted with a control (ORIG) model with no management. Each model is weighted (W) to
be equally likely.

Liberia
In Liberia, increasing community awareness is the most effective management to minimize

caseload (Table 6.1). The average optimum (5001 cases) and the optimum average (5001 cases)
are the same because both models indicate that decreasing community transmission is the dominant
management. Therefore, management appears to be robust to parametric uncertainty.
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In practice, decreasing community transmission has many modes of execution and it may be
difficult to control and estimate the effect of those interventions. Considering this, if we remove
community intervention from the possible management schemes, some uncertainty is resolved.
The new model optima (shown in red) indicate differing optimal interventions. Model I is optimal
under restricted burial practices whereas the Model II caseload minimizes under increased hospital
recruitment. On average across the models, rehydration is most effective in minimizing case count.
From this EVPI analysis, we can decrease our case count by 0.67% through resolving parametric
uncertainties.

Table 6.1: Objective 1: Minimize Caseload in Liberia To minimize the
number infected with EVD, the optimal universal intervention is commu-
nity transmission. Because the models agree on the optimal management,
further investigation is not needed. However, as increasing community
awareness may be less easy to achieve and quantify, we can remove it
from the framework and only compare the more direct interventions. In
this scenario, the models disagree on the optimal management, and 0.67%
of the population would be spared if additional information were gathered.

Liberia W ORIG HOS COMM REH BUR Optima
Model 1 0.5

βH = 0.062 5923 6042 4996 5771 5766 4996
βF = 0.489 (1, 9148) (1, 9153) (1, 8396) (1, 9084) (1, 9009)

Model 2 0.5
βH = 0.489 5936 5843 5006 5894 5940 5006
βF = 0.062 (1, 9627) (1, 9713) (1, 9344) (1, 9660) (1, 9620)

Average 5930 5943 5001 5833 5853 5001

As is common during an epidemic, multiple objectives may exist at a time. For instance, during
an outbreak, policymakers may want to minimize the caseload or minimize the death count. If we
view mortality minimization as a separate objective, we can apply the same EVPI framework (Ta-
ble 6.2). The recommendation is again unanimous across models to minimize mortality: improve
hospital care and rehydration. Thus, the value of perfect information is, again, zero. Based on the
estimates for this particular time in the epidemic, the most effective universal management focus
to minimize mortality overall is improving hospital infrastructure and treatment.
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Table 6.2: Objective 2: Minimize Mortality in Liberia To achieve our
objective, decreasing community transmission is unanimously the optimal
action. Secondly, decreasing hospital case fatality is consistently the best
suboptimal action.

Liberia W ORIG HOS COMM REH BUR Optima
Model 1 0.5

βH = 0.062 2964 3022 2498 2370 2882 2370
βF = 0.489 (0, 4722) (0, 4649) (0, 4305) (0, 3808) (0, 4583)

Model 2 0.5
βH = 0.489 2969 2922 2503 2291 2972 2291
βF = 0.062 (0, 4957) (0, 4989) (0, 4779) (0, 3871) (0, 4916)

Average 2967 2972 2501 2331 2927 2331

Sierra Leone
Although objectives may be ubiquitous for an epidemic, spatial heterogeneities affect model

parameterization. Differences in parameterization can cause local- or state-level management dif-
ferentiation. In the 2014 Ebola outbreak, models were parameterized at the country level with
significant differences between countries. This is captured in the EVPI framework by examining
Liberia and Sierra Leone data separately. Under Objective 1: Minimize Caseload (Table 6.3), the
Sierra Leone table mirrors the first objective for Liberia (Table 6.1).

To minimize caseload in Sierra Leone, the models agree that decreasing community transmis-
sion is the optimum management action, so future information gathering is not needed. If we
remove community intervention as a possible management as in the Liberia analysis, the optimal
direct management approach is burial regulation (shown in red). As there is no conflict between
model recommendations under the first objective, resources need not be spent on further surveil-
lance in Sierra Leone.
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Table 6.3: Objective 1: Minimize Caseload in Sierra Leone As in
Liberia, reduction in community transmission is optimal for this objec-
tive. Ignoring the decrease in community transmission as the best action
overall, in Sierra Leone, regulating burials is the best direct intervention.
Information gathering is unnecessary due to the high level of agreement
between the models on the optimal interventions.

Sierra Leone W ORIG HOS COMM REH BUR Optima
Model 1 0.5

βH = 0.080 4394 4346 2659 5771 3712 2659
βF = 0.111 (1, 8060) (1, 7978) (1, 6580) (1, 9084) (1, 7737)

Model 2 0.5
βH = 0.111 4173 4186 2012 4323 3601 2012
βF = 0.080 (1, 7844) (1, 7815) (1, 6360) (1, 8133) (1, 7702)

Average 4284 4266 2336 4481 3657 2336

If we change our objective to minimizing mortality in Sierra Leone (Table 6.4), the common
theme of reducing community transmission arises again. Additional information gathering can
reduce mortality by 1.41% if we ignore community behavior change as a viable management.
Model I is optimal under upregulated rehydration practices, whereas Model II minimizes the ob-
jective under downregulated burial transmission. The difference between the optimal average and
the average optimum is 141 cases.

Table 6.4: Objective 2: Minimize Mortality in Sierra Leone To mini-
mize mortality in Sierra Leone, reducing community transmission is the
best action to take. If that is not feasible, there is a small level of uncer-
tainty (1.41%) which can be resolved with additional information gather-
ing.

Sierra Leone W ORIG HOS COMM REH BUR Optima
Model 1 0.5

βH = 0.080 3296 3256 1954 2944 2980 1954
βF = 0.111 (1, 6069) (1, 6019) (1, 4943) (1, 5258) (1, 5829)

Model 2 0.5
βH = 0.111 3126 3136 1470 2747 2698 1470
βF = 0.080 (1, 5951) (1, 5894) (1, 4717) (1, 5217) (1, 5773)

Average 3211 3196 1712 2846 2839 1712
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Chapter 7

Discussion
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Discussion
The 2014 Ebola outbreak in West Africa drew global attention when the case and mortality

counts began reaching unprecedented numbers. Liberia and Sierra Leone were among the three
countries most affected by the outbreak. Significant heterogeneities existed between the locations,
making management decision-making difficult. Over 50 epidemic models were published to aid
public health management, but structural and parametric uncertainties among the models caused
a range of caseload and mortality projections. By acknowledging the uncertainties about Liberia
and Sierra Leone in an effort to minimize caseload and mortality, we demonstrated the utility of
value of information analysis in directing information gathering during ongoing epidemics.

Across country and objective, decreasing community transmission is universally predicted to
be most effective in minimizing caseload and mortality. This indicates that the most influential
venue for transmission was the community. Although focusing on the decrease in community
transmission may have had the greatest effect on the objective functions, a single intervention was
not enough to drive R0 below its threshold (R0 < 1). R0 can be indicative of epidemic size and
virulence of the pathogen. Across R0 values for the differing models and parameterizations (Table
5.2), enacting community awareness consistently minimizes R0 relative to no management and the
other interventions across each model’s parameterization scheme and the differing objectives. This
supports the conclusions drawn from the EVPI analysis.

The 2014 outbreak reached a caseload over 28,000 in early 2016, thousands below what was
predicted in the absence of control. Most likely, there was dynamicity in the parameters caused
by behavior change. Based on our conclusions from the EVPI analysis and R0, we suspect that
behavior change in the community, such as encouraging hand washing practices, self-quarantining,
and the use of household protective kits was the most influential factor in driving the downturn of
the epidemic. It is hard to conclude definitively that community behavior change was the cause of
the stem of the epidemic because public health management enacted several interventions at once
such as the erection of Ebola treatment centers (ETCs), the requirement of PPE for HCWs, and the
regulation of burial practices. Although our analysis indicated that preventing community trans-
mission was the best action to minimize case count, mortality count, and R0, in reality, standards
of care for Ebola needed to be maintained through other means of public health interventions.

The unanimity of the EVPI analyses directs the allocation of resources for public health man-
agement. Additional surveillance will not aid in clarifying the best management approach. Thus,
funds, manpower, or supplies that had been directed to information gathering can to some extent
be reassigned to a more efficient and effective purpose. The streamlining of resource allocation
through incorporating adaptive management into policy decision-making could allow faster re-
sponse time in an epidemic.

Throughout these EVPI tables, a ’blanket’ intervention arises: the decrease in community trans-
mission through awareness campaigns and behavior change. Although easily identified, enacting
behavior change can be completed in many modes and may not have a single solution. Other factors
such as time, monetary resources, and manpower may limit the scope of the intervention. These
factors are not addressed in the EVPI analysis demonstration but should be considered for any
active public health intervention. The EVPI analysis is also limited in its ability to acknowledge
uncertainty. Uncertainties between hospital and funeral transmission are used in this example, but
the EVPI analysis could be expanded to include community transmission, the hospital admittance
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rate, or any other parameter around which uncertainty lies. Simultaneous objectives should also
be considered. Public health management may aim to reduce caseload and mortality at the same
time. The dual optimization may result in a greater efficiency and a faster epidemic downturn.
There are plausible downsides to this approach. For example if you consider a dual optimization in
Liberia, community transmission is the primary target but increasing hospitalization is a plausible
secondary mode of action. When we acknowledge the uncertainty between hospital and funeral
transmission, there is a possibility that improving hospitalization rates will actually make the epi-
demic worse. R0 increases under Model II in Liberia from 3.04 under no management to 3.22
under hospitalization. Examining scenarios that optimize simultaneous objectives and understand-
ing the effects management could have with respect to uncertainties could prevent a suboptimal
management choice.

This demonstration of EVPI analysis illustrates its utility in disease outbreak management. For
the specific models and scenarios explored here, directed action and the impacts of clarifying infor-
mation differ between countries and objectives. There will always be uncertainty during ongoing
outbreaks of Ebola and other diseases, but the application of EVPI analysis can guide resource
allocation and information gathering.

Conclusions
The 2014 Ebola outbreak was a serious international public health crises of the modern day.

Over 55 mathematical models were published in an attempt to aid public health management.
Initial estimates of epidemic size varied substantially between a few thousand and over a million
cases. The vast uncertainty in case load left public health management with difficult subjective
decisions to make.

Value of information analysis acknowledges the uncertainty encapsulated by different models
and quantifies it to direct information gathering. To explore the relative importance of uncertainty
about hospital and funeral transmission, we examined an SEIHFR model built by Legrand et al.
[1] and parameterized by Rivers et al [49]. We developed two versions of the model: the first
with the original parameterization and the second with the fitted values for hospital transmission
and funeral transmission switched. Our aim was to quantify uncertainty under two objectives,
the minimization of case load and the minimization of mortality, by implementing one of four
management actions. Increasing hospital recruitment, raising community awareness, improving
rehydration within a hospital, and regulating burial practices were identified as four of the most
feasible and straight forwardly modeled actions.

Using the expected value of perfect information framework, decreasing community transmis-
sion through public awareness campaigns universally minimized the objectives across countries
and models. Additional surveillance to resolve the parametric uncertainty was unnecessary. When
community transmission is not considered, some uncertainty remains. In future endeavors, public
health management should consider doing dual optimization of objectives to achieve the greatest
impact and efficiency.
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Appendices



R code
Exact Gillespie Algorithm

To use the exact Gillespie algorithm, the user must specify:

• start: the starting values

• ratefun: a rate function that returns a numeric vector of rates at which each event occurs. The inputs
are the current state variables, parameters, and time

• trans: a matrix that indicates the changes in each state variable (column) that occurs when a particular
event (row) occurs

• pars: a numeric vector of parameters

• times: a vector of times at which to evaluate the system

gillesp <- function(start,ratefun,trans,pars,times=0:50) {
t0 <- times[1] # set starting time
ntimes <- length(times)
X <- start # set starting state
res <- matrix (nrow=length(times),ncol=length(start), # result matrix

dimnames=list(times,names(start)))
for(ctr in 1:(ntimes-1)) { # loop over reporting time

res[ctr,] <- X
while (t0 < times[ctr+1]) {

rates <- ratefun(X,pars,t0) # calculate current rates
if(all(rates==0)) break
totrate <- sum(rates)
elapsed <- rexp(1,totrate) # sample elapsed time
which.trans <- sample(1:nrow(trans),size=1,prob=rates) # pick transition
t0 <- t0 + elapsed # update time
X <- X + trans[which.trans,] # add transition values to current state

}
}
cbind(times,res)

}

The rate function defines the inputs for the SEIHFR model. Black magic allows reference to states and pars
by name.

ratefun.SIR <- function(X,pars,time) {
vals <- c(as.list(pars),as.list(X)) # attach state and pars as list
rates <- with(vals, # allow reference to states and pars by name

c(exposure = (betaI*S*I + betaH*S*H + betaF*S*G)/N,
infection = alpha*E,
hospitalization = gammaH*theta1*I,
deathH = gammaDH*delta2*H,
funeral = gammaF*G,
recoveryI = gammaI*(1-theta1)*(1-delta1)*I,
deathI = delta1*(1-theta1)*gammaD*I,
recoveryH = gammaIH*(1-delta2)*H))

}

1



We name the state variables and transitions to make the code easier to read.

statenames.SIR <- c("S","E","I","H","F","R","D","C")
transnames.SIR <- c("exposure","infection","hospitalization",

"deathH","funeral","recoveryI",
"deathI","recoveryH")

Define the transition matrix. The rows indicate the particular events (i.e. exposure, death, etc.) and the
columns indicate the state variables. Two extra compartments are included here to calculate the cumulative
case and mortality counts.

trans.SIR <- matrix(c(-1, 1, 0, 0, 0, 0, 0, 0,
0,-1, 1, 0, 0, 0, 0, 1,
0, 0,-1, 1, 0, 0, 0, 0,
0, 0, 0,-1, 1, 0, 1, 0,
0, 0, 0, 0,-1, 1, 0, 0,
0, 0,-1, 0, 0, 1, 0, 0,
0, 0,-1, 0, 1, 0, 1, 0,
0, 0, 0,-1, 0, 1, 0, 0),

byrow=TRUE,
ncol=8,
dimnames=list(transnames.SIR,statenames.SIR))

Define the parameters as a ‘named’ vector.

# Liberia parameterization
pars.lSIR <- c(betaI=0.160, betaH=0.062, betaF=0.489, alpha=1/12, gammaH=1/3.24,

gammaI=1/15, gammaD=1/13.31, gammaDH=1/10.07, gammaF=1/2.01,
gammaIH=1/15.88, theta=0.197, delta=0.50, delta1=0.47,
delta2=0.39, theta1=0.053, N=10000)

# Sierra Leone parameterization
pars.lSIR <- c(betaI=0.128, betaH=0.080, betaF=0.111, alpha=1/10, gammaH=1/4.12,

gammaI=1/20, gammaD=1/10.38, gammaDH=1/6.26, gammaF=1/4.5,
gammaIH=1/15.88, theta=0.197, delta=0.75, delta1=0.609,
delta2=0.542, theta1=0.073, N=10000)

To execute the algorithm, call the function with the start variables and time defined.

G.lSIR <- gillesp(start=c(S=9999,E=0,I=1,H=0,G=0,R=0,D=0,C=1),times=seq(0,500,by=0.25),
ratefun=ratefun.SIR,trans=trans.SIR,pars=pars.lSIR)

To call the code within a stochastic framework, use an iterative loop and store the outputs for each realization.

G.lSIR.S <- array()
G.lSIR.E <- array()
G.lSIR.I <- array()
G.lSIR.H <- array()
G.lSIR.G <- array()
G.lSIR.R <- array()
G.lSIR.D <- array()
G.lSIR.C <- array()
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for (i in 1) {
G.lSIR <- gillesp(start=c(S=9999,E=0,I=1,H=0,G=0,R=0,D=0,C=1),times=seq(0,500,by=0.25),

ratefun=ratefun.SIR,trans=trans.SIR,pars=pars.lSIR)
G.lSIR.S <- cbind(G.lSIR.S,G.lSIR[,"S"])
G.lSIR.E <- cbind(G.lSIR.E,G.lSIR[,"E"])
G.lSIR.I <- cbind(G.lSIR.I,G.lSIR[,"I"])
G.lSIR.R <- cbind(G.lSIR.R,G.lSIR[,"R"])
G.lSIR.H <- cbind(G.lSIR.H,G.lSIR[,"H"])
G.lSIR.G <- cbind(G.lSIR.G,G.lSIR[,"G"])
G.lSIR.D <- cbind(G.lSIR.D,G.lSIR[,"D"])
G.lSIR.C <- cbind(G.lSIR.C,G.lSIR[,"C"])

}

Next Generation Methods for R0 Estimation

To calculate R0 for compartmental models, (1) identify the infected compartments. (2) Form a matrix F
that contains all of the new infections.

F1 <- expression(betaI*S*I/N + betaH*S*H/N + betaF*S*F/N)
F2 <- 0
F3 <- 0
F4 <- 0

(3) Form $Vˆ{-} as a matrix of the loss of infection.

Vm1 <- expression(alpha*E)
Vm2 <- expression(gammaI*(1-theta1)*(1-delta1)*I +

delta1*(1-theta1)*gammaD*I + gammaH*theta1*I)
Vm3 <- expression(gammaIH*(1-delta2)*H + gammaDH*delta2*H)
Vm4 <- expression(gammaF*F)

(4) Form Vˆ{+} as a matrix of the transfer of infections between infected compartments (i.e. no new
infections).

Vp1 <- 0
Vp2 <- expression(alpha*E)
Vp3 <- expression(gammaH*theta1*I)
Vp4 <- expression(gammaDH*delta2*H + delta1*(1-theta1)*gammaD*I)

(5) Form V as a matrix of the difference between V − and V +.

V1 <- expression(alpha*E - 0)
V2 <- expression(gammaI*(1-theta1)*(1-delta1)*I +

delta1*(1-theta1)*gammaD*I +
gammaH*theta1*I - (alpha*E))

V3 <- expression(gammaIH*(1-delta2)*H + gammaDH*delta2*H
- (gammaH*theta1*I))

V4 <- expression(gammaF*F - (gammaDH*delta2*H +
delta1*(1-theta1)*gammaD*I))
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(6) Take the partial derivatives of F and V with respect to the infected state variables to form two Jacobian
matrices f and v, respectively.

f11 <- D(F1,"E"); f12 <- D(F1,"I");
f13 <- D(F1,"H"); f14 <- D(F1,"F")
f21 <- D(F2,"E"); f22 <- D(F2,"I");
f23 <- D(F2,"H"); f24 <- D(F2,"F")
f31 <- D(F3,"E"); f32 <- D(F3,"I");
f33 <- D(F3,"H"); f34 <- D(F3,"F")
f41 <- D(F4,"E"); f42 <- D(F4,"I");
f43 <- D(F4,"H"); f44 <- D(F4,"F")
v11 <- D(V1,"E"); v12 <- D(V1,"I");
v13 <- D(V1,"H"); v14 <- D(V1,"F")
v21 <- D(V2,"E"); v22 <- D(V2,"I");
v23 <- D(V2,"H"); v24 <- D(V2,"F")
v31 <- D(V3,"E"); v32 <- D(V3,"I");
v33 <- D(V3,"H"); v34 <- D(V3,"F")
v41 <- D(V4,"E"); v42 <- D(V4,"I");
v43 <- D(V4,"H"); v44 <- D(V4,"F")

(7) Define the parameters and disease-free equilibrium.

# Sierra Leone
S <- 1; E <- 0; I <- 0; H <- 0; F <- 0; R <- 0
alpha <- 1/10; gammaH <- 1/4.12; gammaD <- 1/10.38;
gammaI <- 1/20; gammaF <- 1/4.5;
gammaIH=1/((1/gammaI)-(1/gammaH));
gammaDH=1/((1/gammaD)-(1/gammaH));
theta1 <- 0.073; delta1 <- 0.609; delta2 <- 0.542;
betaI <- 0.128; betaH <- 0.08; betaF <- 0.111;
N <- 1;

# Liberia
S <- 1; E <- 0; I <- 0; H <- 0; F <- 0; R <- 0
alpha <- 1/12; gammaH <- 1/3.24; gammaD <- 1/13.31;
gammaI <- 1/15; gammaF <- 1/2.01;
gammaIH=1/((1/gammaI)-(1/gammaH));
gammaDH=1/((1/gammaD)-(1/gammaH));
theta1 <- 0.053; delta1 <- 0.47; delta2 <- 0.39;
betaI <- 0.160; betaH <- 0.489; betaF <- 0.062;
N <- 1;

(8) Evaluate fv−1 at the disease-free equilibrium. R0 is the largest eigenvalue of this matrix.

f <- matrix(c(eval(f11),eval(f12),eval(f13),eval(f14), # this forms a matrix
eval(f21),eval(f22),eval(f23),eval(f24), # each term had
eval(f31),eval(f32),eval(f33),eval(f34), # previously be treated
eval(f41),eval(f42),eval(f43),eval(f44)), # as separate entities
nrow = 4, byrow = TRUE)

v <- matrix(c(eval(v11),eval(v12),eval(v13),eval(v14),
eval(v21),eval(v22),eval(v23),eval(v24),
eval(v31),eval(v32),eval(v33),eval(v34),
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eval(v41),eval(v42),eval(v43),eval(v44)),
nrow = 4, byrow = TRUE)

max(eigen(f%*%solve(v))$values)
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The Pennsylvania State University 

University Park, PA 
January 2015 to May 2015 

AWARDS   
• Headings Scholarship 

The Pennsylvania State University Eberly College of Science 
2015 – 2016 



• Sovereign Trust Trustee Scholarship 
The Pennsylvania State University Schreyer Honors College 

2015 – 2016 

• Carrell Family Association Grant 2014 – 2016 

• Hammond Scholarship 
The Pennsylvania State University Eberly College of Science 

2014 – 2015 

• Mu Sigma Rho (National Honorary Society for Statistics) 2014 – Present 

• George B. Doughman Memorial Scholarship 
The Pennsylvania State University 

2014 – 2016 

• Travel Grant 
The Pennsylvania State University Schreyer Honors College 

2015 

• Eberly College of Science Alumni Scholarship 
The Pennsylvania State University Eberly College of Science 

2014 

• Student Enhancement Fund 
The Pennsylvania State University Eberly College of Science 

2014 

OUTREACH  
Expanding your horizons STEM career day for girls 
The Pennsylvania State University 

University, PA 
2014 

COURSES & SKILLS 
Significant coursework: 
The Pennsylvania State University Applied Statistics 

Multivariate statistics, regression, ANOVA, DOE, Design and Analysis of Clinical Trials, Survey 
Sampling 

The Pennsylvania State University Biology 
Populations & Communities, Molecules & Cells, Function & Development of Organisms, Tropical 
Field Ecology (field course in Costa Rica), Biology of Eco-Health (field course in Tanzania), Ecology of 
Infectious Diseases 

The Pennsylvania State University Statistics 
Regression, ANOVA, Applied Time Series Analysis, Nonparametric Statistics, Introduction to 
Probability Theory 

The Pennsylvania State University Mathematics 
Calculus & Biology I & II, Vector Calculus, Discrete Mathematics, Combinatorics, Real Analysis, 
Population Biology & Evolutionary Game Theory, Linear Programming, Linear Algebra 

Skills 
• Proficient in R, Matlab; Familiar with SAS 

 


