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i 

 

ABSTRACT 

 

As a swarm intelligence scheme, the Particle Swarm Optimization (PSO) technique is a 

stochastic population-based method, representing an intuitive methodology for global 

optimization and has been successfully applied to several fields of research. Through mimicking 

the unpredictable motion of bird flocks in search of food, PSO uses the mechanism of 

information sharing that affects the overall behavior of a swarm to converge to the optimal 

values of the unknown parameters for the problem under consideration. For this research, PSO 

was used to optimize the finite thrust transfers of a spacecraft between two circular orbits that are 

not coplanar. The transfer trajectory consists of two thrusting arcs separated by a coasting arc. 

For better performance, the plane change was incorporated in the second thrusting maneuver. 

The dynamics of the system depend of the twelve coefficients from three cubic polynomials used 

to represent the in-plane and out-of-plane thrust pointing angles as well as the three time 

intervals corresponding to the three arcs of trajectory. Using MATLAB, the PSO algorithm will 

determine these fifteen parameters as the solution converges to the global optimal solution, 

minimizing the objective function, which corresponds to minimizing propellant consumption. 

The algorithm consists of eight functions, using ode45 to numerically integrate the state 

equations for each thrusting arc. Several tests were conducted on the PSO algorithm to analyze 

the convergence to the global minimum including varying the swarm parameters and the ratio of 

outer to inner radii values, β. Sometimes, the algorithm converged on a local minimum as the 

solution. Further research will attempt to correct the issue of local convergence, in hopes of 

consistently obtaining the global minimum. 
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NOMENCLATURE 

 

a  = semi-major axis during the coasting arc 

alpha = multipliers representing equality constraints for PSO algorithm 

BestP  = the P position that gave the particle its best value of J 

BLp  = the position lower bounds of the particle elements  

BLv  = the velocity lower bounds of the particle elements 

BUp  = the position upper bounds of the particle elements  

BUv  = the velocity upper bounds of the particle elements 

c  = effective thrust velocity of the propulsion system in DU/TU  

cC  = cognitive weighting coefficient for UpdateV 

cI  = inertial weighting coefficient for UpdateV  

cS  = social weighting coefficient for UpdateV 

dk = penalty terms for equality constraints for the desired, or final, orbit 

DU  = canonical unit for distance (384,400 km)  

E1  = spacecraft’s eccentric anomaly at t1 

E2  = spacecraft’s eccentric anomaly at t2 

e  = eccentricity of the spacecraft’s orbit during the coasting arc 

f1  = spacecraft’s true anomaly at t1 

f2  = spacecraft’s true anomaly at t2 

GG  = the best value of J for a given iteration  

GGstar= array with the GG of each iteration 

if  = inclination of the spacecraft’s final orbit in radians 

J  = objective function, the summation of the errors and the time intervals Δ𝑡1 and Δ𝑡2  

JBest  = the best value of J for a given particle in any iteration  
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k = this subscript denotes the integers 0,1,2,3 

m0  = initial mass of the spacecraft in MU 

mf  = final mass of the spacecraft in MU 

m  = current mass of the spacecraft in MU 

mf /m0 = the final mass to initial mass ratio  

MU  = canonical mass unit  

N_elements = the number of unknown parameters each particle consists of   

N_iterations = the number of iterations the PSO algorithm runs for 

N_particles = the number of particles in the swarm the PSO algorithm analyzes  

n0  = the initial thrust-to-mass ratio of the spacecraft in DU/TU2 

ode45  = a built in numerical integrator in MATLAB  

P  = the dimensional array that holds the position for each particle and all of its elements  

PSO  = Particle Swarm Optimization 

r  = the radius of the spacecraft’s orbit in DU 

r1  = the radius of the spacecraft’s orbit at t1 in DU 

r2  = the radius of the spacecraft’s orbit at t2 in DU 

𝑟̇ = time derivative of the radius of the spacecraft’s orbit in DU/TU  

R1 = initial radius of the spacecraft’s orbit in DU 

R2  = final radius of the spacecraft’s orbit in DU 

t0  = initial time the first thrust arc begins at in TU 

t1  = time where the first thrust arc ends in TU 

t2  = time where the second thrust arc begins at in TU 

T  = the spacecraft’s thrust level  

tf  = final time where the second thrust arc ends at in TU 

tspan  = the time span for the ODE functions  
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TU  = canonical unit for time (375,190 s) 

vr  = radial velocity component of the spacecraft in DU/TU 

vr1  = radial velocity at t1 in DU/TU 

vr2  = radial velocity at t2 in DU/TU 

𝑣̇𝑟  = time derivative of the radial velocity component in DU/TU2 

vθ  = transverse velocity component of the spacecraft  in DU/TU 

vθ1  = transverse velocity at t1 in DU/TU 

vθ2  = transverse velocity at t2 in DU/TU 

𝑣̇𝜃  = time derivative of the transverse velocity component 

z = distance of spacecraft normal to the initial plane 

𝑧̇ = velocity of spacecraft normal to the initial plane 

𝑧̈  = out-of-plane equation of motion during the second thrust arc 

α  = out-of-plane thrust pointing angle during the second thrust arc 

αk  = coefficients of the out-of-plane thrust pointing angle during second thrust arc 

β  = ratio of R2/R1   

Δ𝐸  = eccentric anomaly variation 

Δ𝑡1  = time interval of the first finite thrusting maneuver 

Δ𝑡2  = time interval of the second finite thrusting maneuver 

Δ𝑡𝐶𝑂  = coasting arc time interval in TU (t2 - t1) 

Δ𝑣1  = change in velocity during the first impulsive maneuver 

Δ𝑣2  = change in velocity during the second impulsive maneuver 

δ  = in-plane thrust pointing angle represented as a cubic polynomial  

𝑘 = coefficients of the second in-plane thrust pointing angle  

ζk  = coefficients of the first in-plane thrust pointing angle  
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θ  = angular position in polar coordinates 

𝜃̇  = time derivative of angular position in polar coordinates 

𝜃̈  = angular equation of motion of the spacecraft during the second thrust arc 

μB  = the gravitational parameter of attracting body in DU3/TU2 

ξ  = spacecraft angular displacement from the x-axis  

ξ1  =spacecraft angular displacement from the x-axis at t1 

𝜉̇  = time derivative of the angular displacement from the x-axis  

ρ  = radius in polar coordinates 

𝜌̇  = time derivate of radius in polar coordinates 

𝜌̈  = radial equation of motion of the spacecraft during the second thrust arc 
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Chapter 1  
 

Introduction 

In orbital mechanics, it is crucial to perform an optimal orbital maneuver, whether it be for 

minimizing propellant consumption or time of the maneuver. The Hohmann transfer is a popular solution 

for calculating the minimum fuel needed for impulsive maneuvers between two coplanar circular orbits. 

An impulsive maneuver requires a truly instantaneous change in velocity, which is impossible. A finite, 

or non-impulsive, thrust is closer to resembling the physical nature/characteristics spacecraft actually 

employ, requiring numerical integration techniques to model. Low-thrust maneuvers that mimic 

Hohmann transfers between coplanar circular orbits have been calculated using Particle Swarm 

Optimization1 . However, most LEO-GEO transfers require a plane-change, incorporating the full three-

dimensional geometry of space.  

In this thesis, the spacecraft will initially be traveling in a circular orbit around the Earth. Next, 

the spacecraft will begin its transfer trajectory, which is composed of two thrusting arcs, separated by a 

coasting arc. During the first thrusting arc and the coasting arc, the spacecraft remains in the initial plane. 

The plane change occurs entirely in the second thrusting arc to the inclination desired. Particle Swarm 

Optimization will search for the optimal solution with the minimal amount of propellant used, while 

ensuring the final orbital parameters are achieved. 

Particle Swarm Optimization has been observed to converge at a local minimum in previous 

studies1. The results will document how well Particle Swarm Optimization is able to find the global 

minimum from testing various swarm parameters and radius ratios. Another area of interest in this thesis 

is comparing the finite thrusting maneuvers to impulsive ones for the same transfer, to demonstrate the 

limited performance attainable. The performance attainable by finite thrust is expected to approach the 

impulsive thrust approximation for higher thrust levels.  
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Particle Swarm Optimization 

The Particle Swarm Optimization technique is a population-based stochastic method first 

introduced in 1995 to determine the optimal values of unknown parameters for a given problem. 

Successfully applied in several fields of research, Particle Swarm Optimization uses the mechanism of 

information sharing that affects the overall swarm. For the first iteration, the swarm population consists of 

randomly generated particles1. For each iteration, every particle is associated with its respective position 

and velocity vectors. The position vector is composed of the unknown parameters that are being solved 

for, and the velocity vector is the update to the position vector.  Each particle is a potential solution, 

corresponding to a specific value of the objective function to be minimized. During each iteration, the 

best particle in the swarm, with the lowest objective function value, is selected. Once all of the iterations 

are complete, the best particle is found.  

The particle swarm algorithm is defined by its simplicity and intuitiveness, being capable of 

finding the global optimal solution while requiring only the definition of the search space for the 

unknown parameters. The effectiveness of the algorithm increases with the number of particles in the 

swarm and/or the number of iterations1. Another factor in the success of PSO is the use of accelerator 

coefficients for updating the velocity vector, which increase in magnitude over the range of the iterations.  

Using MATLAB, Particle Swarm Optimization will optimize the finite thrust transfers between 

two circular non-coplanar orbits. Each particle consists of fifteen elements, or the unknown parameters to 

be found. The first twelve elements are the coefficients of the three cubic polynomials for the in-plane 

thrust angles and the out-of-plane thrust angle. The final three elements are the thrusting time intervals 

and the variation in eccentric anomaly, which was used to derive the coasting time interval through 

Kepler’s Law. The algorithm will minimize the objective function, which corresponds to the 

minimization of propellant and therefore the maximization of the final-to-initial mass ratio.
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Chapter 2  
 

Statement of the Problem 

The purpose of this problem is to transfer a spacecraft initially in a circular orbit at R1 to 

an outer orbit at R2 of a different inclination angle. The initial conditions at t0 are given by: 

 

 𝑣𝑟(𝑡0) = 0 (2.1) 

 

𝑣𝜃(𝑡0) = √(
𝜇𝐵

𝑅1
) 

(2.2) 

 𝑟(𝑡0) = 𝑅1 (2.3) 

 𝜉(𝑡0) = 0 (2.4) 

 𝑖(𝑡0) = 0 (2.5) 

where 𝜇𝐵 is the gravitational parameter of the attracting body, vr, v, r, and   denote, respectively, 

the radial and the horizontal component of velocity, the radius, and the spacecraft angular displacement 

from the x-axis. The initial inclination of the orbit, i, is arbitrarily chosen to be zero. For practical 

purposes, Earth was chosen as the celestial body.  

 The trajectory of the spacecraft is broken down into three time intervals, two thrusting 

arcs separated by the coasting arc. The first thrusting arc begins at t0, which is arbitrarily defined 

as zero, and ends at t1. Then the thrust level is zero and the coasting arc begins, ending at t2. At 

t2, the second thrusting maneuver, which incorporates the plane change, begins until the final 

time tf. Two additional assumptions are addressed. First, maximum thrust is assumed to be 

employed during the two thrusting maneuvers. Second, the in-plane and out-of-plane thrust 



4 

pointing angles are represented by cubic polynomial functions of time.  With these assumptions, 

the thrust-to-mass ratio, T/m, is defined for the three time intervals by 

Time Intervals:   

0 ≤ 𝑡 ≤ 𝑡1 𝑇

𝑚
=

𝑐𝑛0

𝑐 − 𝑛0𝑡
 

(2.6) 

𝑡1 ≤ 𝑡 ≤ 𝑡2 𝑇

𝑚
= 0 

(2.7) 

𝑡2 ≤ 𝑡 ≤ 𝑡𝑓 𝑇

𝑚
=

𝑐𝑛0

𝑐 − 𝑛0(𝑡1 + 𝑡 − 𝑡2)
 

(2.8) 

where T is the thrust level, m is the current mass of the spacecraft and c, n0, denote, respectively, 

the effective exhaust velocity of the propulsion system, and the thrust to mass ratio at t0.  

 The spacecraft’s motion for the first thrusting arc is defined by the following state 

equations: 

 
𝑣̇𝑟 = −

𝜇𝐵 − 𝑟𝑣𝜃
2

𝑟2
+

𝑇

𝑚
sin 𝛿  

(2.9) 

 
𝑣̇𝜃 = −

𝑣𝑟𝑣𝜃

𝑟
+

𝑇

𝑚
cos 𝛿  

(2.10) 

 𝑟̇ = 𝑣𝑟   (2.11) 

 𝜉̇ =
𝑣𝜃

𝑟
 

(2.12) 

where δ is the in-plane thrust pointing angle for 0 ≤ 𝑡 ≤ 𝑡1. 

 𝛿 = 𝜁0 + 𝜁1𝑡 + 𝜁2𝑡2 + 𝜁3𝑡3 (2.13) 

The unknown coefficients, {ζ0, ζ1, ζ2, ζ3}, are determined by the PSO algorithm, and initially are 

randomly generated within the search space.  

 The coasting arc trajectory is defined by the semi-major axis a and the eccentricity e.  
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 𝑎 =  
𝜇𝐵𝑟1

2𝜇𝐵 − 𝑟1(𝑣𝑟1
2 + 𝑣𝜃1

2 )
 

(2.14) 

 

𝑒 = √1 −
𝑟1

2𝑣𝜃1
2

𝜇𝐵𝑎
 

(2.15) 

where vr1, v1, r1, and  1 are the values at t1.  With the trajectory being elliptical, the semi-major axis is 

greater than zero, the true anomaly at t1, 𝑓1, can be solved from the following two equations.  

 

sin 𝑓1 =
𝑣𝑟1

𝑒
√

𝑎(1 − 𝑒2)

𝜇𝐵
  

(2.16) 

 

cos 𝑓1 =
𝑣𝜃1

𝑒
√

𝑎(1 − 𝑒2)

𝜇𝐵
 −

1

𝑒
 

(2.17) 

The corresponding eccentric anomaly at t1, 𝐸1, is found by 

 
sin 𝐸1 =

𝑠𝑖𝑛𝑓1√1 − 𝑒2

1 + 𝑒𝑐𝑜𝑠𝑓1
 

(2.18) 

 
cos 𝐸1 =

𝑐𝑜𝑠𝑓1 − 𝑒

1 − 𝑒𝑐𝑜𝑠𝑓1
 

(2.19) 

The eccentric anomaly at t2 is 𝐸2 = 𝐸1 + Δ𝐸, where Δ𝐸 is one of the unknown parameters 

determined by the PSO algorithm. The corresponding true anomaly, 𝑓2, is defined by  

 
sin 𝑓2 =

𝑠𝑖𝑛𝐸2√1 − 𝑒2

1 − 𝑒𝑐𝑜𝑠𝐸2
 

(2.20) 

 
cos 𝑓2 =

𝑐𝑜𝑠𝐸2 − 𝑒

1 − 𝑒𝑐𝑜𝑠𝐸2
 

(2.21) 

The coasting time interval Δ𝑡𝐶𝑂 ≜ 𝑡2 − 𝑡1 is derived from Kepler’s Law 

 

Δ𝑡𝐶𝑂 = √
𝑎3

𝜇𝐵

[𝐸2 − 𝐸1 − 𝑒(𝑠𝑖𝑛𝐸2 − 𝑠𝑖𝑛𝐸1)] 

(2.22) 
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 For the second thrusting arc, the initial conditions are defined at time t2  

 

 

𝑣𝑟2 = √
𝜇𝐵

𝑎(1 − 𝑒2)
𝑒𝑠𝑖𝑛𝑓2 

(2.23) 

 

𝑣𝜃2 = √
𝜇𝐵

𝑎(1 − 𝑒2)
(1 + 𝑒𝑐𝑜𝑠𝑓2) 

(2.24) 

 
𝑟2 =

𝑎(1 − 𝑒2)

1 + 𝑒𝑐𝑜𝑠𝑓2
 

(2.25) 

 𝜉2 = 𝜉1 + (𝑓2 − 𝑓1) (2.26) 

The state equations for the second thrusting arc change, requiring two new states to define the 

out-of-plane motion 𝑧, 𝑧̇. In polar coordinates, the equations of motion become 

 
𝜌̈ = 𝜌𝜃̇ −

𝜇𝐵𝜌

(𝜌2 + 𝑧2)
3
2

+
𝑇

𝑚
𝑠𝑖𝑛𝛿 𝑐𝑜𝑠𝛼 

(2.27) 

 
𝜃̈ = −

2𝜌̇𝜃̇

𝜌
+

𝑇

𝜌𝑚
𝑐𝑜𝑠𝛿 𝑐𝑜𝑠𝛼 

(2.28) 

 
𝑧̈ = −

𝜇𝐵𝑧

(𝜌2 + 𝑧2)
3
2

+
𝑇

𝑚
𝑠𝑖𝑛𝛿 

(2.29) 

where δ is the in-plane thrust pointing angle for and 𝛼 is the out-of-plane thrust pointing 

angle 𝑡2 ≤ 𝑡 ≤ 𝑡𝑓 . 

 𝛿 = 0 + 1(𝑡 − 𝑡2) + 2(𝑡 − 𝑡2)2 + 3(𝑡 − 𝑡2)3 (2.30) 

 𝛼 = 𝛼0 + 𝛼1(𝑡 − 𝑡2) + 𝛼2(𝑡 − 𝑡2)2 + 𝛼3(𝑡 − 𝑡2)3 (2.31) 
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Again, the unknown coefficients, {0, 1, 2, 3, α0, α1, α2, α3}, are determined by Particle Swarm 

Optimization algorithm, and initially, during the first iteration are randomly generated with the 

search space.  

 The final conditions of the spacecraft are  

 𝑣𝑟(𝑡𝑓) = 0 (2.32) 

 

𝑣𝜃(𝑡𝑓) = √(
𝜇𝐵

𝑅2
) 

(2.33) 

 𝑟(𝑡𝑓) = 𝑅2 (2.34) 

 𝑖(𝑡𝑓) = 𝑖𝑓 (2.35) 

where 𝑖𝑓 is calculated by:  
𝑖𝑓 = cos−1

ℎ𝑧

|ℎ|
 

(2.36) 

 ℎ = 𝑟 𝑥 𝑣 (2.37) 

 𝑟 = 𝜌î𝜌 +  𝑧î𝑧 (2.38) 

 𝑣 = 𝜌̇î𝜌 + 𝜌𝜃̇î𝜃 +  𝑧̇î𝑧 (2.39) 

to ensure  that final inclination condition is met.  

 The spacecraft system is dependent on twelve coefficients to represent the thrust pointing 

angle {ζ0, ζ1, ζ2, ζ3, 0, 1, 2, 3, α0, α1, α2, α3}, and the three time intervals Δt1 (≜ 𝑡1), ΔtCO, Δt2 

(≜ 𝑡𝑓 − 𝑡2). These unknown parameters are to be determined by Particle Swarm Optimization 

while finding the minimization of propellant, which corresponds to the maximization of the 

final-to-initial mass ratio mf /m0.  

 𝑚𝑓

𝑚0
= 1 −

𝑛0

𝑐
(Δ𝑡1 + Δ𝑡2) 

(2.40) 
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 The impulsive Hohmann transfer outperforms the finite thrust transfer between two 

circular orbits for 𝛽 = 𝑅2/𝑅1 < 11.939. The Hohmann transfer has the final-to-initial mass ratio 

of  

 
(

𝑚𝑓

𝑚0
 )

𝐻

= exp [−
𝛥𝑣1 + 𝛥𝑣2

𝑐
] 

(2.41) 

where Δ𝑣1and Δ𝑣2 are calculated using the following equations: 

 Δ𝑣1 = |𝑣𝑝 − 𝑣𝑐1| (2.42) 

 
Δ𝑣2 = √𝑣2

2 + 𝑣𝑐2
2 − 2𝑣2𝑣𝑐2 cos 𝛥𝑖 

(2.43) 

 
𝑣2 = √𝑣𝑎

2 + 𝑣Δ𝑖𝑛𝑐
2  

(2.44) 

 
𝑣Δ𝑖𝑛𝑐 = 2𝑣𝑐2sin

Δ𝑖

2
 

(2.45) 

with 𝑣𝑝, 𝑣𝑎, 𝑣𝑐1, 𝑣𝑐1defined as they are in a Hohmann transfer between two circular coplanar 

orbits2. 

Particle Swarm Optimization Problem Specific 

 Each particle in the swarm consists of the fifteen unknown parameters used {ζ0, ζ1, ζ2, ζ3, 

0, 1, 2, 3, α0, α1, α2, α3, Δt1, ΔE, Δt2}. The algorithm uses canonical units, where DU is the 

distance unit and TU is the time unit such that μB = 1 DU3/TU2. All the parameters are solved for 

within the defined search space, or range. 

 0 𝑇𝑈 ≤ 𝑡1 ≤ 3 𝑇𝑈 (2.46) 

 0 ≤ Δ𝐸 ≤ 2𝜋 (2.47) 



9 

 0 𝑇𝑈 ≤ 𝑡2  ≤ 3 𝑇𝑈 (2.48) 

 −1 ≤ 𝜁𝑘  ≤ 1 (2.49) 

 −1 ≤ 𝑘  ≤ 1 (2.50) 

 −1 ≤ α𝑘  ≤ 1 (2.51) 

with k=0,1,2,3. The initial thrust-to-mass ratio n0 is 0.16 DU/TU2, and the effective exhaust 

velocity c is 0.5 DU/TU.  

Four penalty terms, or equality constraints, are introduced to constrain the problem to an 

optimal solution that meets the final conditions, Eq.s 2.32-2.35. For the algorithm, an error less 

than 10-3 is considered acceptable, otherwise the error is multiplied by 100 in the objective 

function to be minimized. 
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Chapter 3  
 

Method 

The Particle Swarm Optimization Algorithm consists of eight MATLAB functions, 

aimed to minimize the objective function, find the corresponding optimal particle elements, and 

to display the results. Several common runtime errors may occur. For example, on occasion the 

PSO algorithm may converge to a local minimum instead of the global minimum. All 

optimization methods have this limitation of converging to a local minimum1. There is no 

guarantee of converging to the global minimum. Every time the code runs, it could converge to a 

different local minimum. For example, many times the code will converge to a result that 

satisfied only one of the equality constraints for the desired orbit. Therefore, for accurate results, 

the code should be run until all or most of the constraints are met. Another error that occurs is 

getting a negative semi-major axis. To circumvent this, for a particle with negative a, the 

objective function is set to infinity so the result does not converge to a value with a negative 

coast time. Figure 1 portrays the PSO algorithm in a flow chart. 
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Figure 1. Flow Chart of PSO Algorithm 

PSOTest_Adaptive_pc 

PSOTest_Adaptive is the main function of the MATLAB code. The main function first 

establishes the characteristics of the swarm population (i.e. the number of unknown elements in a 

particle, the number of particles, and the number of iterations), the initial conditions of the 

spacecraft, the position vector’s upper and lower bounds, the velocity vector’s upper and lower 
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bounds, and finally the random swarm population within the allocated boundaries. For this 

thesis, the number of unknown elements to be solved is 15, and unless otherwise noted uses a 

swarm of 30 particles and 500 iterations. The upper bounds of the position and velocity vectors 

are denoted, BUp and BUv respectively. Likewise, the lower bounds of the position and velocity 

vectors are denoted, BLp and BLv respectively. These bounds correspond to within the defined 

search space for the unknown parameters, Eqs. 2.46- 2.51.  

 Next, the function creates the sizes of the PBest, J, JBest, and V matrices, filling them 

with zeros. The values in JBest array and GG are set to infinity, so that any finite value to the 

objective function will take its place as the best solution in the first iteration.  

The main function then uses seven other function to determine the optimal solution. First, 

Impulse.m is called to find the optimal performance attainable through an idealized Hohmann 

transfer. This is used to compare the finite thrust to the idealized impulsive thrust case. Next, a 

loop is used to run through six functions for a total of N_iterations. For each iteration, the 

following steps occur. First, every particle in the swarm is evaluated, where the one with the best 

performance (lowest J) is found. The particle is then compared to the best position found from 

the previous iterations, and sets that particle to the new best particle if it’s GG value is lower. 

The loop then prepares for the next iteration by updating the velocity and position vectors. To 

observe the results in real time, the code displays t1, tCO, t2, , and the Mass Ratio, and 

finds the error between the current GGBest value and the idealized. This process is repeated for 

every iteration. Once this loop is completed, several results are plotted 
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EvalJ_pc 

EvalJ_pc.m is the first function called for every iteration, which calculates the objective 

function for all of the particles using a loop for a total of N_particles. The function is broken 

down into three time intervals the first thrusting arc, the coasting arc, and the second thrusting 

arc. The first four unknown elements, the coefficients of the first in-plane thrusting angle, are 

read into the function, as well as the final three, t1, E, t2. Next, EvalJ_pc.m calls ode45 on 

another function, SCEoM1, to numerically integrate the spacecraft’s differential equations of 

motion during the first thrusting arc, for a time span from t0 to t1, (t1). The numerical integrator, 

ode45 uses absolute and relative tolerances of 1e-6. Once completed, EvalJ_pc.m takes the 

spacecraft’s final state of motion in the thrusting arc and begins the coasting arc, using those 

values to find the semi-major axis, eccentricity, true anomaly variation, and eccentric anomaly 

variation. EvalJ_pc.m  takes the final conditions of the coasting arc and uses them as initial 

conditions for the second thrusting arc. Again, ode45 is used on another function, SCEoM_pc, to 

solve for the spacecraft’s motion during the seconding thrusting arc (which incorporates the 

change in inclination), for a time span from t2 to tf, t2. From the final state, tf, the final 

inclination is found. Four inequality constraints are used to ensure the final conditions are met 

within an error of 10^-3, an acceptable tolerance. These constraints introduce four penalty terms 

to be summed with the objective function to attempt to act as an avoidance to solutions that do 

not meet with the desired final conditions.  

 𝑑1 = 𝑣𝑟(𝑡𝑓) (3.1) 

 

𝑑2 = 𝑣𝜃(𝑡𝑓) − √
𝜇𝐵

𝑅2
 

(3.2) 
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 𝑑3 = 𝑟(𝑡𝑓) − 𝑅2 (3.3) 

 𝑑4 = 𝑖𝑛𝑐𝑓 − 𝑖𝑛𝑐28.5ᵒ (3.4) 

 𝐽 = Δ𝑡1 + Δ𝑡2 + ∑𝛼𝑘|𝑑𝑘| (3.5) 

 

EvalPGBest_pc 

EvalPGBest_pc.m determines the best position within the iteration and the best position 

visited by a particle up to the current iteration. The function stores the minimum objective 

function value found within the current iteration into JBest, as well as the corresponding the best 

particle, PBest. The GG value, the best performance within all iterations, is stored, as well as the 

corresponding best particle. For the best particle, the mass ratio, tCO, and  values are 

calculated and stored.  

UpdateV 

After EvalPGBest_pc.m, UpdateV.m is called to update the velocity vector V for the 

particles.  

 𝑣𝑖 = 𝑐𝐼𝑣𝑖 + 𝑐𝑐𝑣𝑖 = 𝑐𝑖𝑣𝑖 + 𝑐𝐶(𝑃𝐵𝑒𝑠𝑡𝑖 − 𝑃𝑖) + 𝑐𝑆(𝐺𝐵𝑒𝑠𝑡 − 𝑃𝑖) (3.6) 

where cI, cC, and cS are accelerator coefficients which increase in magnitude over the entire range 

of N_iterations.  

 
𝑐𝐼 =  

1 + 𝑟𝑎𝑛𝑑

2
 

(3.7) 
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𝑐𝐶 = 0.01 +  

1.49445 ∗ 𝑟𝑎𝑛𝑑 ∗ 𝑗

𝑁_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
 

(3.8) 

 
𝑐𝑆 = 0.01 +  

1.49445 ∗ 𝑟𝑎𝑛𝑑 ∗ 𝑗

𝑁_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
 

(3.9) 

where rand is a random number between 0 and 1, and j is the current iteration. The inertia 

coefficient, cI, determines how much the velocity remains unchanged. The cognitive coefficient, 

cC, determines how much the velocity should adjust to make each particle P move closer to 

PBest, the best in the iteration. The social coefficient, cS, determines how much the velocity 

should adjust to make each particle P move to GBest, the globally best particle. Next, 

UpdateV.m checks to makes sure every element is within the velocity bounds. If outside either 

bound, the element is set to the value of the boundary it violated. 

UpdateP 

The UpdateP.m function updates the position, particle elements, of each particle by 

adding the new velocity vector to the previous position vector. UpdateP.m also checks to make 

sure that every element is within the position bounds. If outside, the element’s position is set to 

the value of the particle boundary it violated.  

Impulsive 

The Impulsive.m function’s purpose is to compare the optimal performance attainable 

through an idealized Hohmann transfer. This performance demonstrates the limiting performance 

attainable by any finite thrust when compared to the idealized impulsive thrust case. Impulsive.m 

simply calculates the mass ratio for an impulsive Hohmann transfer for non-coplanar circular 
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obits. Note the impulsive mass ratio will always be greater but the finite mass ratio should be 

close to this approximation. 

SCEoM1 

SCEoM1.m calculates the spacecraft’s trajectory using the state equations for the first 

thrusting arc. No out-of-plane thrust occurs here, as it would be less efficient to perform the out-

of-plane v when you are closer to the attracting body.  The spacecraft starts with the initial 

conditions established in the main function, and determines the motion of the spacecraft for the 

first time span, t1. At t1, the propulsive system shuts down, and SCEoM.1 ends. This function 

runs for every particle in every iteration.  

SCEoM_pc 

SCEoM_pc.m calculates the spacecraft’s trajectory using state equations that correspond 

to the equations of motion described for the second thrusting maneuver. The spacecraft’s motion 

begins with the final conditions from the coasting arc, and the motion is calculated for the second 

time span, t2. This function runs for every particle in every iteration. 
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Chapter 4  
 

Results 

The results from the PSO algorithm are discussed in this section. First, the ratio of the 

radii, β, is tested to observe its effect on the objective function’s convergence. Several other tests 

were conducted using different swarm parameters to observe their effect on converging to the 

global optimal solution as well. The swarm parameters being tested are the number of particles in 

the swarm, and the number of iterations.  

For all of the tests, the globally optimal solution found was when the final value, GGBest, 

met all four of the desired orbit constraints. Again, it is worth mentioning that the algorithm 

could converge to a local minimum instead. The range of this error was significant, making it 

necessary for multiple runs to ensure the smallest error. Running the algorithm found that the 

amount of runs needed varied greatly, and was dependent on the swarm parameters and β. 

Finally, the final-to-initial mass ratios for finite thrust are compared to the ideal impulsive 

transfer, which constitutes the limiting performance attainable by any finite thrust transfer. 

Varying the radii ratio, β  

The optimal solution occurs when the best value of the objective function up to the 

current iteration, GGstar approximately equates to Δt1 + Δt2. This indicates that all of the final 

orbital conditions were met within the tolerance of 10^-3, therefore no equality constraints are 

violated. As mentioned in the common runtime errors, achieving the global minimum takes 

multiple trial runs. For instance, when the radii ratio β= 2, a very good result was achieved after 
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running the PSO algorithm 9 times as shown in Fig. 1, where each run for β=2 took 

approximately 5 minutes. For the next two figures, N_iterations =300, N_particles =30. 

 
Figure 2. GGError vs Number of Iterations (β=2) 

As β increased, the amount of runs it takes to converge to the global minimum and the run time 

increase. Figure 2 demonstrates the optimal solution being found, as the error approaches to and 

becomes zero at N_iterations= 59. This result was achieved within 15 trial runs. On the other 

hand, the results from Figure 3 which also indicate that the global minimum was reached within 

35 trial runs.  
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Figure 3. GGError vs Number of Iterations (β=6) 

The algorithm was used for all even β values within the bitangent Hohmann transfer 

region (1< R2/R1 < 11.939). In several cases, the global minimum could not be found within the 

amount of trial runs tested. Instead, the results for the local minimum that were the closest to the 

global solution were used. Table 1 shows the optimal results obtained for several different radius 

ratios.  

 

Table 1. Best Numerical Results for different β for 30 Runs 

𝛽 Δ𝑡1, TU Δ𝑡𝐶𝑂, TU Δ𝑡2, TU Δ𝜉 , deg GGBest Error # of αk =100 

2 0.80155 3.06699 1.95030 111.72359 2.75185 0 0 

4 1.40976 7.73471 1.54930 109.00075 3.07958 0.12052 1 

6 1.55801 38.23609 0.94149 151.42888 2.49950 0 0 

8 1.56717 30.49002 0.56933 134.97580 3.98331 1.84681 2 

10 1.68339 37.30127 0.86023 137.42567 3.48882 0.94520 2 

where Error is defined by Eq. 4.1 and # of αk = 100 refers to how many equality constraints have 

been violated.  
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 𝐸𝑟𝑟𝑜𝑟 = 𝐺𝐺𝐵𝑒𝑠𝑡 − Δ𝑡1 + Δ𝑡2 (4.1) 

When the objective function converges to a result with no violation of the equality constraints, 

then the global optimal solution has been found and no further runs are required. However, the 

global solution was only achieved for radii ratios of 2 and 6 out of all the runs completed. In the 

cases where 𝛽 was equal to 4,8, and 10, the global solution was not found, as the solution 

converged to a local minimum where 1 or 2 of the 4 final conditions were violated. Figure 4 

demonstrates this occurrence for 𝛽 = 4.  

 
Figure 4. Log(GGError) vs Number of Iterations (β= 4) 
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Varying the Number of Particles, N_particles 

 Varying the particles of the swarm affected both the time it takes for the code to run and 

the chances of the code converging to the global minimum. Increasing the number of particles 

allows the global minimum to be usually found in fewer run times. Usually since there is a 

random element in the optimization process. Therefore using a greater amount of particles was 

mostly found to increase the run time significantly for a tradeoff of better results. Exceptions to 

this, as demonstrated in Fig. 4, can occur since the global minimum is not always achieved. 

 
Figure 5. Particles Comparison for 500 Iterations and β = 4 

As mentioned previously, increasing the number of particles also increased the time for 

the algorithm to complete. For example particles that were varied 30, 50, 100 for β=4 in Figure 
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5, respectively corresponded to run times of 133.7 s, 245.6 s, 857.6 s. This trend was found to be 

consistent for amongst all results the various radii ratios. 

Varying the Number of Iterations, N_iterations 

Varying the number of iterations also affected the run time and performance. Using a 

greater amount of iterations was found to increase the run time significant with the tradeoff of 

better results. For instance, the number of iterations was varied 250, 400, 500 for 30 particles at 

β=4 . This trend was found to be common amongst all radii ratios. An example is shown in 

Figure 6, demonstrating the more iterations the better performance observed. 

  

 

Figure 6. Iterations Comparison for 30 Particles and β = 4 
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Mass Ratio: Finite vs Impulsive 

The performance attainable from the optimal finite thrust transfer is expected to approach 

the impulsive thrust approximation as the thrust level increases. The impulsive transfer 

constitutes the limiting performance attainable by any finite transfer1. Due to this fact, the results 

between the two transfer types are compared in Table 2.  

 

Table 2. Mass Ratio: Finite vs Impulsive Thrust for GGBest 

𝛽 Δ𝑡1, TU Δ𝑡𝐶𝑂, TU Δ𝑡2, TU Δ𝜉 , deg GGBest 
𝑚𝑓

𝑚0
 

𝑚𝑓

𝑚0𝐼

 

2 0.80155 3.06699 1.95030 111.72359 2.75185 0.11941 0.37068 

4 1.40976 7.73471 1.54930 109.00075 3.07958 0.05310 0.36305 

6 1.55801 38.23609 0.94149 151.42888 2.49950 0.20016 0.35789 

8 1.56717 30.49002 0.56933 134.97580 3.98331 0.31632 0.35638 

10 1.68339 37.30127 0.86023 137.42567 3.48882 0.18604 0.35660 

Unlike Pontani and Conway’s results, the final-to-initial mass ratios of the global and local 

minima do not approach the impulsive estimates. This result is interesting, because the 

minimization of the objective function should correlate to the maximization of the final-to-initial 

mass ratio. It is noteworthy that higher values of the final-to-initial mass ratio for finite thrust 

have been found while the algorithm converges to a local minimum.
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Chapter 5  
 

Conclusions and Future Work 

Many orbital maneuvers require a plane change, such as LEO-GEO transfers. As opposed 

to an impulsive transfer, an optimal finite thrust solution is used to simulate a more realistic 

model the nature of spacecraft. Particle Swarm Optimization is useful in optimizing space 

trajectories. This research shows that Particle Swarm Optimization can be used to find the global 

minimum after enough trial runs. The Particle Swarm Optimization algorithm can converge to a 

local minimum where only part of the equality constraints are fulfilled. Finding the global 

minimum can be a grueling process, and requires some luck and time to run multiple trials.  The 

theorized correlation between better performance achieved from both a larger number of 

particles in the swarm and a larger number of iterations was confirmed.  

In the future, the code should be further analyzed to solve some of its issues. One 

problem is that early on in some trial runs occurs when the code finds a particle that is within the 

tolerance for all four equality constraints, but it fails all four in the next iteration. Potentially, a 

feature would be introduced to keep those particle elements unchanged whenever a particle is 

within all four tolerances. Any way to cut down on the amount of attempts and time needed to 

find the global minimum would be highly beneficial. Another suggestion would be to run the 

tests with more iterations and particles to achieve better results, see if converges to global 

minimum in less trial runs. Finally, it would be interesting to find out why there is such a 

significant difference in mass ratios results between finite and impulsive. Unlike the ones 

achieved in Potani and Conway1, which predicts significantly closer mass ratios.
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Appendix A 

 

PSO Algorithm 

PSOTest_adaptive_pc 

%% PSO With Variable Accelerator Coefficients 
%% 
clc; 
clear all; 
close all; 

  
%To Turn Off Warnings 
% [a, MSGID] = lastwarn(); 
% warning('off', MSGID); 

  
global P J JBest PBest GG N_particles N_elements V BLv BUv BLp BUp mu R1 R2 
global N_iterations 
global c n0 DU TU vrt0 vtt0 rt0 angt0 vrtf vttf rtf theta0 i_tf dt_coast 
global MassRatio MassRatio_I BestP GBest d_ang j %L2 endlimit L1 x y z 

  
N_particles = 100; 
N_elements = 15; 
N_iterations = 500; 

  
mu=1; 
R1=1; 
R2=10; 

  
DU=R1; %distance canonical unit  
TU=sqrt(DU^3/mu); %time canonical unit 
c=0.5*DU/TU; %effective exhaust velocity 
n0=0.16*DU/TU^2; %thurst to mass ratio 
i_f= 28.5*pi/180; %degrees converted to rads 
%i_f=0; 

  
%Initial and Final Conditions 
vrt0=0; 
vtt0=sqrt(mu/R1); 
rt0=R1; 
angt0=0; %angular displacement from x axis 
theta0=0; 
vrtf=0; 
vttf=sqrt(mu/R2); 
rtf=R2; 
i_tf= i_f;  
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%% 
%% set lower and upper bounds on unknowns (particle elements) 
BLp = [-1, -1, -1, -1, -1, -1, -1, -1, -0.5*pi,-0.5*pi,-0.5*pi,-0.5*pi, 1e-5, 

1e-5, 1e-5]; 
BUp = [1, 1, 1, 1, 1, 1, 1, 1, 0.5*pi, 0.5*pi, 0.5*pi, 0.5*pi, 3*TU, 2*pi-1e-

5, 3*TU]; 
%% create random initial population 
for i=1:N_particles 
    P(i,1)= BLp(1)+rand*(BUp(1)-BLp(1));     %zeta0 coefficients during first 

thrusting maneuver 
    P(i,2)= BLp(2)+rand*(BUp(2)-BLp(2));     %zeta1 these are the 

coefficients of the thrusting angle polynomial 
    P(i,3)= BLp(3)+rand*(BUp(3)-BLp(3));     %zeta2 
    P(i,4)= BLp(4)+rand*(BUp(4)-BLp(4));     %zeta3 
    P(i,5)= BLp(5)+rand*(BUp(5)-BLp(5));     %zeta0 coefficients during 

second thrusting maneuver 
    P(i,6)= BLp(6)+rand*(BUp(6)-BLp(6));     %zeta1 
    P(i,7)= BLp(7)+rand*(BUp(7)-BLp(7));     %zeta2 
    P(i,8)= BLp(8)+rand*(BUp(8)-BLp(8));     %zeta3 
    P(i,9)= BLp(9)+rand*(BUp(9)-BLp(9));     %alpha0 
    P(i,10)= BLp(10)+rand*(BUp(10)-BLp(10)); %alpha1 
    P(i,11)= BLp(11)+rand*(BUp(11)-BLp(11)); %alpha2 
    P(i,12)= BLp(12)+rand*(BUp(12)-BLp(12)); %alpha3 
    P(i,13)= BLp(13)+rand*(BUp(13)-BLp(13)); %dt1 
    P(i,14)= BLp(14)+rand*(BUp(14)-BLp(14)); %dE 
    P(i,15)= BLp(15)+rand*(BUp(15)-BLp(15)); %dt2 
end 

  
% for i=1:N_particles 
%     P(i,:)= BLp+rand*(BUp-BLp); %something is wrong here 
% end 

  
PBest = zeros(N_particles,N_elements); 
J = zeros(N_particles); JBest = zeros(N_particles);  
V = zeros(N_particles, N_elements); 

  
%% determine velccity bounds 
BUv = BUp - BLp; 
BLv = -BUv; 
for i = 1:N_particles 
    JBest(i) = inf; 
end 
GG = inf; 

  
Impulsive; 

  
tic; 
for j = 1:N_iterations 
    EvalJ_pc; 
    EvalPGBest_pc; 
    UpdateV(j); 
    UpdateP; 
    GGstar(j) = GG; 
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    fprintf('GG = %6.5f \n',GG) 
    fprintf('dt1 = %6.5f, dtcoast = %6.5f, dt2 = %6.5f, dAng = %6.5f 

\n',GBest(13),dt_coast,GBest(15), d_ang*180/pi) 
    fprintf('Mass Ratio = %6.5f \n', MassRatio); 
    GGerror(j)= abs(GG-(GBest(13)+GBest(15))); 
    fprintf('Iteration : %1.0f \n', j) 
    disp(' ') 
end 
save 'PSO_adapt' GGstar, N_iterations; 
toc; 
fprintf('Best Particle = %6.5f \n', BestP); 

  
finalerror= abs(MassRatio - MassRatio_I); 
fprintf('Mass Difference = %6.5f \n', finalerror); 
FinalGGerror= abs(GG-(GBest(13)+GBest(15))); 
fprintf('Final Error = %6.5f \n', FinalGGerror); 

  
%% Plots 
figure() 
plot(1:N_iterations, GGstar) 
title('GGstar vs Number of Iterations'); 
ylabel('GGstar');  
xlabel('Iteration Index') 
% hold on; 

  
figure() 
ispan= linspace(1,N_iterations,N_iterations); 
semilogy(ispan,GGstar) 
title('Log(GGstar) vs Number of Iterations'); 
ylabel('GGstar');  
xlabel('Iteration Index') 
% hold on; 

  
figure() 
plot(1:N_iterations,GGerror(1:N_iterations)) 
title('GGerror vs Number of Iterations'); 
ylabel('GGstar');  
xlabel('Iteration Index') 
% hold on; 

  
figure() 
ispan= linspace(1,N_iterations,N_iterations); 
semilogy(ispan,GGerror(1:N_iterations)) 
title('Log(GGError) vs Number of Iterations'); 
ylabel('GG Error');  
xlabel('Iteration Index') 

  
% Plots the spacecraft's motion through the 3 arcs 
% figure() 
% x(1:L1,5)=0; 
% plot3(x(1:L1,1),x(1:L1,3),x(1:L1,5),'-r') %solid line red 
% hold on; 
%  
% y(1:endlimit,5)=0; 



28 
% plot3(y(1:endlimit,1),y(1:endlimit,3),y(1:endlimit,5),'--g') %dashed green 
% hold on;  
%  
% plot3(z(1:L2,1),z(1:L2,3),z(1:L2,5), '-.b') %dash dot blue 
% hold on; 
%  
% grid on; 
% axis equal; 

     

     

EvalJ_pc 

function EvalJ_pc() 
%% EvalJ evaluates J for each particle in current iteration 
global P J N_particles mu R1 R2 a e %ft vrfminus vtfminus dv2 vt0minus 

vt0plus vr0plus 
global zeta0 zeta1 zeta2 zeta3 dt1 dE dt2 dtcoast t2 tf 
global alpha0 alpha1 alpha2 alpha3 i_tf 
global vrt0 vtt0 rt0 angt0 %vrtf vttf rtf 
global angt2 theta_1 %x y z j f endlimit_f endlimit L1 L2 

  
for i = 1:N_particles 
    %Begin First Thrusting Arc 
    zeta0=P(i,1); 
    zeta1=P(i,2); 
    zeta2=P(i,3); 
    zeta3=P(i,4); 
    dt1=P(i,13);  
    dE=P(i,14); 
    dt2=P(i,15); 

     
    x=[rt0;vrt0;angt0;vtt0]; 
    tspan= [0,dt1]; 
    options= odeset('RelTol',1e-6,'AbsTol',1e-6); 
    [t,x]=ode45('SCEoM1',tspan,x,options); 
    %[t,x]=ode23s('SCEoM1',tspan,x,options); 
    L1= length(x); 

     

    
    %Final State of Motion at End of First Thrusting Arc 
    r_t1= x(L1,1); 
    v_rt1= x(L1,2); 
    theta_1(i)= x(L1,3); %theta_1 is an array so EvalPGBest can use the best 

value for result discussion 
    while (theta_1(i)<0 || theta_1(i)>(2*pi)) 
        if theta_1(i)<0 
            theta_1(i)=theta_1(i)+(2*pi); 
        elseif theta_1(i)>(2*pi) 
            theta_1(i)=theta_1(i)-(2*pi); 
        end 
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    end 
    v_tt1= x(L1,4); 

     

     
    %% Coasting Arc 
    a= (mu*r_t1)/((2*mu)-(r_t1*(v_rt1^2+v_tt1^2))); 
    e= sqrt(1-((r_t1^2*v_tt1^2)/(mu*a))); 

     
    yf1=(v_rt1/e)*sqrt(a*(1-e^2)/mu);           % sin f1 
    xf1=((v_tt1/e)*sqrt(a*(1-e^2)/mu))-(1/e);   % cos f1 
    f1=atan(yf1/xf1); 
    if xf1<0 
        f1=f1+pi; 
    end 
    while (f1<0 || f1>(2*pi)) 
        if f1<0 
            f1=f1+(2*pi); 
        elseif f1>(2*pi) 
            f1=f1-(2*pi); 
        end  
    end 

     
    yE1=(sin(f1)*sqrt(1-e^2))/(1+e*cos(f1));    % sin E1 
    xE1=(cos(f1)+e)/(1+e*cos(f1));              % cos E1 
    E1= atan(yE1/xE1); 
    E1i= E1; 
    if xE1<0 
        E1=E1+pi; 
    end 

     
    E2=E1+dE; 

     
    yf2=(sin(E2)*sqrt(1-e^2))/(1-e*cos(E2));    % sin f2 
    xf2=(cos(E2)-e)/(1-e*cos(E2));              % cos f2 
    f2= atan(yf2/xf2); 
    if xf2<0 
        f2=f2+pi; 
    end 
    while (f2<0 || f2>(2*pi)) 
        if f2<0 
            f2=f2+(2*pi); 
        elseif f2>(2*pi) 
            f2=f2-(2*pi); 
        end 
    end 

     
    rt2=(a*(1-e^2))/(1+e*cos(f2)); 
    vrt2=sqrt(mu/(a*(1-e^2)))*e*sin(f2); 
    angt2(i)=(theta_1(i)+(f2-f1));%angt2 is an array so EvalPGBest can use 

the best value for results 
    vtt2=sqrt(mu/(a*(1-e^2)))*(1+e*cos(f2)); 

     
    %Final Conditions for Coasting Arc 
    rho= rt2;  
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    rho_dot= vrt2; 
    theta= angt2(i); %angt2 is an array so EvalPGBest can use the best value 

for results 
    theta_dot= vtt2/rt2; 
    z=0; 
    z_dot=0; 

     
    %%  
    dtcoast(i)= sqrt(a^3/mu)*(dE-e*(sin(E2)-sin(E1))); 
%     if dtcoast(i)<0 
%         fprintf('Error: Negative Coast Time for = %1.0f \n', i); 
%         dtcoast(i)=abs(dtcoast(i)); 
%     end  
    t2=dt1+dtcoast(i);  
    tf=dt2+t2; 

     
    %% Ignore. This was used to visualize the orbit during coastic/check 

aboce values 
%     xt = [x(L1,1); x(L1,2);x(L1,3);x(L1,4)]; 
%     tspanc = [0 dtcoast(i)]; 
%     options=odeset('RelTol', 1e-6, 'AbsTol', 1e-6); 
%     [t,y] = ode45('SCEoM_co',tspanc,xt,options); 
%     endlimit = length(y); 
%      
%     rhot= y(endlimit,1);  
%     rho_dott= y(endlimit,2);  
%     thetat= y(endlimit,3);  
%     while (thetat<0 || thetat>(2*pi)) 
%         if thetat<0 
%             thetat=thetat+(2*pi); 
%         elseif thetat>(2*pi) 
%             thetat=thetat-(2*pi); 
%         end 
%     end 
%     vtt2t = y(endlimit,4); 
%     theta_dott= vtt2t/rhot; 

  
    %% Begin Second Thrusting Arc 
    zeta0=P(i,5); 
    zeta1=P(i,6); 
    zeta2=P(i,7); 
    zeta3=P(i,8); 
    alpha0= P(i,9); 
    alpha1= P(i,10); 
    alpha2= P(i,11); 
    alpha3= P(i,12); 

     
    x2=[rho;rho_dot;theta;theta_dot;z;z_dot]; 
    tspan2= [t2,tf]; 
    options= odeset('RelTol',1e-6,'AbsTol',1e-6); 
    [t,z]=ode45('SCEoM_pc',tspan2,x2,options); 
    %[t,z]=ode23s('SCEoM_pc',tspan2,x2,options); 
    L2= length(z); 

     
    r= [z(L2,1); 0; z(L2,5)]; 
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    v= [z(L2,2); z(L2,1)*z(L2,4); z(L2,6)]; 
    h=cross(r,v); 
    hmag= (dot(h,h))^(1/2); 
    K=[0;0;1]; %z component 
    inclination=acos(dot(h,K)/hmag); 

     
    while (inclination<-1e-3|| inclination>2*pi) 
        if inclination<-1e-3 
            inclination=inclination+2*pi; 
        elseif inclination>2*pi 
            inclination=inclination-2*pi; 
        end 
    end 

     
    %% Compare Section: PENALTIES USE To Desired final orbit paramaters 

     
%Penalty Terms 
    r_tf= z(L2,1); 
    v_rtf= z(L2,2); 
    theta_f= z(L2,3); 
    theta_dotf= z(L2,4); 

     
    v_ttf = r_tf*theta_dotf; 

     
    d(1)=v_rtf; 
    d(2)=v_ttf-sqrt(mu/R2); 
    d(3)=r_tf-R2; 
    d(4)=inclination-i_tf; 
    if abs(d(1))>10^-3 
        alpha_1=100; 
    else 
        alpha_1=0; 
        fprintf('Good alpha1 Value for = %1.0f \n', i); 
    end 
    if abs(d(2))>10^-3 
        alpha_2=100; 
    else 
        alpha_2=0; 
        fprintf('Good alpha2 Value for = %1.0f \n', i); 
    end 
    if abs(d(3))>10^-3 
        alpha_3=100; 
    else 
        alpha_3=0; 
        fprintf('Good alpha3 Value for = %1.0f \n', i); 
    end 
    if abs(d(4))>10^-3 
        alpha_4=100; 
    else 
        alpha_4=0; 
        fprintf('Good alpha4 Value for = %1.0f \n', i); 
    end 

     
    if a > -1e-3 %0 
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        J(i) = dt1 + dt2 + alpha_1*abs(d(1))+ alpha_2*abs(d(2))+ 

alpha_3*abs(d(3)) + alpha_4*abs(d(4)); %switched dt1 and dt2 instead of P's 
    else 
        J(i)= inf; 
    end 
end 

  
end 

EvalPGBest_pc 

function EvalPGBest_pc() 
%% EvalP&GBest determines the best position visited by particle i up through 
%%   the current iteration) 
global P J JBest PBest GG GBest N_particles BestP n0 c MassRatio dtcoast 

dt_coast 
global d_ang angt2 theta_1 

  
for i = 1:N_particles 

     
    if J(i) < JBest(i) 
        PBest(i,:) = P(i,:); 
        JBest(i) = J(i); 
    end 
end 
for i = 1:N_particles 
    if J(i) < GG 
       GG = J(i); 
       GBest = P(i,:); 
       BestP= i; 
       MassRatio = 1-((n0/c)*(GBest(13)+GBest(15))); 
       dt_coast = dtcoast(i); 
       d_ang = angt2(i)-theta_1(i);  
    end 
end 

 

UpdateV 

function UpdateV(j) 
%% 
%% UpdateV updates the velocity vector V 
%% Variable accelerator coeffs. 
%% 
global P PBest GBest N_particles N_elements V BLv BUv 
global N_iterations 
c_I = (1 + rand)/2; 
c_C = 0.01 + 1.49445*rand*j/N_iterations; 



33 
c_S = 0.01 + 1.49445*rand*j/N_iterations; 
% c_C = 1.49445*rand; 
% c_S = 1.49445*rand; 
% c_S = 1.3*rand; 
for i =1:N_particles 
    V(i,:) = c_I*V(i,:) + c_C*(PBest(i,:) - P(i,:)) + c_S*(GBest - P(i,:)); 
    for k = 1:N_elements 
        if V(i,k) < BLv(k) 
            V(i,k) = BLv(k); 
        end 
        if V(i,k) > BUv(k) 
            V(i,k) = BUv(k); 
        end 
    end 
end 

 

UpdateP 

function UpdateP() 
%% UpdateP updates the position vector 
%% 
global P N_particles N_elements V BLp BUp 
for i =1:N_particles 
    P(i,:) = P(i,:) + V(i,:); 
    for k = 1:N_elements 
        if P(i,k) < BLp(k) 
            P(i,k) = BLp(k); 
            V(i,k) = 0; 
        end 
        if P(i,k) > BUp(k) 
            P(i,k) = BUp(k); 
            V(i,k) = 0; 
        end 
    end 
end 

Impulsive 

function Impulsive() 
global P J N_particles mu R1 R2 a_h dv2 dv1 MassRatio_I i_tf c n0 DU TU 

  
i1=0; 
delta_inclin= i_tf-i1; 

  
DU=R1; %distance canonical unit  
TU=sqrt(DU^3/mu); %time canonical unit 
c=0.5*DU/TU; %effective exhaust velocity 
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n0=0.16*DU/TU^2; %thurst to mass ratio 

  
a_h=(R1+R2)/2; 
energy= -mu/(2*a_h); 
vp=sqrt(2*(energy+mu/R1)); 
va=sqrt(2*(energy+mu/R2)); 

  
vc2=sqrt(mu/R2); 
vc1=sqrt(mu/R1); 
v_inc = 2*vc2*sin(delta_inclin/2); 

  
v2= sqrt(va^2+v_inc^2); 

  
dv2 = sqrt(v2^2 + vc2^2 -2*v2*vc2*cos(delta_inclin)); 
dv1 = abs(vp-vc1); 

  
MassRatio_I= exp(-(dv2+dv1)/c); 
fprintf('Mass Ratio Hohmann= %6.5f \n',MassRatio_I) 
end 

SCEoM1 

function xdot = SCEoM1(t,x) 
global mu zeta0 zeta1 zeta2 zeta3 c n0 

  
xdot= zeros(4,1); 
delta= zeta0+zeta1*t+zeta2*t^2+zeta3*t^3; %thrust pointing angle 
ToverM=c*n0/(c-n0*t); %thrust to mass ratio 

  
xdot(1) = x(2); 
xdot(2) =-1*(mu-x(1)*x(4)^2)/x(1)^2+ToverM*sin(delta); 
xdot(3) = x(4)/x(1); 
xdot(4) = -1*(x(2)*x(4))/x(1)+ToverM*cos(delta); 

  
xdot = [xdot(1); xdot(2); xdot(3);xdot(4)]; 

 

SCEoM_pc 

function xdot = SCEoM_pc(t,x) 
global mu zeta0 zeta1 zeta2 zeta3 c n0 dt1 t2 %dt2 dtcoast tf 
global alpha0 alpha1 alpha2 alpha3 

  
%xdot= zeros(4,1);Initial conditions arent zero for second thrust 

  
alpha= alpha0+alpha1*(t-t2)+alpha2*(t-t2)^2+alpha3*(t-t2)^3;  



35 
delta= zeta0+zeta1*(t-t2)+zeta2*(t-t2)^2+zeta3*(t-t2)^3; %thrust pointing 

angle 
ToverM=c*n0/(c-n0*(dt1+t-t2)); %thrust to mass ratio 

  
xdot(1) = x(2); 
xdot(2) =x(1)*x(4)^2-

(mu*x(1))/(x(1)^2+x(5)^2)^(3/2)+ToverM*sin(delta)*cos(alpha); 
xdot(3) = x(4); 
xdot(4) = -2*x(2)*x(4)/x(1)+ToverM*cos(delta)*sin(alpha)/x(1); 
xdot(5) = x(6); 
xdot(6) = -mu*x(5)/((x(1)^2+x(5)^2)^(3/2))+ToverM*sin(alpha); 

  
xdot = [xdot(1); xdot(2); xdot(3); xdot(4); xdot(5); xdot( 
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Appendix B 

 

Future Work: Anomalies in Results 

As mentioned in future work, one problem is that in some trial runs the code finds a 

particle that is within the tolerance for all four equality constraints, but it fails all four in the next 

iteration. Any way to cut down on the amount of attempts and time needed to find the global 

minimum would be highly beneficial, so a new feature that will avoid this problem would be 

helpful. This section displays some of the results being described.  

Iteration 11 finds a particle, Particle 26, which is within all the equality constraints, but 

does not show following iterations. The same result can be seen for Particle 16 during iteration 

15. 

Iteration : 10  

Good alpha2 Value for = 8  

GG = 53.48490  

dt1 = 1.47516, dtcoast = 28.32745, dt2 = 0.70316, dAng = 172.08264  

Mass Ratio = 0.30294  

Iteration : 11  

Good alpha1 Value for = 26  

Good alpha2 Value for = 26  

Good alpha3 Value for = 26  

Good alpha4 Value for = 26  

Good alpha2 Value for = 43  

GG = 53.48490  

dt1 = 1.47516, dtcoast = 28.32745, dt2 = 0.70316, dAng = 172.08264  
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Mass Ratio = 0.30294  

Iteration : 12  

 

GG = 51.43046  

dt1 = 1.31871, dtcoast = 12.18795, dt2 = 0.88300, dAng = 140.98180  

Mass Ratio = 0.29545  

Iteration : 13  

 

GG = 51.43046  

dt1 = 1.31871, dtcoast = 12.18795, dt2 = 0.88300, dAng = 140.98180  

Mass Ratio = 0.29545  

Iteration : 14  

 

GG = 51.43046  

dt1 = 1.31871, dtcoast = 12.18795, dt2 = 0.88300, dAng = 140.98180  

Mass Ratio = 0.29545  

Iteration : 15  

Good alpha1 Value for = 16  

Good alpha2 Value for = 16  

Good alpha3 Value for = 16  

Good alpha4 Value for = 16  

GG = 51.43046  

dt1 = 1.31871, dtcoast = 12.18795, dt2 = 0.88300, dAng = 140.98180  
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Mass Ratio = 0.29545  

Iteration : 16  

 

Good alpha1 Value for = 40  

GG = 51.43046  

dt1 = 1.31871, dtcoast = 12.18795, dt2 = 0.88300, dAng = 140.98180  

Mass Ratio = 0.29545  

 

Another interesting set of data: the values with good alphas in iteration 37 do not retain 

themselves in the next ieration, 38.  

 

Iteration : 36  

GG = 42.14553  

dt1 = 1.35792, dtcoast = 17.00978, dt2 = 1.07984, dAng = 153.52329  

Mass Ratio = 0.21992  

Iteration : 37  

Good alpha4 Value for = 8  

Good alpha3 Value for = 9  

Good alpha4 Value for = 17  

Good alpha3 Value for = 29  

Good alpha3 Value for = 44  

GG = 41.92105  

dt1 = 1.37203, dtcoast = 18.41225, dt2 = 1.10119, dAng = 156.40219  
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Mass Ratio = 0.20857  

Iteration : 38  

  

Good alpha3 Value for = 3  

Good alpha3 Value for = 15  

Good alpha3 Value for = 25  

Good alpha4 Value for = 28  

Good alpha3 Value for = 32  

Good alpha4 Value for = 32  

Good alpha4 Value for = 49  

GG = 40.89892  

dt1 = 1.36727, dtcoast = 17.94522, dt2 = 1.09451, dAng = 155.48592  

Mass Ratio = 0.21223 
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