# REFRIGERATOR EFFICIENCY ANALYSIS FOR APPLICATION IN PSU RESIDENCE HALLS 

Gary P. Dundon II

Spring 2011

> A thesis submitted in partial fulfillment
> of the requirements
> for a baccalaureate degree
> in Mechanical Engineering with honors in Mechanical Engineering

Supervised and approved* by the following:
Andrew Lau
Associate Professor
Thesis Supervisor
Dr. Zoubeida Ounaies
Associate Professor
Honors Advisor
*Signatures are on file in the Schreyer Honors College


#### Abstract

Current trends in many fields of engineering are leading to new developments in energy efficiency and new more efficient technology. Modern technology often offers users several various settings that compromise between energy efficiency and various performance characteristics of the device much like a laptop computer's various settings which alternate performance settings to either optimize performance of the computer or maintain a minimal level of energy consumption. One such piece of modern technology, which is often taken for granted because it has not seemingly changed in many years, is the refrigerator. Users can choose from various temperature settings based on personal preference. Yet these settings affect the operating efficiency of the device. The major issues facing the improvement of refrigerator use and design is the lack of interest in the effect that each individual temperature setting has on the efficiency of the refrigerator overall and the wide range of applications that a refrigerator can be used for. The Absocold model refrigerator that is currently used in all Pennsylvania State University residence hall rooms was chosen to accurately recreate conditions in the dorms and analyze the energy consumption trends to propose improvements in that specific refrigerator design and use. The analysis of the refrigerator design was achieved by conducting several tests which monitored energy consumption and internal temperature of the refrigerator to determine baseline readings and test possible improvements to the design and usage of the refrigerator in the PSU dorms. The tests that were conducted included a baseline test where the refrigerator was run at "standard" conditions to generate a reference point for comparison to other tests, a ventilation test to determine the effect of ventilated air on the performance of the refrigerator, a test designed to determine the effect of improperly sealed or unclosed doors on the performance of the refrigerator, an insulation test to determine the effect of improved insulation on the


performance of the refrigerator, and a test to determine the difference between a "full" and an "empty" refrigerator. These tests helped to generate prototype improvements to the system as well as suggestions for the relocation of the refrigerator in the dorm rooms to avoid overheating the local environment. These improvements to the design and operation of the refrigerator include adding more insulation to the outside of the refrigerator, ensuring that the refrigerator is not stored, used, and operated next to the heaters in the residence hall rooms, and using higher refrigerator temperature settings for normal operation. These design and operation changes will result in a reduction in energy consumption and consequently savings on the cost of electricity in the residence halls.

## TABLE OF CONTENTS

LIST OF FIGURES ..... i
LIST OF TABLES ..... ii
ACKNOWLEDGEMENTS ..... iii
Chapter 1 Introduction .....  1
Background and Objectives ..... 2
Conclusions ..... 5
Chapter 2 Methods and Materials ..... 6
Basic Testing Procedure .....  6
Individual Test Outline ..... 8
Preparation of Insulation Prototype ..... 12
Chapter 3 Results ..... 14
Recorded Testing Data ..... 15
Chapter 4 Discussion and Conclusions ..... 18
Discussion ..... 18
Summary ..... 19
Conclusions ..... 22
Appendix ..... 24
References ..... 53

## LIST OF FIGURES

Figure 1-1: Basic refrigeration cycle ..... 3
Figure 2-1: Watts Up? PRO kilowatt meter used to collect energy consumption data ..... 7
Figure 2-2: HOBOware temperature sensor and thermometers used to collect temperature data ..... 7
Figure 2-3: Absocold refrigerator used in testing ..... 8
Figure 2-4: Insulation Test setup ..... 10
Figure 2-5: 3-D image of insulation prototype ..... 13
Figure 3-1: Control Test data ..... 15
Figure 3-2: Insulation Test data ..... 16
Figure 3-3: Environment / Circulation Test data ..... 16
Figure 3-4: Loaded Usage Test data ..... 17
Figure 3-5: Opening Usage Test data ..... 18
Figure 4-1: Combined Test Data ..... 21
Figure A-1: Insulation Prototype freezer door schematics ..... 50
Figure A-2: Insulation Prototype fridge door schematics ..... 51
Figure A-3: Insulation Prototype side schematics ..... 52

## LIST OF TABLES

Table A-1: Temperature data compiled for Control Test ..... 24
Table A-2: Temperature data compiled for Insulation Test ..... 29
Table A-3: Temperature data compiled for Environment / Circulation Test ..... 34
Table A-4: Temperature data compiled for Loaded Usage Test ..... 39
Table A-5: Temperature data compiled for Opening Usage Test ..... 44
Table A-6: Comparison data used to make Figures 3-1 to 3-5 ..... 49

## ACKNOWLEDGEMENTS

I would like to thank Dr. Cari Bryant Arnold for her help and guidance in helping me find this project, and for her support with this thesis project.

I would also like to thank Andrew Lau and Dr. Zoubeida Ounaies for their guidance with the project and their assistance with writing this thesis.

## Chapter 1

## Introduction

Recently there has been a great deal of interest in reducing energy costs and conserving energy in every aspect of society. When looking at the major sources of energy consumption in the Pennsylvania State University dormitories, it is apparent that the refrigerators supplied by the university use more energy than any other appliance or electronic device in the dorms. Currently, the refrigerators in the residence halls are used to store a number of different food products including, but not limited to, bottled water and other beverages, ready to eat and left over food, frozen food, condiments, and other food stuffs [1]. Clearly, it is an important part of residence hall life, for the students that do use their provided refrigerators. It is important that the university attempt to ensure that the refrigerators are not using more energy than necessary to accomplish the jobs that students commonly use them for. Therefore, if the university wishes to follow current trends towards conserving energy and cutting energy costs, which are well documented in several doctoral thesis dissertations, reports and other publications at Penn State and other universities [2], [3], the refrigerators in the dormitories could be analyzed to determine optimal temperature settings under various conditions to reduce energy consumption.

Testing the various temperature settings could help determine optimal refrigerator settings so that food can be stored at the proper temperature while using the least amount of energy. The research presented in this thesis outlines the testing performed on the refrigerator to determine optimal temperature settings, the effect of improved insulation on the refrigerator's performance, the effect that an improperly sealed or an unclosed door can have on performance, and the effect of ventilation on refrigerator performance. This testing could potentially save the
university a substantial amount in energy costs by reducing the amount of energy required to operate the refrigerators in the dorms. This chapter will provide background information on the refrigeration cycle as well as an overview of efficiency and energy consumption.

## Background Information and Objectives

A basic refrigeration cycle consists of a four stage cycle in which a low pressure liquid refrigerant is used to extract heat from inside the refrigerator causing the refrigerant to vaporize. This vapor is then compressed to a higher pressure and passed through a condenser which exhausts the heat to the environment and causes the refrigerant to condense. The refrigerant then passes through an expansion valve to return it to a lower pressure before the cycle repeats. The refrigerant cycle is often referred to as the reverse Carnot cycle because it follows the same basic process as a typical Carnot heat engine. The important difference between a refrigeration cycle and a Carnot heat engine cycle is that power must be added to the system to compress the refrigerant in the refrigeration cycle and remove heat from the system unlike a Carnot heat engine which forces the heated fluid in the cycle past a turbine to generate power. A basic refrigeration cycle is shown below in Figure 1-1 [4].


Figure 1-1: Basic refrigeration cycle

The main focus of this report centers on changes in the efficiency of the refrigerator. Therefore, an understanding of the definition of the efficiency of a refrigeration cycle must be explored so that recommendations to improve refrigerator performance can be made and implemented. The formal definition of the efficiency of a refrigeration cycle is dependent on the refrigerant that is used but is commonly defined as the heat removed from the inside of the refrigerator, or the amount of cooling, divided by work done on the system. The efficiency of a refrigeration cycle is commonly known as the coefficient of performance or COP. However, because the temperature and amount of cooling of the refrigerator was considered to be relatively constant, improved efficiency in this report directly means reduced energy input in terms of kilowatt hours used by the refrigerator to keep the interior compartment at the required temperature. This is an important consideration because typically the efficiency of any system is a ratio of the useful
energy output divided by the energy input to the system. However, as already mentioned, increased efficiency in this analysis will have units of energy in order to simplify the analysis [5].

The efficiency of the refrigeration cycle can be greatly affected by the temperature that the interior of the refrigerator, the evaporator in the cycle in Figure 1-1, is set to. This is because more energy is required to maintain a lower temperature in the refrigeration chamber. The temperature of the environment that is used as a heat sink is also important to the efficiency of the system. This is because the zeroth law of thermodynamics shows that in order for heat to transfer naturally from one area to another, the receiving area's temperature, the environment, must be lower than the temperature of the heat source, the refrigerator condenser. If the temperature of the environment is too high, the condenser will need to use a large amount of energy to continue exhausting heat to the environment. The effect of temperature on the efficiency of a basic refrigeration cycle is best represented by the Carnot refrigeration cycle. The Carnot refrigeration cycle efficiency is dependent only on the temperature of the environment and the temperature of the refrigeration chamber [5]. Therefore, the temperature of the surrounding environment and the temperature of the refrigeration chamber were an important part of designing the tests for this study and will be further discussed when the tests are outlined.

Finally, a basic understanding of energy consumption must be established. When measuring electricity, energy consumption is measured in terms of kilowatt hours (kWh). This creates a way to measure energy consumption over a period of time so that utility companies can bill consumers for their energy consumption. The refrigerator that was tested in this analysis is rated by the manufacturer to consume an estimated 290 kWh per year with an estimated yearly operating cost of $\$ 31$. This number will be evaluated for accuracy and to determine what the
manufacturer deemed to be "normal operating conditions." Furthermore, it is easy to see how quickly energy savings can compound when looking at the University Park campus as a whole. This is because there are around 6100 dorm style rooms on the University Park campus, which means that there are approximately that many refrigerators similar to the one tested in this report in operation at all times [6]. This means that these refrigerators use approximately 1.769 GWh of energy per year at a cost of around $\$ 189,100$ per year based on the manufacturer's estimations. Therefore, a reduction of ten percent in energy usage, which analysis shows is possible, would result in an average savings of around $\$ 18000$ per year. Overall, energy consumption is an important consideration in this analysis, which must be carefully evaluated to ensure accuracy and validity when and if the recommendations of this report are put into practice. It is also established by many authors that improving the efficiency of small appliances and other devices can greatly reduce the overall financial cost of energy for a building in both industrial and commercial settings [7].

## Conclusions

Overall, an understanding of the refrigeration cycle was a pivotal part of determining the various tests that would be performed during this analysis. Understanding the impact that the environment can have on the cycle including what happens if heat cannot be properly exhausted from the condenser, heat loss due to poor insulation, and several other factors helped establish several possible scenarios that could be evaluated. Many studies and textbooks describing basic thermodynamic principles demonstrate the impact that all of the above conditions can have on the efficiency of the refrigeration cycle and consequently these studies were pivotal in guiding the creation of the tests for this study [8]. Overall, reducing the energy use of the refrigerator
was the main focus of the analysis and this concept forms the basis for all the recommendations in this analysis.

## Chapter 2

## Methods and Materials

The research and testing for this thesis was conducted in several various phases. In order to describe the methods and materials used during the testing process, this material has been divided into three sections including the basic testing procedure that was followed for each test, an overview of each test that was conducted and the environmental and system level modifications that were tested, and the preparation of the additional insulation prototype design that was developed after initial testing to improve the overall energy efficiency of the Absocold refrigerator.

## Basic Testing Procedure

Each test was conducted over a twelve hour period during which the total energy consumption of the refrigerator and the internal temperature of the refrigerator were monitored using a kilowatt meter and a temperature sensor respectively. Each test was performed on all five numbered temperature settings to determine a range of operating parameters for the refrigerator. Before each test run, the refrigerator was allowed to run at the desired temperature setting for one hour before testing started to ensure that the internal temperature had reached average values for that setting. This was done to obtain comparable energy consumptions for each setting which could be extrapolated over a longer time period for comparison to existing data provided by the manufacturer. The temperature of the room and the location of the refrigerator were kept
constant for every test to ensure consistency and avoid biasing the results. The kilowatt meter, temperature sensors, and the refrigerator that were used in the testing are displayed below in

Figures 2-1, 2-2, and 2-3 respectively. The refrigerator used in this analysis is a model
ARD298CB Absocold refrigerator, the Watts up? PRO kilowatt meter is a model SM-EE-WU-
PRO Watts up? PRO kilowatt meter and the temperature sensor is a model UA-002-64

HOBOWare temperature and light sensor pendant.


Figure 2-1: Watts up? PRO kilowatt meter used to collect energy consumption data


Figure 2-2: HOBOware temperature sensor and thermometers used to collect temperature data


Figure 2-3: Absocold refrigerator used in testing

## Individual Test Outline

A series of five tests were developed to determine optimal thermostat settings for typical application in the dormitories, evaluate the impact that the physical location of the refrigerator in the dormitories can have on performance, and determine the practicality of an improved layer of insulation being added onto the existing refrigerator in terms of improved performance. The tests will be outlined below to explain the goal of each test and outline the changes to the basic testing procedure that were applied for each test.

The first test, the "Control Test," was developed to establish a baseline for comparison to other tests and determine the change in energy consumption between each temperature setting. No changes were made to the standard testing procedure, and all five temperature settings were tested in order to establish a comparison between temperature settings and between later tests. The data collected from this test was used to determine changes in efficiency based on the changes seen in energy consumption when compared to this test. Several testing procedures were analyzed in order to develop an acceptable testing procedure for this project to prevent biasing the results and to maintain the accuracy of the results. These sources demonstrated that each test should be run over a period of at least twelve hours so that a large amount of data could be collected for each test to ensure accuracy [9], [10]. By looking at these other experiments, it also became clear that the refrigerator should be allowed to run and reach an "average" temperature when the temperature setting is changed for each new test. The temperature data that was collected suggests that the refrigerator only needs about an hour to reach a new steady temperature after it is initially turned back on and has been running for several hours. This would prevent the energy data collected from containing erroneous information reflecting the time period when the refrigerator must run continuously to reach a much lower temperature.

The second test, the "Insulation Test," focused on determining the effect of improved insulation on the performance of the refrigerator. The refrigerator was first tightly wrapped in an extra layer of foam which was then covered with a bed quilt. The heat exchanging system on the back of the refrigerator was left uncovered so that heat could still be properly exhausted from the system. This test was developed to generate an estimation of the efficiency improvements by adding more insulation to the refrigerator. This test merely demonstrates that improved insulation does improve efficiency. This efficiency improvement estimation was used to
determine the practicality, in terms of potential gains when compared to material costs, of creating a more functional "insulation prototype" which could be manufactured and sold or assembled by the university or the individual owner as needed. Again, the data collected for this test is only meant to be a preliminary estimation of the performance of improved insulation. Although, an insulation prototype was created as a result of this test, this prototype should be tested before it is implemented. Due to budget constraints, the prototype was never tested to determine more specific reductions in the refrigerator's energy consumption. The results of this initial test led to the generation of an "insulation prototype" which will be detailed later in this report. Overall, improved insulation is a well-documented way to improve the efficiency of any refrigeration cycle by reducing the amount of heat put into the system by the environment, which is why this test was developed and implemented even in this preliminary stage [11]. The refrigerator setup for the Insulation Test is shown below in Figure 2-4 as a visual aid.


Figure 2-4: Insulation Test setup

The next test that was implemented will be referred to as the "Environmental/Circulation Test." This test was developed to determine the effect of improved air circulation coupled with a slightly cooler environment on overall refrigerator performance and efficiency. The test consisted of running the refrigerator at each temperature setting while a ceiling fan was running in the room. The refrigerator was also moved about six inches farther away from the wall than all other tests. The main focus of this test was to demonstrate the importance of placement of the refrigerator on its overall energy consumption [12]. As already discussed, the temperature of the surrounding environment reflects the amount of energy that the compressor and the condenser must consume in order for the refrigerator to reach its specified temperature.

The forth test consisted of loading both the main refrigerator compartment and the freezer compartment with canned drinks and bottled water. This test will be referred to as the "Loaded Usage Test" in later discussion and was developed to determine the impact that fully filling or loading the refrigerator has on the refrigerator's energy consumption. The purpose of this test was to create a more accurate estimation of the actual energy usage of the refrigerator in practice and not just the optimal levels of energy consumption that can be reached if the refrigerator is left to run. This test was also used to demonstrate the simple but often overlooked concept that all electronic devices use energy at all times regardless of whether they are actually in use by the "user" or not.

The final test that was performed was designed to demonstrate the impact that opening and closing the refrigerator door can have on energy consumption. This test was again developed to demonstrate more realistic energy consumption levels when the refrigerator is actually in use. Furthermore, this test can be used to estimate the impact that an improperly sealed door can have on the energy consumption of the refrigerator. This test, known as the "Open Usage Test," was
performed by periodically opening and closing the door of the refrigerator for thirty seconds once every three hours. This test was carefully monitored so that the results would be as consistent as possible, and, unlike the other tests which could be run without much supervision, this test was only performed during set intervals when it could be monitored for a full twelve hour period.

## Preparation of Insulation Prototype

After initial testing, the data demonstrated that improved insulation greatly improved overall performance of the refrigerator. Therefore, a more practical insulation sleeve which will be known as the "Insulation Prototype" was developed with several specifications in mind. These specifications were developed so that the prototype could be easily constructed at a low cost while still providing an adequate reduction in the energy consumption of the refrigerator. If these goals were met, the prototype could be applied to the refrigerators in the dorms and potentially save the university money on electricity bills over the long term. The effect of improved insulation can often have an extensive impact on the overall efficiency of the refrigeration cycle, which is why improved insulation may be a viable way to reduce the energy costs of the refrigerators used in the dorms [13]. The main specifications include an inexpensive insulation material that would not make the refrigerator overly bulky, a system that remains aesthetically pleasing, and possibly the most important a noticeable improvement in the refrigerator's performance. After some consideration of various materials, Super Tuff-R R-3.3 insulation was chosen for its overall cost of $\$ 12.45$ per $4^{\prime} \times 8^{\prime}$ sheet and thickness of one half inch [14]. The insulation was cut into two $2^{\prime} 8^{\prime \prime}$ high by $1^{\prime} 3^{\prime \prime}$ wide rectangles which would be adhered to the sides of the refrigerator using heavy duty duct tape. A smaller $10^{\prime \prime}$ high by $1^{\prime} 6^{\prime \prime}$ wide rectangle was then cut to cover the freezer door and a 1 ' 8 " high by $1^{\prime} 6 "$ wide rectangle
was cut to cover the main compartment door. This setup would allow each door to be opened independently, but is not as aesthetically pleasing. A slight variation could also easily be applied making the front panel one piece which would attach both doors together so that they would no longer open independently. This would serve the same function, but would be more aesthetically pleasing although it may perform differently. The insulation can be adhered to the side of the refrigerator using a heavy duty all-purpose liquid construction adhesive that costs $\$ 53.35$ for a twenty four pack of ten ounce containers [15]. The insulation could then be spray painted or covered with fabric to make the unit more aesthetically pleasing. It is important to note that this prototype was built and briefly tested to verify that it demonstrated the desired performance improvements. However, it is still in the development phase and should be tested more thoroughly before it is widely implemented. The insulation prototype is displayed below in Figure 2-5.


Figure 2-5: 3-D image of Insulation Prototype

## Chapter 3

## Results

The data and results supporting my final conclusions are outlined below. This data is preliminary, and should be further supported by independent testing. However, the final results of these tests could be used to improve the overall performance of the refrigerators currently in use in the dorms by an average of around ten percent per unit. All graphs of the data are displayed starting with the lowest temperature setting and then continue up through the higher temperature settings. The temperature data reflected in the data charts is an average temperature at each temperature setting. The graphs are in terms of energy consumption in watt hours versus temperature setting in degrees Fahrenheit. An average temperature at each setting was found to create a number for comparison between each setting and between each test. It is important to note that the refrigerator temperature fluctuates above and below this established average temperature during normal operation. An average temperature was used to simplify comparison between settings.

## Recorded Testing Data

The first data set reflects the data collected from the Control Test and was used as a baseline for comparison. The data collected from each test run was extrapolated and then compared to the established manufacturer's energy consumption information in order to verify or disprove their estimate. The data is displayed below in Figure 3-1.


Figure 3-1: Control Test Data

The next data set demonstrates the impact that improved insulation can have on the energy consumption of the refrigerator. The Insulation Test data displayed below in Figure 3-2 was compared to the Control Test data to establish relative reductions or increases in energy consumption and determine the practicality of designing an Insulation Prototype sleeve to improve refrigerator performance.


Figure 3-2: Insulation Test Data

The Environment/Circulation Test reflects the impact that a cooler exterior environment or improved air circulation can have on the refrigerator's energy consumption. This data can also reflect the negative impact a warmer surrounding environment can have on refrigerator performance. The data for this test is displayed below in Figure 3-3.


Figure 3-3: Environment / Circulation Test Data

The Loaded Usage Test data represents the effect of filling or loading the refrigerator to establish a more realistic comparison to actual usage. This data is an important comparison tool to determine whether the data provided by the refrigerator company accurately reflects actual energy consumption. The data for the Loaded Usage Test is displayed below in Figure 3-4.


Figure 3-4: Loaded Usage Test Data

The final data set, The Opening Usage Test, represents the effect that opening the refrigerator door has on energy consumption. It can also be used to estimate the effect that an improperly sealed section can have on the refrigerator's energy consumption. The data is displayed below in Figure 3-5.


Figure 3-5: Opening Usage Test Data

## Chapter 4

## Discussion and Conclusions

This section will outline the final results of the tests and outline recommendations for the usage of the refrigerator in the dorms. If implemented, these recommendations have the potential to save the Pennsylvania State University money on electricity bills for the dormitories and reducing the energy consumption of one of the most energy intensive appliances that are currently used by most students in the dorms. Reducing the energy consumption of the dorms will also demonstrate Penn State's willingness to move towards a more sustainable energy future.

## Discussion

The Control Test data demonstrates that the lowest temperature setting, labeled setting \#1, which produces an average temperature of around $33.16^{\circ} \mathrm{F}$ inside the refrigerator, consumes 425.8 watts hours over a twelve hour period. The highest temperature setting, labeled setting \# 5, allow the refrigerator to reach an average temperature setting of $39.27^{\circ} \mathrm{F}$ while consuming 292.5 watts hours over a twelve hour period. This demonstrates that the refrigerator can be operated at the highest temperature settings in order to reduce energy consumption while maintaining the temperature necessary for food storage. It is important to note that the temperature remains relatively constant between the middle temperature setting and the highest temperature setting, while the energy consumption at these respective settings decreases slightly for the higher temperature settings. Therefore, if the refrigerator is operated at this setting every day for one year, it would consume approximately 213 kWh , and therefore falls within the manufacturer's estimations of 290 kWh for a year of normal operation.

The Insulation Test demonstrates that improved insulation can reduce the energy consumption of the refrigerator. The data shows that improved insulation can have a maximum of a thirteen percent reduction in power at the higher temperature settings. The average energy reduction from testing is around seven percent. This suggests that improved insulation may be a viable option, and supports the creation of an insulation prototype. However, the increases in internal refrigerator temperature should be further analyzed to determine whether other factors were affecting efficiency or whether a better overall internal temperature average can be determined. Overall, because the refrigerator environment was never completely controlled due to experimental constraints, the data most likely has some inherent error which may explain the internal temperature changes between tests.

The Environment/Circulation Test demonstrates that a cooler surrounding environment and/or improved air circulation can reduce the energy consumption of the refrigerator. As the data suggests, the lower temperature settings are more affected by the exterior environment that the refrigerator is placed in. With proper air circulation, the lower temperature settings can experience around an eight percent reduction in energy consumption. However, the higher temperature settings actually experience an increase in energy consumption. The data suggests that the environment may have an impact on the energy consumption, but more testing needs to be done to verify the data from these tests. Another important implication of this test is that an increase in the temperature of the environment may have a detrimental effect on the energy consumption of the system. This implication can be inferred from the data and is supported by thermodynamic theory because, as already discussed, a high environment temperature makes it difficult for the condenser to exhaust heat during the refrigeration cycle. Therefore, the refrigerator should not be operated near the heater in the residence halls to reach maximum performance levels.

The Loaded Usage Test demonstrates that the energy consumption of the refrigerator changes based on whether the refrigerator is full or empty. The tests suggest that a refrigerator loaded with soda cans and bottles of water can use up to thirty two percent more energy than an empty or unloaded refrigerator. This data is important because it demonstrates that a refrigerator that is being used for its intended purpose will consume more energy suggesting that the actual cost of running the refrigerator will be higher than expected by the manufacturer. This data should be further verified to ensure accuracy, but will not have any major effect on the recommendations of this report. However, the data actually demonstrates that the middle operating setting will still fall within the manufacturer's estimations and will consume roughly 247 kWh per year.

Furthermore, the Opening Usage Test demonstrates the importance of properly closing and sealing the refrigerator and ensuring that there are no broken or leaking seals. Generally, opening the refrigerator to simulate normal usage patterns suggests that all temperature settings will likely experience an increase in energy consumption which may be as high as twenty six percent. Estimation from this data shows that the middle energy consumption will be around 225 kWh and still falls within the manufacturer's estimation. This test combined with the Loaded Usage Test may represent a more accurate description of the energy consumption of the refrigerators in the dorms. All of the data is displayed below in Figure 4-1 to demonstrate the gains and losses that the test data represents. This allows for a clear visualization and comparison between tests. Furthermore, it should be noted that several tests reflect that the refrigerator does not reach low enough temperatures for proper food storage when set at or above the middle temperature setting, thermostat setting 3 , as can be seen in the above graph. This could be due to the fact that these tests were conducted during the summer in a warmer environment which could have effected testing despite efforts to control room temperature.


Figure 4-1: Combined Test Data

## Summary

After testing, the data points to several basic conclusions about the operation of the refrigerator in the dorm rooms. The first basic conclusion is that the refrigerator will likely use more energy during actual usage than the manufacturer actually claims it will use. This is because the manufacturer's reported numbers indicate that their energy consumption ratings are based on an empty refrigerator, whereas testing shows that a refrigerator with food or drinks inside it will use more energy during normal operation. This is an important consideration because this will affect the amount of money spent on electricity in the dorms. The "Opening Usage Test" further demonstrates that it is important to properly close and seal the refrigerator so that the energy consumption of the refrigerator is minimized during normal usage. This test demonstrates the increase in energy consumption that is possible if the seals on the refrigerator are faulty or if the refrigerator is not properly closed. Overall, testing shows that the refrigerator should be operated at the middle temperature setting, thermostat setting \# 3, to minimize energy consumption and ensure that the temperature in the refrigerator remains at a low enough temperature for food storage. The data also suggests that the lowest temperature settings, thermostat settings at and above \#4, should not be used because they turn the entire refrigerator into a freezer, which greatly increases the energy consumption of the system. The "Environment/Circulation Test" further suggests that the surrounding environment temperature affects the energy consumption. Therefore, it is recommended that the refrigerator is not set in front of the heater in the dorms so that the refrigerator can properly exhaust heat to the environment. The refrigerator should be placed in a well-ventilated area if possible to further reduce the energy consumption of the refrigerator. The "Insulation Test" suggests that improved insulation on the refrigerator doors and walls can reduce the energy consumption of the system. If the prototype that was developed
during this study is implemented, the university will save money on electricity costs due to the reduction in the refrigerator energy consumption. The cost of the prototype should be recovered in these electricity savings in about two years depending on the price of electricity. It is again important to note that some of the tests demonstrate that the thermostat settings at and above the middle setting, setting \#3, may not bring the refrigerator to temperatures low enough for food storage. Further testing should be done to create a more accurate average temperature for each setting. Finally, the data in this study suggests that the university could potentially save even more by removing refrigerators from the dorms if students agree that they do not want and/or need them due to the availability of food in the dorm cafeterias and other food suppliers around campus.

## Conclusions

Overall, the data collected from testing suggests that there are several ways to reduce the energy consumption of the refrigerator in the dorms and save the university money over the long term. These savings could be substantial and could average around $\$ 18000$ per year if energy consumption can be reduced by ten percent or more. The changes to the usage and basic design of the refrigerator suggested in this report could help reduce the energy consumption of the refrigerator and ultimately save the university money on electricity bills. Making an effort to reduce energy consumption can also demonstrate the Pennsylvania State University's willingness to become more energy responsible which will improve the university's reputation around the country. The data collected during this study can provide a foundation for further study in other areas around the university, and demonstrate that even small reductions in energy consumption in a single appliance or other system can have a compounding effect throughout the university if applied to multiple areas or appliances.

## Appendix

| Table A-1: Temperature data complied for Control Test |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | Time, GMT-04:00 | Temp, ${ }^{\circ} \mathrm{F}$ | \# | Time, GMT-04:00 | Temp, ${ }^{\circ} \mathrm{F}$ |
| 1 | 7/6/2010 16:30 | 40.321 | 21 | 7/6/2010 19:50 | 37.679 |
| 2 | 7/6/2010 16:40 | 39.76 | 22 | 7/6/2010 20:00 | 40.509 |
| 3 | 7/6/2010 16:50 | 41.81 | 23 | 7/6/2010 20:10 | 40.134 |
| 4 | 7/6/2010 17:00 | 38.25 | 24 | 7/6/2010 20:20 | 37.107 |
| 5 | 7/6/2010 17:10 | 38.061 | 25 | 7/6/2010 20:30 | 39.76 |
| 6 | 7/6/2010 17:20 | 40.881 | 26 | 7/6/2010 20:40 | 41.439 |
| 7 | 7/6/2010 17:30 | 39.573 | 27 | 7/6/2010 20:50 | 36.914 |
| 8 | 7/6/2010 17:40 | 37.297 | 28 | 7/6/2010 21:00 | 39.196 |
| 9 | 7/6/2010 17:50 | 40.321 | 29 | 7/6/2010 21:10 | 41.81 |
| 10 | 7/6/2010 18:00 | 40.881 | 30 | 7/6/2010 21:20 | 37.488 |
| 11 | 7/6/2010 18:10 | 36.914 | 31 | 7/6/2010 21:30 | 38.25 |
| 12 | 7/6/2010 18:20 | 39.76 | 32 | 7/6/2010 21:40 | 40.881 |
| 13 | 7/6/2010 18:30 | 41.439 | 33 | 7/6/2010 21:50 | 39.76 |
| 14 | 7/6/2010 18:40 | 36.723 | 34 | 7/6/2010 22:00 | 37.107 |
| 15 | 7/6/2010 18:50 | 39.007 | 35 | 7/6/2010 22:10 | 39.947 |
| 16 | 7/6/2010 19:00 | 41.625 | 36 | 7/6/2010 22:20 | 41.254 |
| 17 | 7/6/2010 19:10 | 37.107 | 37 | 7/6/2010 22:30 | 36.531 |
| 18 | 7/6/2010 19:20 | 38.25 | 38 | 7/6/2010 22:40 | 39.007 |
| 19 | 7/6/2010 19:30 | 41.254 | 39 | 7/6/2010 22:50 | 41.439 |
| 20 | 7/6/2010 19:40 | 38.25 | 40 | 7/6/2010 23:00 | 37.297 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| 41 | 7/6/2010 23:10 | 38.25 | 61 | 7/7/2010 2:30 | 40.881 |
| 42 | 7/6/2010 23:20 | 40.881 | 62 | 7/7/2010 2:40 | 39.76 |
| 43 | 7/6/2010 23:30 | 38.629 | 63 | 7/7/2010 2:50 | 37.297 |
| 44 | 7/6/2010 23:40 | 37.488 | 64 | 7/7/2010 3:00 | 40.321 |
| 45 | 7/6/2010 23:50 | 40.321 | 65 | 7/7/2010 3:10 | 41.067 |
| 46 | 7/7/2010 0:00 | 40.321 | 66 | 7/7/2010 3:20 | 36.914 |
| 47 | 7/7/2010 0:10 | 37.107 | 67 | 7/7/2010 3:30 | 39.573 |
| 48 | 7/7/2010 0:20 | 39.947 | 68 | 7/7/2010 3:40 | 41.625 |
| 49 | 7/7/2010 0:30 | 41.254 | 69 | 7/7/2010 3:50 | 36.723 |
| 50 | 7/7/2010 0:40 | 36.914 | 70 | 7/7/2010 4:00 | 39.007 |
| 51 | 7/7/2010 0:50 | 39.573 | 71 | 7/7/2010 4:10 | 41.625 |
| 52 | 7/7/2010 1:00 | 41.625 | 72 | 7/7/2010 4:20 | 37.488 |
| 53 | 7/7/2010 1:10 | 36.914 | 73 | 7/7/2010 4:30 | 38.25 |
| 54 | 7/7/2010 1:20 | 39.196 | 74 | 7/7/2010 4:40 | 41.067 |
| 55 | 7/7/2010 1:30 | 41.81 | 75 | 7/7/2010 4:50 | 38.818 |
| 56 | 7/7/2010 1:40 | 37.488 | 76 | 7/7/2010 5:00 | 37.679 |
| 57 | 7/7/2010 1:50 | 38.629 | 77 | 7/7/2010 5:10 | 40.509 |
| 58 | 7/7/2010 2:00 | 41.439 | 78 | 7/7/2010 5:20 | 40.509 |
| 59 | 7/7/2010 2:10 | 38.44 | 79 | 7/7/2010 5:30 | 36.914 |
| 60 | 7/7/2010 2:20 | 37.87 | 80 | 7/7/2010 5:40 | 39.76 |


| Temperature Setting 2 |  | Temp, ${ }^{\circ} \mathrm{F}$ | \# | Time, GMT-04:00 | Temp, ${ }^{\circ} \mathrm{F}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | Time, GMT-04:00 |  |  |  |  |
| 1 | 7/7/2010 19:30 | 38.818 | 21 | 7/7/2010 22:50 | 41.439 |
| 2 | 7/7/2010 19:40 | 41.067 | 22 | 7/7/2010 23:00 | 36.531 |
| 3 | 7/7/2010 19:50 | 40.881 | 23 | 7/7/2010 23:10 | 38.44 |
| 4 | 7/7/2010 20:00 | 36.723 | 24 | 7/7/2010 23:20 | 41.067 |
| 5 | 7/7/2010 20:10 | 39.196 | 25 | 7/7/2010 23:30 | 39.76 |
| 6 | 7/7/2010 20:20 | 41.81 | 26 | 7/7/2010 23:40 | 36.914 |
| 7 | 7/7/2010 20:30 | 38.25 | 27 | 7/7/2010 23:50 | 39.384 |
| 8 | 7/7/2010 20:40 | 37.488 | 28 | 7/8/20100:00 | 41.81 |
| 9 | 7/7/2010 20:50 | 40.321 | 29 | 7/8/2010 0:10 | 37.297 |
| 10 | 7/7/2010 21:00 | 41.625 | 30 | 7/8/2010 0:20 | 37.488 |
| 11 | 7/7/2010 21:10 | 36.723 | 31 | 7/8/2010 0:30 | 40.321 |
| 12 | 7/7/2010 21:20 | 38.44 | 32 | 7/8/2010 0:40 | 41.254 |
| 13 | 7/7/2010 21:30 | 41.254 | 33 | 7/8/2010 0:50 | 36.531 |
| 14 | 7/7/2010 21:40 | 39.76 | 34 | 7/8/2010 1:00 | 38.629 |
| 15 | 7/7/2010 21:50 | 36.914 | 35 | 7/8/2010 1:10 | 41.439 |
| 16 | 7/7/2010 22:00 | 39.573 | 36 | 7/8/2010 1:20 | 38.629 |
| 17 | 7/7/2010 22:10 | 41.81 | 37 | 7/8/2010 1:30 | 37.107 |
| 18 | 7/7/2010 22:20 | 37.488 | 38 | 7/8/2010 1:40 | 39.947 |
| 19 | 7/7/2010 22:30 | 37.488 | 39 | 7/8/2010 1:50 | 41.625 |
| 20 | 7/7/2010 22:40 | 40.321 | 40 | 7/8/2010 2:00 | 36.531 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| 41 | 7/8/2010 2:10 | 38.25 | 61 | 7/8/2010 5:30 | 37.87 |
| 42 | 7/8/2010 2:20 | 41.254 | 62 | 7/8/2010 5:40 | 37.297 |
| 43 | 7/8/2010 2:30 | 39.384 | 63 | 7/8/2010 5:50 | 40.321 |
| 44 | 7/8/2010 2:40 | 36.914 | 64 | 7/8/2010 6:00 | 41.254 |
| 45 | 7/8/2010 2:50 | 39.76 | 65 | 7/8/2010 6:10 | 36.531 |
| 46 | 7/8/2010 3:00 | 41.81 | 66 | 7/8/2010 6:20 | 38.629 |
| 47 | 7/8/2010 3:10 | 36.914 | 67 | 7/8/2010 6:30 | 41.439 |
| 48 | 7/8/2010 3:20 | 38.061 | 68 | 7/8/2010 6:40 | 39.007 |
| 49 | 7/8/2010 3:30 | 40.881 | 69 | 7/8/2010 6:50 | 36.914 |
| 50 | 7/8/2010 3:40 | 40.134 | 70 | 7/8/2010 7:00 | 39.76 |
| 51 | 7/8/2010 3:50 | 36.723 | 71 | 7/8/2010 7:10 | 41.81 |
| 52 | 7/8/2010 4:00 | 39.384 | 72 | 7/8/2010 7:20 | 36.914 |
| 53 | 7/8/2010 4:10 | 41.81 | 73 | 7/8/2010 7:30 | 38.061 |
| 54 | 7/8/2010 4:20 | 37.107 | 74 | 7/8/2010 7:40 | 40.881 |
| 55 | 7/8/2010 4:30 | 37.679 | 75 | 7/8/2010 7:50 | 40.321 |
| 56 | 7/8/2010 4:40 | 40.509 | 76 | 7/8/2010 8:00 | 36.723 |
| 57 | 7/8/2010 4:50 | 40.881 | 77 | 7/8/2010 8:10 | 39.196 |
| 58 | 7/8/2010 5:00 | 36.531 | 78 | 7/8/2010 8:20 | 41.81 |
| 59 | 7/8/2010 5:10 | 39.007 | 79 | 7/8/2010 8:30 | 38.061 |
| 60 | 7/8/2010 5:20 | 41.625 | 80 | 7/8/2010 8:40 | 37.488 |


| Temperature Setting 3 |  | Temp, ${ }^{\circ} \mathrm{F}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | Time, GMT-04:00 |  |  |  |  |
| 1 | 7/8/2010 20:00 | 38.44 | 21 | 7/8/2010 23:20 | 37.297 |
| 2 | 7/8/2010 20:10 | 40.321 | 22 | 7/8/2010 23:30 | 37.488 |
| 3 | 7/8/2010 20:20 | 42.179 | 23 | 7/8/2010 23:40 | 39.947 |
| 4 | 7/8/2010 20:30 | 38.629 | 24 | 7/8/2010 23:50 | 41.994 |
| 5 | 7/8/2010 20:40 | 37.107 | 25 | 7/9/2010 0:00 | 38.44 |
| 6 | 7/8/2010 20:50 | 39.573 | 26 | 7/9/2010 0:10 | 36.914 |
| 7 | 7/8/2010 21:00 | 41.994 | 27 | 7/9/2010 0:20 | 39.384 |
| 8 | 7/8/2010 21:10 | 39.573 | 28 | 7/9/2010 0:30 | 41.81 |
| 9 | 7/8/2010 21:20 | 36.723 | 29 | 7/9/2010 0:40 | 39.573 |
| 10 | 7/8/2010 21:30 | 39.007 | 30 | 7/9/2010 0:50 | 36.723 |
| 11 | 7/8/2010 21:40 | 41.439 | 31 | 7/9/2010 1:00 | 39.007 |
| 12 | 7/8/2010 21:50 | 40.509 | 32 | 7/9/2010 1:10 | 41.439 |
| 13 | 7/8/2010 22:00 | 36.531 | 33 | 7/9/2010 1:20 | 40.321 |
| 14 | 7/8/2010 22:10 | 38.44 | 34 | 7/9/2010 1:30 | 36.531 |
| 15 | 7/8/2010 22:20 | 40.881 | 35 | 7/9/2010 1:40 | 38.44 |
| 16 | 7/8/2010 22:30 | 41.439 | 36 | 7/9/2010 1:50 | 40.881 |
| 17 | 7/8/2010 22:40 | 36.723 | 37 | 7/9/2010 2:00 | 41.439 |
| 18 | 7/8/2010 22:50 | 38.061 | 38 | 7/9/2010 2:10 | 36.723 |
| 19 | 7/8/2010 23:00 | 40.509 | 39 | 7/9/2010 2:20 | 37.87 |
| 20 | 7/8/2010 23:10 | 41.994 | 40 | 7/9/2010 2:30 | 40.321 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| 41 | 7/9/2010 2:40 | 41.994 | 61 | 7/9/2010 6:00 | 40.321 |
| 42 | 7/9/2010 2:50 | 37.679 | 62 | 7/9/2010 6:10 | 42.179 |
| 43 | 7/9/2010 3:00 | 37.488 | 63 | 7/9/2010 6:20 | 37.87 |
| 44 | 7/9/2010 3:10 | 39.947 | 64 | 7/9/2010 6:30 | 37.488 |
| 45 | 7/9/2010 3:20 | 41.994 | 65 | 7/9/2010 6:40 | 39.76 |
| 46 | 7/9/2010 3:30 | 38.818 | 66 | 7/9/2010 6:50 | 41.994 |
| 47 | 7/9/2010 3:40 | 36.914 | 67 | 7/9/2010 7:00 | 38.629 |
| 48 | 7/9/2010 3:50 | 39.196 | 68 | 7/9/2010 7:10 | 37.107 |
| 49 | 7/9/2010 4:00 | 41.625 | 69 | 7/9/2010 7:20 | 39.384 |
| 50 | 7/9/2010 4:10 | 39.947 | 70 | 7/9/2010 7:30 | 41.81 |
| 51 | 7/9/2010 4:20 | 36.723 | 71 | 7/9/2010 7:40 | 39.573 |
| 52 | 7/9/2010 4:30 | 38.629 | 72 | 7/9/2010 7:50 | 36.914 |
| 53 | 7/9/2010 4:40 | 41.067 | 73 | 7/9/2010 8:00 | 39.007 |
| 54 | 7/9/2010 4:50 | 41.067 | 74 | 7/9/2010 8:10 | 41.439 |
| 55 | 7/9/2010 5:00 | 36.723 | 75 | 7/9/2010 8:20 | 40.509 |
| 56 | 7/9/2010 5:10 | 38.25 | 76 | 7/9/2010 8:30 | 36.723 |
| 57 | 7/9/2010 5:20 | 40.696 | 77 | 7/9/2010 8:40 | 38.629 |
| 58 | 7/9/2010 5:30 | 41.81 | 78 | 7/9/2010 8:50 | 40.881 |
| 59 | 7/9/2010 5:40 | 37.107 | 79 | 7/9/2010 9:00 | 41.439 |
| 60 | 7/9/2010 5:50 | 37.87 | 80 | 7/9/2010 9:10 | 36.914 |


| Temperature Setting 4 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | Time, GMT-04:00 | Temp, ${ }^{\circ} \mathrm{F}$ | \# | Time, GMT-04:00 | Temp, ${ }^{\circ} \mathrm{F}$ |
| 1 | 7/9/2010 21:00 | 46.908 | 21 | 7/10/2010 0:20 | 31.818 |
| 2 | 7/9/2010 21:10 | 36.338 | 22 | 7/10/2010 0:30 | 31.818 |
| 3 | 7/9/2010 21:20 | 30.81 | 23 | 7/10/2010 0:40 | 35.175 |
| 4 | 7/9/2010 21:30 | 32.815 | 24 | 7/10/2010 0:50 | 38.25 |
| 5 | 7/9/2010 21:40 | 36.338 | 25 | 7/10/2010 1:00 | 40.696 |
| 6 | 7/9/2010 21:50 | 39.196 | 26 | 7/10/2010 1:10 | 38.818 |
| 7 | 7/9/2010 22:00 | 41.067 | 27 | 7/10/2010 1:20 | 32.418 |
| 8 | 7/9/2010 22:10 | 35.951 | 28 | 7/10/2010 1:30 | 31.617 |
| 9 | 7/9/2010 22:20 | 30.403 | 29 | 7/10/2010 1:40 | 34.981 |
| 10 | 7/9/2010 22:30 | 32.018 | 30 | 7/10/2010 1:50 | 38.061 |
| 11 | 7/9/2010 22:40 | 35.564 | 31 | 7/10/2010 2:00 | 40.509 |
| 12 | 7/9/2010 22:50 | 38.629 | 32 | 7/10/2010 2:10 | 39.384 |
| 13 | 7/9/2010 23:00 | 41.067 | 33 | 7/10/2010 2:20 | 32.815 |
| 14 | 7/9/2010 23:10 | 37.679 | 34 | 7/10/2010 2:30 | 31.415 |
| 15 | 7/9/2010 23:20 | 31.213 | 35 | 7/10/2010 2:40 | 34.59 |
| 16 | 7/9/2010 23:30 | 31.617 | 36 | 7/10/2010 2:50 | 37.679 |
| 17 | 7/9/2010 23:40 | 35.175 | 37 | 7/10/2010 3:00 | 40.321 |
| 18 | 7/9/2010 23:50 | 38.25 | 38 | 7/10/2010 3:10 | 39.947 |
| 19 | 7/10/2010 0:00 | 40.881 | 39 | 7/10/2010 3:20 | 33.607 |
| 20 | 7/10/2010 0:10 | 38.44 | 40 | 7/10/2010 3:30 | 31.213 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| 41 | 7/10/2010 3:40 | 34.198 | 61 | 7/10/2010 7:00 | 38.44 |
| 42 | 7/10/2010 3:50 | 37.297 | 62 | 7/10/2010 7:10 | 40.881 |
| 43 | 7/10/2010 4:00 | 39.947 | 63 | 7/10/2010 7:20 | 38.629 |
| 44 | 7/10/2010 4:10 | 40.696 | 64 | 7/10/2010 7:30 | 32.018 |
| 45 | 7/10/2010 4:20 | 34.394 | 65 | 7/10/2010 7:40 | 31.617 |
| 46 | 7/10/2010 4:30 | 31.012 | 66 | 7/10/2010 7:50 | 34.786 |
| 47 | 7/10/2010 4:40 | 33.607 | 67 | 7/10/2010 8:00 | 37.87 |
| 48 | 7/10/2010 4:50 | 36.914 | 68 | 7/10/2010 8:10 | 40.134 |
| 49 | 7/10/2010 5:00 | 39.384 | 69 | 7/10/2010 8:20 | 40.134 |
| 50 | 7/10/2010 5:10 | 41.067 | 70 | 7/10/2010 8:30 | 33.805 |
| 51 | 7/10/2010 5:20 | 36.338 | 71 | 7/10/2010 8:40 | 31.213 |
| 52 | 7/10/2010 5:30 | 31.012 | 72 | 7/10/2010 8:50 | 34.198 |
| 53 | 7/10/2010 5:40 | 33.013 | 73 | 7/10/2010 9:00 | 37.297 |
| 54 | 7/10/2010 5:50 | 36.338 | 74 | 7/10/2010 9:10 | 39.76 |
| 55 | 7/10/2010 6:00 | 39.007 | 75 | 7/10/2010 9:20 | 40.881 |
| 56 | 7/10/2010 6:10 | 41.067 | 76 | 7/10/2010 9:30 | 35.175 |
| 57 | 7/10/2010 6:20 | 37.297 | 77 | 7/10/2010 9:40 | 31.012 |
| 58 | 7/10/2010 6:30 | 31.213 | 78 | 7/10/2010 9:50 | 33.411 |
| 59 | 7/10/2010 6:40 | 32.418 | 79 | 7/10/2010 10:00 | 36.723 |
| 60 | 7/10/2010 6:50 | 35.758 | 80 | 7/10/2010 10:10 | 39.196 |


| Temperature Setting 5 |  | Temp, ${ }^{\circ} \mathrm{F}$ | \# | Time, GMT-04:00 | Temp, ${ }^{\circ} \mathrm{F}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | Time, GMT-04:00 |  |  |  |  |
| 1 | 7/10/2010 22:00 | 22.996 | 21 | 7/11/2010 1:20 | 28.139 |
| 2 | 7/10/2010 22:10 | 26.245 | 22 | 7/11/2010 1:30 | 24.31 |
| 3 | 7/10/2010 22:20 | 30.403 | 23 | 7/11/2010 1:40 | 24.744 |
| 4 | 7/10/2010 22:30 | 34.198 | 24 | 7/11/2010 1:50 | 28.555 |
| 5 | 7/10/2010 22:40 | 37.107 | 25 | 7/11/2010 2:00 | 32.617 |
| 6 | 7/10/2010 22:50 | 39.384 | 26 | 7/11/2010 2:10 | 35.758 |
| 7 | 7/10/2010 23:00 | 41.067 | 27 | 7/11/2010 2:20 | 38.25 |
| 8 | 7/10/2010 23:10 | 37.679 | 28 | 7/11/2010 2:30 | 40.509 |
| 9 | 7/10/2010 23:20 | 32.418 | 29 | 7/11/2010 2:40 | 40.134 |
| 10 | 7/10/2010 23:30 | 28.139 | 30 | 7/11/2010 2:50 | 35.175 |
| 11 | 7/10/2010 23:40 | 24.528 | 31 | 7/11/2010 3:00 | 30.2 |
| 12 | 7/10/2010 23:50 | 22.554 | 32 | 7/11/2010 3:10 | 26.033 |
| 13 | 7/11/2010 0:00 | 25.39 | 33 | 7/11/2010 3:20 | 24.528 |
| 14 | 7/11/2010 0:10 | 29.586 | 34 | 7/11/2010 3:30 | 27.721 |
| 15 | 7/11/2010 0:20 | 33.607 | 35 | 7/11/2010 3:40 | 31.617 |
| 16 | 7/11/2010 0:30 | 36.531 | 36 | 7/11/2010 3:50 | 34.981 |
| 17 | 7/11/2010 0:40 | 39.007 | 37 | 7/11/2010 4:00 | 37.679 |
| 18 | 7/11/2010 0:50 | 41.067 | 38 | 7/11/2010 4:10 | 39.947 |
| 19 | 7/11/2010 1:00 | 37.87 | 39 | 7/11/2010 4:20 | 40.881 |
| 20 | 7/11/2010 1:10 | 32.815 | 40 | 7/11/2010 4:30 | 36.531 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| 41 | 7/11/2010 4:40 | 31.415 | 61 | 7/11/2010 8:00 | 30.607 |
| 42 | 7/11/2010 4:50 | 26.881 | 62 | 7/11/2010 8:10 | 26.245 |
| 43 | 7/11/2010 5:00 | 24.96 | 63 | 7/11/2010 8:20 | 26.033 |
| 44 | 7/11/2010 5:10 | 27.93 | 64 | 7/11/2010 8:30 | 29.381 |
| 45 | 7/11/2010 5:20 | 31.617 | 65 | 7/11/2010 8:40 | 33.013 |
| 46 | 7/11/2010 5:30 | 34.981 | 66 | 7/11/2010 8:50 | 36.145 |
| 47 | 7/11/2010 5:40 | 37.679 | 67 | 7/11/2010 9:00 | 38.629 |
| 48 | 7/11/2010 5:50 | 39.76 | 68 | 7/11/2010 9:10 | 40.696 |
| 49 | 7/11/2010 6:00 | 41.067 | 69 | 7/11/2010 9:20 | 39.573 |
| 50 | 7/11/2010 6:10 | 36.914 | 70 | 7/11/2010 9:30 | 34.59 |
| 51 | 7/11/2010 6:20 | 31.617 | 71 | 7/11/2010 9:40 | 29.586 |
| 52 | 7/11/2010 6:30 | 27.091 | 72 | 7/11/2010 9:50 | 25.819 |
| 53 | 7/11/2010 6:40 | 26.033 | 73 | 7/11/2010 10:00 | 26.67 |
| 54 | 7/11/2010 6:50 | 29.176 | 74 | 7/11/2010 10:10 | 30.2 |
| 55 | 7/11/2010 7:00 | 32.815 | 75 | 7/11/2010 10:20 | 33.805 |
| 56 | 7/11/2010 7:10 | 35.951 | 76 | 7/11/2010 10:30 | 36.723 |
| 57 | 7/11/2010 7:20 | 38.44 | 77 | 7/11/2010 10:40 | 39.007 |
| 58 | 7/11/2010 7:30 | 40.321 | 78 | 7/11/2010 10:50 | 41.067 |
| 59 | 7/11/2010 7:40 | 40.696 | 79 | 7/11/2010 11:00 | 39.007 |
| 60 | 7/11/2010 7:50 | 35.758 | 80 | 7/11/2010 11:10 | 33.805 |


| Table A-2: Temperature data complied data for Insulation Test |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | Time, GMT-04:00 | Temp, ${ }^{\circ} \mathrm{F}$ | \# | Time, GMT-04:00 | Temp, ${ }^{\circ} \mathrm{F}$ |
| 1 | 7/20/2010 21:30 | 70.995 | 21 | 7/21/2010 0:50 | 37.87 |
| 2 | 7/20/2010 21:40 | 48.695 | 22 | 7/21/2010 1:00 | 39.384 |
| 3 | 7/20/2010 21:50 | 41.81 | 23 | 7/21/2010 1:10 | 41.254 |
| 4 | 7/20/2010 22:00 | 41.994 | 24 | 7/21/2010 1:20 | 40.696 |
| 5 | 7/20/2010 22:10 | 42.548 | 25 | 7/21/2010 1:30 | 38.061 |
| 6 | 7/20/2010 22:20 | 38.44 | 26 | 7/21/2010 1:40 | 39.76 |
| 7 | 7/20/2010 22:30 | 39.76 | 27 | 7/21/2010 1:50 | 41.625 |
| 8 | 7/20/2010 22:40 | 41.81 | 28 | 7/21/2010 2:00 | 39.573 |
| 9 | 7/20/2010 22:50 | 40.696 | 29 | 7/21/2010 2:10 | 38.25 |
| 10 | 7/20/2010 23:00 | 38.25 | 30 | 7/21/2010 2:20 | 40.134 |
| 11 | 7/20/2010 23:10 | 40.134 | 31 | 7/21/2010 2:30 | 41.994 |
| 12 | 7/20/2010 23:20 | 41.994 | 32 | 7/21/2010 2:40 | 38.818 |
| 13 | 7/20/2010 23:30 | 39.007 | 33 | 7/21/2010 2:50 | 38.44 |
| 14 | 7/20/2010 23:40 | 38.629 | 34 | 7/21/2010 3:00 | 40.321 |
| 15 | 7/20/2010 23:50 | 40.509 | 35 | 7/21/2010 3:10 | 41.994 |
| 16 | 7/21/2010 0:00 | 41.994 | 36 | 7/21/2010 3:20 | 38.25 |
| 17 | 7/21/2010 0:10 | 38.25 | 37 | 7/21/2010 3:30 | 38.629 |
| 18 | 7/21/2010 0:20 | 39.007 | 38 | 7/21/2010 3:40 | 40.509 |
| 19 | 7/21/2010 0:30 | 40.881 | 39 | 7/21/2010 3:50 | 41.994 |
| 20 | 7/21/2010 0:40 | 41.625 | 40 | 7/21/2010 4:00 | 38.061 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| 41 | 7/21/2010 4:10 | 39.007 | 61 | 7/21/2010 7:30 | 39.384 |
| 42 | 7/21/2010 4:20 | 40.881 | 62 | 7/21/2010 7:40 | 41.067 |
| 43 | 7/21/2010 4:30 | 41.625 | 63 | 7/21/2010 7:50 | 41.254 |
| 44 | 7/21/2010 4:40 | 37.679 | 64 | 7/21/2010 8:00 | 37.679 |
| 45 | 7/21/2010 4:50 | 39.007 | 65 | 7/21/2010 8:10 | 39.196 |
| 46 | 7/21/2010 5:00 | 41.067 | 66 | 7/21/2010 8:20 | 41.067 |
| 47 | 7/21/2010 5:10 | 41.439 | 67 | 7/21/2010 8:30 | 41.439 |
| 48 | 7/21/2010 5:20 | 37.87 | 68 | 7/21/2010 8:40 | 37.679 |
| 49 | 7/21/2010 5:30 | 39.196 | 69 | 7/21/2010 8:50 | 39.196 |
| 50 | 7/21/2010 5:40 | 41.067 | 70 | 7/21/2010 9:00 | 40.881 |
| 51 | 7/21/2010 5:50 | 41.254 | 71 | 7/21/2010 9:10 | 41.625 |
| 52 | 7/21/2010 6:00 | 37.679 | 72 | 7/21/2010 9:20 | 37.87 |
| 53 | 7/21/2010 6:10 | 39.384 | 73 | 7/21/2010 9:30 | 39.007 |
| 54 | 7/21/2010 6:20 | 41.254 | 74 | 7/21/2010 9:40 | 40.881 |
| 55 | 7/21/2010 6:30 | 41.067 |  |  |  |
| 56 | 7/21/2010 6:40 | 37.679 |  |  |  |
| 57 | 7/21/2010 6:50 | 39.196 |  |  |  |
| 58 | 7/21/2010 7:00 | 41.067 |  |  |  |
| 59 | 7/21/2010 7:10 | 41.067 |  |  |  |
| 60 | 7/21/2010 7:20 | 37.679 |  |  |  |



| Temperature Setting 3 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | Time, GMT-04:00 | Temp, ${ }^{\circ} \mathrm{F}$ |  |  |  |
| 1 | 7/21/2010 22:30 | 38.818 | 21 | 7/22/2010 1:50 | 38.25 |
| 2 | 7/21/2010 22:40 | 39.76 | 22 | 7/22/2010 2:00 | 40.321 |
| 3 | 7/21/2010 22:50 | 41.439 | 23 | 7/22/2010 2:10 | 42.179 |
| 4 | 7/21/2010 23:00 | 43.099 | 24 | 7/22/2010 2:20 | 42.363 |
| 5 | 7/21/2010 23:10 | 40.509 | 25 | 7/22/2010 2:30 | 38.061 |
| 6 | 7/21/2010 23:20 | 37.87 | 26 | 7/22/2010 2:40 | 38.629 |
| 7 | 7/21/2010 23:30 | 39.573 | 27 | 7/22/2010 2:50 | 40.696 |
| 8 | 7/21/2010 23:40 | 41.439 | 28 | 7/22/2010 3:00 | 42.363 |
| 9 | 7/21/2010 23:50 | 42.915 | 29 | 7/22/2010 3:10 | 41.81 |
| 10 | 7/22/2010 0:00 | 39.76 | 30 | 7/22/2010 3:20 | 37.679 |
| 11 | 7/22/2010 0:10 | 38.061 | 31 | 7/22/2010 3:30 | 38.629 |
| 12 | 7/22/2010 0:20 | 39.76 | 32 | 7/22/2010 3:40 | 40.696 |
| 13 | 7/22/2010 0:30 | 41.625 | 33 | 7/22/2010 3:50 | 42.548 |
| 14 | 7/22/2010 0:40 | 43.099 | 34 | 7/22/2010 4:00 | 41.625 |
| 15 | 7/22/2010 0:50 | 39.007 | 35 | 7/22/2010 4:10 | 37.87 |
| 16 | 7/22/2010 1:00 | 38.25 | 36 | 7/22/2010 4:20 | 39.007 |
| 17 | 7/22/2010 1:10 | 40.134 | 37 | 7/22/2010 4:30 | 41.067 |
| 18 | 7/22/2010 1:20 | 41.994 | 38 | 7/22/2010 4:40 | 42.732 |
| 19 | 7/22/2010 1:30 | 42.732 | 39 | 7/22/2010 4:50 | 41.067 |
| 20 | 7/22/2010 1:40 | 38.44 | 40 | 7/22/2010 5:00 | 37.679 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| 41 | 7/22/2010 5:10 | 39.196 | 61 | 7/22/2010 8:30 | 39.384 |
| 42 | 7/22/2010 5:20 | 41.067 | 62 | 7/22/2010 8:40 | 41.254 |
| 43 | 7/22/2010 5:30 | 42.732 | 63 | 7/22/2010 8:50 | 42.915 |
| 44 | 7/22/2010 5:40 | 40.881 | 64 | 7/22/2010 9:00 | 40.881 |
| 45 | 7/22/2010 5:50 | 37.679 | 65 | 7/22/2010 9:10 | 37.488 |
| 46 | 7/22/2010 6:00 | 39.196 | 66 | 7/22/2010 9:20 | 39.196 |
| 47 | 7/22/2010 6:10 | 41.067 | 67 | 7/22/2010 9:30 | 41.067 |
| 48 | 7/22/2010 6:20 | 42.915 | 68 | 7/22/2010 9:40 | 42.732 |
| 49 | 7/22/2010 6:30 | 40.509 | 69 | 7/22/2010 9:50 | 41.439 |
| 50 | 7/22/2010 6:40 | 37.87 | 70 | 7/22/2010 10:00 | 37.679 |
| 51 | 7/22/2010 6:50 | 39.384 | 71 | 7/22/2010 10:10 | 39.007 |
| 52 | 7/22/2010 7:00 | 41.254 | 72 | 7/22/2010 10:20 | 40.881 |
| 53 | 7/22/2010 7:10 | 42.915 | 73 | 7/22/2010 10:30 | 42.548 |
| 54 | 7/22/2010 7:20 | 40.509 |  |  |  |
| 55 | 7/22/2010 7:30 | 37.87 |  |  |  |
| 56 | 7/22/2010 7:40 | 39.384 |  |  |  |
| 57 | 7/22/2010 7:50 | 41.254 |  |  |  |
| 58 | 7/22/2010 8:00 | 42.915 |  |  |  |
| 59 | 7/22/2010 8:10 | 40.509 |  |  |  |
| 60 | 7/22/2010 8:20 | 37.679 |  |  |  |




| Table A-3: Temperature data compiled for Environmental / Circulation Test |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | Time, GMT-04:00 | Temp, ${ }^{\circ} \mathrm{F}$ |  |  |  |
| 1 | 7/24/2010 9:15 | 54.322 | 21 | 7/24/2010 12:35 | 42.732 |
| 2 | 7/24/2010 9:25 | 45.648 | 22 | 7/24/2010 12:45 | 42.548 |
| 3 | 7/24/2010 9:35 | 43.648 | 23 | 7/24/2010 12:55 | 44.379 |
| 4 | 7/24/2010 9:45 | 45.104 | 24 | 7/24/2010 13:05 | 45.286 |
| 5 | 7/24/2010 9:55 | 46.008 | 25 | 7/24/2010 13:15 | 42.179 |
| 6 | 7/24/2010 10:05 | 42.548 | 26 | 7/24/2010 13:25 | 43.099 |
| 7 | 7/24/2010 10:15 | 43.099 | 27 | 7/24/2010 13:35 | 44.742 |
| 8 | 7/24/2010 10:25 | 44.922 | 28 | 7/24/2010 13:45 | 44.56 |
| 9 | 7/24/2010 10:35 | 45.286 | 29 | 7/24/2010 13:55 | 41.625 |
| 10 | 7/24/2010 10:45 | 42.179 | 30 | 7/24/2010 14:05 | 43.099 |
| 11 | 7/24/2010 10:55 | 43.466 | 31 | 7/24/2010 14:15 | 44.922 |
| 12 | 7/24/2010 11:05 | 45.286 | 32 | 7/24/2010 14:25 | 43.831 |
| 13 | 7/24/2010 11:15 | 44.379 | 33 | 7/24/2010 14:35 | 41.625 |
| 14 | 7/24/2010 11:25 | 41.994 | 34 | 7/24/2010 14:45 | 43.282 |
| 15 | 7/24/2010 11:35 | 43.831 | 35 | 7/24/2010 14:55 | 45.104 |
| 16 | 7/24/2010 11:45 | 45.648 | 36 | 7/24/2010 15:05 | 42.915 |
| 17 | 7/24/2010 11:55 | 43.466 | 37 | 7/24/2010 15:15 | 41.994 |
| 18 | 7/24/2010 12:05 | 42.179 | 38 | 7/24/2010 15:25 | 43.831 |
| 19 | 7/24/2010 12:15 | 44.013 | 39 | 7/24/2010 15:35 | 45.104 |
| 20 | 7/24/2010 12:25 | 45.466 | 40 | 7/24/2010 15:45 | 41.994 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| 41 | 7/24/2010 15:55 | 42.363 | 61 | 7/24/2010 19:15 | 44.742 |
| 42 | 7/24/2010 16:05 | 44.013 | 62 | 7/24/2010 19:25 | 41.81 |
| 43 | 7/24/2010 16:15 | 44.742 | 63 | 7/24/2010 19:35 | 41.994 |
| 44 | 7/24/2010 16:25 | 41.625 | 64 | 7/24/2010 19:45 | 43.648 |
| 45 | 7/24/2010 16:35 | 42.732 | 65 | 7/24/2010 19:55 | 44.742 |
| 46 | 7/24/2010 16:45 | 44.56 | 66 | 7/24/2010 20:05 | 41.439 |
| 47 | 7/24/2010 16:55 | 43.648 | 67 | 7/24/2010 20:15 | 42.363 |
| 48 | 7/24/2010 17:05 | 41.625 | 68 | 7/24/2010 20:25 | 44.013 |
| 49 | 7/24/2010 17:15 | 43.282 | 69 | 7/24/2010 20:35 | 43.831 |
| 50 | 7/24/2010 17:25 | 44.922 | 70 | 7/24/2010 20:45 | 41.067 |
| 51 | 7/24/2010 17:35 | 42.179 | 71 | 7/24/2010 20:55 | 42.732 |
| 52 | 7/24/2010 17:45 | 42.179 | 72 | 7/24/2010 21:05 | 44.56 |
| 53 | 7/24/2010 17:55 | 44.013 | 73 | 7/24/2010 21:15 | 42.732 |
| 54 | 7/24/2010 18:05 | 44.56 |  |  |  |
| 55 | 7/24/2010 18:15 | 41.439 |  |  |  |
| 56 | 7/24/2010 18:25 | 42.732 |  |  |  |
| 57 | 7/24/2010 18:35 | 44.56 |  |  |  |
| 58 | 7/24/2010 18:45 | 43.282 |  |  |  |
| 59 | 7/24/2010 18:55 | 41.439 |  |  |  |
| 60 | 7/24/2010 19:05 | 43.282 |  |  |  |


| Temperature Setting 2 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | Time, GMT-04:00 | Temp, ${ }^{\circ} \mathrm{F}$ |  |  |  |  |
| 1 | 7/24/2010 21:30 | 49.228 |  | 21 | 7/25/2010 0:50 | 42.363 |
| 2 | 7/24/2010 21:40 | 46.369 |  | 22 | 7/25/2010 1:00 | 44.195 |
| 3 | 7/24/2010 21:50 | 40.696 |  | 23 | 7/25/2010 1:10 | 41.254 |
| 4 | 7/24/2010 22:00 | 41.439 |  | 24 | 7/25/2010 1:20 | 40.509 |
| 5 | 7/24/2010 22:10 | 43.282 |  | 25 | 7/25/2010 1:30 | 42.548 |
| 6 | 7/24/2010 22:20 | 44.013 |  | 26 | 7/25/2010 1:40 | 44.195 |
| 7 | 7/24/2010 22:30 | 39.947 |  | 27 | 7/25/2010 1:50 | 41.439 |
| 8 | 7/24/2010 22:40 | 41.254 |  | 28 | 7/25/2010 2:00 | 40.321 |
| 9 | 7/24/2010 22:50 | 43.282 |  | 29 | 7/25/2010 2:10 | 42.363 |
| 10 | 7/24/2010 23:00 | 44.379 |  | 30 | 7/25/2010 2:20 | 44.195 |
| 11 | 7/24/2010 23:10 | 40.321 |  | 31 | 7/25/2010 2:30 | 41.625 |
| 12 | 7/24/2010 23:20 | 41.067 |  | 32 | 7/25/2010 2:40 | 39.947 |
| 13 | 7/24/2010 23:30 | 42.915 |  | 33 | 7/25/2010 2:50 | 41.994 |
| 14 | 7/24/2010 23:40 | 44.195 |  | 34 | 7/25/2010 3:00 | 43.831 |
| 15 | 7/24/2010 23:50 | 41.067 |  | 35 | 7/25/2010 3:10 | 42.732 |
| 16 | 7/25/2010 0:00 | 40.509 |  | 36 | 7/25/2010 3:20 | 39.573 |
| 17 | 7/25/2010 0:10 | 42.363 |  | 37 | 7/25/2010 3:30 | 41.625 |
| 18 | 7/25/2010 0:20 | 44.195 |  | 38 | 7/25/2010 3:40 | 43.466 |
| 19 | 7/25/2010 0:30 | 41.439 |  | 39 | 7/25/2010 3:50 | 43.282 |
| 20 | 7/25/2010 0:40 | 40.509 |  | 40 | 7/25/2010 4:00 | 39.573 |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| 41 | 7/25/2010 4:10 | 41.439 |  | 61 | 7/25/2010 7:30 | 39.384 |
| 42 | 7/25/2010 4:20 | 43.282 |  | 62 | 7/25/2010 7:40 | 41.439 |
| 43 | 7/25/2010 4:30 | 43.282 |  | 63 | 7/25/2010 7:50 | 43.282 |
| 44 | 7/25/2010 4:40 | 39.384 |  | 64 | 7/25/2010 8:00 | 43.099 |
| 45 | 7/25/2010 4:50 | 41.067 |  | 65 | 7/25/2010 8:10 | 39.196 |
| 46 | 7/25/2010 5:00 | 43.099 |  | 66 | 7/25/2010 8:20 | 40.881 |
| 47 | 7/25/2010 5:10 | 43.831 |  | 67 | 7/25/2010 8:30 | 42.732 |
| 48 | 7/25/2010 5:20 | 39.384 |  | 68 | 7/25/2010 8:40 | 43.466 |
| 49 | 7/25/2010 5:30 | 40.881 |  | 69 | 7/25/2010 8:50 | 39.196 |
| 50 | 7/25/2010 5:40 | 42.732 |  | 70 | 7/25/2010 9:00 | 40.321 |
| 51 | 7/25/2010 5:50 | 44.013 |  | 71 | 7/25/2010 9:10 | 42.363 |
| 52 | 7/25/2010 6:00 | 39.947 |  | 72 | 7/25/2010 9:20 | 43.831 |
| 53 | 7/25/2010 6:10 | 40.321 |  | 73 | 7/25/2010 9:30 | 40.134 |
| 54 | 7/25/2010 6:20 | 42.363 |  |  |  |  |
| 55 | 7/25/2010 6:30 | 44.013 |  |  |  |  |
| 56 | 7/25/2010 6:40 | 41.067 |  |  |  |  |
| 57 | 7/25/2010 6:50 | 39.573 |  |  |  |  |
| 58 | 7/25/2010 7:00 | 41.625 |  |  |  |  |
| 59 | 7/25/2010 7:10 | 43.466 |  |  |  |  |
| 60 | 7/25/2010 7:20 | 42.363 |  |  |  |  |



| Temperature Setting 4 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | Time, GMT-04:00 | Temp, ${ }^{\circ} \mathrm{F}$ |  |  |  |
| 1 | 7/25/2010 22:00 | 52.576 | 21 | 7/26/2010 1:20 | 33.411 |
| 2 | 7/25/2010 22:10 | 41.625 | 22 | 7/26/2010 1:30 | 31.012 |
| 3 | 7/25/2010 22:20 | 36.531 | 23 | 7/26/2010 1:40 | 31.012 |
| 4 | 7/25/2010 22:30 | 33.805 | 24 | 7/26/2010 1:50 | 34.981 |
| 5 | 7/25/2010 22:40 | 32.218 | 25 | 7/26/2010 2:00 | 38.44 |
| 6 | 7/25/2010 22:50 | 31.617 | 26 | 7/26/2010 2:10 | 40.509 |
| 7 | 7/25/2010 23:00 | 34.786 | 27 | 7/26/2010 2:20 | 41.994 |
| 8 | 7/25/2010 23:10 | 38.44 | 28 | 7/26/2010 2:30 | 41.625 |
| 9 | 7/25/2010 23:20 | 40.696 | 29 | 7/26/2010 2:40 | 37.107 |
| 10 | 7/25/2010 23:30 | 42.179 | 30 | 7/26/2010 2:50 | 33.607 |
| 11 | 7/25/2010 23:40 | 42.732 | 31 | 7/26/2010 3:00 | 31.012 |
| 12 | 7/25/2010 23:50 | 38.629 | 32 | 7/26/2010 3:10 | 31.213 |
| 13 | 7/26/2010 0:00 | 34.394 | 33 | 7/26/2010 3:20 | 35.175 |
| 14 | 7/26/2010 0:10 | 33.013 | 34 | 7/26/2010 3:30 | 38.25 |
| 15 | 7/26/2010 0:20 | 36.145 | 35 | 7/26/2010 3:40 | 40.321 |
| 16 | 7/26/2010 0:30 | 39.007 | 36 | 7/26/2010 3:50 | 41.625 |
| 17 | 7/26/2010 0:40 | 41.067 | 37 | 7/26/2010 4:00 | 41.994 |
| 18 | 7/26/2010 0:50 | 42.363 | 38 | 7/26/2010 4:10 | 37.87 |
| 19 | 7/26/2010 1:00 | 41.625 | 39 | 7/26/2010 4:20 | 34.002 |
| 20 | 7/26/2010 1:10 | 36.914 | 40 | 7/26/2010 4:30 | 31.415 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| 41 | 7/26/2010 4:40 | 32.418 | 61 | 7/26/2010 8:00 | 40.134 |
| 42 | 7/26/2010 4:50 | 35.951 | 62 | 7/26/2010 8:10 | 41.439 |
| 43 | 7/26/2010 5:00 | 38.818 | 63 | 7/26/2010 8:20 | 41.439 |
| 44 | 7/26/2010 5:10 | 40.509 | 64 | 7/26/2010 8:30 | 37.297 |
| 45 | 7/26/2010 5:20 | 41.81 | 65 | 7/26/2010 8:40 | 33.607 |
| 46 | 7/26/2010 5:30 | 41.254 | 66 | 7/26/2010 8:50 | 31.818 |
| 47 | 7/26/2010 5:40 | 36.723 | 67 | 7/26/2010 9:00 | 34.59 |
| 48 | 7/26/2010 5:50 | 33.013 | 68 | 7/26/2010 9:10 | 37.679 |
| 49 | 7/26/2010 6:00 | 31.012 | 69 | 7/26/2010 9:20 | 39.76 |
| 50 | 7/26/2010 6:10 | 33.805 | 70 | 7/26/2010 9:30 | 41.067 |
| 51 | 7/26/2010 6:20 | 37.107 | 71 | 7/26/2010 9:40 | 41.994 |
| 52 | 7/26/2010 6:30 | 39.384 | 72 | 7/26/2010 9:50 | 39.384 |
| 53 | 7/26/2010 6:40 | 40.881 | 73 | 7/26/2010 10:00 | 34.786 |
| 54 | 7/26/2010 6:50 | 41.994 |  |  |  |
| 55 | 7/26/2010 7:00 | 39.196 |  |  |  |
| 56 | 7/26/2010 7:10 | 34.981 |  |  |  |
| 57 | 7/26/2010 7:20 | 31.818 |  |  |  |
| 58 | 7/26/2010 7:30 | 32.018 |  |  |  |
| 59 | 7/26/2010 7:40 | 35.564 |  |  |  |
| 60 | 7/26/2010 7:50 | 38.44 |  |  |  |



| Table A-4: Temperature data complied for Loaded Usage Test |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | Time, GMT-04:00 | Temp, ${ }^{\circ} \mathrm{F}$ |  |  |  |
| 1 | 7/27/2010 10:15 | 46.369 | 21 | 7/27/2010 13:35 | 41.994 |
| 2 | 7/27/2010 10:25 | 40.509 | 22 | 7/27/2010 13:45 | 44.013 |
| 3 | 7/27/2010 10:35 | 41.254 | 23 | 7/27/2010 13:55 | 44.379 |
| 4 | 7/27/2010 10:45 | 42.732 | 24 | 7/27/2010 14:05 | 40.134 |
| 5 | 7/27/2010 10:55 | 43.648 | 25 | 7/27/2010 14:15 | 41.625 |
| 6 | 7/27/2010 11:05 | 39.007 | 26 | 7/27/2010 14:25 | 43.466 |
| 7 | 7/27/2010 11:15 | 40.134 | 27 | 7/27/2010 14:35 | 44.922 |
| 8 | 7/27/2010 11:25 | 41.994 | 28 | 7/27/2010 14:45 | 40.696 |
| 9 | 7/27/2010 11:35 | 44.013 | 29 | 7/27/2010 14:55 | 41.254 |
| 10 | 7/27/2010 11:45 | 42.363 | 30 | 7/27/2010 15:05 | 43.099 |
| 11 | 7/27/2010 11:55 | 39.384 | 31 | 7/27/2010 15:15 | 44.922 |
| 12 | 7/27/2010 12:05 | 41.439 | 32 | 7/27/2010 15:25 | 41.625 |
| 13 | 7/27/2010 12:15 | 43.282 | 33 | 7/27/2010 15:35 | 41.067 |
| 14 | 7/27/2010 12:25 | 44.56 | 34 | 7/27/2010 15:45 | 43.099 |
| 15 | 7/27/2010 12:35 | 40.134 | 35 | 7/27/2010 15:55 | 45.104 |
| 16 | 7/27/2010 12:45 | 40.881 | 36 | 7/27/2010 16:05 | 42.363 |
| 17 | 7/27/2010 12:55 | 42.732 | 37 | 7/27/2010 16:15 | 40.881 |
| 18 | 7/27/2010 13:05 | 44.56 | 38 | 7/27/2010 16:25 | 43.099 |
| 19 | 7/27/2010 13:15 | 42.363 | 39 | 7/27/2010 16:35 | 45.104 |
| 20 | 7/27/2010 13:25 | 40.134 | 40 | 7/27/2010 16:45 | 42.915 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| 41 | 7/27/2010 16:55 | 41.067 | 61 | 7/27/2010 20:15 | 40.881 |
| 42 | 7/27/2010 17:05 | 43.099 | 62 | 7/27/2010 20:25 | 41.625 |
| 43 | 7/27/2010 17:15 | 45.104 | 63 | 7/27/2010 20:35 | 43.648 |
| 44 | 7/27/2010 17:25 | 43.648 | 64 | 7/27/2010 20:45 | 45.286 |
| 45 | 7/27/2010 17:35 | 41.254 | 65 | 7/27/2010 20:55 | 41.81 |
| 46 | 7/27/2010 17:45 | 43.282 | 66 | 7/27/2010 21:05 | 41.439 |
| 47 | 7/27/2010 17:55 | 45.286 | 67 | 7/27/2010 21:15 | 43.466 |
| 48 | 7/27/2010 18:05 | 44.379 | 68 | 7/27/2010 21:25 | 45.286 |
| 49 | 7/27/2010 18:15 | 41.254 | 69 | 7/27/2010 21:35 | 42.732 |
| 50 | 7/27/2010 18:25 | 43.282 | 70 | 7/27/2010 21:45 | 40.881 |
| 51 | 7/27/2010 18:35 | 45.286 | 71 | 7/27/2010 21:55 | 42.915 |
| 52 | 7/27/2010 18:45 | 44.742 | 72 | 7/27/2010 22:05 | 44.742 |
| 53 | 7/27/2010 18:55 | 41.254 | 73 | 7/27/2010 22:15 | 44.195 |
| 54 | 7/27/2010 19:05 | 43.099 |  |  |  |
| 55 | 7/27/2010 19:15 | 44.922 |  |  |  |
| 56 | 7/27/2010 19:25 | 45.286 |  |  |  |
| 57 | 7/27/2010 19:35 | 40.696 |  |  |  |
| 58 | 7/27/2010 19:45 | 42.363 |  |  |  |
| 59 | 7/27/2010 19:55 | 44.195 |  |  |  |
| 60 | 7/27/2010 20:05 | 45.466 |  |  |  |



| Temperature Setting 3 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | Time, GMT-04:00 | Temp, ${ }^{\circ} \mathrm{F}$ |  |  |  |  |
| 1 | 7/28/2010 10:45 | 51.699 |  | 21 | 7/28/2010 14:05 | 42.548 |
| 2 | 7/28/2010 10:55 | 43.466 |  | 22 | 7/28/2010 14:15 | 44.56 |
| 3 | 7/28/2010 11:05 | 43.466 |  | 23 | 7/28/2010 14:25 | 46.008 |
| 4 | 7/28/2010 11:15 | 44.922 |  | 24 | 7/28/2010 14:35 | 41.81 |
| 5 | 7/28/2010 11:25 | 46.188 |  | 25 | 7/28/2010 14:45 | 41.81 |
| 6 | 7/28/2010 11:35 | 42.732 |  | 26 | 7/28/2010 14:55 | 44.013 |
| 7 | 7/28/2010 11:45 | 41.625 |  | 27 | 7/28/2010 15:05 | 46.008 |
| 8 | 7/28/2010 11:55 | 43.466 |  | 28 | 7/28/2010 15:15 | 43.466 |
| 9 | 7/28/2010 12:05 | 45.286 |  | 29 | 7/28/2010 15:25 | 41.439 |
| 10 | 7/28/2010 12:15 | 45.104 |  | 30 | 7/28/2010 15:35 | 43.648 |
| 11 | 7/28/2010 12:25 | 40.696 |  | 31 | 7/28/2010 15:45 | 45.648 |
| 12 | 7/28/2010 12:35 | 42.363 |  | 32 | 7/28/2010 15:55 | 45.286 |
| 13 | 7/28/2010 12:45 | 44.379 |  | 33 | 7/28/2010 16:05 | 41.254 |
| 14 | 7/28/2010 12:55 | 45.828 |  | 34 | 7/28/2010 16:15 | 43.099 |
| 15 | 7/28/2010 13:05 | 42.179 |  | 35 | 7/28/2010 16:25 | 45.286 |
| 16 | 7/28/2010 13:15 | 41.439 |  | 36 | 7/28/2010 16:35 | 46.188 |
| 17 | 7/28/2010 13:25 | 43.648 |  | 37 | 7/28/2010 16:45 | 41.81 |
| 18 | 7/28/2010 13:35 | 45.466 |  | 38 | 7/28/2010 16:55 | 42.363 |
| 19 | 7/28/2010 13:45 | 44.922 |  | 39 | 7/28/2010 17:05 | 44.195 |
| 20 | 7/28/2010 13:55 | 40.881 |  | 40 | 7/28/2010 17:15 | 46.008 |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| 41 | 7/28/2010 17:25 | 43.466 |  | 61 | 7/28/2010 20:45 | 40.881 |
| 42 | 7/28/2010 17:35 | 41.254 |  | 62 | 7/28/2010 20:55 | 42.732 |
| 43 | 7/28/2010 17:45 | 43.099 |  | 63 | 7/28/2010 21:05 | 44.379 |
| 44 | 7/28/2010 17:55 | 44.922 |  | 64 | 7/28/2010 21:15 | 44.922 |
| 45 | 7/28/2010 18:05 | 45.648 |  | 65 | 7/28/2010 21:25 | 40.509 |
| 46 | 7/28/2010 18:15 | 41.254 |  | 66 | 7/28/2010 21:35 | 41.067 |
| 47 | 7/28/2010 18:25 | 41.81 |  | 67 | 7/28/2010 21:45 | 42.915 |
| 48 | 7/28/2010 18:35 | 43.466 |  | 68 | 7/28/2010 21:55 | 44.56 |
| 49 | 7/28/2010 18:45 | 45.286 |  | 69 | 7/28/2010 22:05 | 44.195 |
| 50 | 7/28/2010 18:55 | 44.195 |  | 70 | 7/28/2010 22:15 | 40.134 |
| 51 | 7/28/2010 19:05 | 40.509 |  | 71 | 7/28/2010 22:25 | 41.439 |
| 52 | 7/28/2010 19:15 | 41.994 |  | 72 | 7/28/2010 22:35 | 43.282 |
| 53 | 7/28/2010 19:25 | 43.648 |  | 73 | 7/28/2010 22:45 | 44.922 |
| 54 | 7/28/2010 19:35 | 45.286 |  |  |  |  |
| 55 | 7/28/2010 19:45 | 42.548 |  |  |  |  |
| 56 | 7/28/2010 19:55 | 40.509 |  |  |  |  |
| 57 | 7/28/2010 20:05 | 42.179 |  |  |  |  |
| 58 | 7/28/2010 20:15 | 43.831 |  |  |  |  |
| 59 | 7/28/2010 20:25 | 45.104 |  |  |  |  |
| 60 | 7/28/2010 20:35 | 41.254 |  |  |  |  |


| Temperat | ure Setting 4 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | Time, GMT-04:00 | Temp, ${ }^{\circ} \mathrm{F}$ |  |  |  |  |
| 1 | 7/29/2010 0:21 | 27.091 |  | 21 | 7/29/2010 3:41 | 36.531 |
| 2 | 7/29/2010 0:31 | 30.607 |  | 22 | 7/29/2010 3:51 | 39.196 |
| 3 | 7/29/2010 0:41 | 34.198 |  | 23 | 7/29/2010 4:01 | 41.625 |
| 4 | 7/29/2010 0:51 | 37.297 |  | 24 | 7/29/2010 4:11 | 39.573 |
| 5 | 7/29/2010 1:01 | 39.573 |  | 25 | 7/29/2010 4:21 | 33.805 |
| 6 | 7/29/2010 1:11 | 41.439 |  | 26 | 7/29/2010 4:31 | 28.762 |
| 7 | 7/29/2010 1:21 | 37.87 |  | 27 | 7/29/2010 4:41 | 26.881 |
| 8 | 7/29/2010 1:31 | 32.617 |  | 28 | 7/29/2010 4:51 | 29.997 |
| 9 | 7/29/2010 1:41 | 27.93 |  | 29 | 7/29/2010 5:01 | 34.002 |
| 10 | 7/29/2010 1:51 | 28.139 |  | 30 | 7/29/2010 5:11 | 37.297 |
| 11 | 7/29/2010 2:01 | 31.617 |  | 31 | 7/29/2010 5:21 | 39.76 |
| 12 | 7/29/2010 2:11 | 35.37 |  | 32 | 7/29/2010 5:31 | 41.625 |
| 13 | 7/29/2010 2:21 | 38.25 |  | 33 | 7/29/2010 5:41 | 38.818 |
| 14 | 7/29/2010 2:31 | 40.696 |  | 34 | 7/29/2010 5:51 | 33.013 |
| 15 | 7/29/2010 2:41 | 41.067 |  | 35 | 7/29/2010 6:01 | 28.139 |
| 16 | 7/29/2010 2:51 | 35.758 |  | 36 | 7/29/2010 6:11 | 28.555 |
| 17 | 7/29/2010 3:01 | 30.607 |  | 37 | 7/29/2010 6:21 | 32.218 |
| 18 | 7/29/2010 3:11 | 26.881 |  | 38 | 7/29/2010 6:31 | 35.758 |
| 19 | 7/29/2010 3:21 | 29.381 |  | 39 | 7/29/2010 6:41 | 38.629 |
| 20 | 7/29/2010 3:31 | 33.213 |  | 40 | 7/29/2010 6:51 | 40.881 |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| 41 | 7/29/2010 7:01 | 41.439 |  | 61 | 7/29/2010 10:21 | 27.513 |
| 42 | 7/29/2010 7:11 | 36.145 |  | 62 | 7/29/2010 10:31 | 29.381 |
| 43 | 7/29/2010 7:21 | 30.607 |  | 63 | 7/29/2010 10:41 | 33.013 |
| 44 | 7/29/2010 7:31 | 27.513 |  | 64 | 7/29/2010 10:51 | 36.338 |
| 45 | 7/29/2010 7:41 | 29.997 |  | 65 | 7/29/2010 11:01 | 39.007 |
| 46 | 7/29/2010 7:51 | 33.607 |  | 66 | 7/29/2010 11:11 | 41.254 |
| 47 | 7/29/2010 8:01 | 36.914 |  | 67 | 7/29/2010 11:21 | 41.439 |
| 48 | 7/29/2010 8:11 | 39.384 |  | 68 | 7/29/2010 11:31 | 35.758 |
| 49 | 7/29/2010 8:21 | 41.81 |  |  |  |  |
| 50 | 7/29/2010 8:31 | 39.947 |  |  |  |  |
| 51 | 7/29/2010 8:41 | 34.198 |  |  |  |  |
| 52 | 7/29/2010 8:51 | 28.762 |  |  |  |  |
| 53 | 7/29/2010 9:01 | 28.762 |  |  |  |  |
| 54 | 7/29/2010 9:11 | 32.018 |  |  |  |  |
| 55 | 7/29/2010 9:21 | 35.564 |  |  |  |  |
| 56 | 7/29/2010 9:31 | 38.44 |  |  |  |  |
| 57 | 7/29/2010 9:41 | 40.696 |  |  |  |  |
| 58 | 7/29/2010 9:51 | 42.179 |  |  |  |  |
| 59 | 7/29/2010 10:01 | 37.297 |  |  |  |  |
| 60 | 7/29/2010 10:11 | 31.617 |  |  |  |  |



| Table A-5: Temperature data complied for Opening Usage Test |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | Time, GMT-04:00 | Temp, ${ }^{\circ} \mathrm{F}$ |  |  |  |
| 1 | 8/3/2010 10:15 | 46.369 | 21 | 8/3/2010 13:35 | 41.994 |
| 2 | 8/3/2010 10:25 | 40.509 | 22 | 8/3/2010 13:45 | 44.013 |
| 3 | 8/3/2010 10:35 | 41.254 | 23 | 8/3/2010 13:55 | 44.379 |
| 4 | 8/3/2010 10:45 | 42.732 | 24 | 8/3/2010 14:05 | 40.134 |
| 5 | 8/3/2010 10:55 | 43.648 | 25 | 8/3/2010 14:15 | 41.625 |
| 6 | 8/3/2010 11:05 | 39.007 | 26 | 8/3/2010 14:25 | 43.466 |
| 7 | 8/3/2010 11:15 | 40.134 | 27 | 8/3/2010 14:35 | 44.922 |
| 8 | 8/3/2010 11:25 | 41.994 | 28 | 8/3/2010 14:45 | 40.696 |
| 9 | 8/3/2010 11:35 | 44.013 | 29 | 8/3/2010 14:55 | 41.254 |
| 10 | 8/3/2010 11:45 | 42.363 | 30 | 8/3/2010 15:05 | 43.099 |
| 11 | 8/3/2010 11:55 | 39.384 | 31 | 8/3/2010 15:15 | 44.922 |
| 12 | 8/3/2010 12:05 | 41.439 | 32 | 8/3/2010 15:25 | 41.625 |
| 13 | 8/3/2010 12:15 | 43.282 | 33 | 8/3/2010 15:35 | 41.067 |
| 14 | 8/3/2010 12:25 | 44.56 | 34 | 8/3/2010 15:45 | 43.099 |
| 15 | 8/3/2010 12:35 | 40.134 | 35 | 8/3/2010 15:55 | 45.104 |
| 16 | 8/3/2010 12:45 | 40.881 | 36 | 8/3/2010 16:05 | 42.363 |
| 17 | 8/3/2010 12:55 | 42.732 | 37 | 8/3/2010 16:15 | 40.881 |
| 18 | 8/3/2010 13:05 | 44.56 | 38 | 8/3/2010 16:25 | 43.099 |
| 19 | 8/3/2010 13:15 | 42.363 | 39 | 8/3/2010 16:35 | 45.104 |
| 20 | 8/3/2010 13:25 | 40.134 | 40 | 8/3/2010 16:45 | 42.915 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| 41 | 8/3/2010 16:55 | 41.067 | 61 | 8/3/2010 20:15 | 40.881 |
| 42 | 8/3/2010 17:05 | 43.099 | 62 | 8/3/2010 20:25 | 41.625 |
| 43 | 8/3/2010 17:15 | 45.104 | 63 | 8/3/2010 20:35 | 43.648 |
| 44 | 8/3/2010 17:25 | 43.648 | 64 | 8/3/2010 20:45 | 45.286 |
| 45 | 8/3/2010 17:35 | 41.254 | 65 | 8/3/2010 20:55 | 41.81 |
| 46 | 8/3/2010 17:45 | 43.282 | 66 | 8/3/2010 21:05 | 41.439 |
| 47 | 8/3/2010 17:55 | 45.286 | 67 | 8/3/2010 21:15 | 43.466 |
| 48 | 8/3/2010 18:05 | 44.379 | 68 | 8/3/2010 21:25 | 45.286 |
| 49 | 8/3/2010 18:15 | 41.254 | 69 | 8/3/2010 21:35 | 42.732 |
| 50 | 8/3/2010 18:25 | 43.282 | 70 | 8/3/2010 21:45 | 40.881 |
| 51 | 8/3/2010 18:35 | 45.286 | 71 | 8/3/2010 21:55 | 42.915 |
| 52 | 8/3/2010 18:45 | 44.742 | 72 | 8/3/2010 22:05 | 44.742 |
| 53 | 8/3/2010 18:55 | 41.254 | 73 | 8/3/2010 22:15 | 44.195 |
| 54 | 8/3/2010 19:05 | 43.099 |  |  |  |
| 55 | 8/3/2010 19:15 | 44.922 |  |  |  |
| 56 | 8/3/2010 19:25 | 45.286 |  |  |  |
| 57 | 8/3/2010 19:35 | 40.696 |  |  |  |
| 58 | 8/3/2010 19:45 | 42.363 |  |  |  |
| 59 | 8/3/2010 19:55 | 44.195 |  |  |  |
| 60 | 8/3/2010 20:05 | 45.466 |  |  |  |


| Temperature Setting 2 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | Time, GMT-04:00 | Temp, ${ }^{\circ} \mathrm{F}$ | $\square$ |  |  |  |
| 1 | 8/4/2010 22:30 | 52.576 |  | 21 | 8/5/2010 1:50 | 40.881 |
| 2 | 8/4/2010 22:40 | 47.982 |  | 22 | 8/5/2010 2:00 | 41.254 |
| 3 | 8/4/2010 22:50 | 46.369 |  | 23 | 8/5/2010 2:10 | 43.466 |
| 4 | 8/4/2010 23:00 | 40.881 |  | 24 | 8/5/2010 2:20 | 45.104 |
| 5 | 8/4/2010 23:10 | 41.81 |  | 25 | 8/5/2010 2:30 | 41.254 |
| 6 | 8/4/2010 23:20 | 43.648 |  | 26 | 8/5/2010 2:40 | 41.067 |
| 7 | 8/4/2010 23:30 | 45.104 |  | 27 | 8/5/2010 2:50 | 43.282 |
| 8 | 8/4/2010 23:40 | 41.439 |  | 28 | 8/5/2010 3:00 | 45.104 |
| 9 | 8/4/2010 23:50 | 40.134 |  | 29 | 8/5/2010 3:10 | 41.439 |
| 10 | 8/5/2010 0:00 | 42.363 |  | 30 | 8/5/2010 3:20 | 40.696 |
| 11 | 8/5/2010 0:10 | 44.379 |  | 31 | 8/5/2010 3:30 | 42.915 |
| 12 | 8/5/2010 0:20 | 43.831 |  | 32 | 8/5/2010 3:40 | 44.922 |
| 13 | 8/5/2010 0:30 | 39.947 |  | 33 | 8/5/2010 3:50 | 41.994 |
| 14 | 8/5/2010 0:40 | 41.81 |  | 34 | 8/5/2010 4:00 | 40.509 |
| 15 | 8/5/2010 0:50 | 43.831 |  | 35 | 8/5/2010 4:10 | 42.732 |
| 16 | 8/5/2010 1:00 | 44.742 |  | 36 | 8/5/2010 4:20 | 44.742 |
| 17 | 8/5/2010 1:10 | 40.134 |  | 37 | 8/5/2010 4:30 | 42.915 |
| 18 | 8/5/2010 1:20 | 41.254 |  | 38 | 8/5/2010 4:40 | 40.321 |
| 19 | 8/5/2010 1:30 | 43.466 |  | 39 | 8/5/2010 4:50 | 42.363 |
| 20 | 8/5/2010 1:40 | 45.104 |  | 40 | 8/5/2010 5:00 | 44.379 |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| 41 | 8/5/2010 5:10 | 43.466 |  | 61 | 8/5/2010 8:30 | 43.648 |
| 42 | 8/5/2010 5:20 | 39.947 |  | 62 | 8/5/2010 8:40 | 44.922 |
| 43 | 8/5/2010 5:30 | 41.81 |  | 63 | 8/5/2010 8:50 | 40.509 |
| 44 | 8/5/2010 5:40 | 43.831 |  | 64 | 8/5/2010 9:00 | 41.067 |
| 45 | 8/5/2010 5:50 | 44.56 |  | 65 | 8/5/2010 9:10 | 43.099 |
| 46 | 8/5/2010 6:00 | 39.947 |  | 66 | 8/5/2010 9:20 | 44.922 |
| 47 | 8/5/2010 6:10 | 41.254 |  | 67 | 8/5/2010 9:30 | 41.439 |
| 48 | 8/5/2010 6:20 | 43.466 |  | 68 | 8/5/2010 9:40 | 40.321 |
| 49 | 8/5/2010 6:30 | 44.742 |  | 69 | 8/5/2010 9:50 | 42.363 |
| 50 | 8/5/2010 6:40 | 40.509 |  | 70 | 8/5/2010 10:00 | 44.379 |
| 51 | 8/5/2010 6:50 | 40.696 |  | 71 | 8/5/2010 10:10 | 43.099 |
| 52 | 8/5/2010 7:00 | 42.915 |  | 72 | 8/5/2010 10:20 | 39.76 |
| 53 | 8/5/2010 7:10 | 44.742 |  | 73 | 8/5/2010 10:30 | 41.81 |
| 54 | 8/5/2010 7:20 | 41.994 |  |  |  |  |
| 55 | 8/5/2010 7:30 | 40.134 |  |  |  |  |
| 56 | 8/5/2010 7:40 | 42.363 |  |  |  |  |
| 57 | 8/5/2010 7:50 | 44.195 |  |  |  |  |
| 58 | 8/5/2010 8:00 | 43.648 |  |  |  |  |
| 59 | 8/5/2010 8:10 | 39.947 |  |  |  |  |
| 60 | 8/5/2010 8:20 | 41.625 |  |  |  |  |





Table A-6: Comparison Data used to make Figures 3-1 to 3-5

| Control Test |  |  |  |  | Insulation Test |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Temp <br> ( ${ }^{\circ} \mathrm{F}$ ) | Energy (kWh) |  | $\begin{aligned} & \text { Temp } \\ & \left({ }^{\circ} \mathrm{F}\right) \end{aligned}$ | Energy (kWh) | Efficiency Change |
| 33.16 | 425.8 |  | 33.29 | 412 | 0.03240958 |
| 36.18 | 335.5 |  | 38.25 | 344 | -0.0253353 |
| 39.33 | 309.5 |  | 40.38 | 282 | 0.08885299 |
| 39.16 | 301.5 |  | 41.99 | 260 | 0.13764511 |
| 39.27 | 292.5 |  | 40.31 | 256 | 0.12478632 |
| Usage Tests (Loaded \& Opening |  |  |  |  |  |
| Tests) |  |  |  |  |  |
| Temp ( ${ }^{\circ} \mathrm{F}$ ) | Energy (kWh) | Efficiency Change | Temp <br> ( ${ }^{\circ}$ ) | Energy (kWh) | Efficiency Change |
| 37.36 | 537 | -0.261155472 | 34.66 | 531 | -0.2470643 |
| 37.68 | 443 | -0.320417288 | 38.76 | 423 | -0.2608048 |
| 42.48 | 339 | -0.095315024 | 43.53 | 309 | 0.00161551 |
| 42.24 | 319 | -0.058043118 | 42.91 | 290 | 0.03814262 |
| 43.89 | 349 | -0.193162393 | 42.76 | 308 | -0.0529915 |
| Environment / Circulation Test |  |  |  |  |  |
| Temp <br> ( ${ }^{\circ} \mathrm{F}$ ) | Energy (kWh) | Efficiency Change |  |  |  |
| 34.11 | 391 | 0.081728511 |  |  |  |
| 37.38 | 323 | 0.037257824 |  |  |  |
| 40.42 | 310 | -0.001615509 |  |  |  |
| 42.15 | 309 | -0.024875622 |  |  |  |
| 43.89 | 314 | -0.073504274 |  |  |  |



Figure A-1: Insulation Prototype freezer door schematics


Figure A-2: Insulation Prototype fridge door schematics


Figure A-3: Insulation Prototype side schematics

## References

1. This Is Penn State. Penn State Press: 2006. 4 Apr. 2011.
<http://books.google.com/books?id=njsImNDk_bIC\&pg=PA22\&lpg=PA22\&dq=ho $\mathrm{w}+\mathrm{do}+\mathrm{psu}+$ students+use+dorm+refrigerators\&source=$=$ bl\&ots=H_Koh_Z1uH\&sig=B NQvk_Ps6e0-

HfNV9sndwlc83sA\&hl=en\&ei=fdyhTd28Mabb0QGHkYn8BA\&sa=X\&oi=book_res ult\&ct=result\&resnum=4\&ved=0CC4Q6AEwAw\#v=onepage\&q\&f=false>.
2. Miller, Laura Little. Measuring the efficacy of an energy and environmental awareness campaign to effectively reduce water consumption. Pennsylvania State University: 2010. 2 Apr. 2011.
[http://etda.libraries.psu.edu/theses/approved/PSUonlyIndex/ETD-5817/index.html](http://etda.libraries.psu.edu/theses/approved/PSUonlyIndex/ETD-5817/index.html).
3. Mammoli, A. A. Energy and Sustainability II. WIT Press: 2009. 2 Apr. 2011 [http://www.pensu.eblib.com/patron/FullRecord.aspx?p=512067](http://www.pensu.eblib.com/patron/FullRecord.aspx?p=512067).
4. "Refrigeration Cycle." Air Conditioning and Refrigeration Guide. 4 Apr. 2011. < http://www.air-conditioning-and-refrigeration-guide.com/refrigeration-cycle.html>.
5. Hundy, G.F. Refrigeration and air-conditioning. Butterworth-Heinemann/Elsevier: 2008. 19 Mar. 2011. <http://www.sciencedirect.com.ezaccess.libraries.psu.edu/science?_ob=MiamiImage URL\&_imagekey=B8KN6-4SN8SKN-M1\&_cdi=44586\&_user=209810\&_pii=B9780750685191000025\&_check=y\&_origin $=$ browse\&_zone=rslt_list_item\&_coverDate=07\%2F24\%2F2008\&wchp=dGLzVzzzSkzS\&md5=9a4d04a526de56bcd869b2cc7564b4c3\&ie=/sdarticle.pdf>.
6. Manos, David. "Re: Housing Information Question: Gary Dundon." Email to the author. 11 Apr. 2011.
7. Howard, Brian C. Green lighting: how energy-efficient lighting can save you energy and money and reduce your carbon footprint. New York: McGraw Hill, 2011.
8. Turns, Steven R. Thermodynamics: Concepts and Applications. Cambridge: Cambridge University Press, 2006.
9. Santiago Duran, Eduardo. Methods for optimal experimental design under different cost structures: off-line and sequential approaches. Diss. Pennsylvania State University, 2010. 19 Mar. 2011.
[http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD5869/index.html](http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD5869/index.html).
10. Doebelin, Ernest O. Instrumentation design studies. Boca Raton: CRC Press 2010.
11. Incropera, Frank P, David P. Dewitt, Theodore L. Bergman, and Adrienne S. Lavine. Fundamentals of Heat Mass Transfer. $6^{\text {th }}$ Edition. John Wiley \& Sons, 2007.
12. Design, Selection, and Operation of Refrigerator and Heat Pump Compressors. London: IMechE Seminar Publication, 1998.
13. Chan, S.H. General Papers in heat and mass transfer, insulation, and turbomachinery. Proc. of $6^{\text {th }}$ AIAA/ASME Thermophysics and Heat Transfer Conf., June 20-23, 1994. New York: American Society of Mechanical Engineers, 1994.
14. Home Depot. Information about Insulation. State College: Home Depot, 2011.
15. Home Depot. Information about Liquid Nails 10 oz . Heavy Duty Construction Adhesive. State College: Home Depot, 2011.

## Academic Vita

## Gary P. Dundon II

[School Address]

Department of Mechanical Engineering
The Pennsylvania State University
State College, PA 16803
gpd5022@psu.edu

## Education

B.S. Mechanical Engineering, 2011

The Pennsylvania State University
State College, PA

## Honors and Awards

Dean's List
The Pennsylvania State University
January 2011
[Home Address]

56 Parkview Drive
Succasunna, NJ 07876
(973) 452-4134

SMART Scholarship
Department of Defense
April 1, 2010

Second Place Poster Presentation Competition: Penn State Hazleton Research Fair The Pennsylvania State University

March 2009

## Professional Experience

## PENNTap Energy Assessment Team Intern

- Helped conduct energy usage investigations for local businesses
- Helped compose energy assessment reports


## Research Experience (Focus in Alternative Energy)

Photovoltaic System Research
Dr. Wieslaw Grebski

- Researched photovoltaic systems
- Developed experiments to allow students to test and observe basic theories supporting photovoltaics

Geothermal Power Generation and Heating
Dr. Ljubisa Radovic

- Researched geothermal power and heat generation
- Composed findings detailing current systems and applications in detailed report


## Research Interests

I have broad interests in alternative energy systems and their application in various industries to reduce current dependence on fossil fuels. Specifically, I am interested in redesigning current technology to improve efficiency and reduce power consumption. I have also conducted somewhat extensive research relating to current and developing alternative energy systems including photovoltaic or solar cells, wind turbines, and geothermal power generation and heating and cooling.

