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ABSTRACT 

 

Cellulose is the most abundant organic polymer in the biosphere, yet its growth 

mechanism remains misunderstood. Compact and crystalline fibrils typically consist of anywhere 

in from eighteen to thirty individual glucan chains.  After these strands have coalesced, 

interesting macroscopic features emerge, including twists and bends.  This project seeks to 

determine how these features are related to the fibril’s overall stability, by implementing a 

coarse-grained model to see how their prevalence and behavior varies with fibril diameter.  This 

model captures the anisotropic intermolecular interactions by modeling glucose rings as beads 

and glycosidic linkages as springs.  These simulations revealed interesting qualitative 

information regarding a fibril’s stiffness, stimulating curiosity of how persistence length varies 

with fibril diameter.  An interesting feature noticed from these simulations is that fibril bends 

may occur at regions where the helicity along the fibril changes abruptly; we are searching to 

characterize the correlations between these two phenomena.   By understanding how these 

phenomena vary with fibril diameter, we can achieve a better understanding of how the preferred 

macroscopic structure is affects the cellulose fibrils’ stiffness, which gives insight on which 

structures yield greater stability.   
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Chapter 1  
 

Background Information 

Cellulose is among the most common organic compounds on the planet.  Despite this, 

many details regarding its growth mechanism remain unknown. Cellulose is the main compound 

found in a plant’s cell wall-the rigid polysaccharide layer that provides plant cells with structural 

support [2].  It contributes to the cell wall in fulfilling its purpose of plant rigidity because of its 

compact crystalline structure.  What makes cellulose stiffer than other carbohydrate polymers is 

the beta linkages between adjacent glucose molecules. These linkages make the chain appear 

“flat”, allowing glucose chains to pile up on top of each other in a highly ordered crystalline 

arrangement, which therefore causes there to be more hydrogen bonds between adjacent glucan 

chains.  These rope-like structures will interact with other cellulose molecules, strengthening the 

cell wall [1].  

These polymers are constructed by a symmetric six-lobed rosette structure called the 

cellulose synthesis complex (CSC) [3].  Each lobe has a set of protein machinery that polymerize 

glucose molecules.  The number of active sites in the CSC is unknown.  The chains protrude into 

the extracellular matrix, where-once they are long enough- would coalesce into a crystalline 

structure, and continue expanding.  We will refer to the region in between the CSC and where 

the strands form a compact structure as the “coalescence zone.”  As these strands coalesce, 

defects occur in the crystalline registry.  Such defects in the topology include instances where 

neighboring strands would swap locations along the length of the fibril, where they change their 

neighboring relationships with one another. Another interesting phenomenon is that these fibrils 
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have a bends and macroscopic twists in their lattice arrangement. In this project, we examine the 

fibrils’ degree of helicity and the “curvature” and how they vary with fibril diameter.  We also 

compared these phenomena to fibrils not bounded to the rosette.   

Our cellulose investigations relied a so-called called a coarse-grained model.  In this 

model, the glucan chains are modeled as beads connected by Hookean springs that represent 

glyosidic linkages.   Each bead represents an individual monomer subunit of the glucan chain. 

Anisotropic bead-bead Lennar-Jones interactions interactions-pertaining to glucose’s uneven 

width along its axes are captured.  However, glucose’s chirality is sacrificed in the model, since 

the linear chain of coarse-grained beads that results is too simple to contain any chiral centers.  

With varying fibril diameter, a possible correlation between bends along the fibril and 

change of helicity along the fibril was noticed.  We then investigated to see if a relationship 

exists between these two occurrences. We want to see how these properties influence the 

stiffness of the fibril, therefore we worked to see how the persistence length varies with fibril 

diameter.   

 

1.1 Coarse-Grained Model and its Implementation 

 The work done in this project revolved around our coarse-grained model, so first one 

must address “what” is a coarse-grained model and why is it useful for studying cellulose.  

Cellulose, as a polymer, is composed of repeating individual monomer units, in this case a 

repeating sequence of glucose rings which are interconnected across opposing (so-called 1,4) 

carbon atoms, to yield a linear chain.  The major step in developing a coarse-grained model is 
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identifying which components in the material you are studying should be collected as a single 

grain.  Considering cellulose is an assembly of glucose monomers, each glucose ring was 

represented by a coarse-grained bead.  This sacrificed the sub-molecular influences of glucose on 

chain-chain interactions.   

 The second major step in coarse-grained simulation is modeling the interaction between 

beads.  As mentioned earlier, the glyosidic bonds are represented as bending and extensional 

springs.  The extensional stiffness was determined of these springs were determined by: 

𝜅𝑒𝑥𝑡 =
𝐸𝐴0

𝑙
      (1) 

with  𝐴0 being a strand’s cross sectional area, E being the strand’s Young’s modulus and l being 

a bond’s equilibrium length. The bond bending stiffness, 𝜅𝑏𝑜𝑛𝑑, could be described in terms of a 

chain’s persistence length, P, as  

𝜅𝑏𝑜𝑛𝑑 =
𝑘𝐵𝑇𝑃

𝑙
     (2) 

where 𝑘𝐵 and 𝑇 are the Boltzmann constant and the absolute temperature respectively.   

 Next is to determine the inter-chain interactions.  How this is modeled will influence 

several key physical characteristics.  The equilibrium distance between beads of neighboring 

chains will have a direct impact on the unit cell vector components of the fibril.  Modeling inter-

chain interactions influences the energy needed for one chain to slide axially against another.  

Therefore, the inter-chain interactions modeled will also have an impact on the fibril’s shear 

stiffness, which affects the persistence length.  The energy of the anisotropic bead-bead 

interactions of neighboring chains was based off of a modified Lennard-Jones potential, which 

was generalized to be capable of describing anisotropic interactions through the introduction of 

two distinct length scales, parallel and perpendicular to the chain axis:  
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𝐸𝐿𝐽(𝑖, 𝑗) = 4𝜖0 [((
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𝜎||
2
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2

))

−3

)

2
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Where, 

𝑹𝑖𝑗,⊥ =
𝑹𝑖𝑗𝑗 + 𝑹𝑖𝑗,𝑖

2
      (4) 

𝑹𝒊𝒋,|| =  
√𝑹𝑖𝑗

2 − 𝑹𝑖𝑗,𝑗
2 + √𝑹𝑖𝑗

2 − 𝑹𝑖𝑗,𝑖
2

2
    (5) 

 

Where 𝑹𝑖𝑗is the separation of two strands i and j [Figure1], 𝜎represents the distance 

between the beads on the two strands where the potential energy is at a minimum and 𝜖0 is a 

factor that influences the depths of the potential well between the two beads.  

 

 

Figure 1  Chain separation Rij along with its projections on the involved chains.  The arrows in this figure display the 

local directions of each chain. 
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The second term of equation five deals with the anisotropy incorporated to account for 

glucose’s varying thickness.  How the anisotropy is incorporated is that each bead is assigned a 

particular direction perpendicular to the chain’s local direction at that position and its magnitude 

is expressed as, 

𝑓(𝜃𝑖, 𝜃𝑗) = 1.0 + 𝛼[1.0 + cos(2𝜃𝑖) cos(2𝜃𝑗)]     (6) 

where  𝛼 sets the anisotropy’s strength, 𝜃𝑖is the angle between the bead i’s director and 

𝑹𝑖𝑗,𝑗 and 𝜃𝑗between j’s director and 𝑹𝑖𝑗,𝑖.   

Solvent effects on the polymers are included by taking into account the single-chain 

stiffness in solvent and the free energy resulting from inter-chain interactions, and the Brownian 

forces on each bead.  The kinetics from the solvent, impacting a force in a random direction on 

each bead can be described as: 

𝐹𝑟𝑎𝑛𝑑 = √
6𝑘𝐵𝑇

𝜇𝑑𝑡
𝑼(𝑖)  (7) 

where dt is the time step,  U(i) is the random unit vector describing the direction the bead 

will move, and 𝜇 is glucose’s translational mobility in water. For residues with velocities V(i), 

the drag force is: 

𝑭𝑑𝑟𝑎𝑔 = −
1

𝜇
𝑽(𝑖)   (8)  

 All of these forces apply a torque on each bead, for the iit bead being expressed as: 

𝝉(𝑖) = 𝝉𝑳𝒋(𝑖) + 𝝉𝑟𝑎𝑛𝑑(𝑖) + 𝝉𝑑𝑟𝑎𝑔(𝑖)     (9) 

The torque sourced from the Brownian forces and drag force can be expressed in terms of the 

moment of inertia (I) and bead mass (M) as: 



6 

𝝉𝑟𝑎𝑛𝑑(𝑖) = √
2𝐼𝑘𝐵𝑇

𝜇𝑀𝑑𝑡
𝑺(𝑖)     (10) 

𝝉𝑑𝑟𝑎𝑔(𝑖) = −
𝐼

𝜇𝑀
𝝎(𝑖)   (11) 

where S(i) is a unit vector that randomly lines along or against the residue’s angular velocity, 

𝝎(𝑖).  The moment of inertia is estimated assuming the beads are spherical shells with a radius 

of 2.5 Å.   
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Chapter 2  
 

Algorithms 

The coarse-grained simulation outputs data files for each time point; each data file being 

a “snapshot”, holding the Cartesian coordinates of each bead on each strand (labeled by their 

strand number and bead number).  These snapshots were compiled in molecular dynamics 

visualization and analysis software to see the strands interacting, displaying qualitative features 

of the fibril. The information from the data files will be used for our data analysis to answer 

questions regarding fibril stiffness, fibril helicity, fibril curvature and topological defects.  Once 

we get the data files needed from the simulation, we need a means of quantifying the helicity and 

the curvature and a means of calculating the persistence length.   

Before we could get started on the data analysis for the overall geometrical characteristics 

of a (multi-chained) microfibril, we needed a fibril “backbone”, a set of discrete points arranged 

to represent a fibril’s general path path – in effect, a coarse-graining of the already coarse-

grained model. Each point is paired with a normal vector that points tangent to the curve’s path.  

Each point-vector pair represents a plane that “slices” the fibril. The cross section of each fibril 

through each plane is used to help quantify helicity along the fibril, and the normal vector 

directions are used to quantify fibril curvature and stiffness.   

2.1 Cellulose Backbone 
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The algorithm for the backbone slices the fibril with planes, averages the coordinates of 

the beads in between each of those planes, and creates new planes from those averaged “center 

of mass” points.  The vector paired with each center of mass points from the center of the region 

before it and the center of the region after it.  For the center of mass at the end of the fibril, the 

points to it from the point before it.  For the first point in the fibril, the normal vector will be the 

vector pointing from it to the second point.   

We started by averaging the first third, second third and last third of the beads of each 

strand to obtain a very coarse three-point representation suitable for further refinement.   We then 

assigned a normal vector to each point.  The center of mass paired with each normal vector 

provided planes to divide the fibril into a set of regions.  A bead is assigned to be in a particular 

region  if a nonpositive value is evaluated when using the plane equation for the bead’s 

coordinates and the th normal vector:   

(𝑁𝑥, 𝑁𝑦, 𝑁𝑧) ∙ ((𝑎 − 𝑥0), (𝑏 − 𝑦0), (𝑐 − 𝑧0))  = 0    (12) 

𝑁𝑥 , 𝑁𝑦, 𝑎𝑛𝑑 𝑁𝑧refer to the th planes’ normal vector, (𝑥0, 𝑦0, 𝑧0) refer to the center of 

mass’s coordinates, and (𝑎, 𝑏, 𝑐) refer to the bead’s coordinates.  The algorithm to assigning each 

bead to a region is as follows:  

Each iteration through the strands, through each plane, starts from the last bead 

investigated on that strand (the first strand where for the plane’s normal vector evaluated, a 

positive number was the result).  For the plane t=1, you’ll start from the first bead from each 

strand.  

 Iterate through each plane (from t = 1 to total number of planes). 

o Iterate through all strands in the fibril (from i = 1 to total number of 

strands). 
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 Increment along the ith strand until the plane equation evaluates a 

positive value (from j = first bead at strand i to first bead that 

evaluates positive for plane equation). 

 Record that bead number for strand i.  That’ll be the bead to start 

from on strand i in the next plane iteration. 

  

Figure 2 A step-by-step illustration of how each bead's region is determined.  When evaluating which beads of a 

particular strand is below a given plane, each bead on that strand is evaluated using the plane equation until a positive value 

results.  The bead with the positive value will be marked and evaluation for beads on the next strand begin.  The process repeats. 

Evaluation for the next adjacent plane begins with the beads marked on all of the strands from the previous iterations. 

 

  Once regions are assigned to all beads, the coordinates for all of the beads in each region 

are averaged to generate new center of mass coordinates.  The information (coordinates and 

normal vectors) for previous center of mass coordinates are forgotten.    The ending conditions 

for these iterations in creating a finer backbone depends on the total number of points on the 

backbone and the number of beads in each region. Since the backbone is constructed from 

characteristics averaged over the cross-section of the fibril, it is not well-grounded to generate 

backbone points that are much more closely space than roughly the radius of the fibril.  Having 

center of masses densely packed along the backbone removes its usefulness of generating a fine 

path of the fibril.  Before any iteration begins, there is a limit defined where each region cannot 

be further divided if it has fewer beads than that value.  Once a region has fewer beads than the 

limit, then the center of masses and the normal vectors of the two planes one both sides of the 
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region will be preserved in further iterations.  This focuses divisions on fibril regions that are 

relatively dense with beads.  A limit is also imposed on the total number of center of masses the 

backbone can have. Once all regions have fewer beads than the defined limit, or the limiting 

number of center of masses has reached, the iterative refinement ends.  Because the normal 

vectors for beads with relatively low bead numbers are preserved throughout the iteration, they 

aren’t exactly tangent to the final backbone arrangement.  After the iteration ends, each normal 

vector along the fibril is modified to be tangent according to the characteristics outlined in sub-

chapter one.  The backbone’s purpose is so that we can quantify the evolution of the fibril’s 

overall shape over time.  Therefore, we must determine the backbones over a set of data files 

from the same simulation.  The algorithm for developing the general path over a set of data 

points can be summarized as:   

 Iterate over a set of time points 

o Iterate until you exceed the maximum number of backbone points or until all 

regions have less beads than the limiting amount.  

 Determine normal vectors. 

 Identify regions for beads. 

 Determine the number of beads in each region. 

 Average coordinates in each region if they have more beads than the 

limiting amount. 

 Preserve center of masses and normal vectors for low bead regions.   

o Save the center of mass coordinates, the normal vectors paired with them, the 

regions each bead is assigned to, and the number of beads in each region  
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For each time point, the number of center of masses may change and the spacing between any 

two center of masses could change – these variations must be handled appropriately when 

making comparisons between different moments in time, or when constructing time-averaged 

quantities.   

   

 

Figure 3  A twelve stranded microfibril with its backbone. 

 

2.2 Plane Projections 

Now that we have a backbone and a set of tangent vectors for each discrete point, we can 

determine the projections of strands onto each plane that they pass through.  Because we have 

each bead’s region assignments, we can iterate through all beads of each strand and see how each 

bead’s assigned region compares to beads immediately adjacent to it.  If two adjacent beads are 

in different regions, then we know there is at least one plane in between them. Also, we must 
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take into account the possibility that some strands may “bend” or “U-turn” in a fibril, i.e. some 

strands might have more than one projections onto some planes.  The Tth plane has the Tth region 

directly behind it. To determine strand’s projection on each plane, we must first see if the strand 

cross the plane, then identify the closest bead from that strand to the plane at that particular 

crossing point.  We could perform the following operation to obtain a bead’s distance from a 

plane:   

𝑊𝑥 = 𝑎 − 𝑋0   (14 𝑎),    𝑊𝑦 = 𝑏 − 𝑌0  (14 𝑏),      𝑊𝑧 = 𝑐 − 𝑍0  (14 𝑐)    

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑝𝑙𝑎𝑛𝑒 =
|(𝑁𝑥 , 𝑁𝑦, 𝑁𝑧) ⋅ (𝑊𝑥, 𝑊𝑦, 𝑊𝑧)|

|(𝑁𝑥 , 𝑁𝑦 , 𝑁𝑧)|
     (15) 

Where (𝑋0, 𝑌0, 𝑍0), are the coordinates for the center of mass point, (𝑎, 𝑏, 𝑐) are the coordinates 

for the bead, and (𝑁𝑥 , 𝑁𝑦, 𝑁𝑧) is the vector paired with the center of mass.  The following 

calculation is performed to determine the bead’s projection on a plane:   

𝐷 =  
−(𝑁𝑥 , 𝑁𝑦 , 𝑁𝑧) ⋅ (𝑊𝑥, 𝑊𝑦, 𝑊𝑧)

|(𝑁𝑥 , 𝑁𝑦, 𝑁𝑧)|2
   (16) 

𝑃𝑟𝑜𝑗𝑥 = 𝑎 + 𝑁𝑥 ∗ 𝐷   (17 𝑎),    𝑃𝑟𝑜𝑗𝑦 = 𝑎 + 𝑁𝑦 ∗ 𝐷  (17 𝑏),       𝑃𝑟𝑜𝑗𝑧 = 𝑎 + 𝑁𝑧 ∗ 𝐷  (17 𝑐) 

Where (Projx, Projy, Projz ) are the projection coordinates of the bead.  The algorithm for 

determining the projection of each strand for all possible planes is as follows:   

 Iterate through each strand (i = 1, number of strands). 

o Iterate through each bead on the ith strand (j = 1,number of beads). 

o Check to see if the assigned regions for adjacent beads are the same.   

o Then determine which planes you must check for that cross between the two 

adjacent beads. The possible planes in between are planes from regions whose 

values vary from the region value of the jth bead and the region of the (j+1)th bead.   



13 

o Iterate through all planes that cross between the two beads.   

 For each plane, calculate the shortest distance to each of the beads to 

determine which is closest.  

 Calculate the projection of that bead on the plane.   

2.3 Degree of Helicity 

Now that we have the plane projections and the backbone points, we can begin collecting 

quantitative analysis of the fibril’s overall structural properties and evolution over time.  The first 

feature of interest is the fibril’s helicity along its length. The determination of the fibril’s helicity 

can be broken down into several steps.  First, we define helicity:  the helicity in a given a region 

is defined as the fibril’s twist (in radians) over the distance between the two planes on both ends 

of the region.  The fibril’s twist over a region is defined as the average twist of all strand between 

two planes surrounding the region.  Determining a strand’s twist between any two adjacent 

planes T and (T -1) first requires tilting these two planes so that their normal vectors point in the 

same direction.  To minimize the overall rotation angles, plane T was rotated to (T-1)’s direction 

(rather than bringing both planes into a common fixed reference orientation).  For all strands that 

intersected both planes, a vector v1 was calculated from (T-1)’s center of mass to the strand’s 

intersection at plane (T-1).  A vector v2 was calculated which points from the rotated center of 

mass of plane T to the rotated intersection of the strand on plane T. With the vectors being 

calculated on planes pointing on the same axis, the angle between them could be accurately 

measured.  After determining the twist between any two fibrils, that value would be divided by 
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the distance between the two planes’ center of masses, resulting in the twist per unit length for 

that particular region.   

 The algorithm for rotating each plane to the plane immediately before it is as follows:   

 Iterate from planes T=2 to T = final plane. 

o Determine a rotation matrix that rotates vectors by that angle (Mathematica has a 

rotation matrix function that outputs the appropriate rotation matrix for a tilt 

between two vectors inputted). This will be a 3X3 rotation matrix.  

o Multiply each strand intersection for plane T and the plane T’s center of mass 

coordinates by the rotation matrix.   

With the information given from the rotated planes, the algorithm for calculating fibril helicity 

for each region is as follows:   

 Iterate from planes T=2 to T = final. 

o Iterate through all strands (i =1 to i = total number of strands). 

 If the strand intersects planes T and T-1, then: 

 Calculate the vector pointing from center of mass T-1 to strand i’s 

intersection at plane T-1  (v1). 

 Calculate the vector pointing from the rotated center of mass T to 

strand i’s rotated intersection with plane t (v2). 

 Calculate the angle between those two vectors. 

o The angle between those two vectors is designated a 

positive value if (v1×v2)  ˙ NT-1 evaluates to being positive 

and negative otherwise.  

o Average the angles calculated for all strands that intersected planes T and T-1.   
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o Helicity will be that average angle over the distance between center of masses of 

planes T and T-1.  

o As a result, there will be a sequence with the helicity values along the microfibril 

axis, one for each pair of adjacent planes.  

 

2.4 Fibril Curvature 

 Fibril curvature was defined as the angle between two adjacent normal vectors over the 

distance between their center of mass points.  The concept behind determining the curvature 

along a fibril’s region was similar to determining the helicity.  This information sheds light on 

how the fibril’s general shape fluctuates along its length.  When compared plotted along time, 

this information gives a quantitative picture of how the fibril fluctuates throughout the 

simulation.  

 We’d iterate through each set of adjacent center of mass points along the backbone and 

determine the angle in between them and divide that value by the distance separating them.  That 

way we’d have the tilt per unit length along the fibril. We’d have a sequence with the curvature 

values along the microfibril axis, each value for a pair of adjacent center of masses.   

2.5 Persistence Length 

 The persistence length of a fibril fibril measures the distance along the fibril that one 

must travel before the direction in which the fibril is pointed changes substantially. As such, it 

quantifies the stiffness of the fibril under a given set of conditions.  In our case, we examine the 
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persistence length of the fibril backbone.  Imagine an N- bead polymer with beads equally 

spaced apart [Figure 4]. The total energy of that polymer can be expressed as:   

𝐻(𝜽) = ∑ 𝐾 × cos (𝜃)

𝑁−1

𝑖=1

   (18) 

 

Figure 4  For the twenty-four stranded unbounded system:  9A-Raw helicity data. 9B- Raw curvature data. 9C- 

Moving time average of helicity data.  9D- Moving time average of curvature data 

Where  𝜽 is the summation of all angles. The partition function, Z, describing the polymer’s 

states of different angle arrangements can be expressed as:  

𝑍 = ∫ 𝑒−𝛽𝐻(𝜽) 𝑑𝜃 = ∏ 𝑒𝛽𝐾𝑐𝑜𝑠(𝜃𝑖)𝑑𝜃𝑖 = (∫ 𝑒𝛽𝐾𝑐𝑜𝑠(𝜃)𝑑𝜃)𝑁−1
𝑖

𝑁−1
𝑖=1     (19) 

According to Boltzmann’s law, the probability the polymer will be found in a state where all 

angels will sum up to 𝜽 is  expressed as

𝑃(𝜽) =
𝑒−𝛽𝐻(𝜽)

𝑍
=

∏ 𝑒𝛽𝐾𝑐𝑜𝑠(𝜃𝑖)𝑁−1
𝑖=1

𝑍
   (20) 

 

If the fibril is very stiff, then 

< cos(𝜃) > ≅ < 1 −
𝜃2

2
> = 1−<

𝜃2

2
>   (21) 

 

With this  𝜃 approximation, for any value x, its expectation value can be expressed as:  
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< 𝑥 > =
∫ 𝑥𝑒𝛽𝑘(1−

𝜃2

2
)𝑑𝜃

∞

−∞

∫ 𝑒𝛽𝑘(1−
𝜃2

2
)𝑑𝜃

∞

−∞

=  
∫ 𝑥𝑒𝑲(1−

𝜃2

2
)𝑑𝜃

∞

−∞

∫ 𝑒𝑲(1−
𝜃2

2
)𝑑𝜃

∞

−∞

   (22) 

 

where, 𝑲 = 𝛽𝑘.  To solve for an expression for < cos(𝜃) >, an expression is needed for <
𝜃2

2
>, 

<
𝜃2

2
> =  

∫
𝜃2

2
𝑒−𝑲(

𝜃2

2
)𝑑𝜃

∞

−∞

∫ 𝑒−𝑲(
𝜃2

2 )𝑑𝜃
∞

−∞

 

=  
∫

−𝑑
𝑑𝑲

𝑒−𝑲(
𝜃2

2 )𝑑𝜃
∞

−∞

∫ 𝑒−𝑲(
𝜃2

2 )𝑑𝜃
∞

−∞

    

=  
−𝑑

𝑑𝑲
 [𝑙𝑛 (∫ 𝑒−𝑲(

𝜃2

2 )𝑑𝜃
∞

−∞

)]   (23) 

If you set 𝑦 = √𝑲𝜃, then: 

<
𝜃2

2
> =

−𝑑

𝑑𝑲
 [𝑙𝑛 (

1

√𝑲
∫ 𝑒−

𝑦2

2

∞

−∞

𝑑𝑦)] =
1

2𝑲
=

1

2𝛽𝑘
   (24) 

Therefore,  

< 𝑐𝑜𝑠𝜃𝑖 > ≅ 1 −
1

2𝛽𝑘
 (25) 

For 𝜃𝑖 ≪ 1 and therefore, 𝛽𝑘 ≫ 1.  If you refer to Figure 4, you can see that  

𝒂𝟏 ∙ 𝒂𝟐 = |𝑎|𝟐𝑐𝑜𝑠𝜃𝑖 (26) 

< 𝒂𝟏 ∙ 𝒂𝟐 > =  1 −
1

2𝛽𝑘
  (27) 

 Let’s investigate the dot products for any of the N discrete normal vectors in the polymer. 

For any two adjacent tangent vectors evaluated from equation 26 can equal 𝑐 × 𝑒−
𝑙

𝜆, where 𝑙 is 

the distance between two adjacent points in the polymer, 𝜆 is the persistence length and c is a 
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proportionality constant between the exponential and < 𝒂𝟏 ∙ 𝒂𝟐 >.  We wish to evaluate the dot 

product between the first and third tangent vectors:  

< 𝒂𝟏 ∙ 𝒂𝟑 > = < [(𝒂𝟑 ∙ 𝒂𝟐)𝒂𝟐 + 𝒂𝟑⊥𝟐] ∙ 𝒂𝟏 > (28) 

Where (𝒂𝟑 ∙ 𝒂𝟐) is 𝒂𝟑’s component along 𝒂𝟐 and 𝒂𝟑⊥𝟐 is 𝒂𝟑’s component along 𝒂𝟐.  This 

expression further evaluates to: 

< 𝒂𝟑 ∙ 𝒂𝟐 >< 𝒂𝟏 ∙ 𝒂𝟐 > +< 𝒂𝟑⊥𝟐 ∙ 𝒂𝟏 >   (29) 

Where, 

< 𝒂𝟑⊥𝟐 ∙ 𝒂𝟏 > =< 𝒂𝟑⊥𝟐 ∙ (𝒂𝟐(𝒂𝟐 ∙ 𝒂𝟏) + 𝒂𝟏⊥𝟐) > = < 0 + 𝒂𝟑⊥𝟐 ∙ 𝒂𝟏⊥𝟐  >   (30) 

This polymer is free to rotate around its vertices in all three dimensions, making < 𝒂𝟑⊥𝟐 ∙

𝒂𝟏⊥𝟐  > = 0. 

Because vectors 𝒂𝟐 and 𝒂𝟑 are adjacent unit vectors a distance a apart,  

< 𝒂𝟑 ∙ 𝒂𝟐 > =  𝑐 × 𝑒−
𝑙

𝜆  (31) ,  

< 𝒂𝟏 ∙ 𝒂𝟑 > =  𝑐2𝑒−
2𝑙
𝜆   (32) 

 

A relationship can be shown for any nth tangent vector, 

< 𝒂𝟏 ∙ 𝒂𝒏 > =  𝑐𝑛−1𝑒−
(𝑛−1)𝑙

𝜆   (33) 

 

Where  (𝑛 − 1)𝑙  is the distance between 𝒂𝟏 and 𝒂𝒏.  Intuitively speaking, equation 33 implies, 

< 𝒕(𝑠) ∙ 𝒕(𝑠 + 𝐿) >= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × 𝑒−
𝐿
𝜆  (34) 

Where 𝒕(𝑠) and 𝒕(𝑠 + 𝐿) are polymer tangent vectors at locations  𝑠 and 𝑠 + 𝐿 along the fibril.   

The persistence length can then be calculated by the following linear expression:  
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𝑙𝑛[< 𝒕(𝑠) ∙ 𝒕(𝑠 + 𝐿) >] = 𝑙𝑛⌈𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡⌉ +  −
𝐿

𝜆
  (35) 

When implementing this on the fibril backbones, the expectation  value of the tangent vector  dot 

products is calculated as the time averaged of those expressions.   
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Chapter 3  
 

Procedure 

 With the time available, we were able to obtain results regarding helicity, and curvature 

of the of twelve, eighteen, and twenty-four stranded microfibrils.  Overall, this project aims to 

determine physical properties of cellulose microfibrils using a coarse-grained model.  A post-

doctoral researcher (Majid Nili) designed the coarse-grained model in FORTRAN, representing 

glucose chains interacting at room temperature with each other in water over a period of time. 

The program would output data files after every 100ps of the simulation.   

We ran simulations to determine the fibril behavior both near and away from a region 

called the coalescence zone of the fibril for the scenarios where each lobe in the cellulose 

synthesis complex produces one strand, two strands, three strands four strands.  The coalescence 

zone is a region outside of the cell in between where the strands form into a compact fibril and 

where they protrude from the CSC.  To get a big picture of the behavior of the fibril, we could 

have had each strand contain several hundred beads.  However, that would be too 

computationally expensive.  A good compromise was to run a simulation for each system 

holding 100 beads per strand for two different settings: one in which the fibril is bounded at one 

end to the cellulose synthesis complex and the other where both ends of the fibril are free.   

With the latter, the fibrils were aligned vertically along the Z-axis, symmetric around the 

rosette.  At the first instant of the simulation, a radial guiding force would bring the strands 

towards the center to begin coalescence.  Over a period of time, the coalescence zone would zip 

down the z axis.  Eventually, the fibril would reach a steady state.  
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 For the former, the strands’ initial positions had to be different.  With neither end being 

bounded, the fibril was being modeled with little influence from the coalescence zone.  The 

strands were separated in a lattice arrangement where their separation was large enough so that 

the fibril would not immediately “snap” into that orientation, but small enough where no external 

forces were necessary to coalesce the strands.  We ran these simulations until the fibril settled in 

a steady state. For each time point we’d generate the fibril’s backbone to begin calculations.  

 For each simulation we’d investigate the following features: the length of each fibril, the  

degree of helicity along the fibril’s length, the curvature along the fibril’s length, its persistence 

length and topological defects in the crystallinity.  Unfortunately, for this thesis, investigating the 

topological defects and the persistence length algorithms haven’t been fully implemented yet.  

 Using the methods detailed in chapter 2, we would plot the data of helicity and curvature 

along the fibrils’ length over a set of time.  For each simulation, we’d generate two sets of three-

dimensional graphs.  One would have helicity plotted along the z-axis and the other would have 

curvature (both rad/Å), with time and length along the fibril being the other two axes on both 

graphs. Each point would capture any slight fluctuation from region to region, making the graphs 

look jagged [Figures 7, 8 and 9].  To get a clear trend over time and along fibril lengths on 

helicity and curvature, we implemented a moving time average over the set of data.   
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Chapter 4  
 

Data and Discussion 

Before we begin discussing the data, it must be pointed out that the more number of 

strands in a system, the more time is required to for the fibril to reach steady state.  With that 

said, for fibrils with both strands unbounded, we were only able to generate results for 12, 18 and 

24 stranded systems.    

What prompted us to investigate helicity was seeing how bounded 12 stranded fibrils 

behaved in steady state compared to higher stranded systems- 18, 24 and 36 strands.  All of these 

simulations were done with fifty beads per strand. What we saw in higher stranded systems was 

that the coalescence zones would zip down the fibril quickly, with the strands being lined up 

vertically against one another.  Twelve stranded systems were different, where we saw the lattice 

twist around its axis [Figure 5].  

 

Figure 5  Microfibrils with one end bounded. Fibril strand number from left to right:  12, 18, 24, and 36. 

 

We were curious if we’d see similar behavior for fibril systems with minimal influence from the 

coalescence zone, so we decided to model strand systems with with both ends unbounded.  What 

we found was that with both ends free, all fibrils had noticeable helicity [Figure 6].  
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Figure 6  Unbounded fibrils.  From left to right, the fibrils have 12 strands, 18 strands and 24 strands.   

 For these fibrils unbounded at both ends, we reached steady state for the 12-stranded, 18-

stranded and 24-stranded systems. Because we saw virtually no helicity for the higher stranded 

systems for bounded fibrils, we were curious to determine how fibril helicity varies with fibril 

diameter. We also noticed that these fibrils bent.  Not knowing exactly what caused these bends, 

we were curious to see if they occurred at regions with varying helicity.    

 Below are the plots for curvature and helicity for unbounded 12, 18 and 24 stranded 

systems with 100 beads per strand, for both smoothed and jagged [Figures 7, 8 and 9]. 

Implementing the moving time average detailed in chapter three helped with the plots’ lucidity.  

Figure 5 shows that the freed ends behave sporadically.  So when investigating a fibril’s helicity 

and curvature, we focused on the region away from the ends.   

 When comparing the helicity and curvature graphs, we noticed that regions of noticeable 

changes in helicity overlapped with changes in the curvature.   This indicates a possible 

relationship between the two phenomena, where one possibly causes the other.  When looking at 

the helicity plots at regions with with no significant bends (the flat regions on the helicity plots), 

and comparing those regions for the different stranded systems, we were able to get an idea of 

how the helicity varied with fibril diameter.  Looking at the 12 stranded system, we saw the 
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helicity being approximately 0.017 rad/Å, while for 18 and 24 stranded systems, their flat 

regions hovered slightly over 0.01 rad/Å.    

 

 

 

A 

B 

C 
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Figure 7  For the twelve stranded unbounded system:  7A-Raw helicity data. 7B- Raw curvature data. 7C- Moving 

time average of helicity data.  7D- Moving time average of curvature data. 
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Figure 8 For the eighteen stranded unbounded system:  8A-Raw helicity data. 8B- Raw curvature data. 8C- Moving 

time average of helicity data.  8D- Moving time average of curvature data.   
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Figure 9  For the twenty-four stranded unbounded system:  9A-Raw helicity data. 9B- Raw curvature data. 9C- 

Moving time average of helicity data.  9D- Moving time average of curvature data.  
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Chapter 5  
 

Conclusion and Future Work 

With regards to seeing the relationship between fibril helicity and fibril radius, more 

investigation is required.  Other than the fact that results need to be collected for 30 and 36 

stranded systems, fibrils with 100 beads/strand are short enough in length where the fluctuation 

from the freed ends still holds an influential impact on the fibrils’ shapes.  To minimize the freed 

ends’ influences, the same simulations should be run on fibrils with strands sizes with at least 

twice as many beads.  Also, quantitative analyses need to be performed on fibrils with one end 

bounded.  Developing a fibril backbone is a step which is crucial for the data analysis.  For these 

fibrils, the backbone structure near the coalescence zone is undisciplined.  Some sort of 

algorithm must be implemented where the coalescence zone’s region in the backbone is 

removed.  It’d also be interesting to see how bounded fibrils with strand length on the order of 

~200 beads per strand behaved and see if they transform into helical structures. Analyses need to 

be made on all of these fronts before a solid conclusion could be made regarding fibril helicity 

and fibril diameter and the relationship between change of helicity and curvature.   

The implementation of calculating persistence length hasn’t been completed yet.  

Persistence length calculations must be performed to see a relationship between fibril stiffness 

and and fibril diameter. Also, seeing how helicity impacts a fibril’s stiffness would help us 

answer the question if helicity improves a fibril’s stability.  
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