

THE PENNSYLVANIA STATE UNIVERSITY

SCHREYER HONORS COLLEGE

COLLEGE OF INFORMATION SCIENCES AND TECHNOLOGY

FUTURE IMPLICATIONS OF GPU ACCELERATION

ON PRESENT CRYPTOGRAPHIC STANDARDS

GARRETT MICHAEL MILLER

 Spring 2011

A thesis

submitted in partial fulfillment

of the requirements

for a baccalaureate degree

in Information Sciences and Technology

with honors in Information Sciences and Technology

Reviewed and approved* by the following:

Stanley G. Aungst

Professor of Practice

College of Information Sciences and Technology

Thesis Supervisor

James A. Leous

Team Leader

ITS Emerging Technologies Group

Thesis Supervisor

Brian H. Cameron

Professor of Practice

College of Information Sciences and Technology

Honors Adviser

* Signatures are on file in the Schreyer Honors College.

i

 ABSTRACT

This document surveys a number of recent developments in the information security field

pertaining to parallel computing and cryptographic security, and demonstrates the performance

gains made possible through the use of parallel computing in Graphics Processing Unit (GPU)

utilization frameworks such as NVidia's CUDA and ATI's Stream frameworks. The NVidia

CUDA framework is leveraged in a number of real world tests comparing several modern

traditional central processing units (CPUs) and GPUs in the same cryptographic applications.

Additional topics relevant to accelerating password cracking and cryptography are also examined,

such as rainbow tables and solid state drives (SSDs), as well as cloud and distributed computing.

Finally, the performance enhancements afforded by GPU parallel computing are compared

against modern government and commercial cryptographic standards, and recommendations are

made for retaining information security in the face of such dramatic performance increases.

ii

TABLE OF CONTENTS

ABSTRACT ... i

LIST OF TABLES ... iv

LIST OF FIGURES ... v

ACKNOWLEDGEMENTS ... vi

Introduction .. 1

NVidia CUDA, ATI Stream, and OpenCL .. 1

Overview .. 1
History .. 3

Cryptographic Applications of CUDA .. 4

Test Setups ... 4
MD5/LM/NT/SHA Hashing .. 5

Background .. 5
Available Tools .. 6
Testing – CPU/GPU Comparison .. 6

RSA (Rivest, Shamir, Adleman) .. 8
Background .. 8
Available Tools .. 11
Testing – CPU/GPU Comparison .. 11

Elliptic Curve Cryptography .. 11
Background .. 11
Available Tools .. 13
Testing – CPU/GPU Comparison .. 13

WEP/WPA ... 14
Background .. 14
Available Tools .. 15
Testing – CPU/GPU Comparison .. 15

AES (Rijndael) ... 16
Background .. 16
Available Tools .. 17
Testing – CPU/GPU Comparison .. 17

Leveraging Clusters and the Cloud .. 18
Future Work ... 20

Implications on Present Cryptographic Standards ... 20

Current Payment Card Industry (PCI) Standards ... 20
Current NIST/NSA Standards .. 21

iii

Conclusions .. 22

Appendix A – CPU vs. GPU Test Results in Tabular Format ... 24

Appendix B – CPU vs. GPU Test Results in Graph Format .. 25

Bibliography .. 27

iv

LIST OF TABLES

Table 1 – Specifications of Machines Tested .. 4

Table 2 - Detailed Specifications of Graphics Cards Used .. 5

Table 3 - MD5 Search Speed by Device in Millions/Second .. 7

Table 4 - Comparison of ECM Implementations ... 11

Table 5 - NIST Recommended Key Sizes ... 12

Table 6 - WPA PMK Search Speed per Second by Device ... 16

Table 7 – RAR-AES Passphrase Search Speed by Device .. 18

Table 8 - Brute Force Speeds by Test and Device ... 24

v

LIST OF FIGURES

Figure 1- Processing Flow in CUDA. .. 2

Figure 2- MD5 Hashes in Millions per Second by Device .. 25

Figure 3 - WPA Pairwise Master Keys per Second by Device .. 26

Figure 4 - RAR-AES Passphrases per Second by Device.. 26

vi

ACKNOWLEDGEMENTS

This thesis represents a culmination of my academic pursuits and interests during my

time as a student in Penn State’s College of Information Sciences and Technology. As such, I

would like to thank the following; without them, this work could not exist:

 Dr. Stanley Aungst and Mr. Jim Leous for sharing their wisdom and volunteering

their time to assist in the revision of my thesis.

 Dr. Brian Cameron for serving as my honors advisor and helping me to identify

an area of research for my thesis.

 Dr. Lisa Lenze for offering her guidance and support through my time in IST.

 Dean David Hall, the College of Information Sciences and Technology, and the

Schreyer Honors College for financial support of my thesis research.

 The Information Assurance Club for helping me to hone my skills and giving me

the opportunity to share information security knowledge with others.

 Carl and Patricia Henninger, Peter J. Lechner, Ms. Eva Blum, and Mr. Robert

Bardusch for their generous scholarship support.

 My friends and family for supporting me through this academic journey.

Introduction

In cryptography, the ability of a cryptographic function to protect the confidentiality of

information has always been limited by its susceptibility to attacks against it. These attacks can

vary in sophistication, but they generally require one thing in common: large amounts of

computing power available to check for a large number of potential values that could exist as a

“key” for a piece of encrypted information. Current standards exist in both government and

industry to help ensure the confidentiality and integrity of information, but it is presently unclear

if these standards have considered the dramatic performance increases made possible by

leveraging the parallel computing power of Graphics Processing Units (GPUs). The designs of

most cryptographic algorithms are such that they can benefit considerably from parallel

computing, which consumer GPUs can provide inexpensively and economically.

NVidia CUDA, ATI Stream, and OpenCL

Overview

A recent trend in computing concerns the use of GPUs in order to perform calculations

outside of the typical graphics-rendering applications for what they are intended. This technique

is known as General Purpose Graphics Processing Unit (GPGPU) computing. Two of these GPU

utilization frameworks include NVidia's CUDA and ATI's Stream frameworks. These

frameworks are similar in that they both include development toolkits which run only on their

corresponding hardware. A third open standard, known as OpenCL, provides a C-like

programming environment supported by CPUs and GPUs alike, independent of manufacturer

2

(AMD Corporation). For the purposes of this thesis, NVidia's Compute Unified Device

Architecture (CUDA) offering will be examined, as well as the potential that it has to accelerate

the testing of common cryptographic functions.

 According to NVidia, CUDA is "NVidia's parallel computing architecture that enables

dramatic increases in computing performance by harnessing the power of the GPU" (NVidia

Corporation). Whereas CPUs are very well suited to performing fewer complex serial

calculations than GPUs, GPUs are designed to be well suited to computing many smaller

calculations in parallel, such as rendering millions of pixels on a screen in a graphics rendering

application or video game. This lends itself well to certain cryptographic applications, such as

bruteforcing billions of MD5 hashes per second, or bruteforcing WPA-PSK keys. Certain prime

factorization techniques used in breaking RSA moduli (pq) are also well-suited to GPU

acceleration (Bernstein, Chen, Cheng, Lange, & Yang, 2008).

Figure 1- Processing Flow in CUDA (Tosaka, 2008).

3

Figure 1 details the means by which CUDA operates on the GeForce 8800 GPU. Data to

be processed is copied from main memory to the GPU. The CPU then instructs the processing of

the GPU, where data to be processed is loaded from GPU memory and executed in parallel on

each core. Finally, the results are written back to GPU memory, where they are then copied into

main system memory (Tosaka, 2008). A GTX 580 has 512 computing cores vs. an average

CPU’s two to four, albeit clocked lower than an average CPU. Because of the massively-parallel

design of GPU hardware, applications that require many computing threads will benefit the most

from GPU acceleration. Serial applications are unlikely to experience the same level of

performance enhancement that parallel applications see. Another major benefit of GPU-based

parallel processing is vastly increased memory bandwidth over similar CPU-based systems

(Sinnott-Armstrong, Greene, Cancare, & Moore, 2009). This enables the processing cores to

communicate much more rapidly with their local memory, enabling rapid calculation of large

volumes of data.

History

While GPGPU computing is an area of computing that has received much attention in

recent years, it is not a new idea. The use of graphics hardware for general-purpose computation

dates back to the Ikonas Graphics System in 1978 (GPGPU). More recently, consumer demand

for graphics hardware has fueled its development, making an extremely large amount of

computing power available at a lower cost compared to that of equivalent CPU-based systems

(Sinnott-Armstrong, Greene, Cancare, & Moore, 2009).

CUDA, NVidia’s GPGPU solution, was introduced in 2006 with the NVidia 8000 series

of GPUs. Designed to provide a C programming environment capable of running natively on

graphics hardware, its purpose was to give software developers the ability to leverage parallel

4

computing on a massive scale without the necessity of learning a new programming language

(NVidia Corporation).

Cryptographic Applications of CUDA

Test Setups

For purposes of testing different cryptographic algorithms on CPU and GPU hardware,

the following system setups were utilized. These system configurations are viewable in Table 1

and Table 2. Both systems ran the same version of Ubuntu Linux 10.10 64-bit, and had different,

yet comparable hardware.

Table 1 – Specifications of Machines Tested

 Setup #1 Setup #2

Processor: Intel Core 2 Duo E8400 @ 3.0

GHz / 3.6 GHz

Intel Pentium D E2200 @ 2.2

GHz

Motherboard: Gigabyte EP45-UD3R ASUS IPIBL-LB

Graphics Card: NVidia/Zotac GTX 580 NVidia/Asus GTX 460

Memory: 8GB DDR2-800 SDRAM 3GB DDR2-800 SDRAM

Hard Drive: G-Skill Phoenix Pro 120GB

SSD

Western Digital Caviar Blue

500GB HDD

Power Supply: XFX (Seasonic) 750W Black

Edition

OCZ StealthXStream 2 600W

Operating System: Ubuntu Linux 10.10 64-bit Ubuntu Linux 10.10 64-bit

5

Table 2 - Detailed Specifications of Graphics Cards Used

 NVidia/Zotac GTX 580 NVidia/Asus GTX 460

Microarchitecture: GF110 “Fermi” GF 104 “Fermi”

CUDA Cores: 512 336

Graphics Memory: 1.5GB GDDR5 1GB GDDR5

GPU Clock Speed: 772 MHz 675 MHz

Memory Clock Speed: 1002 MHz 900 MHz

Memory Interface Width: 384-bit 256-bit

Fabrication Process 40nm 40nm

MD5/LM/NT/SHA Hashing

Background

Of all cryptographic concepts, Bruce Schneier and Niels Ferguson name hash functions

as the most versatile (2003). Able to be used for encryption, authentication, or message signing,

hash functions represent a vital part of many cryptographic systems. By taking an input of

arbitrary length and creating a fixed-length output through a hash function, a generally-unique

value is created. Because of the one-way nature of the hash function, generally, the only way to

reverse the process is to calculate billions of hashes from possible guessed inputs to check for a

match. For example, if a system stores user passwords as MD5 hashes, a password of

“password” will hash to a value of 5f4dcc3b5aa765d61d8327deb882cf99. Even a minor change

in the input value will yield a drastically different hash – hashing “passw0rd” yields

bed128365216c019988915ed3add75fb. This is the mark of an effective hash algorithm – the

input value cannot be predicted based on a similar output. While useful for obfuscation of

original text input, such as in password storage, this property of hashes is also useful for verifying

integrity of data; even a single bit change or corruption in a datagram will yield a drastically

different hash.

6

Another way to accelerate the process is through the use of rainbow tables. Rainbow

tables are massive collections of pre-computed hash values that can be many gigabytes or

terabytes in size. By performing this sort of time/space tradeoff, particularly when combined

with the fast read speeds of a solid-state drive (SSD), Windows XP passwords of up to 14

characters, including upper/lowercase letters, numbers, and special characters could be cracked in

an average of five seconds (Objectif Sécurité, 2010).

Available Tools

Because of their ubiquitous nature in cryptography and computing in general, there is a

wealth of utilities available to attack MD5 and other types of hashes. Some of these utilities are

enumerated below:

 CUDA Multiforcer (GPU)

 GPU MD5 Crack (GPU)

 Hashcat (CPU)

 oclHashcat (GPU)

 John the Ripper (CPU)

 Rainbowcrack (CPU/GPU)

Testing – CPU/GPU Comparison

To better compare the performance advantages afforded by the GPU architecture vs. CPU

architecture, a number of tools were tested on both CPU and GPU platforms. Table 3 reveals a

number of interesting facts – that advancement of the CUDA Multiforcer from version 0.72 to

version 0.80a brings demonstrable performance enhancements, reflecting the rapidly-changing

nature of the industry, but the oclHashcat and hashcat tools remain the fastest of the set. Between

7

the GTX 580 and stock-clocked E8400 at 3.0 GHz, a nearly 97x performance increase is

observed.

For a random 8-character password of upper and lower-case alphabetic and numerical

composition (62 possible characters), there exist 62
8
 = 218,340,105,584,896 possible password

combinations. Time to exhaust this keyspace on a single GTX 580 could be found by:

218,340,105,584,896 combinations / 2,196,400,000 hashes per second =

99408.17 seconds / 60 = 1656 minutes / 60 = 27.6 hours /24 = 1.15 days.

This is easily attainable. Clustering multiple GTX 580s or similar graphics cards together would

make this task even more trivial, and would enable the attacking of even larger keyspaces. To

complete this same task on the stock-clocked E8400 would take 111.37 days. Overclocking the

processor to 3.6 GHz would only accelerate this to 90.28 days.

Table 3 - MD5 Search Speed by Device in Millions/Second

Test GTX 580 GTX 460 E8400@3.6 E8400@3.0 E2200@2.2

CUDA Multiforcer

0.72 466.5 179.8

 CUDA Multiforcer

0.80a 1167.75 464

 oclHashCat .26b 2196.4 884.5

Rainbowcrack rtgen

1.5

9.34 7.83 4.53

hashcat 0.36

27.99 22.69 16.74

8

RSA (Rivest, Shamir, Adleman)

Background

In 1977, Ron Rivest, Adi Shamir, and Leonard Adleman of the Massachusetts Institute of

Technology (MIT) developed the RSA public-key cryptosystem. The system was published in

Communications of the ACM (Rivest, Shamir, & Adleman, 1978) in February 1978, and was the

first known encryption standard to introduce the concept of digital signatures (Vacca, 2009). It

later became known through declassification of documents that cryptographer Clifford Cocks of

the U.K. Government Communications Headquarters (GCHQ) developed a cryptosystem

utilizing the same process, but due to its classified nature and computational infeasibility of the

day, it was never adopted (Vacca, 2009).

Today, when securing information for transmission over a network or other insecure

communications channel, RSA is the most widely used standard for public key cryptography

(Schneier & Ferguson, Practical Cryptography, 2003). RSA is a public key, asymmetric cipher,

which uses separate keys for encryption and decryption of messages – each user having a pair of

keys, one public, and one private. Able to be used for both signing and encryption of messages,

RSA ensures that nobody but the intended recipient will be able to read a message, and that the

reader will be able to verify the original sender of the message. Of the "triangle" of information

security - Confidentiality, Integrity, and Availability, RSA is able to offer both data

confidentiality and integrity, and a certain degree of nonrepudiation, as well. RSA, however, like

all other computer security concepts, is not impervious to attack.

9

The RSA algorithm works in the following manner:

Key Generation:

1. Select two extremely large prime numbers, p and q.

2. Calculate public key pq.

3. Select encryption exponent, in most cases, e=3 is sufficient.

4. Calculate private key d = e
-1

 mod (p - 1) * (q - 1)

This key generation gives the keys necessary to begin the RSA encryption process. A

user's public key is represented by pq and e, and the private key is d. It is imperative to keep d

secret, as the security of RSA is entirely dependent on keeping this number secret. If d is known,

the message can be decrypted. The other processes used in RSA are detailed as follows:

Encryption:

1. Take message m

2. Calculate c = m
e
 mod pq

3. Ciphertext = c

Decryption:

1. Take ciphertext c

2. Calculate m = c
d
 mod pq

3. Message = m

Signing:

1. Sender hashes message to h

2. Sender calculates signature s = h
d
 mod pq

10

3. Sender appends signature to message.

4. Receiver takes signature, calculates h = s
e
 mod pq

5. If hashes match, message is authentic.

The security of RSA encryption lies in the inherent difficulty of factoring extremely large

numbers. If one were able to find the prime factors of pq, one would be able to compute or find

the encryption key e, and its modular inverse, d. With the recent factorization of an RSA-768

modulus (Kleinjung, et al., 2010), one must consider implementations of RSA-1024 and their

security relative to what may be computationally possible in the near future.

The best-performing factorization techniques are, in order of fastest to slowest, the

General Number Field Sieve, the Multiple Polynomial Quadratic Sieve, and finally, the Lenstra

Elliptic Curve Factorization Method (ECM) algorithm. In 2008, Bernstein et al. developed a

GPU-based implementation of prime factorization using the elliptic curve method of integer

factorization.

Bernstein et al. found that two modern NVidia GTX 295 graphics cards using their ECM

factoring implementation were able to calculate 801.4 curves/second vs. the 124.71 curves/second

made possible by using all four cores of an Intel Core 2 Quad Q6600 CPU (2008). They go on to

state that on a single GTX 295, the implementation performs 41.88 million modular

multiplications/second vs. 13.03 on a Q6600 (2008). Kleinjung et al.’s factorization of the RSA-

768 modulus was completed on conventional CPU hardware. By leveraging the computational

power of GPUs, it is possible that RSA-1024 could be threatened much sooner than initially

anticipated. Many of the same people involved in the RSA-768 factorization assessed risk to

RSA-1024 to be small until 2014 (Bos, Kaihara, Kleinjung, Lenstra, & Montgomery, 2009),

though this recommendation was made prior to the RSA-768 factorization. Bernstein has also

encouraged the idea of leveraging machines utilizing both CPU and GPU resources to break

RSA-1024 in a talk given at the University of Illinois at Chicago (n. d.).

11

Available Tools

Bernstein, Cheng, et al. have developed a number of prime factorization implementations

for 64-bit x86 systems. At the time of writing, however, these implementations were not able to

be successfully compiled and run.

 EECM (CPU)

 GMP-ECM (CPU)

 CUDA-EECM (GPU)

 GPU ECM (GPU)

Testing – CPU/GPU Comparison

At time of writing, the CUDA-EECM software was unable to be compiled on the

author’s computer. This will become a point of future work. However, Bernstein, et al.’s results

are displayed in Table 4.

Table 4 - Comparison of ECM Implementations

Test GTX 295 Q6600 @ 2.4 GHz

GMP-ECM 124.71 curves/sec,

280-bit integers

GPU ECM 801.4 curves/sec,

280-bit integers

As found by Bernstein, et al. (2008)

Elliptic Curve Cryptography

Background

As available computing power increases, the security of public key cryptography as it

stands is being threatened with the recent factorization of a 768-bit RSA modulus. Key lengths

12

can continue to grow indefinitely to maintain a semblance of security, or more efficient, more

effective algorithms can be considered. The Canadian company Certicom, Inc. holds more than

130 patents related to the fields of Elliptic Curve Cryptography (ECC) and public-key

cryptography, which is viewed by many in academia and industry as a roadblock to widespread

adoption and implementation (National Security Agency, 2009). In an attempt to make ECC

available for widespread implementation, the National Security Agency (NSA) licensed the

entirety of Certicom’s intellectual property under restricted terms of use. The license includes

restrictions relating to suitable applications (namely, national security), as well as specific

cryptographic parameters of the algorithm. Additionally, the NSA also licensed the right to

sublicense this intellectual property to vendors supplying equipment within the purview of this

field of use (National Security Agency, 2009).

Consequently, the NSA has endorsed ECC as an integral part of its Suite B set of

cryptographic standards (NSA Suite B Security, 2009). NSA has also published a set of National

Institute of Standards and Technology (NIST)-recommended key sizes detailing equivalent

security levels of symmetric (AES) encryption, as well as public-key encryption of both RSA-

Diffie Hellman and Elliptic Curve varieties, viewable in Table 5.

Table 5 - NIST Recommended Key Sizes

Symmetric Key Size

(bits)

RSA and Diffie-Hellman Key Size

(bits)

Elliptic Curve Key Size

(bits)

80 1024 160

112 2048 224

128 3072 256

192 7680 384

256 15360 521

(National Security Agency, 2009)

As Table 5 illustrates, despite RSA’s ubiquity, elliptic curve cryptosystems offer

equivalent security at much smaller key sizes compared to their older counterparts. Combined

13

with this greater efficiency and NIST/NSA Suite B endorsement, ECC appears to be an

indispensible part of the immediate cryptographic future.

Available Tools

Presently, no known utilities can be publicly found to crack ECC cryptosystems.

Nevertheless, a group of cryptographic researchers have evaluated a number of different

platforms for breaking ECC in response to Certicom’s published ECC challenges. Initially, an

NVidia GTX 295 GPU was shown to be only marginally faster than a Core 2 CPU (Bailey, et al.,

2009), but later code optimizations behind an anonymous, public, collaborative effort to break

ECC2K-130 have pushed the GTX 295 GPU to 54.03 million iterations of the ECC

implementation per second, surpassing field-programmable gate array (FPGA)-based systems, the

PlayStation 3’s Cell CPU, as well as general-purpose x86-based CPU systems (Breaking ECC2K-

130).

Testing – CPU/GPU Comparison

Breaking ECC2K-130 takes an average of 2
60.9

 iterations (Bailey, et al., 2009). Based on

these latest numbers, a cluster of 1,263 GTX 295 GPUs could complete this task in one year. To

accomplish this same task would require 2,026 Spartan-3 FPGAs, 2,466 PlayStation 3 Cell CPUs,

or 3,039 Core 2 Extreme Q6850 CPUs (Breaking ECC2K-130). Only a purpose-built

application-specific integrated circuit (ASIC) unit could surpass this GPU implementation, again

showing the distinct advantage that GPUs hold over conventional CPUs in many cryptographic

applications.

14

WEP/WPA

Background

When the 802.11 standard for wireless LAN communications was first published, it

included provisions for a method of protecting wireless traffic sent across the network. Dubbed

“Wired Equivalent Privacy” (WEP), it used the RC4 stream cipher to encrypt communications

across an 802.11 wireless network (IEEE Computer Society, 2007). The RC4 cipher itself is not

broken, but the original standard specified a key length of only 40 bits (Vacca, 2009), and

required the reuse of a short initialization vector (IV), resulting in many packets being encrypted

using the same key stream (Schneier & Ferguson, 2003). In order to ascertain security of a

stream cipher such as RC4, the use of a unique “nonce” – a number used only once, is required to

prevent cryptanalysis which can reveal the original key (Schneier & Ferguson, 2003).

In response to this fatally-flawed standard, Wi-Fi Protected Access (WPA) and its

successor, Wi-Fi Protected Access 2 (WPA2) were introduced as part of the Institute of Electrical

and Electronics Engineers (IEEE) 802.11i process (Frankel, Eydt, Owens, & Scarfone, 2007). In

an attempt to secure vulnerable networks before the final IEEE 802.11i standard was ratified,

however, the Wi-Fi Alliance introduced their own version of the WPA standard based on drafts of

802.11i. The IEEE wished to include support for the Federal Information Processing Standards

(FIPS)-approved Advanced Encryption Standard (AES) as part of the WPA standard, but the

Alliance did not include this, citing hardware computational capability concerns (Frankel, Eydt,

Owens, & Scarfone, 2007). FIPS-approved AES was later added as part of the WPA2-

supporting, 802.11i final standard. In this way, WPA was like an early stopgap measure for the

vulnerabilities inherent in WEP, whereas WPA2 represents the final 802.11i standard as the IEEE

and industry intended. The Payment Card Industry (PCI) Security Standards Council,

15

recognizing these weaknesses (albeit a bit late) has prohibited the use of WEP for payment

processing systems as of 30 June 2010, as stated in their PCI-Data Security Standard (PCI-DSS)

version 2.0 document (Payment Card Industry Data Security Standard v2.0, 2010).

WEP/RC4 cracking remains a computationally trivial task, as shown by FBI agents being

able to crack 128-bit WEP in less than three minutes at an Information Systems Security

Association conference in 2005 (Cheung, 2005). As such, it is unlikely to benefit from GPU

acceleration. One method of attacking a WPA/WPA2 network with a pre-shared key (PSK) is to

sniff an association packet, capture the handshake that occurs, and attempt to calculate the correct

pairwise master key (PMK) to determine the original PSK. Once this pre-shared key is

discovered, a malicious attacker can then connect to the network, where a number of other attacks

such as eavesdropping, man-in-the-middle, or traffic redirection could be executed.

Available Tools

As the popularity and ubiquity of 802.11-based wireless networks grew, so did tools to

attack them. These tools do not exploit any critical weakness in the WPA or WPA2 encryption

ciphers, but are able to run either bruteforce or dictionary attacks on a captured WPA/WPA2

association packet. Two such tools are listed below:

 Pyrit (CPU/GPU)

 Aircrack-ng (CPU)

Testing – CPU/GPU Comparison

While WEP cracking is computationally trivial, calculating many WPA keys remains a

challenge. In order to determine the potential for speedup, Pyrit v0.4 was tested on all devices

available.

16

Table 6 - WPA PMK Search Speed per Second by Device

Test GTX 580 GTX 460 E8400 @

3.6 GHz

E8400 @

3.0 GHz

E2200 @

2.2 GHz

Pyrit 0.4 36156.5

PMK/sec

14410

PMK/sec

2015

PMK/sec

1665.7

PMK/sec

1254.72

PMK/sec

As Table 6 illustrates, the GPUs again have a distinct advantage over the CPUs in this

test. The GTX 580 outperforms even the overclocked E8400 by nearly 18 times. Pyrit also has

the ability to leverage the computational resources of a machine’s available CPU and GPU

hardware simultaneously, as well as the hardware available on any network node also running

Pyrit. As such, the potential that Pyrit holds for being used in massively distributed

implementations is vast, with the combined resources of both CPUs and GPUs on many different

machines being able to contribute to the cracking task. For purposes of isolating individual

device performance, however, individual devices were selected for these Pyrit benchmarks.

AES (Rijndael)

Background

A current, officially-endorsed, (FIPS, NSA) cryptographic standard for symmetric

encryption is the Advanced Encryption Standard (AES). Also known as the Rijndael cipher, it is

one of the most popular current encryption standards in use today (Vacca, 2009).

The AES standard came to be through a NIST competition. Fifteen original standards

were proposed, with ten being eliminated in the first round (Schneier & Ferguson, Practical

Cryptography, 2003). Ultimately, the Rijndael cipher was accepted as the final standard for AES,

with established key sizes of 128, 192, and 256-bits (FIPS 197 - Announcing the Advanced

Encryption Standard, 2001). A part of NSA’s Suite B cryptographic standards, NSA deems AES-

17

128 suitable for protecting information up to the SECRET level, and AES-256 suitable for TOP

SECRET information (NSA Suite B Security, 2009).

The mathematical details of the cipher are beyond the scope of this document, but consist

of ten to fourteen rounds of substituting bytes, shifting rows, mixing columns, and XORing bits

(FIPS 197 - Announcing the Advanced Encryption Standard, 2001). The result is an incredibly

strong, yet efficient symmetric-key cipher with key sizes much smaller than their public-key

counterparts, such as RSA (National Security Agency, 2009). Because of the relative efficiency

of symmetric-key ciphers, public-key ciphers will often be used only for a key exchange for a

symmetric cipher to encrypt the session, reducing both CPU and network overhead (The Case for

Elliptic Curve Cryptography, 2009).

Available Tools

A wide variety of tools implement the AES cipher, its standardization most certainly

lending to its widespread adoption. Microsoft Office, 7zip, WinZip, and WinRAR all implement

the AES cipher. Tools to attack AES-encrypted archives include:

 cRARk (CPU/GPU)

 RAR GPU (GPU)

 Rarcrack (CPU)

Testing – CPU/GPU Comparison

In order to examine the rates at which AES passphrases could be tested, cRARk 3.3c was

used with a cRARk-supplied 1.2KB AES-encrypted file.

18

Table 7 – RAR-AES Passphrase Search Speed by Device

Test GTX 580 GTX 460 E8400 @

3.6 GHz

E8400 @

3.0 GHz

E2200 @

2.2 GHz

cRARk 3.3c 6289

pass/sec

3139

pass/sec

298

pass/sec

251

pass/sec

178

pass/sec

Again, the GPUs decisively outperform the computing power available in the CPUs in

this scenario, as shown in Table 7. Of course, these numbers are miniscule in comparison to the

billions of MD5s that could be computed each second, which serves as a testament to AES’

complexity, lending to its overall security. While GPUs are able to accelerate the process

considerably, the process is still rather slow compared to computing MD5 hashes. Time to

exhaust even the six-character alphanumeric keyspace can be found by:

62
6
 = 56,800,235,584 combinations / 6,289 passphrases per second =

9031680 seconds / 60 = 150528 minutes / 60 = 2508 hours /24 = 104 days

While adding cracking power through the use of additional GPUs or machines could

increase speeds in a linear fashion, adding length or complexity to the passphrase (through adding

special characters) could grow the complexity of this problem exponentially. As such, AES

appears to be secure against GPU-based attacks, but only when a secure passphrase is used. A

six-character alphanumeric password is not an example of a strong passphrase.

Leveraging Clusters and the Cloud

As mentioned, clustering multiple GPUs or even clusters of GPU-based cracking

machines could increase cracking power in a linear fashion. This will be insufficient to keep up

with the exponential growth of encryption complexity as passphrase and key sizes increase.

19

Nevertheless, a number of individuals, such as David Kennedy of SecManiac.com, have

constructed their own GPU-based computing clusters (2011). Currently based on eight NVidia

GeForce GTX 580 graphics cards, Kennedy’s cluster is able to compute 14.2 billion MD5 hashes

per second (Kennedy, 2011). Compared to the author’s tested 2.19 billion MD5 hashes per

second on a single GTX 580, it would appear that these cards scale with approximately 81%

efficiency. Kennedy expects his cracking power to increase with further software optimizations

and the addition of more hardware (2011).

Another option for password cracking on a large scale is leveraging cloud services, such

as Amazon’s Elastic Compute Cloud (EC2) service. Amazon EC2 allows users to dynamically

launch server instances in the cloud with a number of possible software and hardware

configurations available (Amazon Elastic Compute Cloud). Among these configurations are

high-performance computing server instances which come with GPU hardware and the

corresponding utilization frameworks. Robert Imhoff of Atheros Communications, Inc. has

produced a calculator to determine the efficacy and cost-effectiveness of local GPU-based

passphrase cracking vs. leveraging Amazon’s EC2 system (2011), which he debuted at

information security convention Shmoocon 2011. Imhoff’s calculations reveal a great deal about

GPU-based password cracking, such as how large of a keyspace a particular passphrase will

produce, the time it will take to crack based on a variety of system configurations, and finally,

whether it is more cost effective to build a GTX 570-based GPU cluster to crack it, or lease

computing power from Amazon. Based on Imhoff’s calculations, it is generally more cost

effective to build a cluster if there are multiple passphrases to be cracked, as this represents a one-

time cost, vs. recurring usage charges incurred by using Amazon EC2. Nevertheless, Amazon

EC2 represents one way to gain access to an immense amount of computing power in a very short

amount of time.

20

Future Work

While the results shown in this document demonstrate that GPUs have a distinct

advantage over CPUs in many cryptographic applications, there remains work to be done. While

Bernstein, et al’s work in ECM prime factorization on GPUs demonstrated that the GPU (NVidia

GTX 295) outperformed the CPU (Intel Core 2 Quad Q6600) used in the tests, these results are

dated (2008). The author was unable to compile this software for testing on a more modern GPU

at the time of writing, though work will continue on this. Additionally, as shown in Table 3, just

a small increase in version number of the CUDA Multiforcer dramatically increased performance,

so it is likely that code optimizations of GPU implementations will bring further performance

enhancements, which should be examined further in the near future.

Implications on Present Cryptographic Standards

Current Payment Card Industry (PCI) Standards

To protect consumers and companies alike from credit card fraud, the Payment Card

Industry Security Standards Council has published a series of Payment Card Industry Data

Security Standards (PCI-DSS) documents. These documents outline a number of information

security requirements surrounding card-based payment processing and customer information

handling and storage.

The cryptographic requirements of PCI-DSS 2.0 call for “strong cryptography”, which

the standard defines as:

21

 Advanced Encryption Standard (AES) – 128 bit or greater

 Triple DES or 3DES – Double-length keys or greater

 Rivest, Shamir, Adleman (RSA) – 1024 bits or greater

 Elliptic Curve Cryptography – 160 bits or greater

 ElGamal – 1024 bits or greater

This standard may not necessarily be the ideal model of information security, however, as

PCI-DSS only prohibited the use of WEP for securing wireless transmissions as of 30 June 2010

(Payment Card Industry Data Security Standard v2.0, 2010). In order to gain another perspective

on present encryption standards, the federal government’s cryptographic endorsements will now

be examined.

Current NIST/NSA Standards

In order to protect information considered vital to national security and ensure software

and hardware interoperability, the National Security Agency has established a set of

cryptographic algorithms known as Suite B (NSA Suite B Security, 2009). Announced in

February 2005, Suite B outlines protocols and algorithms deemed suitable for use, as well as

prescribed key lengths and moduli for information of varying security levels.

Suite B specifies these algorithms for the following tasks:

 Encryption: Advanced Encryption Standard (AES) – 128/256 bits

 Key Exchange: Elliptic Curve Diffie-Hellman (ECDH) – 256/384 bit prime

moduli

 Digital Signature: Elliptic Curve Digital Signature Algorithm (ECDSA) –

256/384 bit prime moduli

 Hashing: Secure Hash Algorithm (SHA) – 256/384 bit

22

 The majority of public-key cryptosystems are currently set up with 1024-bit parameters,

which U.S. NIST recommended was sufficient until 2010. Now that this endorsement of RSA-

1024 has expired, NSA Suite B permits the use of RSA-2048 for protection of US Government

information up to the SECRET level until full Suite B compliance can be achieved (National

Security Agency, 2009).

Conclusions

Based on the findings herein, it can be reasonably concluded that the rapid ascent of low-

cost computing power available in GPUs does threaten to force reconsideration of current

cryptographic mandates. The recent expiration of NIST’s RSA-1024 endorsement, combined

with Bos, et al’s assessment that risk is small “until 2014” would appear to be a final nail in the

coffin for RSA-1024 (2009). It remains in widespread use, however, and is a standard currently

endorsed by the Payment Card Industry Security Standards Council. The PCI should reevaluate

this endorsement, and begin to phase out the use of RSA-1024 for payment processing and related

tasks immediately. The computing resources necessary to crack RSA-1024, ECC2K-130, or

moderately-weak AES passphrases may not be presently available or attainable by an individual.

Nevertheless, governments or cooperative public cracking clusters could feasibly combine this

amount of computing power in a relatively short amount of time. The only way to ensure proper

security moving forward is to employ the same information security practices that have been

echoed for years, but to exercise even more vigilance and to be unyielding in their

implementation. MD5 can be bruteforced too quickly. RSA-1024 stands to be threatened soon.

ECC2K-130 is also well within reach of any entity with sufficient resources, and 160-bit may

soon follow. Finally, AES and WPA’s protection can be ensured only through the use of

sufficiently strong passphrases.

23

Based on this technology still in its nascent stages, more secure hash algorithms such as

SHA-256, SHA-384, or SHA-512 with larger keyspaces should be implemented whenever

possible. The U.S. Government has already adopted this standard, and industry and everyday

users’ implementations should also follow. With the threatened security of RSA-1024, RSA

should be used with no less than 2048-bit moduli, and ECC 224 or 256-bit key sizes (as per NIST

recommendations). AES and WPA remain secure, but again, only when paired with sufficiently

strong passphrases. Microsoft’s Jesper Johansson has recommended that for passphrases to be

sufficiently strong, they should be physically written down (Kotadia, 2005). Johansson evaluates

the risk of passphrase reuse or weak passphrases by users to be greater than the inherent risk of

having passwords written down in a secure location. Cryptographer Bruce Schneier has agreed

with Johansson’s recommendations (Schneier, 2005). Finally, on password-based systems,

multifactor authentication should be employed wherever possible. Historically considered

expensive, Google has recently released a free, open source solution, compatible with any

application which supports Pluggable Authentication Modules (PAMs) (Google Authenticator).

Even so, the bruteforcing of passwords is not necessarily the best point of entry into an

information system. Breaking the aforementioned ciphers requires a great deal of time and

resources, which an attacker is unlikely to invest if there exists an easier means of gaining access.

Exploiting human factors, through the use of social engineering (getting a target to inadvertently

reveal their system credentials) will remain the most easily exploitable component of a given

information system. Beyond exploiting the user directly, hardware or software keyloggers also

render even the most secure passphrases useless. Even as the equipment used in cryptographic

research has changed, it appears that the same core philosophies have not. Strong passwords,

strong algorithms, and user education remain the pillars of information security. One must fully

consider what information needs to be protected, what stands to be lost if it is compromised, and

take suitable measures to ensure that this information is appropriately protected.

24

Appendix A – CPU vs. GPU Test Results in Tabular Format

Table 8 - Brute Force Speeds by Test and Device

Test Type GTX 580 GTX 460 E8400 @

3.6 GHz

E8400 @

3.0 GHz

E2200 @

2.2 GHz

CUDA

Multiforcer 0.72

MD5 466.5

M/sec

179.8

M/sec

CUDA

Multiforcer 0.80a

MD5 1167.75

M/sec

464 M/sec

oclHashcat 0.26b MD5 2196.4

M/sec

884.5

M/sec

Rainbowcrack

rtgen 1.5

MD5 9.34 M/sec 7.83 M/sec 4.53

M/sec

hashcat 0.36 MD5 27.99

M/sec

22.69

M/sec

16.74

M/sec

cRARk 3.3c RAR-

AES

6289

pass/sec

3139

pass/sec

298

pass/sec

251

pass/sec

178

pass/sec

Pyrit 0.4 WPA 36156.5

PMK/sec

14410

PMK/sec

2015

PMK/sec

1665.7

PMK/sec

1254.72

PMK/sec

25

Appendix B – CPU vs. GPU Test Results in Graph Format

Figure 2- MD5 Hashes in Millions per Second by Device

2196.4

884.5

27.99

22.69

16.74

0 500 1000 1500 2000 2500

oclHashcat 0.26b

hashcat 0.36

MD5 Hashes/Second in Millions

E2200 @ 2.2 GHz E8400 @ 3.0 GHz E8400 @ 3.6 GHz GTX 460 GTX 580

26

Figure 3 - WPA Pairwise Master Keys per Second by Device

Figure 4 - RAR-AES Passphrases per Second by Device

36156.5

14410

2015

1665.7

1254.72

0 5000 10000 15000 20000 25000 30000 35000 40000

Pyrit 0.4

WPA PMK's/Second

E2200 @ 2.2 GHz E8400 @ 3.0 GHz E8400 @ 3.6 GHz GTX 460 GTX 580

6289

3139

298

251

178

0 1000 2000 3000 4000 5000 6000 7000

cRARk 3.3c

RAR-AES Passphrases/Second

E2200 @ 2.2 GHz E8400 @ 3.0 GHz E8400 @ 3.6 GHz GTX 460 GTX 580

Bibliography

Amazon Elastic Compute Cloud. (n.d.). Retrieved April 1, 2011, from Amazon Web Services:

http://aws.amazon.com/ec2/

AMD Corporation. (n.d.). An Introduction to OpenCL. Retrieved April 13, 2011, from AMD:

http://www.amd.com/us/products/technologies/stream-technology/opencl/pages/opencl-

intro.aspx

Bailey, D. V., Batina, L., Bernstein, D. J., Birkner, P., Bos, J. W., Chen, H.-C., et al. (2009,

November 5). Breaking ECC2K-130. Retrieved March 31, 2011, from

http://binary.cr.yp.to/ecc2k130-20091105.pdf

Bernstein, D. J. (n.d.). The Factorization of RSA-1024. Chicago, Illinois.

Bernstein, D. J., Chen, T.-R., Cheng, C.-M., Lange, T., & Yang, B.-Y. (2008, November 3). ECM

on Graphics Cards. Retrieved from http://eprint.iacr.org/2008/480.pdf

Bos, J. W., Kaihara, M. E., Kleinjung, T., Lenstra, A. K., & Montgomery, P. L. (2009, September

1). On the Security of 1024-bit RSA and 160-bit Elliptic Curve Cryptography, V 2.1.

Retrieved April 2, 2011, from http://eprint.iacr.org/2009/389.pdf

Breaking ECC2K-130. (n.d.). Retrieved March 30, 2011, from http://www.ecc-challenge.info/

Cheung, H. (2005, April 7). FBI Teaches Lesson In How To Break Into Wi-Fi Networks.

Retrieved March 27, 2011, from Information Week:

http://www.informationweek.com/news/showArticle.jhtml?articleID=160502612

FIPS 197 - Announcing the Advanced Encryption Standard. (2001, November 26). U.S. FIPS

Publication 197. National Institude of Standards and Technology.

http://www.informationweek.com/news/showArticle.jhtml?articleID=160502612

28

Frankel, S., Eydt, B., Owens, L., & Scarfone, K. (2007, February). Establishing Wireless Robust

Security Networks. Retrieved March 30, 2011, from National Institute of Standards and

Technology: http://csrc.nist.gov/publications/nistpubs/800-97/SP800-97.pdf

Google Authenticator. (n.d.). Retrieved April 3, 2011, from Google Code:

http://code.google.com/p/google-authenticator/

GPGPU. (n.d.). Retrieved March 23, 2011, from History of GPGPU:

http://gpgpu.org/oldsite/data/history.shtml

IEEE Computer Society. (2007, June 12). Part 11: Wireless LAN Medium Access Control and

Physical Layer Specifications. IEEE Standard for Information Technology. New York:

NY.

Imhoff, R. (n.d.). Password Brute Force Calculator.

Kennedy, D. (2011, February 6). Building the ultimate bad arse CUDA cracking server.

Retrieved April 1, 2011, from SecManiac: http://www.secmaniac.com/february-

2011/building-the-ultimate-bad-arse-cuda-cracking-server/

Kleinjung, T., Aoki, K., Franke, J., Lenstra, A., Thome, E., Bos, J., et al. (2010, February 18).

Factorization of a 768-bit RSA Modulus. Retrieved February 20, 2011, from

http://eprint.iacr.org/2010/006.pdf

Kotadia, M. (2005, May 23). Microsoft security guru: Jot down your passwords. Retrieved April

2, 2011, from CNet News: http://news.cnet.com/Microsoft-security-guru-Jot-down-your-

passwords/2100-7355_3-5716590.html

National Security Agency. (2009, January 15). The Case for Elliptic Curve Cryptography.

Retrieved March 22, 2011, from National Security Agency:

http://www.nsa.gov/business/programs/elliptic_curve.shtml

NSA Suite B Security. (2009, January 15). Retrieved March 11, 2011, from National Security

Agency: http://www.nsa.gov/ia/programs/suiteb_cryptography/

http://www.nsa.gov/business/programs/elliptic_curve.shtml
http://www.nsa.gov/ia/programs/suiteb_cryptography/

29

NVidia Corporation. (n.d.). What is CUDA? Retrieved February 21, 2011, from NVidia

Corporation: http://www.nvidia.com/object/what_is_cuda_new.html

Objectif Sécurité. (2010, February). Retrieved March 22, 2011, from https://www.objectif-

securite.ch/en/news.php

Payment Card Industry Data Security Standard v2.0. (2010, October). Retrieved March 26, 2011,

from PCI Security Standards Council:

https://www.pcisecuritystandards.org/documents/pci_dss_v2.pdf

Payment Card Industry Data Security Standard v2.0 Glossary. (2010, October). Retrieved March

26, 2011, from PCI Security Standards Council:

https://www.pcisecuritystandards.org/documents/pci_glossary_v20.pdf

Rivest, R., Shamir, A., & Adleman, L. (1978). A Method for Obtaining Digital Signatures and

Public-Key Cryptosystems. Communications of the ACM.

Schneier, B. (2005, June 17). Write Down Your Password. Retrieved April 2, 2011, from

Schneier on Security:

http://www.schneier.com/blog/archives/2005/06/write_down_your.html

Schneier, B., & Ferguson, N. (2003). Practical Cryptography. Indianapolis: Wiley Publishing.

Sinnott-Armstrong, N. A., Greene, C. S., Cancare, F., & Moore, J. H. (2009, July 24).

Accelerating epistasis analysis in human genetics with consumer graphics hardware.

Retrieved March 20, 2011, from BMC Research notes:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2732631/

Tosaka. (2008, November 5). CUDA Processing Flow. Retrieved March 3, 2011, from

Wikimedia Commons:

http://commons.wikimedia.org/wiki/File:CUDA_processing_flow_(En).PNG

Vacca, J. R. (2009). Computer and Information Security Handbook. Burlington, MA: Morgan

Kaufmann Publishers.

http://www.nvidia.com/object/what_is_cuda_new.html
https://www.objectif-securite.ch/en/news.php
https://www.objectif-securite.ch/en/news.php

Academic Vita of Garrett M. Miller

Education: The Pennsylvania State University University Park, PA

Schreyer Honors College

B.S. with Honors in Information Sciences and Technology, Spring 2011

Minor: Security and Risk Analysis

Thesis: Future Implications of GPU Acceleration on Present Cryptographic

Standards

Activities:  Director, Undergraduate Learning Assistant Program, College of IST

 Alumni Relations Chair, IST THON

 President, IST Interest House

 Vice President, IST Student Government

 IST Honors Society: Gamma Tau Phi

 Treasurer/Seminar Leader, Information Assurance Club

 Seminar Leader, Security and Risk Analysis Club

 Defense Team Lead, IA Club iCTF Competition Team

 Member, Pride of the Lions Pep Band

 Learning Assistant, IST 297B: Supervised Experience in Instructional

Support

 Teaching Intern, IST 110: Information, People, and Technology

 Teaching Intern, SRA 111: Principles of Information Security

Honors/Awards:  Dean’s List

 IST Undergraduate Research Grant

 Security and Global Scholars Program

 GEICO Achievement Award 2010

 IST Sophomore Student Leader of the Year 2008-2009

 IST Freshman Student Leader of the Year 2007-2008

 Carl and Patricia Henninger, Peter J. Lechner, Ms. Eva Blum, and Mr.

Robert Bardusch Scholarships

 Pennsylvania Governor’s School of Excellence for Information,

Society, and Technology 2006

Presentations:  Scanning, Probing, Penetrating (NMap, Nessus, Metasploit)

 Session Hijacking/Firesheep

 Spy Hunter Packet Challenge (Forensics)

 Fun with Wireless (802.11, Bluetooth)

 Network Poisoning/Eavesdropping

 Advanced Password Cracking

